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Abstract

Motivated by better modeling of intra-individual variability in longitudinal data, we
propose a class of location-scale mixed-effects models, in which the data of each
individual is modeled by a parameter-varying generalized hyperbolic distribution. We
first study the local maximum-likelihood asymptotics and reveal the instability in the
numerical optimization of the log-likelihood. Then, we construct an asymptotically
efficient estimator based on the Newton—Raphson method based on the original log-
likelihood function with the initial estimator being naive least-squares-type. Numerical
experiments are conducted to show that the proposed one-step estimator is not only
theoretically efficient but also numerically much more stable and much less time-
consuming compared with the maximum-likelihood estimator.

Keywords Asymptotically efficient estimator - Generalized hyperbolic distribution -
Mixed-effects location-scale model

1 Introduction

The key step in the population approach (Lavielle 2015) is modeling dynamics of
many individuals to introduce a flexible probabilistic structure for the random vector
Y = (Y; (4 ))';i:] € R representing time series data (supposed to be univariate) from
ith individual. Here, #;; < --- < t;,; denotes sampling times, which may vary across
the individuals with possibly different n; fori = 1,..., N. The model is desired to
be tractable from theoretical and computational points of view.

B Hiroki Masuda
hmasuda@ms.u-tokyo.ac.jp

1 Graduate School of Mathematics, Kyushu University, 744 Motooka Nishi-ku, Fukuoka
819-0395, Japan

2 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku,
Tokyo 153-8914, Japan

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s42081-023-00207-0&domain=pdf
http://orcid.org/0000-0002-5553-9201

670 Japanese Journal of Statistics and Data Science (2023) 6:669-704

In the classical linear mixed-effects model (Laird and Ware 1982), the target variable
Y; in R™ is described by

Yi =XiB+ Zib; + €, (1.1

fori =1,..., N, where the explanatory variables X; € R" ® R and Z; € R" Q R?
are known design matrices, where {b; } and {¢; } are mutually independent centered i.i.d.
sequences with covariance matrices G € R? @ R? and H; € R" ® R", respectively;
typical examples of H; = (H; ;) include H; = 02],,,. (14 denotes the g-dimensional
identity matrix) and H; iy = o2p!*~!l with p denoting the correlation coefficient.
Although the model (1.1) is quite popular in studying longitudinal data, it is not
adequate for modeling intra-individual variability. Formally speaking, this means that
for each i, conditionally on b; the objective variable Y; has the covariance which does
not depend on b;. Therefore, the model is not suitable if one wants to incorporate a
random effect across the individuals into the covariance and higher order structures
such as skewness and kurtosis.

1.1 Mixed-effects location-scale model

Let us briefly review the previous study which motivated our present study. The paper
(Hedeker et al. 2008) introduced a variant of (1.1), called the mixed-effects location-
scale (MELS) model, for analyzing ecological momentary assessment (EMA) data;
the MELS model was further studied in Hedeker et al. (2009, 2012) and Hedeker
and Nordgren (2013) from application and computational points of view. EMA is also
known as the experience sampling method, which is not retrospective and the indi-
viduals are required to answer immediately after an event occurs. Modern EMA data
in mental health research is longitudinal, typically consisting of possibly irregularly
spaced sampling times from each patient. To avoid the so-called “recall bias” of retro-
spective self-reports from patients, the EMA method records many events in daily life
at the moment of their occurrence. The primary interest is modeling both between-
and within-subjects heterogeneities, hence one is naturally led to incorporate random
effects into both trend and scale structures. We refer to Shiffman et al. (2008) for
detailed information on EMA data.
In the MELS model, the jth sample Y;; from the ith individual is given by

T 1+ L
Yij =x;; B +exp 5% €1,i +exp z(wijr—}-owez,,-) €3,ij (1.2)

forl < j <mn;and1 <1i < N. Here, (x;j, z;j, w;j) are non-random explanatory
variables, (€1, €2,;) denote the i.i.d. random-effect, and €3 ;; denote the driving noises
for each i < N such that

1p0
(€1,i,€2,i,€3i)) ~N3 |0, | p10
001
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and that €3,ily -5 €3 in; ™ i.i.d. N(0, 1), with (61’,‘, 62’,') and (63,,'1‘)]‘5,,!. being mutu-
ally independent. Direct computations give the following expressions: E[Y;;] = xl.—Jr. B,
VarlY;;] = exp(w;r + 03}/2) + exp(ziToc), and also Cov[Yjx, Yj1] = exp(ziToz) for
k # I; the covariance structure is to be compared with the one (2.2) of our model. Fur-
ther, their conditional versions given the random-effect variable R; := (€1 ;, €2,;) are
as follows: E[Y;;|R;] = x;ﬁ + exp(z; a/2)e1 i, Var[Yij|R;] = exp(w;r +0p€2.i),
and Cov[Yix, Yi;|R;] = O for k # [. We also note that the conditional distribution

T . T ) T
LY, ..., Yini |R;)=Np, (Xiﬂ‘i‘lniez" a/zfl,i, dlag(ewilf+011;€2,t’ ._.,ewmir ow 2,1)) ’

where X; = (x;1,...,Xiy;) and 1,, € R" has the entries all being 1. Importantly,
the marginal distribution £(Y;1, ..., Yiy,) is not Gaussian. See Hedeker et al. (2008)
for details about the data-analysis aspects of the MELS model.

The third term on the right-hand side of (1.2) obeys a sort of normal-variance
mixture with the variance mixing distribution being log-normal, introducing the so-
called leptokurtosis (heavier tail than the normal distribution). Further, the last two
terms on the right-hand side enable us to incorporate skewness into the marginal
distribution £(Y;;); it is symmetric around x;ﬂ if p =0.

The optimization of the corresponding likelihood function is quite time-consuming
since we need to integrate the latent variables (€1 ;;, €2,;;): the log-likelihood function
of 0 := (B, @, 7, 0y, p) is given by

N

0~ E log ¢n,—(Yi§ wi(B, o, Xi, zis x1), Zi(t, aw,p,wi;xl,m))
i—1 R2
1=

X o ((x1, x2); 0, Iz)dmdm}, (1.3)

where w; = (wij)j<n;» 2i = (Zij)j<n;» Pm (s w, L) denotes the m-dimensional
N (p, ¥)-density, and

.
wi (B, Xi, zi3 x1) : =X, f+1,,e% “2xy,

Xi(t, 00, p, wis X1, X2) 1 =

.
diag<ewi—qf+0w(,0x1+«/ 1-p2xy) ewinl-f'f‘ffw(ﬂ’xl'f‘v 1—,02)62)).

Just for reference, we present a numerical experiment by R Software for computing
the maximum-likelihood estimator (MLE). We set N = 1000 and n; = np = --- =
niooo = 10 and generated x;;, z;j, w;; ~ i.1.d. N2(0, I2) independently; then, the tar-
get parameter is 8-dimensional. The true values were set as follows: g = (0.6, —0.2),
a = (=03, 0.5), 7 = (0.5, 0.3), 0y = V0.8 ~ 0.894, and p = —0.3. The
results based on a single set of data are given in Table 1. It took more than 20 h in
our R code for obtaining one MLE (Apple M1 Max, memory 64GB; the R function
adaptIntegrate was used for the numerical integration); we have also run the
simulation code for N = 500 and n; = np = --- = nsgo = 5, and then it took
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Table 1 MLE results; the computation time for one pair was about 21 hours

Bo B1 o0 ol 70 T ow P
True values 0.600 —0.200 — 0.300 0.500 — 0.500 0.300 0.894 — 0.300
MLE 0.597 —0.193 —0.269 0.492 —0.507 0.285 0.860 —0.286

about 8 h. The program should run much faster if other software such as Fortran and
MATLAB is used instead of R, but we will not deal with that direction here. Though it
is cheating, the numerical search started from the true values; it would be much more
time-consuming and unstable if the initial values were far from the true ones.

The EM-algorithm type approach for handling latent variables would work at least
numerically, while it is also expected to be time-consuming even if a specific numerical
recipe is available. Some advanced tools for numerical integration would help to some
extent, but we will not pursue it here.

