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Abstract
Weprove asymptotically efficient inference results concerning anOrnstein–Uhlenbeck
regression model driven by a non-Gaussian stable Lévy process, where the output
process is observed at high frequency over a fixed period. The local asymptotics
of non-ergodic type for the likelihood function is presented, followed by a way to
construct an asymptotically efficient estimator through a suboptimal, yet very simple
preliminary estimator.

Keywords Asymptotic mixed normality · Optimal regression · Stable
Ornstein-Uhlenbeck process

1 Introduction

1.1 Objective and background

Given an underlying filtered probability space (�,F , (Ft )t∈[0,T ], P), we consider the
following Ornstein–Uhlenbeck (OU) regression model

Yt = Y0 +
∫ t

0
(μ · Xs − λYs)ds + σ Jt , t ∈ [0, T ], (1.1)

where J is the symmetric β-stable (càdlàg) Lévy process characterized by

E[eiu Jt ] = exp(−t |u|β), t ≥ 0, u ∈ R,

and is independent of the initial variable Y0, and where X = (Xt )t∈[0,T ] is an R
q -

valued non-random càdlàg function such that
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λmin

(∫ T

0
X⊗2
t dt

)
> 0, (1.2)

with λmin(A) denoting the minimum eigenvalue of a square matrix A. Throughout,
the terminal sampling time T > 0 is a fixed constant. Let

θ := (λ, μ, β, σ ) ∈ �,

where � ⊂ R
p (p := q + 3) is a bounded convex domain such that its closure

� ⊂ R×R
q×(0, 2)×(0,∞). The primary objective of this paper is the asymptotically

efficient estimation of θ when available data is (Xt )t∈[0,T ] and (Yt j )
n
j=1, where t j =

tnj := jh with h = hn := T /n; later on, we will consider cases where we observe
(Xt j )

n
j=1 instead of the full continuous-time record. We will denote the true value of

θ by θ0 = (λ0, μ0, β0, σ0) ∈ �.
Analysis of the (time-homogeneous) OU process driven by a stable Lévy process

goes back to Doob (1942), where Doob treated the model in a genuinely analytic
manner without Itô’s formula, which has not been published as yet at that time. Nowa-
days, the OU models have been used in a wide variety of applications, such as electric
consumption modeling (Perninge et al. 2011; Borovkova and Schmeck 2017; Verdejo
et al. 2019), ecology (Jhwueng and Maroulas 2014), and protein dynamics modeling
(Challis and Schmidler 2012), to mention a few.

The model (1.1) may be seen as a continuous-time counterpart of the simple first-
order ARX (autoregressive exogenous) model. Nevertheless, any proper form of the
efficient estimation result has beenmissing in the literature, probably due to the lack of
background theory to estimate all the parameters involved under the bounded-domain
infill asymptotics. Let us note that, when J is a Wiener process (β = 2), the drift
parameters are consistently estimable only when the terminal sampling time tends to
infinity, and the associated statistical experiments are known to possess essentially
different properties according to the sign of λ. That is to say, the model is: locally
asymptotically normal for λ > 0 (ergodic case); locally asymptotically Brownian
functional for λ = 0 (unit-root case); locally asymptotically mixed normal (LAMN)
for λ < 0 (non-ergodic (explosive) case). Turning back to the stable driven case, we
should note that the least-squares type estimator would not work unless Tn → ∞,
as is expected from Hu and Long (2009) and Zhang and Zhang (2013); there, the
authors proved that (when β is known) the rate of convergence when λ > 0 equals
(Tn/ log n)1/β and the asymptotic distribution is given by a ratio of two independent
stable distributions.

1.2 Contributions in brief

First, in Sect. 2, we will show that the model is locally asymptotically mixed normal
(LAMN) at θ0 ∈ �, and also that the likelihood equation has a root that is asymp-
totically efficient in the classical sense of Hajék-Le Cam-Jeganathan. The asymptotic
results presented here are uniformly valid in a single manner over any compact subset
of the parameter space �. In particular, the sign of the autoregressive parameter λ0
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does not matter, revealing that (i) the results can be described in a unified manner
regardless of whether the model is ergodic or not, and also that (ii) the conventional
unit-root problem (see Samarakoon and Knight (2009) and the references therein) is
not relevant here at all; this is in sharp contrast to the case of ARX time-series models
and the Gaussian OU models. Besides, in Sect. 3, we will provide a way to provide an
asymptotically efficient estimator through a suboptimal, yet very simple preliminary
estimator, which enables us to bypass not only computationally demanding numerical
optimization of the likelihood function involving theβ-stable density, but also possible
multiple-root problem (Lehmann 1999, Section 7.3).

