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Abstract
Motivated by better modeling of intra-individual variability in longitudinal data, we
propose a class of location-scale mixed-effects models, in which the data of each
individual is modeled by a parameter-varying generalized hyperbolic distribution. We
first study the local maximum-likelihood asymptotics and reveal the instability in the
numerical optimization of the log-likelihood. Then, we construct an asymptotically
efficient estimator based on the Newton–Raphson method based on the original log-
likelihood functionwith the initial estimator being naive least-squares-type.Numerical
experiments are conducted to show that the proposed one-step estimator is not only
theoretically efficient but also numerically much more stable and much less time-
consuming compared with the maximum-likelihood estimator.

Keywords Asymptotically efficient estimator · Generalized hyperbolic distribution ·
Mixed-effects location-scale model

1 Introduction

The key step in the population approach (Lavielle 2015) is modeling dynamics of
many individuals to introduce a flexible probabilistic structure for the random vector
Yi = (Yi (ti j ))

ni
j=1 ∈ R

ni representing time series data (supposed to be univariate) from
i th individual. Here, ti1 < · · · < tini denotes sampling times, which may vary across
the individuals with possibly different ni for i = 1, . . . , N . The model is desired to
be tractable from theoretical and computational points of view.
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In the classical linearmixed-effectsmodel (Laird andWare 1982), the target variable
Yi in Rni is described by

Yi = Xiβ + Zibi + εi , (1.1)

for i = 1, . . . , N , where the explanatory variables Xi ∈ R
ni ⊗R

p and Zi ∈ R
ni ⊗R

q

are knowndesignmatrices,where {bi } and {εi } aremutually independent centered i.i.d.
sequences with covariance matrices G ∈ R

q ⊗R
q and Hi ∈ R

ni ⊗R
ni , respectively;

typical examples of Hi = (Hi,kl) include Hi = σ 2 Ini (Iq denotes the q-dimensional
identity matrix) and Hi,kl = σ 2ρ|k−l| with ρ denoting the correlation coefficient.
Although the model (1.1) is quite popular in studying longitudinal data, it is not
adequate for modeling intra-individual variability. Formally speaking, this means that
for each i , conditionally on bi the objective variable Yi has the covariance which does
not depend on bi . Therefore, the model is not suitable if one wants to incorporate a
random effect across the individuals into the covariance and higher order structures
such as skewness and kurtosis.

1.1 Mixed-effects location-scale model

Let us briefly review the previous study which motivated our present study. The paper
(Hedeker et al. 2008) introduced a variant of (1.1), called the mixed-effects location-
scale (MELS) model, for analyzing ecological momentary assessment (EMA) data;
the MELS model was further studied in Hedeker et al. (2009, 2012) and Hedeker
and Nordgren (2013) from application and computational points of view. EMA is also
known as the experience sampling method, which is not retrospective and the indi-
viduals are required to answer immediately after an event occurs. Modern EMA data
in mental health research is longitudinal, typically consisting of possibly irregularly
spaced sampling times from each patient. To avoid the so-called “recall bias” of retro-
spective self-reports from patients, the EMAmethod records many events in daily life
at the moment of their occurrence. The primary interest is modeling both between-
and within-subjects heterogeneities, hence one is naturally led to incorporate random
effects into both trend and scale structures. We refer to Shiffman et al. (2008) for
detailed information on EMA data.

In the MELS model, the j th sample Yi j from the i th individual is given by

Yi j = x�
i jβ + exp

(
1

2
z�i jα

)
ε1,i + exp

(
1

2
(w�

i j τ + σwε2,i )

)
ε3,i j (1.2)

for 1 ≤ j ≤ ni and 1 ≤ i ≤ N . Here, (xi j , zi j , wi j ) are non-random explanatory
variables, (ε1,i , ε2,i ) denote the i.i.d. random-effect, and ε3,i j denote the driving noises
for each i ≤ N such that

(ε1,i , ε2,i , ε3,i j ) ∼ N3

⎛
⎝0,

⎛
⎝1 ρ 0

ρ 1 0
0 0 1

⎞
⎠
⎞
⎠
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and that ε3,i1, . . . , ε3,ini ∼ i.i.d. N (0, 1), with (ε1,i , ε2,i ) and (ε3,i j ) j≤ni being mutu-
ally independent. Direct computations give the following expressions: E[Yi j ] = x�

i jβ,

Var[Yi j ] = exp(w�
i j τ + σ 2

w/2) + exp(z�i α), and also Cov[Yik,Yil ] = exp(z�i α) for
k �= l; the covariance structure is to be compared with the one (2.2) of our model. Fur-
ther, their conditional versions given the random-effect variable Ri := (ε1,i , ε2,i ) are
as follows: E[Yi j |Ri ] = x�

i jβ + exp(z�i α/2)ε1,i , Var[Yi j |Ri ] = exp(w�
i j τ + σwε2,i ),

and Cov[Yik,Yil |Ri ] = 0 for k �= l. We also note that the conditional distribution

L(Yi1, . . . , Yini |Ri )=Nni

(
Xiβ+1ni e

z�i α/2ε1,i , diag
(
ew

�
i1τ+σwε2,i , . . . , e

w�
ini

τ+σwε2,i ))
,

where Xi := (xi1, . . . , xini ) and 1ni ∈ R
ni has the entries all being 1. Importantly,

the marginal distribution L(Yi1, . . . ,Yini ) is not Gaussian. See Hedeker et al. (2008)
for details about the data-analysis aspects of the MELS model.

The third term on the right-hand side of (1.2) obeys a sort of normal-variance
mixture with the variance mixing distribution being log-normal, introducing the so-
called leptokurtosis (heavier tail than the normal distribution). Further, the last two
terms on the right-hand side enable us to incorporate skewness into the marginal
distribution L(Yi j ); it is symmetric around x�

i jβ if ρ = 0.
The optimization of the corresponding likelihood function is quite time-consuming

since we need to integrate the latent variables (ε1,i j , ε2,i j ): the log-likelihood function
of θ := (β, α, τ, σw, ρ) is given by

θ �→
N∑
i=1

log

{∫
R2

φni

(
Yi ; μi (β, α, Xi , zi ; x1), 
i (τ, σw, ρ,wi ; x1, x2)

)

×φ2((x1, x2); 0, I2)dx1dx2
}
, (1.3)

where wi := (wi j ) j≤ni , zi := (zi j ) j≤ni , φm(·;μ,
) denotes the m-dimensional
N (μ,
)-density, and

μi (β, α, Xi , zi ; x1) : =Xiβ+1ni e
z�i α/2x1,


i (τ, σw, ρ,wi ; x1, x2) : =
diag

(
ew�

i1τ+σw(ρx1+
√

1−ρ2x2), . . . , e
w�
ini

τ+σw(ρx1+
√

1−ρ2x2)
)
.

Just for reference, we present a numerical experiment by R Software for computing
the maximum-likelihood estimator (MLE). We set N = 1000 and n1 = n2 = · · · =
n1000 = 10 and generated xi j , zi j , wi j ∼ i.i.d. N2(0, I2) independently; then, the tar-
get parameter is 8-dimensional. The true values were set as follows: β = (0.6,−0.2),
α = (−0.3, 0.5), τ = (−0.5, 0.3), σw = √

0.8 ≈ 0.894, and ρ = −0.3. The
results based on a single set of data are given in Table 1. It took more than 20 h in
our R code for obtaining one MLE (Apple M1 Max, memory 64GB; the R function
adaptIntegrate was used for the numerical integration); we have also run the
simulation code for N = 500 and n1 = n2 = · · · = n500 = 5, and then it took
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Table 1 MLE results; the computation time for one pair was about 21 hours

β0 β1 α0 α1 τ0 τ1 σw ρ

True values 0.600 − 0.200 − 0.300 0.500 − 0.500 0.300 0.894 − 0.300

MLE 0.597 − 0.193 − 0.269 0.492 − 0.507 0.285 0.860 − 0.286

about 8 h. The program should run much faster if other software such as Fortran and
MATLAB is used instead of R, but we will not deal with that direction here. Though it
is cheating, the numerical search started from the true values; it would be much more
time-consuming and unstable if the initial values were far from the true ones.

The EM-algorithm type approach for handling latent variables would work at least
numerically, while it is also expected to be time-consuming even if a specific numerical
recipe is available. Some advanced tools for numerical integration would help to some
extent, but we will not pursue it here.

1.2 Our objective

In this paper, we propose an alternative computationally much simpler way of the
joint modeling of the mean and within-subject variance structures. Specifically, we
construct a class of parameter-varying models based on the univariate generalized
hyperbolic (GH) distribution and study its theoretical properties. The model can be
seen as a special case of inhomogeneous normal-variance-mean mixtures and may
serve as an alternative to the MELS model; see Sect. 1 for a summary of the GH
distributions. Recently, the family has received attention for modeling non-Gaussian
continuous repeatedmeasurement data (Asar et al. 2020), but ours is constructed based
on a different perspective directly by making some parameters of the GH distribution
covariate dependent.

This paper is organized as follows. Section2 introduces the proposed model and
presents the local-likelihood analysis, followed by numerical experiments. Section3
considers the construction of a specific asymptotically optimal estimator and presents
its finite-sample performance with comparisons with the MLE. Section4 gives a sum-
mary and potential directions for future issues.