1.2 Our objective

In this paper, we propose an alternative computationally much simpler way of the
joint modeling of the mean and within-subject variance structures. Specifically, we
construct a class of parameter-varying models based on the univariate generalized
hyperbolic (GH) distribution and study its theoretical properties. The model can be
seen as a special case of inhomogeneous normal-variance-mean mixtures and may
serve as an alternative to the MELS model; see Sect. 1 for a summary of the GH
distributions. Recently, the family has received attention for modeling non-Gaussian
continuous repeated measurement data (Asar et al. 2020), but ours is constructed based
on a different perspective directly by making some parameters of the GH distribution
covariate dependent.

This paper is organized as follows. Section?2 introduces the proposed model and
presents the local-likelihood analysis, followed by numerical experiments. Section 3
considers the construction of a specific asymptotically optimal estimator and presents
its finite-sample performance with comparisons with the MLE. Section4 gives a sum-
mary and potential directions for future issues.

2 Parameter-varying generalized hyperbolic model
2.1 Proposed model

We model the objective variable at jth-sampling time point from the ith-individual
by

Y =X;;,3+S(Zij701)vi+\/7i‘7(wij"f)€ij 2.1

forj=1,...,n;andi =1,..., N, where

’ / . .
o x;j € RPA,z;; € RP«,and w;; € RP7 are given non-random explanatory variables;
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BeB®g CRPF,a € Oy CRPY and 7 € ®; C RP* are unknown parameters;
The random-effect variables vy, vz, ... ~ i.i.d. GIG(X, §, ), where GIG refers
to the generalized inverse Gaussian distribution (see Sect. 1);

{e; = (i1, ..., fini)T}izl ~1.i.d. N(0, I,;), independent of {v;};>1;

o 5:RPxx ®y — Rando : RPr x ®; +— (0, co) are known measurable functions.

As mentioned in the introduction, for (2.1), one may think of the continuous-time
model without system noise:

Yiti)) = xi(ti)) " B+ s(zi(tij), @)vi + i o(w;i(ti)), T)€; (1)),

where ¢#;; denotes the jth sampling time for the ith individual.
We will write ¥; = (Yi1, ..., Yip,) € R", x; = (xi1, ..., Xip;) € R" @ RP#, and
soonfori =1,..., N, and also

=B, a,T,1,8,7) €O x Oy x Or x Oy x O5 x O, =: O C R?,

where © is supposed to be a convex domain and p := pg + py + pr + 3. We will
use the notation (Pp)pce for the family of distributions of {(Y;, v;, €;)}i>1, which
is completely characterized by the finite-dimensional parameter 6. The associated
expectation and covariance operators will be denoted by Eg and Covg, respectively.
Letus write s;; (o) = s(z;j, @) and0;;(t) = o (w;;, ). Foreachi < N, the variable
Yi1, ..., Y, are v;-conditionally independent and normally distributed under Py:

L(Ylu) = N (x B+ sij@wi, 0B (0v;).
For each i, we have the specific covariance structure
CovglYij, Yir] = sij(a)sik (o) Varg[v;]. (2.2)
The marginal distribution £(Y1, ..., Yiy,) is the multivariate GH distribution; a more
flexible dependence structure could be incorporated by introducing the non-diagonal
scale matrix (see Sect. 4 for a formal explanation). By the definition of the GH dis-

tribution, the variables Y;; and Y;; may be uncorrelated for some (z;;, o) while they
cannot be mutually independent.

We can explicitly write down the log-likelihood function of (Y71, . . ., Y ) as follows:
1 N y 1
In(O) = —3 log(2m) ;ni + NXlog <3> — NlogK, (8y) — 2 Zloga,%(r)
1= L]

+ZN:(A——)logB(,BTS) ZN:( %)IOgAi(a,r,y)

i=1

Y U@ su(a) (Y _x;,s)JrZ]ogK _%,-(A,-(a, T,Y)Bi(B.1.8), (2.3)

20
i,j l]( ) i=1
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where ), ; denotes a shorthand for >N, Z'}’: , and

Aila,t,y) = |y +Zs”(a) (2.4)
\ ‘o7 (7)
n; 1
Bi(B,7,8) = |82+ ) ——Vij—x'p)>. (2.5)
\ X al.j(r

The detailed calculation is given in Sect. B.1.

To deduce the asymptotic property of the MLE, there are two typical ways: the
global- and the local-consistency arguments. In the present inhomogeneous model
where the variables (x;;, z;j, w;;) are non-random, the two asymptotics have differ-
ent features: on one hand, the global-consistency one generally entails rather messy
descriptions of the regularity conditions as was detailed in the previous study (Fuji-
naga 2021), while entailing theoretically stronger global claims; on the other hand,
the local one only guarantees the existence of good local maxima of £ () while only
requiring much weaker local-around-6 regularity conditions.

2.2 Local asymptotics of MLE

In the sequel, we fix a true value 6y = (Bo, @, To, A0, 0, Y0) € O, where ©5 x O, C
(0, 00)?; note that we are excluding the boundary (gamma and inverse-gamma) cases
for L(v;).

For a domain A, let C¥(A) denote a set of real-valued C¥-class functions for which
the /th-partial derivatives (0 <[ < k) admit continuous extensions to the boundary of
A. The asymptotic symbols will be used for N — oo unless otherwise mentioned.

Assumption 2.1 (1) sup;- (ni V max| <j<p; max{|x;;l, [zijl, |wl~j|}) < 00.
(2) o+ s(z,a) € C3(Oy) for each z.

(3) T+ o(w, 1) € C3(Oy) for each w, and inf o(w, 1) > 0.

(w,r)eRP/r X Oy
We are going to prove the local asymptotics of the MLE by applying the general
result (Sweeting 1980, Theorems 1 and 2).

Under Assumption 2.1 and using the basic facts about the Bessel function K.(-)
(see Sect. 1), we can find a compact neighborhood By C ® of 9y such that

VK >0, sup max sup E9[|Y,J| ] < 00.

i>11=j=nigep,

Note that min{§, y} > 0 inside By.
Let M®? := MM for a matrix M, and denote by Amax (M) and Amin(M) the
largest and smallest eigenvalues of a square matrix M, and by 35 the kth-order partial-
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differentiation operator with respect to 6. Write

N
NMOESINIC

i=1

for the right-hand side of (2.3). Then, by the independence we have

Eq [0atn 00)%2] = Sk [ @oci @)%

i=1

just for reference, the specific forms of dg€x (6) and Bgzﬁ N (6) are given in Sect. B.2.
Further by differentiating 6 +— 892£ ~ (6) with recalling Assumption 2.1, it can be seen
that

VK >0, sup sup Eg [|ag1;,~(9)\’<] <0 (2.6)
i>1 0By

form = 1, 2, and that

1
limsup sup Eg | — sup |33€x(0")
N 6e€By 0’eBy

} < . 2.7)

These moment estimates will be used later on; unlike the global-asymptotic study
(Fujinaga 2021), we do not need the explicit form of 8(3{ N ().