2 Local likelihood asymptotic

2.1 Preliminaries and result

Let Pθ denote the image measure of (J ,Y ) associated with the value θ ∈ �. We show
the non-trivial stochastic expansion of the log-likelihood ratio of PY

θ+ϕn(θ)vn ,n
with

respect to PY
θ,n for appropriate norming matrix ϕn(θ) introduced later and bounded

sequence (vn) ⊂ R
p, where PY

θ,n stands for the restriction of Pθ to σ(Yt j : j ≤ n).
The distribution L(Y0) may vary according to θ ; we will assume that for any ε > 0,
there exists an M > 0 such that supθ∈� Pθ [|Y0| ≥ M] < ε.

Let φβ denote the β-stable density of J1: Pθ [J1 ∈ dy] = φβ(y)dy. It is known that
φβ(y) > 0 for each y ∈ R, that φβ is smooth in (y, β) ∈ R× (0, 2), and that for each
k, l ∈ Z+,

lim sup
|y|→∞

|y|β+1+k

logl(1 + |y|)
∣∣∂k∂ lβφβ(y)

∣∣ < ∞. (2.1)

See DuMouchel (1973) for details. Here, we write ∂k∂ lβφβ(y) := (∂k/∂ yk)(∂ l/∂βl)

φβ(y); analogous notation for the partial derivatives will be used in the sequel.
To proceed, we need to introduce further notation. Any asymptotics will be taken

for n → ∞ unless otherwise mentioned. We denote by →u the uniform convergence
of non-random quantities concerning θ over �. We write C for positive universal
constant which may vary at each appearance, and an � bn when an ≤ Cbn for every
n large enough. Given positive functions an(θ) and bn(θ), we write bn(θ) = ou(an)
and bn(θ) = Ou(an) if a−1

n bn(θ) →u 0 and supθ |a−1
n bn(θ)| = O(1), respectively.

The symbol an(θ) �u bn(θ) means that supθ |an(θ)/bn(θ)| � 1. We write
∫
j instead

of
∫ t j
t j−1

.

By integrating by parts applied to the process t 	→ eλt Yt , we obtain the explicit
càdlàg solution process: under Pθ ,

Yt = e−λ(t−s)Ys + μ ·
∫ t

s
e−λ(t−u)Xudu + σ

∫ t

s
e−λ(t−u)d Ju, t > s. (2.2)
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For x, λ ∈ R, we write

η(x) = 1

x
(1 − e−x ), ζ j (λ) = 1

h

∫
j
e−λ(t j−s)Xsds.

The basic property of the Lévy integral and the fact that log Eθ [eiu J1 ] = −|u|β give

log Eθ

[
exp

(
iu σ

∫
j
e−λ(t j−s)d Js

)]
=
∫
j
log Eθ

[
exp
(
iue−λ(t j−s)σ J1

)]
ds

= −|σu|β
∫
j
e−λβ(t j−s)ds

= −∣∣σh1/βη(λβh)1/βu
∣∣β.

Hence,

ε j (θ) := Yt j − e−λhYt j−1 − μ · ζ j (λ)h

σh1/βη(λβh)1/β
Pθ∼ i.i.d. L(J1). (2.3)

Now, the exact log-likelihood function �n(θ) = �n

(
θ; (Xt )t∈[0,T ], (Yt j )nj=0

)
is given

by

�n(θ) =
n∑
j=1

log

(
1

σh1/βη(λβh)1/β
φβ

(
ε j (θ)

))

=
n∑
j=1

(
− log σ + 1

β
log(1/h)− 1

β
log η(λβh) + logφβ

(
ε j (θ)

))
. (2.4)

We introduce the non-random p × p-matrix

ϕn = ϕn(θ) := diag

(
1√

nh1−1/β
I1+q ,

1√
n

(
ϕ11,n(θ) ϕ12,n(θ)

ϕ21,n(θ) ϕ22,n(θ)

))
, (2.5)

where the real entries ϕkl,n = ϕkl,n(θ) are assumed to be continuously differentiable
in θ ∈ � and to satisfy the following conditions for some finite values ϕkl = ϕkl(θ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ11,n(θ) →u ϕ11(θ),