2 Parameter-varying generalized hyperbolic model

2.1 Proposedmodel

We model the objective variable at j th-sampling time point from the i th-individual
by

Yi j = x�
i jβ + s(zi j , α)vi + √

vi σ(wi j , τ )εi j (2.1)

for j = 1, . . . , ni and i = 1, . . . , N , where

• xi j ∈ R
pβ , zi j ∈ R

p′
α , andwi j ∈ R

p′
τ are given non-random explanatory variables;
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• β ∈ �β ⊂ R
pβ , α ∈ �α ⊂ R

pα , and τ ∈ �τ ⊂ R
pτ are unknown parameters;

• The random-effect variables v1, v2, . . . ∼ i.i.d. GIG(λ, δ, γ ), where GIG refers
to the generalized inverse Gaussian distribution (see Sect. 1);

• {εi = (εi1, . . . , εini )
�}i≥1 ∼ i.i.d. N (0, Ini ), independent of {vi }i≥1;

• s : Rp′
α ×�α �→ R and σ : Rp′

τ ×�τ �→ (0,∞) are knownmeasurable functions.

As mentioned in the introduction, for (2.1), one may think of the continuous-time
model without system noise:

Yi (ti j ) = xi (ti j )
�β + s(zi (ti j ), α)vi + √

vi σ(wi (ti j ), τ )εi (ti j ),

where ti j denotes the j th sampling time for the i th individual.
We will write Yi = (Yi1, . . . ,Yini ) ∈ R

ni , xi = (xi1, . . . , xini ) ∈ R
ni ⊗ R

pβ , and
so on for i = 1, . . . , N , and also

θ := (β, α, τ, λ, δ, γ ) ∈ �β × �α × �τ × �λ × �δ × �γ =: � ⊂ R
p,

where � is supposed to be a convex domain and p := pβ + pα + pτ + 3. We will
use the notation (Pθ )θ∈� for the family of distributions of {(Yi , vi , εi )}i≥1, which
is completely characterized by the finite-dimensional parameter θ . The associated
expectation and covariance operators will be denoted by Eθ and Covθ , respectively.

Let uswrite si j (α) = s(zi j , α) andσi j (τ ) = σ(wi j , τ ). For each i ≤ N , the variable
Yi1, . . . ,Yini are vi -conditionally independent and normally distributed under Pθ :

L(Yi j |vi ) = N
(
x�
i jβ + si j (α)vi , σ 2

i j (τ )vi

)
.

For each i , we have the specific covariance structure

Covθ [Yi j ,Yik] = si j (α)sik(α)Varθ [vi ]. (2.2)

The marginal distribution L(Yi1, . . . ,Yini ) is the multivariate GH distribution; a more
flexible dependence structure could be incorporated by introducing the non-diagonal
scale matrix (see Sect. 4 for a formal explanation). By the definition of the GH dis-
tribution, the variables Yi j and Yik may be uncorrelated for some (zi j , α) while they
cannot be mutually independent.

Wecan explicitlywrite down the log-likelihood functionof (Y1, . . . ,YN ) as follows:

�N (θ) = −1

2
log(2π)

N∑
i=1

ni + Nλ log
(γ

δ

)
− N log Kλ(δγ ) − 1

2

∑
i, j

log σ 2
i j (τ )

+
N∑
i=1

(
λ − ni

2

)
log Bi (β, τ, δ) −

N∑
i=1

(
λ − ni

2

)
log Ai (α, τ, γ )

+
∑
i, j

si j (α)

σ 2
i j (τ )

(Yi j − x�
i jβ) +

N∑
i=1

log Kλ− ni
2

(
Ai (α, τ, γ )Bi (β, τ, δ)

)
, (2.3)

123



674 Japanese Journal of Statistics and Data Science (2023) 6:669–704

where
∑

i, j denotes a shorthand for
∑N

i=1
∑ni

j=1 and

Ai (α, τ, γ ) :=
√√√√γ 2 +

ni∑
j=1

s2i j (α)

σ 2
i j (τ )

, (2.4)

Bi (β, τ, δ) :=
√√√√δ2 +

ni∑
j=1

1

σ 2
i j (τ )

(Yi j − x�
i jβ)2 . (2.5)

The detailed calculation is given in Sect. B.1.
To deduce the asymptotic property of the MLE, there are two typical ways: the

global- and the local-consistency arguments. In the present inhomogeneous model
where the variables (xi j , zi j , wi j ) are non-random, the two asymptotics have differ-
ent features: on one hand, the global-consistency one generally entails rather messy
descriptions of the regularity conditions as was detailed in the previous study (Fuji-
naga 2021), while entailing theoretically stronger global claims; on the other hand,
the local one only guarantees the existence of good local maxima of �N (θ) while only
requiring much weaker local-around-θ0 regularity conditions.

2.2 Local asymptotics of MLE

In the sequel, we fix a true value θ0 = (β0, α0, τ0, λ0, δ0, γ0) ∈ �, where �δ ×�γ ⊂
(0,∞)2; note that we are excluding the boundary (gamma and inverse-gamma) cases
for L(vi ).

For a domain A, let Ck(A) denote a set of real-valued Ck-class functions for which
the lth-partial derivatives (0 ≤ l ≤ k) admit continuous extensions to the boundary of
A. The asymptotic symbols will be used for N → ∞ unless otherwise mentioned.

Assumption 2.1 (1) supi≥1
(
ni ∨ max1≤ j≤ni max{|xi j |, |zi j |, |wi j |}

)
< ∞.

(2) α �→ s(z, α) ∈ C3(�α) for each z.
(3) τ �→ σ(w, τ) ∈ C3(�τ ) for each w, and inf

(w,τ)∈Rp′τ ×�τ
σ (w, τ) > 0.

We are going to prove the local asymptotics of the MLE by applying the general
result (Sweeting 1980, Theorems 1 and 2).

Under Assumption 2.1 and using the basic facts about the Bessel function K·(·)
(see Sect. 1), we can find a compact neighborhood B0 ⊂ � of θ0 such that

∀K > 0, sup
i≥1

max
1≤ j≤ni

sup
θ∈B0

Eθ

[|Yi j |K ] < ∞.

Note that min{δ, γ } > 0 inside B0.
Let M⊗2 := MM� for a matrix M , and denote by λmax(M) and λmin(M) the

largest and smallest eigenvalues of a square matrix M , and by ∂kθ the kth-order partial-
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differentiation operator with respect to θ . Write

�N (θ) =
N∑
i=1

ζi (θ)

for the right-hand side of (2.3). Then, by the independence we have

Eθ

[
(∂θ�N (θ))⊗2

]
=

N∑
i=1

Eθ

[
(∂θ ζi (θ))⊗2

]
;

just for reference, the specific forms of ∂θ�N (θ) and ∂2θ �N (θ) are given in Sect. B.2.
Further by differentiating θ �→ ∂2θ �N (θ)with recalling Assumption 2.1, it can be seen
that

∀K > 0, sup
i≥1

sup
θ∈B0

Eθ

[∣∣∂mθ ζi (θ)
∣∣K ] < ∞ (2.6)

for m = 1, 2, and that

lim sup
N

sup
θ∈B0

Eθ

[
1

N
sup

θ ′∈B0

∣∣∣∂3θ �N (θ ′)
∣∣∣
]

< ∞. (2.7)

These moment estimates will be used later on; unlike the global-asymptotic study
(Fujinaga 2021), we do not need the explicit form of ∂2θ �N (θ).

We additionally assume the diverging information condition, which is inevitable
for consistent estimation:

Assumption 2.2

lim inf
N

inf
θ∈B0

λmin

(
1

N

N∑
i=1

Eθ

[
(∂θ ζi (θ))⊗2

])
> 0.

Under Assumption 2.1, we may and do suppose that the matrix

AN (θ) :=
(
Eθ

[
(∂θ�N (θ))⊗2

])1/2 =
(

N∑
i=1

Eθ

[
(∂θ ζi (θ))⊗2

])1/2

is well-defined, where M1/2 denotes the symmetric positive-definite root of a pos-
itive definite M . We also have supθ∈B0 |AN (θ)|−1 � N−1/2 → 0. This AN (θ)

will serve as the norming matrix of the MLE; see Remark 2.5 below for Studen-
tization. Further, the standard argument through the Lebesgue dominated theorem
ensures that Eθ [∂θ�N (θ)] = 0 and Eθ

[
(∂θ�N (θ))⊗2] = Eθ

[−∂2θ �N (θ)
]
, followed

by AN (θ) = (Eθ

[−∂2θ �N (θ)
])1/2

.
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For c > 0, Assumption 2.2 yields

sup
θ ′ : |θ ′−θ |≤c/

√
N

∣∣AN (θ)−1AN (θ ′) − Ip
∣∣

= sup
θ ′ : |θ ′−θ |≤c/

√
N

∣∣∣∣∣
(

1√
N

AN (θ)

)−1 ( 1√
N

AN (θ ′) − 1√
N

AN (θ)

)∣∣∣∣∣
� sup

θ ′ : |θ ′−θ |≤c/
√
N

∣∣∣∣ 1√
N

AN (θ ′) − 1√
N

AN (θ)

∣∣∣∣

� sup
θ ′ : |θ ′−θ |≤c/

√
N

∣∣∣∣∣∣
(

1

N

N∑
i=1

Eθ ′
[(

∂θ ζi (θ
′)
)⊗2
])1/2

−
(

1

N

N∑
i=1

Eθ

[
(∂θ ζi (θ))⊗2]

)1/2
∣∣∣∣∣∣

→ 0. (2.8)

Here, the last convergence holds since the function θ �→ N−1/2AN (θ) is uniformly
continuous over B0.

Define the normalized observed information:

IN (θ) := −AN (θ)−1∂2θ �N (θ)AN (θ)−1�.