We additionally assume the diverging information condition, which is inevitable
for consistent estimation:

Assumption 2.2

N

1
. . o ®2
lln}vlnfeléllgo)\.mm <_N E Eg [(39§z(9)) ]) > 0.

i=1

Under Assumption 2.1, we may and do suppose that the matrix

1/2
Ax® = (E [@en@)®]) " = (i Eo |t (9))®2])

i=1

is well-defined, where M!/? denotes the symmetric positive-definite root of a pos-
itive definite M. We also have supycp |[An(0)|™' < N™Y2 — 0. This Ay(6)
will serve as the norming matrix of the MLE; see Remark 2.5 below for Studen-
tization. Further, the standard argument through the Lebesgue dominated theorem
ensures that Eg [d9€n(0)] = 0 and Eg [(d9Ln (0))®?] = Eo [—92¢n(0)], followed

by An(0) = (Eg [-02en®)])">.
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For ¢ > 0, Assumption 2.2 yields

sup |[An @) AN (0) — I,

0:16'—6|<c/N

= su (LA (9))7l (LA (9/)—LA (9))

" aerw VN NN

< s | An@) - iANw)‘

0':10’—0|<c//N \/ﬁ

N 1/2 N 1/2

S sup ( Z [(ei@)° ]) ( Z <aec,(9>>®2])

0':10"— i=1 i=1

— 0. (2~8)

Here, the last convergence holds since the function 8 — N~'/2Ax(6) is uniformly
continuous over By.
Define the normalized observed information:

In©O) == —An©O) 9N (@) ANG) T

Then, it follows from Assumption 2.2 that

| -1 | ®2 | -7
Zn @) — 1| = (ﬁAN(Q)) (IN(Q) - (ﬁAN(9)> ) <ﬁAN(9>>

| ®2
In®) — (ﬁAN(9)>

L ‘

A

< | 2 (055 ®) — Eq [376:60)])

l:l

Then, (2.6) ensures that
2 2 1
sup Eo [[Zv®) — 1] s Z sup Eq |[03c0)[ |) s < = 0.
9<Bo — 0eBo N
followed by the property

Ve >0, sup Py[IZn(©®) — I, > €] — 0. (2.9
6€By

Let £> denote the convergence in distribution. Having obtained (2.7), (2.8), and
(2.9), we can conclude the following theorem by applying (Sweeting 1980, Theorems
1 and 2).

Theorem 2.3 Under Assumptions 2.1 and 2.2, we have the following statements under
Py,.
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(1) For any bounded sequence (uy) C R?,

T-1 T 1 2
e (B0 + An (@) ~uw) = L (60) = uf A (6) = lun > + o0, (D).
with
_ L
An(B0) = An(00) ™ 09ty (00) = N(O. I).

(2) There exists a local maximum point On of £n(0) with Pg,-probability tending to
1, for which

A L
AN(00)" Oy — 60) = An(60) + 0p(1) = N(O, I). (2.10)
Remark 2.4 (Asymptotically efficient estimator) By the standard argument about the

local asymptotic normality (LAN) of the family { Py }gc@, any estimators é}\“, satisfying
that

An(00) T @5 — 60) = An(60) + 0,(1) (2.11)

are regular and asymptotically efficient in the sense of Hajék—Le Cam. See Basawa
and Scott (1983) and Jeganathan (1982) for details.

Remark 2.5 (Studentization of 2.10) Here is a remark on the construction of approx-
imate confidence sets. Define the statistics

N 1/2
Ay = (Z(aea(ém)@z) : (2.12)
i=1

Then, to make inferences for 6y, we can use the distributional approximations A N (éN —
L
00) = An(6o) + 0,(1) = N,(0, I,) and

A "y A L
On —00) T A% (On — 00) = x*(p). (2.13)

To see this, it is enough to show that under Py,
An0) 'An =1, +0,(1). (2.14)

We have /N (éN —6p) = Op(1) by Theorem 2.3 and Assumption 2.2. This together
with the Burkholder inequality and (2.6) yield that

N
NT2Ay = ( (005 @) — (90:00)*?)

1

z| -

1
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3 2 (Goci o)==, [Gncieon®]) + (VP ave)’ ) )

i=1

N 1/2
= (OP(N-”2> + (VT2 ax ) )

and hence

R 1 211/2
Ao Ay = (N12ay @) {op(1>+(N—”2AN(eo>) } =Ip+0p(1),

concluding (2.14). Note that, instead of (2.12), we may also use the square root of the
observed information matrix

N 12
Ay = (—Zagg,-(éjv)) (2.15)
i=1

for concluding the same weak convergence as in (2.13). In our numerical experiments,
we made use of this A%V for computing the confidence interval and the empirical cov-
erage probability. The elements of A%\, are explicit while rather lengthy: see Sect. B.2.

Remark 2.6 (Misspecifications) In addition to the linear form xi—; B in (2.1), misspeci-
fication of a parametric form of the function (s (z;, @), o (w;;, T)) is always concerned.
Using the M -estimation theory (for example, see White (1982) and (Fahrmeir 1990,
Section 5)), under appropriate identifiability conditions, it is possible to handle
their misspecified parametric forms. In that case, however, the maximum-likelihood-
estimation target, say 6, is the optimal parameter (to be uniquely determined) in
terms of the Kullback-Leibler divergence, and we do not have the LAN property
in Theorem 2.3 in the usual sense while an asymptotic normality result of the form

VN (éN —6y) £> N, Ty ! Zoly 1) could be given, where (non-random) X¢ and 'y
are specified by N_1/289€N(9*) £> N (0, %) and —N_IB(%@N(Q*) LS Io.
Finally, we note that the statistical problem will become non-standard if we allow

that the true value of (8, y) for the GIG distribution L(v;) satisfies that §g = 0 or
1o = 0. We have excluded these boundary cases at the beginning of Sect. 2.2.

2.3 Numerical experiments

For simulation purposes, we consider the following model:

Yij = x;; B + tanh(zje)v; + ,/vi exp(w;;7) €ij, (2.16)

where the ingredients are specified as follows.

e N=1000andn; =ny = --- = nygoo = 10.
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-5 0 5 10 15 20 25

Fig.1 Longitudinal-data plots of 10 individuals in case (1) (left) and case (2) (right)

o The two different cases for the covariates x;;, z;j, w;j € RZ:

(1) xij, zij, wij ~1id. N(O, I);
(i) The first components of x;;, z;;, w;; are sampled from independent N (0, 1), and
all the second ones are set to be j — 1.

The setting (ii) incorporates similarities across the individuals; see Fig. 1.

e v, vy, - ~iid. GIG(A, S, y).

o ¢ = (€1,...,€) ~ N(0, I,,), independent of {v;}.

o 0= (ﬁ?a’ T, A, 87 7/) = (ﬁ01 :317 Qp, &1, 70, 71, A, 87 V) € Rg'
e True values of 6:

i) B = (0.3, 0.5), a = (—0.04, 0.05), T = (0.05, 0.07),A=12,8=15, y =
2;

(i) B = (0.3, 1.2), & = (0.4, 0.8), T = (0.05, 0.007),» =09, § =12, y =
0.9.

We numerically computed the MLE b by optimizing the log-likelihood; the mod-
ified Bessel function K.(-) can be efficiently computed by the existing numerical
libraries such as besselK in R Software. We repeated the Monte Carlo trials 1000
times, computed the Studentized estimates A y (éN — 6p) with (2.15) in each trial, and
then drew histograms in Figs. 2 and 3, where the red lines correspond to the standard
normal densities. Also given in Figs. 2 and 3 are the histograms of the chi-square
approximations based on (2.13).

The computation time for one MLE was about 8 min for case (i) and about 6 min
for case (ii). Estimation performance for (X, §, y) were less efficient than those for
(B, a, 7). It is expected that the unobserved nature of the GIG variables make the
standard-normal approximations relatively worse.

It is worth mentioning that case (ii) shows better normal approximations, in par-
ticular for (X, 8, y); case (ii) would be simpler in the sense that the data from each
individual have similarities in their trend (mean) structures.

Table 2 shows the empirical 95%-coverage probability for each parameter in both
(i) and (ii), based on the confidence intervals 6% + 7,2 [(—33 £ (6x)) 11,4 for k =
1,...,9withfy = (6%);<9 and o = 0.05. We had 365 and 65 numerically unstable
cases among 1000 trials, respectively (mostly cased by a degenerate det(—802£ NON)).
Therefore, the coverage probabilities were computed based on the remaining cases.

Let us note the crucial problem in the above Monte Carlo trials: the objective log-
likelihood is highly non-concave, hence as usual the numerical optimization suffers
from the initial-value and local-maxima problems. Here is a numerical example based
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Bo B1 Oo Oy To

0.4

0.3
1

0.2

0.1

-4 02 4

Fig. 2 Standardized distributions of the MLE in case (i). The lower rightmost panel shows the chi-square
approximation based on (2.13)

on only a single set of data with N = 1000 and n; = np = -+ = njpo0 = 10 as
before. The same model as in (2.16) together with the subsequent settings was used,
except that we set A = —1/2 known from the beginning so that the latent variables
v1, ..., vy have the inverse-Gaussian population /G (8, y) = GIG(—1/2,6, y). For
the true parameter values specified in Table 3, we run the following two cases for the
initial values of the numerical optimization:

(i’) The true value;
() 1.0x 1078, ..., 1.0x 1073, 1.0 x 107%, 1.0 x 1073).
6 times
The results in Table 3 clearly show that the inverse-Gaussian parameter (§, y) can be
quite sensitive to a bad starting point for the numerical search. In the next section, to
bypass the numerical instability we will construct easier-to-compute initial estimators
and their improved versions asymptotically equivalent to the MLE.