ϕ12,n(θ) →u ϕ12(θ),

s21,n(θ) := β−2 log(1/hn)ϕ11,n(θ) + σ−1ϕ21,n(θ) →u ϕ21(θ),

s22,n(θ) := β−2 log(1/hn)ϕ12,n(θ) + σ−1ϕ22,n(θ) →u ϕ22(θ),

inf
θ

|ϕ11(θ)ϕ22(θ) − ϕ12(θ)ϕ21(θ)| > 0,

max
(k,l)

∣∣∂θϕkl,n(θ)
∣∣ �u log2(1/h).

(2.6)

The matrix ϕn(θ) will turn out to be the right norming with which u 	→
�n (θ + ϕn(θ)u) − �n (θ) under Pθ has an asymptotically quadratic structure in R

p;
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see Brouste and Masuda (2018) and Clément and Gloter (2020) for the related previ-
ous studies. Note that

√
nh1−1/β

n →u ∞ and |ϕ21,n(θ)| ∨ |ϕ22,n(θ)| � log(1/h).
By the same reasoning as in Brouste and Masuda (2018, page 292), we have
infθ |ϕ11,n(θ)ϕ22,n(θ) − ϕ12,n(θ)ϕ21,n(θ)| � 1 and |ϕn(θ)| →u 0 under (2.6).

Let

fβ(y) := ∂βφβ

φβ

(y), gβ(y) := ∂φβ

φβ

(y),

and define the block-diagonal random matrix

I(θ) = diag
(Iλ,μ(θ), Iβ,σ (θ)

)
, (2.7)

where, for a random variable ε
Pθ∼ φβ(y)dy and by denoting by A
 the transpose of

matrix A,

Iλ,μ(θ) := 1

σ 2 Eθ

[
gβ(ε)2

] 1
T

∫ T

0

(
Y 2
t −Yt X


t
−Yt Xt X⊗2

t

)
dt, (2.8)

Iβ,σ (θ) :=
(

ϕ11 ϕ12
−ϕ21 −ϕ22

)
(
Eθ

[
fβ(ε)2

]
Eθ

[
ε fβ(ε)gβ(ε)

]
Eθ

[
ε fβ(ε)gβ(ε)

]
Eθ

[
(1 + εgβ(ε))2

]
)(

ϕ11 ϕ12
−ϕ21 −ϕ22

)
.

(2.9)

Note that I(θ) does depend on the choice of ϕ(θ) = {ϕkl(θ)}; if ϕ(θ) is free from
(λ, μ), then so is I(θ).

Also, we note that I(θ) > 0 (Pθ -a.s., θ ∈ �) under (1.2). Indeed, it was verified
in Brouste and Masuda (2018, Theorem 1) that Iβ,σ (θ) > 0 a.s. To deduce that

Iλ,μ(θ) > 0 a.s., we note that
∫ T
0 Y 2

t dt > 0 a.s. and that, by Schwarz’s inequality,

u

{∫ T

0
X⊗2
t dt −

(∫ T

0
Yt Xtdt

)(∫ T

0
Y 2
t dt

)−1 (∫ T

0
Yt Xtdt

)
}
u

=
∫ T

0
(u · Xt )

2dt −
(∫ T

0
Y 2
t dt

)−1 (∫ T

0
Yt (u · Xt )dt

)2

> 0

for every nonzero u ∈ R
q , since for any constant real ξ we have Y �= (u · X)ξ a.s. as

functions on [0, T ]. Apply the identity det
(
A B

B C

)
= det(A) det(C − BA−1B
) to

conclude the Pθ -a.s. positive definiteness of I(θ).
The normalized score function �n(θ0) and the normalized observed information

matrix In(θ0) are given by

�n(θ) := ϕn(θ)
∂θ�n(θ),

In(θ) := −ϕn(θ)
∂2θ �n(θ)ϕn(θ),

respectively. Let MNp,θ (0, I(θ)−1) denote the covariance mixture of p-dimensional
normal distribution, corresponding to the characteristic function u 	→ Eθ

[
exp(−u
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I(θ)−1u/2)
]
. Finally, we write M[u] = ∑

i Miui for a linear form M = {Mi } and
similarly Q[u, u] = Q[u⊗2] =∑i, j Qi j ui u j for a quadratic form Q = {Qi j }. Now,
we are ready to state the main claim of this section.