Then, it follows from Assumption 2.2 that

∣∣IN (θ) − Ip
∣∣ =

∣∣∣∣∣
(

1√
N

AN (θ)

)−1
(
IN (θ) −

(
1√
N

AN (θ)

)⊗2
)(

1√
N

AN (θ)

)−1�∣∣∣∣∣
�
∣∣∣∣∣IN (θ) −

(
1√
N

AN (θ)

)⊗2
∣∣∣∣∣

�
∣∣∣∣∣
1

N

N∑
i=1

(
∂2θ ζi (θ) − Eθ

[
∂2θ ζi (θ)

])∣∣∣∣∣ .

Then, (2.6) ensures that

sup
θ∈B0

Eθ

[∣∣IN (θ) − Ip
∣∣2] � 1

N

(
1

N

N∑
i=1

sup
θ∈B0

Eθ

[∣∣∣∂2θ ζi (θ)

∣∣∣2
])

� 1

N
→ 0,

followed by the property

∀ε > 0, sup
θ∈B0

Pθ

[|IN (θ) − Ip| > ε
]→ 0. (2.9)

Let
L−→ denote the convergence in distribution. Having obtained (2.7), (2.8), and

(2.9), we can conclude the following theorem by applying (Sweeting 1980, Theorems
1 and 2).

Theorem 2.3 Under Assumptions 2.1 and 2.2, we have the following statements under
Pθ0 .
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(1) For any bounded sequence (uN ) ⊂ R
p,

�N

(
θ0 + AN (θ0)

�−1uN

)
− �N (θ0) = u�

N�N (θ0) − 1

2
|uN |2 + op(1),

with

�N (θ0) := AN (θ0)
−1∂θ�N (θ0)

L−→ N (0, Ip).

(2) There exists a local maximum point θ̂N of �N (θ) with Pθ0 -probability tending to
1, for which

AN (θ0)
�(θ̂N − θ0) = �N (θ0) + op(1)

L−→ N (0, Ip). (2.10)

Remark 2.4 (Asymptotically efficient estimator) By the standard argument about the
local asymptotic normality (LAN) of the family {Pθ }θ∈�, any estimators θ̂∗

N satisfying
that

AN (θ0)
�(θ̂∗

N − θ0) = �N (θ0) + op(1) (2.11)

are regular and asymptotically efficient in the sense of Hajék–Le Cam. See Basawa
and Scott (1983) and Jeganathan (1982) for details.

Remark 2.5 (Studentization of 2.10) Here is a remark on the construction of approx-
imate confidence sets. Define the statistics

ÂN :=
(

N∑
i=1

(∂θ ζi (θ̂N ))⊗2

)1/2

. (2.12)

Then, tomake inferences for θ0,we can use the distributional approximations ÂN (θ̂N−
θ0) = �N (θ0) + op(1)

L−→ Np(0, Ip) and

(θ̂N − θ0)
� Â2

N (θ̂N − θ0)
L−→ χ2(p). (2.13)

To see this, it is enough to show that under Pθ0 ,

AN (θ0)
−1 ÂN = Ip + op(1). (2.14)

We have
√
N (θ̂N − θ0) = Op(1) by Theorem 2.3 and Assumption 2.2. This together

with the Burkholder inequality and (2.6) yield that

N−1/2 ÂN =
(
1

N

N∑
i=1

(
(∂θ ζi (θ̂N ))⊗2 − (∂θ ζi (θ0))

⊗2
)
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+ 1

N

N∑
i=1

(
(∂θ ζi (θ0))

⊗2−Eθ0

[
(∂θ ζi (θ0))

⊗2
])

+
(
N−1/2AN (θ0)

)2 )1/2

=
(
Op(N

−1/2) +
(
N−1/2AN (θ0)

)2)1/2

and hence

AN (θ0)
−1 ÂN =

(
N−1/2AN (θ0)

)−1
{
op(1) +

(
N−1/2AN (θ0)

)2}1/2 = Ip + op(1),

concluding (2.14). Note that, instead of (2.12), we may also use the square root of the
observed information matrix

ÃN :=
(

−
N∑
i=1

∂2θ ζi (θ̂N )

)1/2

(2.15)

for concluding the same weak convergence as in (2.13). In our numerical experiments,
we made use of this Ã2

N for computing the confidence interval and the empirical cov-
erage probability. The elements of Ã2

N are explicit while rather lengthy: see Sect. B.2.

Remark 2.6 (Misspecifications) In addition to the linear form x�
i jβ in (2.1), misspeci-

fication of a parametric form of the function (s(zi , α), σ (wi j , τ )) is always concerned.
Using the M-estimation theory (for example, see White (1982) and (Fahrmeir 1990,
Section 5)), under appropriate identifiability conditions, it is possible to handle
their misspecified parametric forms. In that case, however, the maximum-likelihood-
estimation target, say θ∗, is the optimal parameter (to be uniquely determined) in
terms of the Kullback–Leibler divergence, and we do not have the LAN property
in Theorem 2.3 in the usual sense while an asymptotic normality result of the form√
N (θ̂N − θ∗)

L−→ N (0, �−1
0 
0�

−1
0 ) could be given, where (non-random) 
0 and �0

are specified by N−1/2∂θ�N (θ∗)
L−→ N (0, 
0) and −N−1∂2θ �N (θ∗)

p−→ �0.

Finally, we note that the statistical problem will become non-standard if we allow
that the true value of (δ, γ ) for the GIG distribution L(vi ) satisfies that δ0 = 0 or
γ0 = 0. We have excluded these boundary cases at the beginning of Sect. 2.2.

2.3 Numerical experiments

For simulation purposes, we consider the following model:

Yi j = x�
i jβ + tanh(z�i jα)vi +

√
vi exp(w�

i j τ) εi j , (2.16)

where the ingredients are specified as follows.

• N = 1000 and n1 = n2 = · · · = n1000 = 10.
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Fig. 1 Longitudinal-data plots of 10 individuals in case (1) (left) and case (2) (right)

• The two different cases for the covariates xi j , zi j , wi j ∈ R
2:

(i) xi j , zi j , wi j ∼ i.i.d. N (0, I2);
(ii) The first components of xi j , zi j , wi j are sampled from independent N (0, 1), and

all the second ones are set to be j − 1.

The setting (ii) incorporates similarities across the individuals; see Fig. 1.

• v1, v2, · · · ∼ i.i.d. GIG(λ, δ, γ ).
• εi = (εi1, . . . , εini ) ∼ N (0, Ini ), independent of {vi }.
• θ = (β, α, τ, λ, δ, γ ) = (β0, β1, α0, α1, τ0, τ1, λ, δ, γ ) ∈ R

9.
• True values of θ :

(i) β = (0.3, 0.5), α = (−0.04, 0.05), τ = (0.05, 0.07), λ = 1.2, δ = 1.5, γ =
2;

(ii) β = (0.3, 1.2), α = (−0.4, 0.8), τ = (0.05, 0.007), λ = 0.9, δ = 1.2, γ =
0.9.

We numerically computed the MLE θ̂N by optimizing the log-likelihood; the mod-
ified Bessel function K·(·) can be efficiently computed by the existing numerical
libraries such as besselK in R Software. We repeated the Monte Carlo trials 1000
times, computed the Studentized estimates ÃN (θ̂N − θ0) with (2.15) in each trial, and
then drew histograms in Figs. 2 and 3, where the red lines correspond to the standard
normal densities. Also given in Figs. 2 and 3 are the histograms of the chi-square
approximations based on (2.13).

The computation time for one MLE was about 8 min for case (i) and about 6 min
for case (ii). Estimation performance for (λ, δ, γ ) were less efficient than those for
(β, α, τ ). It is expected that the unobserved nature of the GIG variables make the
standard-normal approximations relatively worse.

It is worth mentioning that case (ii) shows better normal approximations, in par-
ticular for (λ, δ, γ ); case (ii) would be simpler in the sense that the data from each
individual have similarities in their trend (mean) structures.

Table 2 shows the empirical 95%-coverage probability for each parameter in both
(i) and (ii), based on the confidence intervals θ̂

(k)
N ± zα/2[(−∂2θ �N (θ̂N ))−1]1/2kk for k =

1, . . . , 9 with θ̂N =: (θ̂
(k)
N )k≤9 and α = 0.05.We had 365 and 65 numerically unstable

cases among 1000 trials, respectively (mostly cased by a degenerate det(−∂2θ �N (θ̂N ))).
Therefore, the coverage probabilities were computed based on the remaining cases.

Let us note the crucial problem in the above Monte Carlo trials: the objective log-
likelihood is highly non-concave, hence as usual the numerical optimization suffers
from the initial-value and local-maxima problems. Here is a numerical example based
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Fig. 2 Standardized distributions of the MLE in case (i). The lower rightmost panel shows the chi-square
approximation based on (2.13)

on only a single set of data with N = 1000 and n1 = n2 = · · · = n1000 = 10 as
before. The same model as in (2.16) together with the subsequent settings was used,
except that we set λ = −1/2 known from the beginning so that the latent variables
v1, . . . , vN have the inverse-Gaussian population IG(δ, γ ) = GIG(−1/2, δ, γ ). For
the true parameter values specified in Table 3, we run the following two cases for the
initial values of the numerical optimization:

(i’) The true value;
(ii’) (1.0 × 10−8, . . . , 1.0 × 10−8︸ ︷︷ ︸

6 times

, 1.0 × 10−4, 1.0 × 10−3).

The results in Table 3 clearly show that the inverse-Gaussian parameter (δ, γ ) can be
quite sensitive to a bad starting point for the numerical search. In the next section, to
bypass the numerical instability we will construct easier-to-compute initial estimators
and their improved versions asymptotically equivalent to the MLE.