3 Asymptotically efficient estimator

Building on Theorem 2.3, we now turn to global asymptotics through the classical
Newton—Raphson type procedure. A systematic account for the theory of the one-step
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Fig.3 Standardized distributions of the MLE in case (ii). The lower rightmost panel shows the chi-square
approximation based on (2.13)

estimator can be found in many textbooks, such as (van der Vaart 1998, Section 5.7).
Let us briefly overview the derivation with the current matrix-norming setting.
Suppose that we are given an initial estimator 92, = (&?V, ,BR,, f,(\),, A(])V, (SON, yy) of
60 satisfying that
n0 L T /A0 _
i = An(60)T (63 — 60) = 0,(1).
By Theorem 2.3 and Assumption 2.2, this amounts to

VN@Y - 60) = 0,(1). (3.1)

We define the one-step estimator 6 1{, by
~ A~ ~ -1 A
gl =09 — (ageN(e,%)) 30 tn(0%) (3.2)

on the event {0}, € ©, det(32¢y(0Y)) # 0}, the Py, -probability of which tends to 1.
Write i1}, = Ay (60)T (B — 60) and 28 = —An(60) ' 02en(09) An(G0) ' . Using

@ Springer



682 Japanese Journal of Statistics and Data Science (2023) 6:669-704

Table 2 The empirical 95%-coverage probabilities of the MLE in cases (i) and (ii) based on 1000 trials

Bo Bi a0 o] 70 T A s Y

Case (i) 0.940 0.948 0.953 0.946 0.942 0.953 0.817 0.863 0.839
Case (ii) 0.957 0.952 0.961 0.954 0.952 0.949 0.942 0.945 0.948

Table 3 MLE based on single data set; the running time was about 2 min for case (i’) and 8 min for case
(ii”); the performance of estimating (8, y) in case (ii’) shows instability

True value Bo Bi %) o] 70 71 8 y

— 3.000 5.000 — 3.000 4.000 0.020 —0.050 1.600 1.000
i) —3.000 4.999 —3.011 4.017 0.023 —0.047 1.603 1.005
(ii”) —3.000 4.999 — 2.966 3.947 0.023 —0.052 0.947 0.000

Taylor expansion, we have
Ty =T + An(00) ™ doln (OF)- (3.3)
By the arguments in Sect. 2.2, it holds that |f](3,| \Y, |f10\,_1| = 0,(1). From (3.1),

An(60) 100t BY) = An(60) — Ia% + 0,(N71?). (3.4)

Combining (3.3) and (3.4)Aand recalling Remarks 2.4 and 2.5, we obtain the asymptotic
representation (2.11) for 6}, followed by the asymptotic standard normality

~ L
iy = An(60) + 0p(1) = N, (0, 1,)

and its asymptotic optimality.

3.1 Construction of initial estimator

This section aims to construct a +/N-consistent estimator GAR, satisfying (3.1) through
the stepwise least-squares type estimators for the first three moments of Y;;. We note
that the model (2.1) does not have a conventional location-scale structure because of
the presence of v; in the two different terms.

We assume that the parameter space ®g x Oy X O x 0; x Os x ©,, is a bounded
convex domain in RP# x RPe x RPr x R x (0, 00)? with the compact closure. Write
0’ = (1, 8, y) for the parameters contained in £(v;), the true value being denoted by
6y = (20, 80, o). Let u = (6") = Ep[vi],c¢ = c(9') := Varg[v],and p = p(¢') :=
Eo[(vi — Eg[vi])31; write po = wu(6y), co = c(6), and pyg = p(6;) correspondingly.
Further, we introduce the sequences of the symmetric random matrices:

1 ®2
O1.n(a) := N Z (10 0asij (@), xij, sij(e0))”
L]
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1 ®2
02n(0) == 2 (mo e () (@), s7y(@0)) .

ij
To state our global consistency result, we need additional assumptions.

Assumption 3.1 In addition to Assumption 2.1, the following conditions hold.
(1) Global identifiability of («, 8, 1):
(a) sup|Q1.n() — Q1(x)| — 0 for some non-random function Q1 (x);
o
(b) limNinf inf Amin(Q1,8 () > 0.
o
(2) Global identifiability of (z, ¢):

(a) sup|Q2.n(t) — Q2(7)| — O for some non-random function Q>(7);
T

(b) lim inf inf Amin(Q2,n (2)) > 0.
T

1
(3) Global identifiability of p: lim inf 5 Z sy (ag) > 0.
i,j
(4) There exists a neighborhood of ) on which the mapping ¥ : ©; x ©5 x 0, —
(0, 00)% x R defined by ¥ (0") = (1(9"), c(9"), p(6")) is bijective, and ¥ is con-
tinuously differentiable at 6y with nonsingular derivative.

To construct OAR,, we will proceed as follows.
Step 1 Noting that Eg[Y;;] = xi—;,B +s;j (o), we estimate (8, o, (1) by minimizing
T 2
Mine o) =3 (Yij = xjB = sij@ne) . (3.5)
ij
Let (&IOV’ ,31%, '&(I)V) € argmin(a,ﬁ’mem Ml’N(Ol, ,3, [,L)

For estimating the remaining parameters, we introduce the (heteroscedastic)
residual

5. . T 30 A0\ A0

eij = Yij — x;; By — sij(@y)ity, (3.6)
which is to be regarded as an estimator of the unobserved quantity
Vi 01 (T0)€ij -

Step 2 Noting that Varg[Y;;] = al-%(f)ll« + sizj (a)c, we estimate the variance-
component parameter (7, &) by minimizing

2
Moy(r,0):=Y (efj — R @Y — 57, (&?V)c) . (.7)
i

Let (£, %) € argmin ;. . G-y (0.00) M2,N (T, ©).
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Step 3 Noting that Eg[(Y;; — EQ[Y,‘]‘])3] = 3s,-j(a)al%(r)c + s?j (o) p, we estimate
o by the minimizer ,6/(3, of

2
Man (o) =Y (&) = 35, @R G — 5, @Rp)
ij
that is,

—1
2 =Y s8@%) Z{é?j —3s,~j(&§>v)a§(fN)é9v}s§j &%), (3.8
i,j i,j

Step 4 Finally, under Assumption 3.1(4), we construct 610 = (5‘(1)\/’ 3?\,, )71?,) through

the delta method by inverting ([L?V, 6?\,, ,62,):

VNER - 6) = VN (v & %) = v (ko. co. p0)

= (v @) "'VN (G- & 5% = (0. co. p0)) = 0, (D).

In the rest of this section, we will go into detail about Steps 1 to 3 mentioned above
and show that the estimator é/% thus constructed satisfies (3.1); Step 4 is the standard
method of moments (van der Vaart 1998, Chapter 4).

For convenience, let us introduce some notation. The multilinear-form notation

isused for M = {M;,, ; }andu = {u;,, ...u; }. For any sequence random functions
{Fn(0)}n and a non-random sequence (ay)y C (0, 00), we will write Fy(0) =
0;’;(a,,) and Fy(0) = of,(an) when supy |[Fn(0)| = Op(an) and supy |Fy(0)] =
op(an) under Py, respectively. Further, we will denote by m; = (m;1, ..., mjy,) €
R™ any zero-mean (under Py,) random variables such that m, ..., my are mutually
independent and sup; .| maxi<;<u; Egyllm;; |X] < oo for any K > 0; its specific form
will be of no importance.