Theorem 2.1 The following statements hold for any θ ∈ �.

(1) For any bounded sequence (vn) ⊂ R
p, it holds that

�n (θ + ϕn(θ)vn) − �n (θ) = �n(θ)[vn] − 1

2
In(θ)[vn, vn] + oPθ (1),

where we have the convergence in distribution under Pθ :L (�n(θ), In(θ)|Pθ ) ⇒
L (I(θ)1/2Z , I(θ)

)
, where Z ∼ Np(0, I ) is independent of I(θ), defined on an

extended probability space.
(2) There exists a local maximum point θ̂n of �n(θ) with Pθ -probability tending to 1

for which

ϕn(θ)−1(θ̂n − θ) = In(θ)−1�n(θ) + oPθ (1) ⇒ MNp,θ

(
0, I(θ)−1

)
.

It isworthmentioning that the particular non-diagonal formofϕn(θ) is, as inBrouste
and Masuda (2018), inevitable to deduce the asymptotically non-degenerate joint dis-
tribution of the maximum-likelihood estimator (MLE), the good local maximum point
θ̂n in Theorem 2.1(2).

Remark 2.2 Here are some comments on the model timescale.

(1) We fix the terminal sampling time T , so that the rate of convergence
√
nh1−1/β =

n1/β−1/2T 1−1/β = O(n1/β−1/2) for (λ, μ). If β > 1 (resp. β < 1), then a longer
period would lead to a better (resp. worse) performance of estimating (λ, μ). The
Cauchy case β = 1, where the two rates of convergence coincide, is exceptional.

(2) We can explicitly associate a change of the terminal sampling time T with those
of the components of θ . Specifically, changing the model timescale from t to tT
in (1.1), we see that the process

Y T = (Y T
t )t∈[0,1] := (YtT )t∈[0,1]

satisfies exactly the same integral equation as in (1.1), except that θ = (λ, μ, β, σ )

is replaced by

θT = (λT , μT , βT , σT ) := (Tλ, Tμ, β, T 1/βσ
)

(β is unchanged), Xt by XT
t := XtT , and Jt by J Tt := T−1/β JtT :

Y T
t = Y T

0 +
∫ t

0
(μT · XT

s − λT Y
T
s )ds + σT J

T
t , t ∈ [0, 1].

Note that (J Tt )t∈[0,1] defines the standardβ-stableLévyprocess. This indeed shows
that we may set T ≡ 1 in the virtual (model) world without loss of generality. This
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is impossible for diffusion-type models, where we cannot consistently estimate
the drift coefficient unless we let the terminal sampling time T tend to infinity.

Remark 2.3 The present framework allows us to do unit period-wise, for example, day-
by-day inference for both trend and scale structures, providing a sequence of period-
wise estimates with theoretically valid approximate confidence sets. This, though
informally, suggests an aspect of change-point analysis in high-frequency data: if we
have high-frequency sample over [k − 1, k] for k = 1, . . . , [T ], then we can construct
a sequence of estimators {θ̂n(k)}[T ]

k=1; then it would be possible in some way to reject
the constancy of θ over [0, [T ]] if k 	→ θ̂n(k) (k = 1, . . . , [T ]) is not likely to stay
unchanged.

Remark 2.4 It is formally straightforward to extend the model (1.1) to the following
form:

Yt = Y0 +
∫ t

0
{a(Xs, λ)Ys + b(Xs, μ)} ds +

∫ t

0
c(Xs−, σ )d Js, t ∈ [0, T ].

Under mild regularity conditions on the function (a, b, c) as well as on the non-
random process X , a solution process Y is explicitly given by (see Cheridito et al.
2003, Appendix)

Yt = eψ(s,t;λ)Ys +
∫ t

s
eψ(u,t;λ)(b(Xu, μ)du + c(Xu−, σ )d Ju), 0 ≤ s < t,

where ψ(s, t; λ) := ∫ t
s a(Xv, λ)dv. However, the corresponding likelihood asymp-

totics becomes much messier. It is worth mentioning that the optimal rate matrix can
be diagonal if, for example, ∂t∂θ log c(t, σ ) �≡ 0 with Xt = t : for details, see the
previous study Clément and Gloter (2020) that treated the general time-homogeneous
Markovian case.