3 Asymptotically efficient estimator

Building on Theorem 2.3, we now turn to global asymptotics through the classical
Newton–Raphson type procedure. A systematic account for the theory of the one-step
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Fig. 3 Standardized distributions of the MLE in case (ii). The lower rightmost panel shows the chi-square
approximation based on (2.13)

estimator can be found in many textbooks, such as (van der Vaart 1998, Section 5.7).
Let us briefly overview the derivation with the current matrix-norming setting.

Suppose that we are given an initial estimator θ̂0N = (α̂0
N , β̂0

N , τ̂ 0N , λ̂0N , δ̂0N , γ̂ 0
N ) of

θ0 satisfying that

û0N := AN (θ0)
�(θ̂0N − θ0) = Op(1).

By Theorem 2.3 and Assumption 2.2, this amounts to

√
N (θ̂0N − θ0) = Op(1). (3.1)

We define the one-step estimator θ̂1N by

θ̂1N := θ̂0N −
(
∂2θ �N (θ̂0N )

)−1
∂θ�N (θ̂0N ) (3.2)

on the event {θ̂1N ∈ �, det(∂2θ �N (θ̂0N )) �= 0}, the Pθ0 -probability of which tends to 1.

Write û1N = AN (θ0)
�(θ̂1N − θ0) and Î0

N = −AN (θ0)
−1∂2θ �N (θ̂0N )AN (θ0)

−1�. Using
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Table 2 The empirical 95%-coverage probabilities of the MLE in cases (i) and (ii) based on 1000 trials

β0 β1 α0 α1 τ0 τ1 λ δ γ

Case (i) 0.940 0.948 0.953 0.946 0.942 0.953 0.817 0.863 0.839

Case (ii) 0.957 0.952 0.961 0.954 0.952 0.949 0.942 0.945 0.948

Table 3 MLE based on single data set; the running time was about 2 min for case (i’) and 8 min for case
(ii’); the performance of estimating (δ, γ ) in case (ii’) shows instability

True value β0 β1 α0 α1 τ0 τ1 δ γ

− 3.000 5.000 − 3.000 4.000 0.020 − 0.050 1.600 1.000

(i’) − 3.000 4.999 − 3.011 4.017 0.023 − 0.047 1.603 1.005

(ii’) − 3.000 4.999 − 2.966 3.947 0.023 − 0.052 0.947 0.000

Taylor expansion, we have

Î0
N û

1
N = Î0

N û
0
N + AN (θ0)

−1∂θ�N (θ̂0N ). (3.3)

By the arguments in Sect. 2.2, it holds that |Î0
N | ∨ |Î0−1

N | = Op(1). From (3.1),

AN (θ0)
−1∂θ�N (θ̂0N ) = �N (θ0) − Î0

N û
0
N + Op

(
N−1/2). (3.4)

Combining (3.3) and (3.4) and recallingRemarks 2.4 and 2.5, we obtain the asymptotic
representation (2.11) for θ̂1N , followed by the asymptotic standard normality

û1N = �N (θ0) + op(1)
L−→ Np(0, Ip)

and its asymptotic optimality.

3.1 Construction of initial estimator

This section aims to construct a
√
N -consistent estimator θ̂0N satisfying (3.1) through

the stepwise least-squares type estimators for the first three moments of Yi j . We note
that the model (2.1) does not have a conventional location-scale structure because of
the presence of vi in the two different terms.

We assume that the parameter space �β ×�α ×�τ ×�λ ×�δ ×�γ is a bounded
convex domain in Rpβ ×R

pα ×R
pτ ×R× (0,∞)2 with the compact closure. Write

θ ′ = (λ, δ, γ ) for the parameters contained in L(v1), the true value being denoted by
θ ′
0 = (λ0, δ0, γ0). Letμ = μ(θ ′) = Eθ [v1], c = c(θ ′) := Varθ [v1], and ρ = ρ(θ ′) :=
Eθ [(vi − Eθ [vi ])3]; write μ0 = μ(θ ′

0), c0 = c(θ ′
0), and ρ0 = ρ(θ ′

0) correspondingly.
Further, we introduce the sequences of the symmetric random matrices:

Q1,N (α) := 1

N

∑
i, j

(
μ0 ∂αsi j (α), xi j , si j (α0)

)⊗2
,
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Q2,N (τ ) := 1

N

∑
i, j

(
μ0 ∂τ (σ

2
i j )(τ ), s2i j (α0)

)⊗2
.

To state our global consistency result, we need additional assumptions.

Assumption 3.1 In addition to Assumption 2.1, the following conditions hold.

(1) Global identifiability of (α, β, μ):

(a) sup
α

|Q1,N (α) − Q1(α)| → 0 for some non-random function Q1(α);

(b) lim inf
N

inf
α

λmin(Q1,N (α)) > 0.

(2) Global identifiability of (τ, c):

(a) sup
τ

|Q2,N (τ ) − Q2(τ )| → 0 for some non-random function Q2(τ );

(b) lim inf
N

inf
τ

λmin(Q2,N (τ )) > 0.

(3) Global identifiability of ρ: lim inf
N

1

N

∑
i, j

s6i j (α0) > 0.

(4) There exists a neighborhood of θ ′
0 on which the mapping ψ : �λ × �δ × �γ →

(0,∞)2 × R defined by ψ(θ ′) = (μ(θ ′), c(θ ′), ρ(θ ′)) is bijective, and ψ is con-
tinuously differentiable at θ0 with nonsingular derivative.

To construct θ̂0N , we will proceed as follows.

Step 1 Noting that Eθ [Yi j ] = x�
i jβ+si j (α)μ, we estimate (β, α, μ) byminimizing

M1,N (α, β, μ) :=
∑
i, j

(
Yi j − x�

i jβ − si j (α)μ
)2

. (3.5)

Let (α̂0
N , β̂0

N , μ̂0
N ) ∈ argmin(α,β,μ)∈�β×�α×�μ

M1,N (α, β, μ).
For estimating the remaining parameters, we introduce the (heteroscedastic)
residual

êi j := Yi j − x�
i j β̂

0
N − si j (α̂

0
N )μ̂0

N , (3.6)

which is to be regarded as an estimator of the unobserved quantity√
vi σi j (τ0)εi j .

Step 2 Noting that Varθ [Yi j ] = σ 2
i j (τ )μ + s2i j (α)c, we estimate the variance-

component parameter (τ, α) by minimizing

M2,N (τ, c) :=
∑
i, j

(
ê2i j − σ 2

i j (τ )μ̂0
N − s2i j (α̂

0
N )c
)2

. (3.7)

Let (τ̂ 0N , ĉ0N ) ∈ argmin(τ,c)∈�τ ×(0,∞) M2,N (τ, c).
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Step 3 Noting that Eθ [(Yi j − Eθ [Yi j ])3] = 3si j (α)σ 2
i j (τ )c + s3i j (α)ρ, we estimate

ρ by the minimizer ρ̂0
N of

M3,N (ρ) :=
∑
i, j

(
ê3i j − 3si j (α̂

0
N )σ 2

i j (τ̂
0
N )ĉ0N − s3i j (α̂

0
N )ρ
)2

,

that is,

ρ̂0
N :=

⎛
⎝∑

i, j

s6i j (α̂
0
N )

⎞
⎠

−1∑
i, j

{
ê3i j − 3si j (α̂

0
N )σ 2

i j (τ̂
0
N )ĉ0N

}
s3i j (α̂

0
N ). (3.8)

Step 4 Finally, under Assumption 3.1(4), we construct θ̂ ′0
N = (λ̂0N , δ̂0N , γ̂ 0

N ) through
the delta method by inverting (μ̂0

N , ĉ0N , ρ̂0
N ):

√
N
(
θ̂ ′0
N − θ ′

0

) = √
N
(
ψ−1(μ̂0

N , ĉ0N , ρ̂0
N ) − ψ−1(μ0, c0, ρ0)

)

= (∂θ ′ψ(θ ′
0)
)−1√

N
(
(μ̂0

N , ĉ0N , ρ̂0
N ) − (μ0, c0, ρ0)

)
= Op(1).

In the rest of this section, we will go into detail about Steps 1 to 3 mentioned above
and show that the estimator θ̂0N thus constructed satisfies (3.1); Step 4 is the standard
method of moments (van der Vaart 1998, Chapter 4).

For convenience, let us introduce some notation. The multilinear-form notation

M[u] =
∑

i1,...,ik

Mi1,...,ik ui1 . . . uik ∈ R

is used for M = {Mi1,...,ik } and u = {ui1 , . . . uik }. For any sequence random functions
{FN (θ)}N and a non-random sequence (aN )N ⊂ (0,∞), we will write FN (θ) =
O∗

p(an) and FN (θ) = o∗
p(an) when supθ |FN (θ)| = Op(aN ) and supθ |FN (θ)| =

op(aN ) under Pθ0 , respectively. Further, we will denote by mi = (mi1, . . . ,mini ) ∈
R
ni any zero-mean (under Pθ0 ) random variables such that m1, . . . ,mN are mutually

independent and supi≥1 max1≤ j≤ni Eθ0 [|mi j |K ] < ∞ for any K > 0; its specific form
will be of no importance.