3.1.1 Step 1

Puta = («, B, 1) and ap = (a0, Bo, o). By (2.1) and (3.5), we have

1
Y n(a) = N (M, n(a) — My y(ao))

2
= N > (xijs 51 (@0), 120) - (B = Bos i = po, s (@) — si(@0)) mij
ij
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1
+ N Z (MO 0o (@), Xij, Sij (O[()))®2 [(a — a0)®2:|
LJ

2
= = 2 (xij> 51 (@0). 10) - (B = Bo. 1t — o, sij (@) = sij () mij
inj

+2(01n @) — 01@) [ (@ — a)®2| +201@ [ (@ — a0)®?],

where @ = &(o, p) is a point lying on the segment joining « and «g. The first
term on the rightmost side equals 01*7 (N~1/2). The second term equals 0;‘7(1) by
Assumption 3.1(1), hence we conclude that |Y; y(a) — Y1 (a)| = 0;‘7(1) for Yi(a) :=
201(@) [(a — ap)®*]. Moreover, we have infy Amin(Q1()) > 0 hence argmin Y; =
{ao}, followed by the consistency dy LS agp.

To deduce \/ﬁ(&N — ap) = Op(1), we may and do focus on the event
{0. M1 n(an) = 0}, on which

N7Y92M y(an)V'N(ay — ao) = —N~Y28, M, y(ao), (3.9)

where ay is a random point lying on the segment joining ay and «. Observe that

—L%Ml,zv(ao)=i diag (3esij (@0), Ips. 1) [(10. xij. 5ij(@0)) | mij=0,(1).
~N v N i
Similarly,
1 - 21
Nanl,N(aN) =~ {mij — (xij, sij(@0). po) -

ij
X <I§N — Bo, iy — 1o, sij(an) — Sij(a()))}
2 - 2
+ v ;(MoaaSij(aN), Xij,s Sij(oto))® .

Concerning the right-hand side, the first term equals 0, (1), and the inverse of the sec-
ond term does QLN(&N)’] = {2Q1,N(ozo)—i—op(l)}’1 = 0,(1).Thelasttwodisplays
combined with Assumption 3.1(1) and (3.9) conclude that VN(ay —ag) = O p(1);
it could be shown under additional conditions that ~/N (ay — ap) is asymptotically
centered normal, while it is not necessary here.

3.1.2 Step 2

Write iig v = VN (BY, = Bo), v = VNS, — o), and i), ;; = /N (sij @3) —
sij(ag)). Let b := (7, ¢) and by := (70, co), and moreover

eij = /vioij(T0)€ij,
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eij = Yij — Eg[Yij] = eij + sij(ao)(vi — o).

~ 12 5 . 2 S R AQ N A N
We have eij = ejj — N~V Hij with H,'j = X jUp.N + Sij(aN)uu,N + T

Introduce the zero-mean random variables 7;; := Eizj — (0,%- (t0) + cosizj (oeo)). Then,

we can rewrite M> n () of (3.7) as
) )
My (D) = (ﬁi/’(b) + —Bij) ,
i,j VN

where

7 () 1= iy — ((07(0) = G2 DAY + (¢ = c)sF @)

A A 1 5 5 . -
Bjj == —2H;; + \/_NHij — Uij(TO)“M,N — C()ut/x,ij'
As in Sect. 3.1.1, we observe that
1
Yo n (D) := v (M2, N (b) — My N (bo))
1 1
_ * =2 2
-0y (7 )+ 3 Z(@o )

i,j

1 1 2
- o; (ﬁ> + 3 2 (@50 = o ik + (e = coxs? (@)

0]
1 2
= oy + 3 D (@) = o ()0 + (¢ = co)s]y (@)
i,j

= 05 (1) + 2028 (B) [ (b — b0)®?
for some point T = 7(t, 7p) lying on the segment joining t and tp. Thus Assump-
tion 3.1(2) concludes the consistency l;N S bo: we have |Yo n (D) — Yo (b)| = 0}“,(1)
with Y, (b) := 207(7) [(b — bo)®2] satisfying that inf; Apmin(Q2(7r)) > 0, hence
argmin Y, = {bo}.

The tightness «/N(IQN — bg) = 0,(1) can be also deduced as in Sect. 3.1.1: it
suffices to note that

! O Ms n(bo) = 2 Z<~+ ! I§~>8_2(b)
\/Nb 2,N(D0 _\/Ni,j Nij \/N ij | 9100

2
= ——= 2= (H03:(0) (). sij(a)) mj + 0p(1) = Op(D)
i,j
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and that
1 2 -~
Nab M> N (bn) = 0p(1) + 202 n(70)

for every random sequence (15 ~) such that b N ES by.

3.1.3 Step 3

By the explicit expression (3.8) and the +/N-consistency of (&?V, ,319,, /l(])v, 6%,), we
obtain

( Zsl,mN)) N (B — po)

\/_ Zs,, @) (& = 35 @OEENER — 575 @)oo

1 - 3
=0,(D+—= Zs,,(aN){< ﬁHij) —3sij(ao)oii-uo)co—s?j(ao)po}

= 0,() + —— Zs,,(ao)( ~ 353 (@) ()0 — 57 @)p0) = 0, (1),

Hence «/N(,ég, — po) = Op(1) under Assumption 3.1(3).
We end this section with a few remarks.

Remark 3.2 As an alternative to (3.5), one could also use the profile least-squares
estimator (Richards 1961): first, we construct the explicit least-squares estimator of
(B, w) knowing ., and then optimize @ — M y (e, Bn (@), L (@)) to getan estimator
of a.

Remark 3.3 If one componentof 8’ = (A, 8, y) is known from the very beginning, then
it is enough to look at the estimation of (u, ¢) and we can remove Assumption 3.1(3)
with modifying Assumption 3.1(4).

Remark 3.4 Because of the asymptotic nature, the same flow of estimation proce-
dures (the MLE, the initial estimator, and the one-step estimator) remain valid even
if we replace the trend term in B in (1.2) by some nonlinear one, say u(x;;, 8), with
associated identifiability conditions.

Remark 3.5 We can construct a one-step estimator for the MELS model (1.2) in a
similar manner to Steps 1 to 3 described in Sect. 3.1. To construct an initial estimator

92, = (,BN,ozN, fl(\),, ,oN) we use the identities Egy[Y;;] = xT,B Varg[Y;;] =
exp(w r+02/2)+exp(z a),and Eg[(Y;;— Eg[Ylj]) 1=30y exp(z a/2+02/2)p

Then, we can obtain ,BN in Step 1, (oeN, fl(\),, Af) (])\,) in Step 2, and then ,ON in Step 3 in
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this order through the contrast functions to be minimized: denoting é; = Yij —xi—; BJOV,
we have

B Z (Yij —x;ﬂ>2,
i,j

2
(a,7,02) > Z (é;jz — exp(u)i—;t +02/2) — exp(z;ra)) .
i,j

2
~ ~2,0 ~ ~2,0
Py <e;j3 =360 N exp( ey /246,y /2),0)
ij

As in the case of (3.8), ,51(\), is explicitly given while the meaning of the parameter p
is different in the present context. It is also possible to develop an asymptotic theory
for the MLE of the MELS and the related one-step estimator in similar ways to the
present study. However, the one-step estimator toward the log-likelihood function
(1.3) still necessitates the numerical integration over R? with respect to the two-
dimensional standard normal random variables; the numerical integration would need
to be performed for everyi = 1,..., N and j = 1, ..., n;, hence the computational
load would still be significant.

3.2 Numerical experiments

Let us observe the finite-sample performance of the initial estimator ég,, the one-step
estimator ]lv, and the MLE éN. The setting is as follows:

Yij = x,-—]r-,B + tanh(zl-Tjoz)v,- + /v exp(w;r) €ijs (3.10)

where

e N=1000, ny=n,=---=ny = 10.

® Xij, Zij, Wijj € R? ~ i.id. N»2(0, I»).

e v, v2,...~1id. IG(S, y) = GIG(—1/2, 6, y), the inverse-Gaussian random-
effect distribution.

o ¢ = (€1,...,€i) ~1id. N(O, I,,), independent of {v;}.

e 0= (B, 1,8,y)=(Bo, B1. a0, a1, 70, 71,8, ) € R®.

e True values are 8 = (3, 5), a = (—4,5), T = (0.05,0.07), § = 1.5, y =0.7.