2.2 Proof of Theorem 2.1

In this proof, we make use of the general result Sweeting (1980) about the exact-
likelihood asymptotics in a more or less analogous way to that of Brouste and Masuda
(2018, Theorem 1): under the uniform nature of the exact-likelihood asymptotics,
we will deduce the joint convergence in distribution of the normalized score �n(θ0)

and the normalized observed information In(θ0) from the uniform convergence in
probability of In(·) in an appropriate sense. Consequently, we will not need to derive
the stable convergence in law of �n(θ0), which is often crucial when concerned with
high-frequency sampling for a process with dependent increments.

We have supt∈[0,T ] |Xt | < ∞, since X : [0, T ] → R
q is assumed to be càdlàg.

Through the localization procedure, we may and do suppose that the driving stable
Lévy process does not have jumps of size greater than some fixed threshold (see
Masuda 2019, Section 6.1 for a concise account). In that case, the Lévy measure of J
is compactly supported; hence in particular,

123



580 Japanese Journal of Statistics and Data Science (2023) 6:573–605

sup
θ∈�

Eθ

[
|J1|K

]
< ∞ (2.10)

for any K > 0. Further, since the Lévy measure of J is symmetric, the removal of
large-size jumps does not change the parametric form of the drift coefficient. We also
localize the initial variable Y0 so that |Y0| is essentially bounded uniformly in θ . It
follows from (2.2) and (2.10) that supθ∈� sup0≤t≤T Eθ

[|Yt |K ] < ∞ for t ∈ [0, T ] as
well.

Toproceed,we introduce some further notation.Given continuous randomfunctions

ξ0(θ) and ξn(θ), n ≥ 1, we write ξn(θ)
p−→u ξ0(θ) if the joint distribution of ξn and

ξ0 are well defined under Pθ and if Pθ [|ξn(θ) − ξ0(θ)| > ε] →u 0 for every ε > 0
as n → ∞. Additionally, for a sequence an > 0, we write ξn(θ) = ou,p(an) if

a−1
n ξn(θ)

p−→u 0, and also ξn(θ) = Ou,p(an) if for every ε > 0 there exists a constant
K > 0 for which supθ Pθ [|a−1

n ξn(θ)| > K ] < ε. Similarly, for any random functions
χnj (θ) doubly indexed by n and j ≤ n, we write ξnj (θ) = O∗

p(an) if

sup
n

max
j≤n

sup
θ

Eθ

[
|a−1

n χnj (θ)|K
]

< ∞

for any K > 0. Finally, let

Nn(c; θ) :=
{
θ ′ ∈ � : |ϕn(θ)−1(θ ′ − θ)| ≤ c

}
.

Wewill complete the proof of Theorem 2.1 by verifying the three statements corre-
sponding to the conditions (12), (13), and (14) in Brouste and Masuda (2018), which
here read

In(θ)
p−→u I(θ), (2.11)

sup
θ ′∈Nn(c;θ)

|ϕn(θ
′)−1ϕn(θ) − Ip| →u 0, (2.12)

sup
θ1,...,θ p∈Nn(c;θ)

∣∣∣ϕn(θ)
{∂2θ �n(θ
1, . . . , θ p) − ∂2θ �n(θ)}ϕn(θ)

∣∣∣ p−→u0, (2.13)

respectively, where (2.12) and (2.13) should hold for all c > 0 and where
∂2θ �n(θ

1, . . . , θ p), θk ∈ �, denotes the p× p Hessian matrix of �n(θ), whose (k, l)th
element is given by ∂θk ∂θl �n(θ

k), inwhich θ =: (θl)
p
l=1. Having obtained (2.11), (2.12)

and (2.13), Sweeting (1980, Theorem 1 and 2) immediately concludes Theorem 2.1.
We can verify (2.12) exactly as in Brouste and Masuda (2018), so we will look at
(2.11) and (2.13).
Proof of (2.11). Recall the expression (2.4). To look at the entries of ∂2θ �n(θ), we
introduce several shorthands for notational convenience; they may look somewhat
daring, but would not bring confusion. Let us omit the subscript β and the argument
ε j of the aforementioned notation, such as φ := φβ(ε j ), g := gβ(ε j ) and so on. For
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brevity, we also write

l ′ = log(1/h), c = η(λβh)−1/β, ε = ε j (θ),

so that (2.4) becomes

�n(θ) =
n∑
j=1

(
− log σ + 1

β
l ′ + log c + logφ

)
.