3.1.1 Step 1

Put a = (α, β, μ) and a0 = (α0, β0, μ0). By (2.1) and (3.5), we have

Y1,N (a) := 1

N

(
M1,N (a) − M1,N (a0)

)

= − 2

N

∑
i, j

(
xi j , si j (α0), μ0

) · (β − β0, μ − μ0, si j (α) − si j (α0)
)
mi j
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+
⎛
⎝ 1

N

∑
i, j

(
μ0 ∂αsi j (α̃), xi j , si j (α0)

)⊗2

⎞
⎠[(a − a0)

⊗2
]

= − 2

N

∑
i, j

(
xi j , si j (α0), μ0

) · (β − β0, μ − μ0, si j (α) − si j (α0)
)
mi j

+ 2
(
Q1,N (α̃) − Q1(α̃)

) [
(a − a0)

⊗2
]

+ 2Q1(α̃)
[
(a − a0)

⊗2
]
,

where α̃ = α̃(α, α0) is a point lying on the segment joining α and α0. The first
term on the rightmost side equals O∗

p(N
−1/2). The second term equals o∗

p(1) by
Assumption 3.1(1), hence we conclude that |Y1,N (a)−Y1(a)| = o∗

p(1) for Y1(a) :=
2Q1(α̃)

[
(a − a0)⊗2

]
. Moreover, we have infα λmin(Q1(α)) > 0 hence argminY1 =

{a0}, followed by the consistency âN
p−→ a0.

To deduce
√
N (âN − a0) = Op(1), we may and do focus on the event

{∂aM1,N (âN ) = 0}, on which

N−1∂2a M1,N (ãN )
√
N (âN − a0) = −N−1/2∂aM1,N (a0), (3.9)

where ãN is a random point lying on the segment joining âN and α0. Observe that

− 1√
N

∂aM1,N (a0)= 2√
N

∑
i, j

diag
(
∂αsi j (α0), Ipβ , 1

) [
(μ0, xi j , si j (α0))

]
mi j=Op(1).

Similarly,

1

N
∂2a M1,N (ãN ) = −2μ0

N

∑
i, j

{
mi j − (xi j , si j (α0), μ0

) ·

×
(
β̃N − β0, μ̃N − μ0, si j (α̃N ) − si j (α0)

)}

+ 2

N

∑
i, j

(
μ0∂αsi j (α̃N ), xi j , si j (α0)

)⊗2
.

Concerning the right-hand side, the first term equals op(1), and the inverse of the sec-
ond termdoesQ1,N (α̃N )−1 = {2Q1,N (α0)+op(1)}−1 = Op(1). The last twodisplays
combined with Assumption 3.1(1) and (3.9) conclude that

√
N (âN − a0) = Op(1);

it could be shown under additional conditions that
√
N (âN − a0) is asymptotically

centered normal, while it is not necessary here.

3.1.2 Step 2

Write ûβ,N = √
N (β̂0

N − β0), ûμ,N = √
N (μ̂0

N − μ0), and û′
α,i j = √

N (si j (α̂0
N ) −

si j (α0)). Let b := (τ, c) and b0 := (τ0, c0), and moreover

ei j := √
viσi j (τ0)εi j ,
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ei j := Yi j − Eθ0 [Yi j ] = ei j + si j (α0)(vi − μ0).

We have êi j = ei j − N−1/2 Ĥi j with Ĥi j := x�
i j ûβ,N + si j (α̂0

N )ûμ,N + μ0û′
α,i j .

Introduce the zero-mean random variables ηi j := e2i j −
(
σ 2
i j (τ0) + c0s2i j (α0)

)
. Then,

we can rewrite M2,N (b) of (3.7) as

M2,N (b) =
∑
i, j

(
ηi j (b) + 1√

N
B̂i j

)2
,

where

ηi j (b) := ηi j −
(
(σ 2

i j (τ ) − σ 2
i j (τ0))μ̂

0
N + (c − c0)s

2
i j (α̂

0
N )
)

,

B̂i j := −2Ĥi j + 1√
N
Ĥ2
i j − σ 2

i j (τ0)ûμ,N − c0û
′
α,i j .

As in Sect. 3.1.1, we observe that

Y2,N (b) := 1

N

(
M2,N (b) − M2,N (b0)

)

= O∗
p

(
1√
N

)
+ 1

N

∑
i, j

(
η2i j (b) − η2i j

)

= O∗
p

(
1√
N

)
+ 1

N

∑
i, j

(
(σ 2

i j (τ ) − σ 2
i j (τ0))μ̂

0
N + (c − c0)s

2
i j (α̂

0
N )
)2

= o∗
p(1) + 1

N

∑
i, j

(
(σ 2

i j (τ ) − σ 2
i j (τ0))μ0 + (c − c0)s

2
i j (α0)

)2

= o∗
p(1) + 2Q2,N (τ̃ )

[
(b − b0)

⊗2
]

for some point τ̃ = τ̃ (τ, τ0) lying on the segment joining τ and τ0. Thus Assump-

tion 3.1(2) concludes the consistency b̂N
p−→ b0: we have |Y2,N (b) −Y2(b)| = o∗

p(1)
with Y2(b) := 2Q2(τ̃ )

[
(b − b0)⊗2

]
satisfying that infτ λmin(Q2(τ )) > 0, hence

argminY2 = {b0}.
The tightness

√
N (b̂N − b0) = Op(1) can be also deduced as in Sect. 3.1.1: it

suffices to note that

1√
N

∂bM2,N (b0) = 2√
N

∑
i, j

(
ηi j + 1√

N
B̂i j

)
∂bη

2
i j (b0)

= − 2√
N

∑
i, j

(
μ0 ∂τ (σ

2
i j )(τ ), si j (α0)

)
ηi j + Op(1) = Op(1),
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and that

1

N
∂2b M2,N (b̃N ) = op(1) + 2Q2,N (τ0)

for every random sequence (b̃N ) such that b̃N
p−→ b0.

3.1.3 Step 3

By the explicit expression (3.8) and the
√
N -consistency of (α̂0

N , β̂0
N , μ̂0

N , ĉ0N ), we
obtain

(
1

N

∑
i, j

s6i j (α̂
0
N )

)√
N (ρ̂0

N − ρ0)

= 1√
N

∑
i, j

s3i j (α̂
0
N )
(
ê3i j − 3si j (α̂

0
N )σ 2

i j (τ̂
0
N )ĉ0N − s3i j (α̂

0
N )ρ0

)

=Op(1)+ 1√
N

∑
i, j

s3i j (α̂
0
N )

{(
ei j− 1√

N
Ĥi j

)3
−3si j (α0)σ

2
i j (τ0)c0−s3i j (α0)ρ0

}

= Op(1) + 1√
N

∑
i, j

s3i j (α0)
(
e3i j − 3si j (α0)σ

2
i j (τ0)c0 − s3i j (α0)ρ0

)
= Op(1).

Hence
√
N (ρ̂0

N − ρ0) = Op(1) under Assumption 3.1(3).
We end this section with a few remarks.

Remark 3.2 As an alternative to (3.5), one could also use the profile least-squares
estimator (Richards 1961): first, we construct the explicit least-squares estimator of
(β, μ)knowingα, and thenoptimizeα �→ M1,N (α, β̂N (α), μ̂N (α)) to get an estimator
of α.

Remark 3.3 If one component of θ ′ = (λ, δ, γ ) is known from the very beginning, then
it is enough to look at the estimation of (μ, c) and we can remove Assumption 3.1(3)
with modifying Assumption 3.1(4).

Remark 3.4 Because of the asymptotic nature, the same flow of estimation proce-
dures (the MLE, the initial estimator, and the one-step estimator) remain valid even
if we replace the trend term x�

i jβ in (1.2) by some nonlinear one, say μ(xi j , β), with
associated identifiability conditions.

Remark 3.5 We can construct a one-step estimator for the MELS model (1.2) in a
similar manner to Steps 1 to 3 described in Sect. 3.1. To construct an initial estimator
θ̂0N = (β̂0

N , α̂0
N , τ̂ 0N , σ̂ 2,0

w , ρ̂0
N ), we use the identities Eθ [Yi j ] = x�

i jβ, Varθ [Yi j ] =
exp(w�

i j τ+σ 2
w/2)+exp(z�i α), and Eθ [(Yi j−Eθ [Yi j ])3] = 3σw exp(z�i jα/2+σ 2

w/2)ρ.

Then, we can obtain β̂0
N in Step 1, (α̂0

N , τ̂ 0N , σ̂
2,0
w,N ) in Step 2, and then ρ̂0

N in Step 3 in
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this order through the contrast functions to beminimized: denoting ê′
i j := Yi j −x�

i j β̂
0
N ,

we have

β �→
∑
i, j

(
Yi j − x�

i jβ
)2

,

(α, τ, σ 2
w) �→

∑
i, j

(
ê′ 2
i j − exp(w�

i j τ + σ 2
w/2) − exp(z�i α)

)2
,

ρ �→
∑
i, j

(
ê′ 3
i j − 3

√
σ̂
2,0
w,N exp(z�i j α̂0

N/2 + σ̂
2,0
w,N/2)ρ

)2
.

As in the case of (3.8), ρ̂0
N is explicitly given while the meaning of the parameter ρ

is different in the present context. It is also possible to develop an asymptotic theory
for the MLE of the MELS and the related one-step estimator in similar ways to the
present study. However, the one-step estimator toward the log-likelihood function
(1.3) still necessitates the numerical integration over R2 with respect to the two-
dimensional standard normal random variables; the numerical integration would need
to be performed for every i = 1, . . . , N and j = 1, . . . , ni , hence the computational
load would still be significant.

3.2 Numerical experiments

Let us observe the finite-sample performance of the initial estimator θ̂0N , the one-step
estimator θ̂1N , and the MLE θ̂N . The setting is as follows:

Yi j = x�
i jβ + tanh(z�i jα)vi +

√
vi exp(w�

i j τ) εi j , (3.10)

where

• N = 1000, n1 = n2 = · · · = nN = 10.
• xi j , zi j , wi j ∈ R

2 ∼ i.i.d. N2(0, I2).
• v1, v2, . . . ∼ i.i.d. IG(δ, γ ) = GIG(−1/2, δ, γ ), the inverse-Gaussian random-
effect distribution.