Inthis case 8’ = (8, y) € (0, o0)? and we need only (,&9\,, 60N):wehaveu = Eyg[v;] =
8/y and ¢ = Vary[v;] = §/y>, namely

w w
y=J5%  s=uy=,%
C C

As initial values for numerical optimization, we set the following two different cases:
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Table4 The empirical 95%-coverage probabilities of the MLE and the one-step estimators in cases (i) and
(ii”) based on 1000 trials; MLE of (8, y) in case (ii’) showed instability in numerical optimizations, while
the one-step estimator is stable as in case (i’)

Bo B ) oy 0 7 B y

Case (i°) Oy 0.960 0.959 0.944 0.942 0.957 0.947 0.948 0.943
N 0.960 0.958 0.943 0.943 0.952 0.949 0.943 0.947
Case (ii") Oy 0.957 0.953 0.917 0.919 0.956 0.944 0 0

0}]\] 0.960 0.959 0.943 0.943 0.952 0.949 0.943 0.947

(1’) The true value;
(i) (1.0x 1078, ..., 1.0x 1078, 1.0 x 10~%, 1.0 x 1073).

In each case, we computed «/ﬁ(éN — 6p) for éN = él%, 671{,, and éN, all being
conducted 1000-times Monte Carlo trials. To estimate 95%-coverage probabilities
empirically as in Sect. 2.3, we computed the quantities —836 ~(@y) and —835 N(é},)
through the function 6 +— —8025 ~ (0) for the approximately 95%-confidence intervals
for each parameter. The results are shown in Table 4; therein, we obtained numerically
unstable 4 MLEs and 5 one-step estimators for case (i’) and 299 MLEs and 6 one-
step estimators for case (ii’), and then computed the coverage probabilities based on
the remaining cases. In Figs. 4 and 5 (for cases (i’) and (ii’), respectlvely) we drew
histograms of 91 and Oy together with those of the initial estimator 60 for comparison.
In each figure, the histograms in the first and fourth columns are those for 09 , those
in the second and fifth columns for é]{,, and those in the third and sixth columns for
éN, respectively; the red solid line shows the zero-mean normal densities with the
consistently estimated Fisher information for the variances.

Here is a summary of the important findings.

e Approximate computation times for obtaining one set of estimates are as follows:

@1’ 0.2s foréo, 10s for91 2m1nf0r9N,
(ii”) 0.2 for 8%; 10s for 6} 9 min for fy.

A considerable amount of reduction can be seen for 6 }\, compared with On.
e About Figs. 4 and 5:

— In both cases (i’) and (ii’), the inferior performance of 67]?, is drastically improved
by 6 11\,, which in turn shows asymptotically equivalent behaviors to the MLE Oy

— On one hand, as in Sect. 2.3, the MLE éN is much affected by the initial value for
the numerical optimization, partly because of the non-convexity of the likelihood
function £ (0); in Case (ii’), we observed the instability in computing the MLE of
(8, y) (in the bottom panels in Fig. 5), showing the local maxima problem. On the
other hand, we did not observe the local maxima problem in computing é]% and the

one-step estimator 91{, does not require an initial value for numerical optimization.
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Fig. 6 Data plots of riesby example.dat (left) and posmood_example.dat (right) borrowed
from the supplemental material of Hedeker and Nordgren (2013); the former shows data of 10 patients over
6 time points with a few missing values, and the latter does those of 3 people over 26 time points with no
missing value

In sum, 6 ,1\, is asymptotically equivalent to the efficient MLE and much more robust
in numerical optimization than the MLE. It is recommended to use the one-step esti-
mator 0 11\, against the MLE 6 from both theoretical and computational points of view.

We end this section with applications of the proposed one-step estimator QAII\, for
(3.10) tothe tworeal datasets riesby_ example.dat and posmood_example.
dat borrowed from the supplemental material of Hedeker and Nordgren (2013). Here
are brief descriptions.

e riesby_example.dat contains the Hamiltonian depression rating scale
as Y;;j. The covariates are given by x;; = (intercept,week, edog) €
R x {0,1,2,...,5}) x {0,1}, z;j = (intercept,edog), and w;; =
(intercept,week). Here, N = 66 and the numbers of sampling times are
6 with a few missing slots, and edog denotes the dummy variable for indicating
whether the depression of the patient is endogenous (= 1) or not (= 0).

e posmood_example.dat contains the individual mood items as Y;;; the
items are pre-processed using factor analysis and take values 1 to 10 with
higher ones indicating a higher level of positive mood. The covariates are given
by x;j = (intercept,alone,genderf) € R x {0,1} x {0,1}, z;; =
(intercept, alone), and w;j = (intercept,alone). Here, N = 515
with no missing value, with approximately 34 sampling times on average (ranging
from 3 to 58). The variable alone and gender £ respectively denote the dummy
variables for indicating whether the person is alone (= 0) or not (= 1), which is
time-varying, and whether the person is male (= 0) or female (= 1).

Figures6 and 7 show some data plots and histograms, respectively; the former is
positively skewed while the latter is negatively skewed. We could apply our one-step
estimation methods for these data sets, although they can be seen as categorical data
(with a moderately large number of categories). The results are given in Table 5; the
parameters By, g, and 7y denote the intercept. The skewness mentioned above
is reflected in the estimates of g and «y.
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4 Concluding remarks

We proposed a class of mixed-effects models with non-Gaussian marginal distribu-
tions which can incorporate random effects into the skewness and the scale simply
and transparently through the normal variance-mean mixture. The associated log-
likelihood function is explicit and the MLE is asymptotically efficient (Remark 2.4)
while computationally demanding and unstable. To bypass the numerical issue, we
proposed the easy-to-use one-step estimator 6! which turned out to not only attain a
significant reduction of computation time compared with the MLE but also guarantee
the asymptotic efficiency property.
Here are some remarks on important related issues.

(1) Inter-individual dependence structure. A drawback of the model (2.1) is that its
inter-individual dependence structure is not flexible enough. Specifically, let us
again note the following covariance structure for j, k < n;:

Covg[Yij, Yik) = sij(a)sir () Varg[vi] = c(0)sij ()six (cr).

This in particular implies that Y;y, ..., Y;,, cannot be correlated as long as
s(z,a) = 0. Nevertheless, it is formally straightforward to extend the model
(2.1) so that the distributional structure of ¥; € R™ obeys the multivariate GH
distribution for each £(Y;) with a non-diagonal scale matrix. To mention it briefly,
suppose that the vector of asample Y; = (Y;1, ..., Yiy,) € R" from ith individual
is given by the form

Yi = xi B+ s(zi, v + A(wi, )2/ €.

Here, vy, ..., vy ~1i.id. GIG(}, 8, y) as before, while we now incorporated the
scale matrix A (w;, ) which should be positive definite and symmetric, but may
be non-diagonal. Then, the dependence structure of Yy, ..., Y;,, can be much
more flexible than (2.1).

(2) Forecasting random-effect parameters. In the familiar Gaussian linear mixed-
effects model of the form Y; = X; 8 + Z;b; + €;, the empirical Bayes predictor of
v; is given by l;,' = Eglb;|Y;]| 9=y - One of the analytical merits of our NVMM
framework is that the conditional distribution £(v;|Y; = y;) of v; is given by
GIG(vi, ni, Vi), where

ni
vi =vi(0) = A— IR

Wi =i 0) == /82 + (i — 1B T AW, (i — xiP).

Vi = Ui 0) = [y + si@) T Awi, D5 (@).

This is a direct consequence of the general results about the multivariate GH
distribution; see Eberlein and Hammerstein (2004) and the references therein for
details. As in the Gaussian case mentioned above, we can make use of
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K1 i) i
Ko, (i) i

i = EolvilY; = yillg_g, =

where ; := v;(Oy), N = n,-(éNz, and I/A/i = wi(éN); formally Oy could be
replaced by the one-step estimator 6 11\, Then, it would be natural to regard

Yij = x[;Bn +s(z};, Gn)D;

as a prediction value of ¥;; at (xlf i z; j). This includes forecasting the value of ith
individual at a future time point.