Further, the partial differentiation with respect to a variable will be denoted by the
braced subscript such as ε(a) := ∂aε j (θ) and ε(a,b) := ∂a∂bε j (θ). Then, direct com-
putations give the first-order partial derivatives:

∂λ�n(θ) =
n∑
j=1

(
(log c)(λ) + ε(λ) g

)
,

∂μ�n(θ) =
n∑
j=1

ε(μ) g,

∂β�n(θ) =
n∑
j=1

(
−β−2l ′ + (log c)(β) + ε(β) g + f

)
,

∂σ �n(θ) =
n∑
j=1

(
−σ−1 + ε(σ) g

)
,

followed by the second-order ones:

∂2λ�n(θ) =
n∑
j=1

{
(ε(λ))

2(∂g) + ε(λ,λ) g + (log c)(λ,λ)

}
,

∂2μ�n(θ) =
n∑
j=1

(ε(μ))
2(∂g),

∂2β�n(θ) =
n∑
j=1

{
2β−3l ′ + (log c)(β,β) + ε(β,β) g + ε(β) g(β)

+ (ε(β))
2(∂g) + f(β) + ε(β) (∂ f )

}
,

∂2σ �n(θ) =
n∑
j=1

{
σ−2 + (ε(σ))

2(∂g) + ε(σ,σ ) g
}

,

∂λ∂μ�n(θ) =
n∑
j=1

{
ε(λ) ε(μ)(∂g) + ε(μ,λ) g

}
,
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∂λ∂β�n(θ) =
n∑
j=1

{
(log c)(λ,β) + ε(λ) g(β) + ε(β) ε(λ) (∂g) + ε(λ,β) g

}
,

∂λ∂σ �n(θ) =
n∑
j=1

{
ε(σ) ε(λ)(∂g) + ε(λ,σ ) g

}
,

∂μ∂β�n(θ) =
n∑
j=1

{
ε(μ) g(β) + ε(β) ε(μ)(∂g) + ε(β,μ) g

}
,

∂μ∂σ �n(θ) =
n∑
j=1

{
ε(μ) ε(σ)(∂g) + ε(μ,σ) g

}
,

∂β∂σ �n(θ) =
n∑
j=1

{
ε(σ) g(β) + ε(β) ε(σ )(∂g) + ε(β,σ ) g

}
.

It is straightforward to see which term is the leading one in each expression above.
We do not list all the details here, but for later reference mention a few of the points:

• ∂k log η(y) = Ou(1) for |y| → 0 whatever k ∈ Z+ is;
• (log c)(λ,...,λ) = Ou(hk) (k-times, k ∈ Z+), (log c)(λ,β) = Ou(h2), (log c)(β) =

Ou(h2), (log c)(β,β) = Ou(h4), and so forth;
• max j≤n |∂kλζ j (λ)| = O(hk) for k ∈ Z+;
• recalling the definition (2.3) and because of the consequence (2.10) of the local-
ization, concerning the partial derivatives of ε j (θ) we obtain the asymptotic rep-
resentations: ε(μ,σ) = (1+ ou(1))σ−2h1−1/β , ε(μ,λ) = (1+ ou(1))σ−1h2−1/β/2,
ε(σ,λ) = (1+ou(1)){−σ−2h1−1/βYt j−1 +O∗

p(h∨h2−1/β)}, ε(λ,λ) = O∗
p(h

2−1/β),
ε(β,β) = O∗

p(h
2(l ′)2) + ε O∗

p((l
′)2), ε(λ,β) = O∗

p(l
′h1−1/β), and so on; the terms

“ou(1)” therein are all valid uniformly in j ≤ n.

Now, we write

In(θ) =
( I11,n(θ) I12,n(θ)

I12,n(θ)
 I22,n(θ)

)

with I11,n(θ) ∈ R
1+q ⊗ R

1+q , I22,n(θ) ∈ R
2 ⊗ R

2 and I12,n(θ) ∈ R
1+q ⊗ R

2.

We can deduce I22,n(θ)
p−→u Iβ,σ (θ) in exactly the same way as in the proof of

Eq.(12) in Brouste and Masuda (2018). Below, we will show I11,n(θ)
p−→u Iλ,μ(θ)

and I12,n(θ)
p−→u 0.