• εi = (εi1, . . . , εini ) ∼ i.i.d. N (0, Ini ), independent of {vi }.
• θ = (β, α, τ, δ, γ ) = (β0, β1, α0, α1, τ0, τ1, δ, γ ) ∈ R

8.
• True values are β = (3, 5), α = (−4, 5), τ = (0.05, 0.07), δ = 1.5, γ = 0.7.

In this case θ ′ = (δ, γ ) ∈ (0,∞)2 andweneed only (μ̂0
N , ĉ0N ): we haveμ = Eθ ′ [vi ] =

δ/γ and c = Varθ ′ [vi ] = δ/γ 3, namely

γ =
√

μ

c
, δ = μγ =

√
μ3

c
.

As initial values for numerical optimization, we set the following two different cases:
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Table 4 The empirical 95%-coverage probabilities of the MLE and the one-step estimators in cases (i’) and
(ii’) based on 1000 trials; MLE of (δ, γ ) in case (ii’) showed instability in numerical optimizations, while
the one-step estimator is stable as in case (i’)

β0 β1 α0 α1 τ0 τ1 δ γ

Case (i’) θ̂N 0.960 0.959 0.944 0.942 0.957 0.947 0.948 0.943

θ̂1N 0.960 0.958 0.943 0.943 0.952 0.949 0.943 0.947

Case (ii’) θ̂N 0.957 0.953 0.917 0.919 0.956 0.944 0 0

θ̂1N 0.960 0.959 0.943 0.943 0.952 0.949 0.943 0.947

(i’) The true value;
(ii’) (1.0 × 10−8, . . . , 1.0 × 10−8, 1.0 × 10−4, 1.0 × 10−3).

In each case, we computed
√
N (ξ̂N − θ0) for ξ̂N = θ̂0N , θ̂1N , and θ̂N , all being

conducted 1000-times Monte Carlo trials. To estimate 95%-coverage probabilities
empirically as in Sect. 2.3, we computed the quantities −∂2θ �N (θ̂N ) and −∂2θ �N (θ̂1N )

through the function θ �→ −∂2θ �N (θ) for the approximately 95%-confidence intervals
for each parameter. The results are shown in Table 4; therein, we obtained numerically
unstable 4 MLEs and 5 one-step estimators for case (i’) and 299 MLEs and 6 one-
step estimators for case (ii’), and then computed the coverage probabilities based on
the remaining cases. In Figs. 4 and 5 (for cases (i’) and (ii’), respectively), we drew
histograms of θ̂1N and θ̂N together with those of the initial estimator θ̂0N for comparison.
In each figure, the histograms in the first and fourth columns are those for θ̂0N , those
in the second and fifth columns for θ̂1N , and those in the third and sixth columns for
θ̂N , respectively; the red solid line shows the zero-mean normal densities with the
consistently estimated Fisher information for the variances.

Here is a summary of the important findings.

• Approximate computation times for obtaining one set of estimates are as follows:

(i’) 0.2 s for θ̂0N ; 10 s for θ̂1N ; 2 min for θ̂N ;
(ii’) 0.2 s for θ̂0N ; 10 s for θ̂1N ; 9 min for θ̂N .

A considerable amount of reduction can be seen for θ̂1N compared with θ̂N .

• About Figs. 4 and 5:

– In both cases (i’) and (ii’), the inferior performance of θ̂0N is drastically improved
by θ̂1N , which in turn shows asymptotically equivalent behaviors to the MLE θ̂N .

– On one hand, as in Sect. 2.3, the MLE θ̂N is much affected by the initial value for
the numerical optimization, partly because of the non-convexity of the likelihood
function �N (θ); in Case (ii’), we observed the instability in computing theMLE of
(δ, γ ) (in the bottom panels in Fig. 5), showing the local maxima problem. On the
other hand, we did not observe the local maxima problem in computing θ̂0N and the
one-step estimator θ̂1N does not require an initial value for numerical optimization.
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Fig. 6 Data plots of riesby_example.dat (left) and posmood_example.dat (right) borrowed
from the supplemental material of Hedeker and Nordgren (2013); the former shows data of 10 patients over
6 time points with a few missing values, and the latter does those of 3 people over 26 time points with no
missing value

In sum, θ̂1N is asymptotically equivalent to the efficient MLE and much more robust
in numerical optimization than the MLE. It is recommended to use the one-step esti-
mator θ̂1N against the MLE θ̂N from both theoretical and computational points of view.

We end this section with applications of the proposed one-step estimator θ̂1N for
(3.10) to the two real data setsriesby_example.dat and posmood_example.
dat borrowed from the supplemental material of Hedeker and Nordgren (2013). Here
are brief descriptions.

• riesby_example.dat contains the Hamiltonian depression rating scale
as Yi j . The covariates are given by xi j = (intercept,week,edog) ∈
R × {0, 1, 2, . . . , 5} × {0, 1}, zi j = (intercept,edog), and wi j =
(intercept,week). Here, N = 66 and the numbers of sampling times are
6 with a few missing slots, and edog denotes the dummy variable for indicating
whether the depression of the patient is endogenous (= 1) or not (= 0).

• posmood_example.dat contains the individual mood items as Yi j ; the
items are pre-processed using factor analysis and take values 1 to 10 with
higher ones indicating a higher level of positive mood. The covariates are given
by xi j = (intercept,alone,genderf) ∈ R × {0, 1} × {0, 1}, zi j =
(intercept,alone), and wi j = (intercept,alone). Here, N = 515
with no missing value, with approximately 34 sampling times on average (ranging
from 3 to 58). The variable alone and genderf respectively denote the dummy
variables for indicating whether the person is alone (= 0) or not (= 1), which is
time-varying, and whether the person is male (= 0) or female (= 1).

Figures6 and 7 show some data plots and histograms, respectively; the former is
positively skewed while the latter is negatively skewed. We could apply our one-step
estimation methods for these data sets, although they can be seen as categorical data
(with a moderately large number of categories). The results are given in Table 5; the
parameters β0, α0, and τ0 denote the intercept. The skewness mentioned above
is reflected in the estimates of α0 and α1.
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4 Concluding remarks

We proposed a class of mixed-effects models with non-Gaussian marginal distribu-
tions which can incorporate random effects into the skewness and the scale simply
and transparently through the normal variance-mean mixture. The associated log-
likelihood function is explicit and the MLE is asymptotically efficient (Remark 2.4)
while computationally demanding and unstable. To bypass the numerical issue, we
proposed the easy-to-use one-step estimator θ̂1N , which turned out to not only attain a
significant reduction of computation time compared with the MLE but also guarantee
the asymptotic efficiency property.

Here are some remarks on important related issues.

(1) Inter-individual dependence structure. A drawback of the model (2.1) is that its
inter-individual dependence structure is not flexible enough. Specifically, let us
again note the following covariance structure for j, k ≤ ni :

Covθ [Yi j ,Yik] = si j (α)sik(α)Varθ [vi ] = c(θ ′)si j (α)sik(α).

This in particular implies that Yi1, . . . ,Yini cannot be correlated as long as
s(z, α) ≡ 0. Nevertheless, it is formally straightforward to extend the model
(2.1) so that the distributional structure of Yi ∈ R

ni obeys the multivariate GH
distribution for eachL(Yi )with a non-diagonal scale matrix. To mention it briefly,
suppose that the vector of a sample Yi = (Yi1, . . . ,Yini ) ∈ R

ni from i th individual
is given by the form

Yi = xiβ + s(zi , α)vi + �(wi , τ )1/2
√

vi εi .

Here, v1, . . . , vN ∼ i.i.d. GIG(λ, δ, γ ) as before, while we now incorporated the
scale matrix �(wi , τ ) which should be positive definite and symmetric, but may
be non-diagonal. Then, the dependence structure of Yi1, . . . ,Yini can be much
more flexible than (2.1).

(2) Forecasting random-effect parameters. In the familiar Gaussian linear mixed-
effects model of the form Yi = Xiβ + Zibi + εi , the empirical Bayes predictor of
vi is given by b̂i := Eθ [bi |Yi ]|θ=θ̂N

. One of the analytical merits of our NVMM
framework is that the conditional distribution L(vi |Yi = yi ) of vi is given by
GIG(νi , ηi , ψi ), where

νi = νi (θ) := λ − ni
2

,

ηi = ηi (θ) :=
√

δ2 + (yi − xiβ)��(w,τ)−1(yi − xiβ),

ψi = ψi (θ) :=
√

γ 2 + si (α)��(wi , τ )−1si (α).