(3) Lack of fit and model selection. In relation to Remark 2.6, based on the obtained
asymptotic-normality results, we can proceed with lack-of-fit tests, such as the
likelihood-ratio test, the score test, and the Wald test; typical forms are s(z, o) =
le;’l as1(z) and o (w, 1) = exp{Zi’:1 Tmom (W)}, with given basis functions
s51(z) and oy, (w). In that case, we can estimate p-value for each component of 6,
say, by 2&(—| By v6s. ) for 6 where By y := [(—02¢n (Oy))~'1,/*. Alterna-
tively, one may consider information criteria such as the conditional AIC (Vaida
and Blanchard 2005) and the BIC-type one (Delattre et al. 2014). To develop
these devices in rigorous ways, we will need to derive several further analytical
results: the uniform integrability of (|| VN (é N —00) |1%),, for the AIC, the stochastic
expansion for the marginal likelihood function for the BIC, and so on.
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Appendix A: GIG and GH distributions

Let K, (¢) denote the modified Bessel function of the second kind (v € R, ¢t > 0):

L[> t 1
Kv(t)=§/0 s exp —3 s—l—; ds.

We have the following recurrence formulae (Abramowitz and Stegun 1992):
Kyy1(t) = ZI—VKV(I) + Ky—1(t) and Ky—1(t) + Ky+1(t) = —20,K,(¢). It follows
that K, (¢) is monotonically decreasing and that 9;K, (1) = —K,_1(t) — %KV ().
Further, we have

K,
O log K, (1) = == é;()t) _ ? = —R,(t) — ; (A1)
1K,
92 log K, () = N0 (Kf_l(z) _ Kv_z(t)KU(t)) - Kuét()t) ;2
1
= —Su(1) = T R.(0) + ;2 (A2)

The following asymptotic behavior holds:

K, (1) = \/gexp(—z){l +@?*—nochH), - oo

The generalized inverse Gaussian (GIG) distribution GI G (A, §, y) on R is defined
by the density:

/9 -, 1/
P AL S, = — — | — , 0.
PG16(z V) 21(,\()/8)1 eXp1—5 - +y°z z>

The region of admissible parameters is given by the union of {(A,8,y) : A >0, § >
0,y >0L{(A,8,y): A=0,8>0,y >0},and {(A,5,7): A <0,5§ >0, y >
0}, according to the integrability of pg;¢ at the origin and +o0.

The generalized hyperbolic (GH) distribution denoted by GH (A, «, 8, 8, ) is
defined as the distribution of the normal variance-mean mixture Y with respect to
Z~GIG(, S, y):

Y =u+BZ+V7Zn,

where o := /B2 4+ y2 and n ~ N(0, 1) independent of Z. By the conditional Gaus-
sianity L(Y|Z = z) = N(u + Bz, z), the density is calculated as follows:

poH(Y; Ao, B, 5, 1)

| 1 )
= exp| ——O —u—pBz A, 8, y)dz
/0 Nz p( 2Z(y n— Bz) )PG/G( Y)
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2 NM2 /53 5A—1/2
a”—p VT (y— )
_{ ) K, 1 (o824 (v — m)? | explB(y — w].
VIma - 1250K, (8\/012 - ,82)

The region of admissible parameters is given by the union of {(A, @, 8,65, ) : A >
0,6>0,a> |8}, {(X,a,8,8, ) : A=0,8 >0, o > |B|},and {(X, @, B, 5, ) :
A < 0,8 >0, a>|B|}. The mean and variance of Y ~ GH (X, «, B, §, j1) are given
by

1 —

8B Kss1(87)
E[Y] = -
=tk o)
vary = SKi1Oy) 207 | Kipa(dy) (mey))z
ar[Y] = 5 — .
y K. (8y) 4 K;.(8y) K;.(8y)

See Eberlein and Hammerstein (2004) for further details of the GIG and GH distribu-
tions.

The normal inverse Gaussian (NIG) distribution is one of the popular sub-
classes of the GH-distribution family: NI1G(«, 8,6, ) := GH(—1/2,a, 8,5, 1),
where GIG(—1/2,6,y) corresponds to the inverse Gaussian distribution. The
NIG(a, B, 8, u)-density is given by

y K1 (o574 (= )
leG(x;O(”B78,'LL)=;CXp <8\/0Tﬂ2+,3(x_ﬂ)> m .

All of the mean M, variance V, skewness S, and kurtosis K of NIG(«, 8,5, i) are
explicitly given:

B8 Sa? 38
M=pt———7 V= T 8= T
(a? = p2)2 (a? = p7)2 av/B(o? = f2)s
302 4482

- az(g(az _ ,32)% ’

Inverting these expressions gives

3 SV Vy? P — Vy3
)/: ) ﬂ: 5 o = y2+ﬂ27 (S:—,
JVV/3K — 582 3 y2 + B2

M=M—@
y 9

from which one can consider the method-of-moments estimation of («, 3, §, ) based
on the empirical counterparts of M, V, S, and K. One should note that the empirical
quantity 3K, =5 3‘,21 has to be positive, which may fail in a finite sample and for such a
data set the MLE would be also non-computable or unstable. In Yoon et al. (2020), the
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estimation problem for the i.i.d. NIG model was studied from the computational point
of view; the paper also introduced the change of variables for the parameters to sidestep
the positivity restriction, resulting in stabilized results in numerical experiments.

Appendix B: Likelihood function

B.1 Derivation

Writing 61 = (8, o, t) and 6> = (A, §, v), and using the obvious notation, we obtain

£ (0) =log pe(Y1, ..., Yy)

log/ /pelm,n,. Yalvr, o vn)]'[p@(v,)dvl

i=1

N N
= log (/ - / [Troien I p@(v,-)dvi)
i=1 i=1

log [ f ( [1re (ij|vl->> p@(v,-)dvi}
1 .

Jj=1

n; 1 7l 1
log |:/ (1_[ ————; Jexp |:_2(Yij - x,»; - Sij(d)vi)2:| poy (V)i
j=1 /270 (1) 207 ()

n; 3 o n
[(271) (l_[(rlj(r)) /ov"z

[ m{(x, x,,ﬂ)2+s,-2,«(a)v?—2si_,<a>v,-<nj—xi}ﬁ)}}pez(vndvi]

Il
.MZ

1

I
M=

Il
_MZ

[(27;) (l_[(r”(r)) Z/OOUI,—%"
0
sij (@)

1 T a2 2 2 S . X
lexp[ m{( =X B) +‘”‘f'("‘)”"}+g§ o xi,-m} pezw,)dv,]

I
X
¥ 3 “MZ T

J
il : L (@)
:Z [(271)—*(]—[%(:)) [Texp (a]( ;- x;,s)>

j=1 ij

o _m 1 Yij — x5 B)?
X v, 2 exp{— 4 + 52 (e)v; L (v; dvii|
fo ; l_[l p{ 2070 ( ” Z@ui ) ¢ po, (vi)

j=

N . n; _1 nj » Yi‘— T
=Y woefen#([[3m) e $h @ —xjp)
i=l1 j=1 Uij(f)

j=1

n: ni 2
oy 1 Yy —xip? & S,,() J ]
Xfo Y; exp[ 2 12:: v,ﬁl%.(r) +JX: (T,j( ) pey (v

1
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n T a2 n; 2
B . oo _1( L Yij —x;8) L sii(@) )}
_Zlog [C,(a,ﬁ,r)/o v; exp{ 7 Z le,_,(T) +Za (r)v

i=1 j=1 j=1"ij

&, 7
XZK;L(Sy)vi exp ) E+y vi | ¢ dvi

N
_ . /o [
= l;log |:Cl (a, B, r)ﬂq(sy) A

U s2 ()
+( +7/2>vi”v,A |,
1(711(‘[)

=

" (Y — x,kB)?
UL(Z( j 2x,jﬂ) +62>

oj;(7)

o

l—l | —
|

| =

e e,

where

Slj(a)(Yl] leﬂ)>

lofr (‘L’)

1
Cie, B, 7) = (2m)~ (]‘[a”(f)> exp(

j=1
Making the change of variables Sl.zv,- /T; = u; with

"2 ()

4 +ZO'2(‘L')

Si = Si(a, 1,y) =

.
. 1
T =T(B.a,7,8,y) =S |82+ ey RN

we can continue as
( ))» 00

¢ (9)—Zlog|:C (o, B, 1)2K o) exp {

i=1

A—1—-t
(s on N\ T
_5 (TZMZS—12+S2M1S u; —'dui

l CO T; (1
:Zog Ci@ b O3x @ exp{_3(J+”i)}

T ? = 1-%
—_—Uu.
Sz(x—%f) !