This is a direct consequence of the general results about the multivariate GH
distribution; see Eberlein and Hammerstein (2004) and the references therein for
details. As in the Gaussian case mentioned above, we can make use of
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v̂i := Eθ [vi |Yi = yi ]|θ=θ̂N
= K ν̂i+1(η̂i ψ̂i )

K ν̂i (η̂i ψ̂i )

η̂i

ψ̂i
,

where ν̂i := νi (θ̂N ), η̂i := ηi (θ̂N ), and ψ̂i := ψi (θ̂N ); formally θ̂N could be
replaced by the one-step estimator θ̂1N . Then, it would be natural to regard

Ŷi j := x ′
i j β̂N + s(z′i j , α̂N )v̂i

as a prediction value of Yi j at (x ′
i j , z

′
i j ). This includes forecasting the value of i th

individual at a future time point.
(3) Lack of fit and model selection. In relation to Remark 2.6, based on the obtained

asymptotic-normality results, we can proceed with lack-of-fit tests, such as the
likelihood-ratio test, the score test, and the Wald test; typical forms are s(z, α) =∑pα

l=1 αl sl(z) and σ(w, τ) = exp{∑pτ

m=1 τmσm(w)}, with given basis functions
sl(z) and σm(w). In that case, we can estimate p-value for each component of θ ,
say, by 2�(−|B̂k,N θ̂k,N |) for θk where B̂k,N := [(−∂2θ �N (θ̂N ))−1]−1/2

kk . Alterna-
tively, one may consider information criteria such as the conditional AIC (Vaida
and Blanchard 2005) and the BIC-type one (Delattre et al. 2014). To develop
these devices in rigorous ways, we will need to derive several further analytical
results: the uniform integrability of (‖√N (θ̂N −θ0)‖2)n for the AIC, the stochastic
expansion for the marginal likelihood function for the BIC, and so on.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s42081-023-00207-0.

Acknowledgements The authors should like to thank the editors and the anonymous reviewers for their
valuable comments, which led to substantial improvement of the paper. This work was partly supported by
JST CREST Grant No. JPMJCR2115, and by JSPS KAKENHI Grant No. 22H01139, Japan (HM).

Funding Open access funding provided by The University of Tokyo.

Data Availability We have used the real data of Hedeker and Nordgren (2013) available online.

Declarations

Conflict of interest The author declares that there is no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://doi.org/10.1007/s42081-023-00207-0
https://doi.org/10.1007/s42081-023-00207-0
http://creativecommons.org/licenses/by/4.0/


Japanese Journal of Statistics and Data Science (2023) 6:669–704 697

Appendix A: GIG and GH distributions

Let Kλ(t) denote the modified Bessel function of the second kind (ν ∈ R, t > 0):

Kν(t) = 1

2

∫ ∞

0
sν−1 exp

{
− t

2

(
s + 1

s

)}
ds.

We have the following recurrence formulae (Abramowitz and Stegun 1992):
Kν+1(t) = 2ν

t Kν(t) + Kν−1(t) and Kν−1(t) + Kν+1(t) = −2∂t Kν(t). It follows
that Kν(t) is monotonically decreasing and that ∂t Kν(t) = −Kν−1(t) − ν

t Kν(t).
Further, we have

∂t log Kν(t) = −Kν−1(t)

Kν(t)
− ν

t
=: −Rν(t) − ν

t
, (A.1)

∂2t log Kν(t) = − 1

K 2
ν (t)

(
K 2

ν−1(t) − Kν−2(t)Kν(t)
)

− 1

t

Kν−1(t)

Kν(t)
+ ν

t2

=: −Sν(t) − 1

t
Rν(t) + ν

t2
. (A.2)

The following asymptotic behavior holds:

Kν(t) =
√

π

2t
exp(−t){1 + (4ν2 − 1)O(t−1)}, t → ∞.

Thegeneralized inverseGaussian (GIG) distributionGIG(λ, δ, γ )onR+ is defined
by the density:

pGIG(z; λ, δ, γ ) = (γ /δ)λ

2Kλ(γ δ)
zλ−1 exp

{
−1

2

(
δ2

z
+ γ 2z

)}
, z > 0.

The region of admissible parameters is given by the union of {(λ, δ, γ ) : λ > 0, δ ≥
0, γ > 0}, {(λ, δ, γ ) : λ = 0, δ > 0, γ > 0}, and {(λ, δ, γ ) : λ < 0, δ > 0, γ >

0}, according to the integrability of pGIG at the origin and +∞.
The generalized hyperbolic (GH) distribution denoted by GH(λ, α, β, δ, μ) is

defined as the distribution of the normal variance-mean mixture Y with respect to
Z ∼ GIG(λ, δ, γ ):

Y = μ + βZ + √
Zη,

where α := √β2 + γ 2 and η ∼ N (0, 1) independent of Z . By the conditional Gaus-
sianity L(Y |Z = z) = N (μ + βz, z), the density is calculated as follows:

pGH (y; λ, α, β, δ, μ)

=
∫ ∞

0

1√
2π z

exp

(
− 1

2z
(y − μ − βz)2

)
pGIG(z; λ, δ, γ )dz
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=
(
α2 − β2

)λ/2√
δ2 + (y − μ)2

λ−1/2

√
2παλ−1/2δλKλ

(
δ
√

α2 − β2
) Kλ− 1

2

(
α

√
δ2 + (y − μ)2

)
exp[β(y − μ)].

The region of admissible parameters is given by the union of {(λ, α, β, δ, μ) : λ >

0, δ ≥ 0, α > |β|}, {(λ, α, β, δ, μ) : λ = 0, δ > 0, α > |β|}, and {(λ, α, β, δ, μ) :
λ < 0, δ > 0, α ≥ |β|}. The mean and variance of Y ∼ GH(λ, α, β, δ, μ) are given
by

E[Y ] = μ + δβKλ+1(δγ )

γ Kλ(δγ )
,

Var[Y ] = δKλ+1(δγ )

γ Kλ(δγ )
+ β2δ2

γ 2

[
Kλ+2(δγ )

Kλ(δγ )
−
(
Kλ+1(δγ )

Kλ(δγ )

)2]
.

See Eberlein and Hammerstein (2004) for further details of the GIG and GH distribu-
tions.

The normal inverse Gaussian (NIG) distribution is one of the popular sub-
classes of the GH-distribution family: N IG(α, β, δ, μ) := GH(−1/2, α, β, δ, μ),
where GIG(−1/2, δ, γ ) corresponds to the inverse Gaussian distribution. The
N IG(α, β, δ, μ)-density is given by

pN IG(x;α, β, δ, μ) = αδ

π
exp

(
δ

√
α2 − β2 + β(x − μ)

) K1

(
α
√

δ2 + (x − μ)2
)

√
δ2 + (x − μ)2

.

All of the mean M , variance V , skewness S, and kurtosis K of N IG(α, β, δ, μ) are
explicitly given:

M = μ + βδ

(α2 − β2)
1
2

, V = δα2

(α2 − β2)
3
2

, S = 3β

α
√

δ(α2 − β2)
1
4

,

K = 3α2 + 4β2

α2δ(α2 − β2)
1
2

.

Inverting these expressions gives

γ = 3√
V

√
3K − 5S2

, β = S
√
V γ 2

3
, α =

√
γ 2 + β2, δ = V γ 3

γ 2 + β2 ,

μ = M − βδ

γ
,

from which one can consider the method-of-moments estimation of (α, β, δ, μ) based
on the empirical counterparts of M , V , S, and K . One should note that the empirical
quantity 3K̂n −5Ŝ2n has to be positive, which may fail in a finite sample and for such a
data set the MLEwould be also non-computable or unstable. In Yoon et al. (2020), the
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estimation problem for the i.i.d. NIG model was studied from the computational point
of view; the paper also introduced the change of variables for the parameters to sidestep
the positivity restriction, resulting in stabilized results in numerical experiments.

Appendix B: Likelihood function

B.1 Derivation

Writing θ1 = (β, α, τ ) and θ2 = (λ, δ, γ ), and using the obvious notation, we obtain

�n(θ) = log pθ (Y1, . . . , Yn)

= log
∫

· · ·
∫

pθ1 (Y1, Y2, . . . , Yn |v1, . . . , vn)
N∏
i=1

pθ2 (vi )dvi

= log

(∫
. . .

∫ N∏
i=1

pθ1 (Yi |vi )
N∏
i=1

pθ2 (vi )dvi

)

=
N∑
i=1

log

⎡
⎣∫

( ni∏
j=1

pθ1 (Yi j |vi )
)
pθ2 (vi )dvi

⎤
⎦

=
N∑
i=1

log

⎡
⎣∫

⎛
⎝ ni∏

j=1

1√
2πσ 2

i j (τ )
v

− 1
2

i exp

[
− 1

2σ 2
i j (τ )

(Yi j − x�
i j β − si j (α)vi )

2

]⎞
⎠ pθ2 (vi )dvi

⎤
⎦

=
N∑
i=1

log

[
(2π)−

ni
2

( ni∏
j=1

σ 2
i j (τ )

)− 1
2
∫ ∞

0
v

− ni
2

i

×
ni∏
j=1

exp

[
− 1

2viσ 2
i j (τ )

{
(Yi j − x�

i j β)2 + s2i j (α)v2i − 2si j (α)vi (Yi j − x�
i j β)

}]
pθ2 (vi )dvi

]

=
N∑
i=1

log

[
(2π)−

ni
2

( ni∏
j=1

σ 2
i j (τ )

)− 1
2
∫ ∞

0
v

− ni
2

i

×
ni∏
j=1

exp

[
− 1

2viσ 2
i j (τ )

{
(Yi j − x�

i j β)2 + s2i j (α)v2i

}
+ si j (α)

σ 2
i j (τ )

(Yi j − x�
i j β)

]
pθ2 (vi )dvi

]

=
N∑
i=1

log

[
(2π)−

ni
2

( ni∏
j=1

σ 2
i j (τ )

)− 1
2 ni∏

j=1

exp

(
si j (α)

σ 2
i j (τ )

(Yi j − x�
i j β)

)

×
∫ ∞

0
v

− ni
2

i

ni∏
j=1

exp

{
− 1

2σ 2
i j (τ )

(
(Yi j − x�

i j β)2

vi
+ s2i j (α)vi

)}
pθ2 (vi )dvi

]

=
N∑
i=1

log

[
(2π)−

ni
2

( ni∏
j=1

σ 2
i j (τ )

)− 1
2

exp

⎛
⎝ ni∑

j=1

si j (α)(Yi j − x�
i j β)

σ 2
i j (τ )

⎞
⎠

×
∫ ∞

0
v

− ni
2

i exp

⎧⎨
⎩−1

2

⎛
⎝ ni∑

j=1

(Yi j − x�
i j β)2

viσ
2
i j (τ )

+
ni∑
j=1

s2i j (α)

σ 2
i j (τ )

vi

⎞
⎠
⎫⎬
⎭ pθ2 (vi )dvi

]
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=
N∑
i=1

log

[
Ci (α, β, τ )

∫ ∞

0
v

− ni
2

i exp

{
− 1

2

( ni∑
j=1

(Yi j − x�
i j β)2

viσ
2
i j (τ )

+
ni∑
j=1

s2i j (α)

σ 2
i j (τ )

vi

)}

× (
γ
δ
)λ

2Kλ(δγ )
vλ−1
i exp

{
−1

2

(
δ2

vi
+ γ 2vi

)}
dvi

]

=
N∑
i=1

log

[
Ci (α, β, τ )

(γ /δ)λ

2Kλ(δγ )

∫ ∞

0
exp

[
− 1

2

{
1

vi

( ni∑
j=1

(Yi j − x�
i j β)2

σ 2
i j (τ )

+ δ2
)

+
( ni∑

j=1

s2i j (α)

σ 2
i j (τ )

+ γ 2
)

vi

}]
v

λ−1− ni
2

i dvi

]
,

where

Ci (α, β, τ ) := (2π)−
ni
2

( ni∏
j=1

σ 2
i j (τ )

)− 1
2

exp

( ni∑
j=1

si j (α)(Yi j − x�
i jβ)

σ 2
i j (τ )

)
.

Making the change of variables S2i vi/Ti = ui with

Si = Si (α, τ, γ ) :=
√√√√γ 2 +

ni∑
j=1

s2i j (α)

σ 2
i j (τ )

,

Ti = Ti (β, α, τ, δ, γ ) := Si

√√√√δ2 +
ni∑
j=1

1

σ 2
i j (τ )

(Yi j − x�
i jβ)2,

we can continue as

�n(θ) =
N∑
i=1

log

[
Ci (α, β, τ )

(
γ
δ
)λ

2Kλ(δγ )

∫ ∞

0
exp {

−1

2

(
S2i
Ti ui

T 2
i

S2i
+ Ti

S2i
ui S

2
i

)}
T

λ−1− ni
2

i

S
2
(
λ−1− ni

2

)
i

u
λ−1− ni

2
i

Ti
S2i

dui

⎤
⎥⎦

=
N∑
i=1

log

[
Ci (α, β, τ )

(
γ
δ
)λ

2Kλ(δγ )

∫ ∞

0
exp

{
−Ti

2

(
1

ui
+ ui

)}

T
λ− ni

2
i

S
2
(
λ− ni

2

)
i

u
λ−1− ni

2
i dui

⎤
⎥⎦

=
N∑
i=1

log

[
(2π)−

ni
2

( ni∏
j=1

σ 2
i j (τ )

)−1/2
(γ /δ)λ

Kλ(δγ )
exp

( ni∑
j=1

si j (α)

σ 2
i j (τ )

(Yi j − x�
i jβ)

)
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× T
λ− ni

2
i

S
2(λ− ni

2 )

i

1

2

∫ ∞

0
exp

{
−Ti

2

(
1

ui
+ ui

)}
u

λ−1− ni
2

i dui

]

=
N∑
i=1

log

[
(2π)−

ni
2

( ni∏
j=1

σ 2
i j (τ )

)−1/2
(γ /δ)λ

Kλ(δγ )
exp

( ni∑
j=1

si j (α)

σ 2
i j (τ )

(Yi j

− x�
i jβ)

)(
Ti
S2i

)λ− ni
2

Kλ− ni
2
(Ti )

]
.

This leads to the expression (2.3).

B.2 Partial derivatives

Recall the notation: �N (θ) = ∑N
i=1 ζi (θ), Ai = Ai (α, τ, γ ) of (2.4), and Bi =

Bi (β, τ, δ) of (2.5). Let

T ′
i = T ′

i (θ) := Rλ− ni
2
(Ai Bi ) + λ − ni

2

Ai Bi

for Rν(t) defined by (A.1). Then, we have the following expressions for the compo-
nents of ∂θ�N (θ): 10.8

∂βζi (θ) = −
ni∑
j=1

si j (α)

σ 2
i j (τ )

xi j +
(
λ − ni

2

) 1

Bi
∂β Bi − T ′

i Ai ∂β Bi

= −
ni∑
j=1

si j (α)

σ 2
i j (τ )

xi j − 1

Bi

{
1

Bi

(
λ − ni

2

)
+ T ′

i Ai

} ni∑
j=1

(Yi j − x�
i j β)

σ 2
i j (τ )

xi j ,

∂αζi (θ) =
ni∑
j=1

∂αsi j (α)

σ 2
i j (τ )

(Yi j − x�
i j β) −

(
λ − ni

2

) 1

Ai
∂α Ai − T ′

i Bi ∂α Ai

=
ni∑
j=1

∂αsi j (α)

σ 2
i j (τ )

(Yi j − x�
i j β) − 1

Ai

{
1

Ai

(
λ − ni

2

)
+ T ′

i Bi

} ni∑
j=1

si j (α)

σ 2
i j (τ )

∂αsi j (α),

∂τ ζi (θ) = − 1

2

ni∑
j=1

∂τ (σ 2
i j (τ ))

σ 2
i j (τ )

−
ni∑
j=1

si j (α)

(σ 2
i j (τ ))2

(Yi j − x�
i j β)∂τ (σ 2

i j (τ ))

+
(
λ − ni

2

)( ∂τ Bi
Bi

− ∂τ Ai
Ai

)
− T ′

i ∂τ (Ai Bi )

= − 1

2

ni∑
j=1

∂τ (σ 2
i j (τ ))

σ 2
i j (τ )

−
ni∑
j=1

si j (α)

(σ 2
i j (τ ))2

(Yi j − x�
i j β)∂τ (σ 2

i j (τ ))

− 1

2

(
λ − ni

2

)( 1

B2
i

ni∑
j=1

(Yi j − x�
i j β)2

(σ 2
i j (τ ))2

∂τ (σ 2
i j (τ ))

− 1

A2i

ni∑
j=1

s2i j (α)

(σ 2
i j (τ ))2

∂τ (σ 2
i j (τ ))

)
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+ 1

2
T ′
i

(
Bi
Ai

ni∑
j=1

s2i j (α)

(σ 2
i j (τ ))2

∂τ (σ 2
i j (τ )) + Ai

Bi

ni∑
j=1

(Yi j − x�
i j β)2

(σ 2
i j (τ ))2

∂τ (σ 2
i j (τ ))

)
,

∂λζi (θ) = log
(γ

δ

)
− ∂λKλ(δγ )

Kλ(δγ )
+ log Bi − log Ai +

∂λKλ− ni
2

(Ai Bi )

K
λ− ni

2
(Ai Bi )

,

∂δζi (θ) = γ Rλ(δγ ) +
(
λ − ni

2

) δ

B2
i

− T ′
i
Ai
Bi

δ,

∂γ ζi (θ) = 2λ

γ
+ δRλ(δγ ) −

(
λ − ni

2

) γ

A2i
− T ′

i
Bi
Ai

γ.

As for the second-order derivatives, for brevity, we write

Ui = Sλ− ni
2
(Ai Bi ) + 1

Ai Bi
Rλ− ni

2
(Ai Bi ) − λ − ni

2

A2
i B

2
i

,

for Rν(t) and Sν(t) defined by (A.1) and (A.2). Further, let

Lν(z) := 1

K 2
ν (z)

(∂λKν−1(z)Kν(z) − ∂λKν(z)Kν−1(z)) .

Below we list the 21 components of ∂2θ ζi (θ), which were used to compute the confi-
dence intervals and the one-step estimator; the sizes of the matrices are not confusing,
hence we are not taking care of them in notation and use the standard multilinear-form
notation such as (∂βBi ) ⊗ (∂αAi ) := ∂βBi∂�

α Ai ∈ R
pβ ⊗ R

pα .

∂2βζi (θ) =
(
λ − ni

2

)
B2
i

(
Bi∂

2
β Bi − (∂β Bi )

⊗2
)

− T ′
i Ai∂

2
β Bi −Ui A

2
i (∂β Bi )

⊗2,

∂β∂αζi (θ) = −
ni∑
j=1

1

σ 2
i j (τ )

(xi j ⊗ ∂αsi j (α)) − (T ′
i +Ui Ai Bi ){(∂β Bi ) ⊗ (∂α Ai )},

∂β∂τ ζi (θ) =
ni∑
j=1

si j (α)(
σ 2
i j (τ )

)2
(
xi j ⊗ ∂τ (σ

2
i j (τ ))

)
+
(
λ − ni

2

)
B2
i

(
Bi (∂τ ∂β Bi ) − (∂β Bi ) ⊗ (∂τ Bi )

)

−Ui Ai (∂β Bi ) ⊗ (∂τ (Ai Bi )) − T ′
i (∂β Bi ) ⊗ (∂τ Ai ) − T ′

i Ai (∂β∂τ Bi ),

∂β∂λζi (θ) = Ai (∂β Bi )Lλ− ni
2
(Ai Bi ),

∂β∂δζi (θ) = −2
(
λ − ni

2

) δ

B3
i

∂β Bi −Ui A
2
i

δ

Bi
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