1/2

N 8 A n; ;
S () oo (528000, )
. j=1%ij

2 du;
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nj

A—
T * 1 [ T (1 _1_n
x’—,,_—/ expl—— [ — +u u 2 du;
20-9)2 2 \u;

S;
1/2

N 5 A i i
=Xt [(2n> (1‘[ o7t )) gé(s)y) exp (Z Dy,
i=1 J

—1 Gz%'(f)
4
.\ (T
_x[j:B)> <§> KA"zi(E):|~

This leads to the expression (2.3).

B.2 Partial derivatives

Recall the notation: ¢y (0) = Z:N:l i), Ai = Ai(a,t,y) of (2.4), and B; =
B; (B, 7,8) of (2.5). Let

n;

_ 2
T/ =T/©) = Ry (AiB;) + AB;

for R, (¢) defined by (A.1). Then, we have the following expressions for the compo-
nents of dy€x(6): 10.8

nj
sij(@) ni\ 1
opci0) = — 3 U »+(A——’)E3ﬁ3i—Ti/AiaﬁBi
1

j=1 lj( ) 2

LIS (ot) 1 1 n; il (Yij —X-T-ﬂ)
D SN {*(A—i>+T/Ai}227U"U’

j=1 l](r) Bi | Bi 2 j=1 Uij(f)

0 s-~(oz) n 1, .
seti0)= 30 W 5B = (= 5) i = T/ BidaA;

j=1 ("2‘(1) 2 A
oS ! o i
_Z SZJ(O‘)Y _x;ﬁ)_f{A ()‘_7)+TB}Z é(a)aaslj(a)
=1 %ij® 4 L4 =175

18 0A () M s(a)
3 gi(0) = —5 y 5
P> Z 1 (oh(r e

j=1

0r B 3TA1 /
+(“7)( B A ) Tite(AiB)

13 () UL @)
> - Z  (0F(0)2

j=1

1 n; 1y Yij — Xij /3)2 5
_ 5 ()\ - ?) (BZ ; (O.ij( ))2 Jr (O'ij (1))

—xjB)dr (05 (1))

02.(1)

T 2
Jl%. (1) ¥ij _xijﬂ)af (Uij (7))

n; 2()

Z Y 9 ( ,,(r)))
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n; 2 n; T 3y2
1 (B <& sii(@) A Yij —x:B)
+,Tf<4 S R+ ol Y ar(a?(r»),
2 Ai j=1 (Uizj(t))2 N Bi j=I (Uizj(t))z N
0K, _n (A;Bj)
Y\ _ 9 Ki@y) =7

0.60) =log (%) — 2222 4 JogB; —logAj + ———— 2

1.5 (0) 0g<8) K, (57) + log B; ogA; + KA,"Ti(AiBi)
352 (6) — _my A
9551 (6) = y Ry.(67) + ( 2>B,-2 T

21 n; V4 /Bi
0y¢i(0) = — +0RGy)—(A— =) —= — T, —v.
y6) =+ 3R 6) — ( 2)A,.2 bt

As for the second-order derivatives, for brevity, we write

1

1 2
Ui = Sx_';i(AiBi) + A_BiR _"Ti(AiBi) -
for R, (¢) and S, (¢) defined by (A.1) and (A.2). Further, let

Ly(z) :=

K20 (0, Kv-1(2) Ky (2) — 0, Ky (2)Ky-1(2)) .

v
Below we list the 21 components of agg“,- (0), which were used to compute the confi-
dence intervals and the one-step estimator; the sizes of the matrices are not confusing,
hence we are not taking care of them in notation and use the standard multilinear-form
notation such as (3gB;) ® (3, A;) 1= dpB;d, A; € RPs @ RPa.

836(0) = % (BioB; — (9 B)%) = T/ A0} B; — Ui A}0 B)®2,
000 (0) = — Z Tm(xij ® dusij (@) — (T + Ui Ai B){(3pBi) ® (04 A)},
j=1"1j
a a _ % Sij(a) 2 ()\' B %)
pocti0) =) 3 (x5 ® e (0)) + 527 (Bi0:05B1) — (9 B) @ (01 By))

— (2
j=1 (Ul-j(f))
— Ui Ai(8pB;) ® (3:(A; B)) — T/ (3p B;) ® (3: A;) — T/ A; (3p9: By),
0p0nGi(0) = Ai(aﬂBi)L;L,"Tr(AiBi),

niy 8 .8 s
850541 (0) = —2 (A - —) =303 Bi = Ui AT -5 B + T/ Ai 3 5 By,
i i i

2 1
3pdy i (0) = —yU; Bidg Bi — T/%aﬂgi’
1
nj T .
N i = x5 8) s
3§§i(0) = Z 27”359,‘]'(0() — % {AiagAi _ (3¢1Ai)®2}
= %i® A;
— Ui B} (0, AN®* — T/ B;0; A;,
ni T
L Oij = x;;8)
Badeti @) = = 3 I Gy () © 0107, (0) ]
j=1 0;;(7)
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)

- Tf (Aj(000r Aj) — (04 Ai) ® (3: Ap))

1

— UiBi(34A) ® (0:(A; B)) — T{ (04 Ai) ® (3: Bi) + Bidu0: A))
aaAi

l

00028 (0) = =2

— Bi(@ADL; i (AiBi),

)
04054 () = —8U; A0 Aj — T,'/EaaAi:
i

14 v

nj Y
%, 5:(0) =2 (A~ 7) yr Ui B} -t + 1B A
ni T
L sij(e)(ij — x;:B) ®2
0) =y ———g—I— (2ai‘}(r) (3:62@) " — o027} (r)))
o aij(r)
1 &L 32(07 (D)0 (1) = B (03 () ®?
5 4
23 03 ()

n; 1 1
+(»-3) [B? (Bi (07 Bi) — (9: B)®?) — e (Ai @A) — (&A»%}
— Uide (Ai B) ® 0 (A; By) — T/ 07 (A; By),

20; A;
39,6 (0) = ———

L

— 8,(A,'B,’)L)L_"7[ (A;B)),

ni\ ¢ 8 8T, [ A;
00551 (0) = =2 (2 = 5 e Bi = Ui gdc(AiB) + (ElfarB,« - arAf) ,
ni\ y y yT! ( B;
3z3y§i(9)=2(A—51)I?3IAi—UiBiXiaz(AiBi)+ Ail (;;31Ai—3r3i ,

2 2
2, oy Ky (AiBD) (0K g (AiBONT 7K 1Gy) | (9uKaGY))
876i(0) = - - :

K)L,nTI(AiBi) K,\JT[(AI‘BI‘) K, @y) Ky(8y)
8
0,058 (0) = —A; EL*‘"% (AiBi) +y Ly(8y),
} 5

2 2y y
0,0, ¢ (0) = ;A +38Ly(8y) — BiAfiL,\_"Ti(AiBi),

1

2 1 2 niy (1 282
936:(0) = (SA(6V>+§RA(6y>>y +(»-%) ( )

B? B}
1 l
82 1 262
2 /
_lJiA,’?—LA,' (i—s),

1
3y
Ai

B;’
2, _ _27)“ 1 2, M 1 2)’2
60 =25+ (SA(S)’) + 5&(@)) - (-3) (

2T aE

A2 A

2 2

1

~UuB L — 1B, ( - ’/3) .
Ai A; Ai

959y 61(0) = 2Ri.(8y) + 8y $,.(8y) — Uidy — T}
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