The Burkholder inequality ensures that

1√
n

n∑
j=1

π(Xt j−1 ,Yt j−1; θ)U (ε j (θ)) = Ou,p(1) (2.14)

for any continuous π(x, y; θ) and for any U (ε j (θ)) such that Eθ [U (ε j (θ))] = 0
(θ ∈ �) and that the left-hand side of (2.14) is continuous over θ ∈ �. Also, note that
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the right continuity of t 	→ Xt implies that (X⊗1
t := Xt )

lim
n→∞ max

l=1,2
max
j≤n

∣∣∣∣1h
∫
j
(X⊗l

s − X⊗l
t j−1

)ds

∣∣∣∣ = 0.

These basic facts will be repeatedly used below without mentioning them.
For convenience, we will write

rn = rn(β) = √
nh1−1/β (2.15)

and denote by 1u,p any random array ξnj (θ) such that max j≤n |ξnj (θ) − 1| p−→u 0.
Direct computations give the following expressions for the components of I11,n(θ) =
−r−2

n ∂2(λ,μ)�n(θ):

− 1

r2n
∂2μ�n(θ) = −1

n

n∑
j=1

σ−2(∂g) ζ j (λ)⊗2 + ou,p(1)

= 1

n

n∑
j=1

σ−2g2 ζ j (λ)⊗2 + ou,p(1),

− 1

r2n
∂2λ�n(θ) = −1

n

n∑
j=1

σ−2(∂g) Y 2
t j−1

1u,p + ou,p(1) + Ou,p(h
1/β)

= 1

n

n∑
j=1

σ−2g2 Y 2
t j−1

+ ou,p(1),

− 1

r2n
∂λ∂μ�n(θ) = −1

n

n∑
j=1

{
(∂g)

(
1u,pσ

−1Yt j−1 ζ j (λ) + O∗
p(h

1/β)
)

(−σ−11u,p) + O∗
p(h

1/β)
}

= 1u,p

⎛
⎝−1

n

n∑
j=1

σ−2(∂g) Yt j−1 ζ j (λ) + ou,p(1)

⎞
⎠+ ou,p(1)

= 1

n

n∑
j=1

σ−2g2 Yt j−1 ζ j (λ) + ou,p(1).

We can deduce that I11,n(θ)
p−→u Iλ,μ(θ) as follows.

• First, noting that ε j = ε j (θ)
Pθ∼ i.i.d. L(J1), we make the compensation g2 =

Eθ [g2] + (g2 − Eθ [g2]) in the summands in the rightmost sides of the last three
displays and then pick up the leading part involving Eθ [g2]; the other one becomes
negligible by the Burkholder inequality.
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• Then, the a.s. Riemann integrability of t 	→ (Xt (ω),Yt (ω)) allows us to conclude
that, for k, l ∈ {0, 1, 2} and under Pθ for each θ ,

Dn(k, l) :=
∣∣∣∣∣∣
1

n

n∑
j=1

Y k
t j−1

X⊗l
t j−1

− 1

T

∫ T

0
Y k
t X⊗l

t dt

∣∣∣∣∣∣
� 1

n

n∑
j=1

1

h

∫
j

(
|Yt − Yt j−1 |(1 + |Yt | + |Yt j−1 |)C

+ |Yt |k
∣∣∣∣∣
(
1

h

∫
j
Xtdt + O(h)

)⊗l

− X⊗l
t

∣∣∣∣∣
)
dt

� 1

n

n∑
j=1

1

h

∫
j

(
|Yt − Yt j−1 |(1 + |Yt | + |Yt j−1 |)C + |Yt |ko(1)

)
dt

p−→ 0,

where the order symbols in the estimates are valid uniformly in j ≤ n. By
(2.2), under the localization, we have max j≤n supθ Eθ [|Yt |M ] = O(1) and
max j≤n supθ Eθ [|Yt − Yt j−1 |M ] = ou(1) for any M > 0, from which it follows
that Dn(k, l) = ou,p(1).

Specifically, for the case of −r−2
n ∂2μ�n(θ), we have

− 1

r2n
∂2μ�n(θ) = 1

n

n∑
j=1

σ−2Eθ [g2] ζ j (λ)⊗2 + ou,p(1)

= σ−2Eθ [gβ(ε1(θ))2] 1

T

∫ T

0
X⊗2
t dt + ou,p(1)

p−→u Iλ,μ;22(θ)

with Iλ,μ;22(θ) denoting the lower left q × q component of Iλ,μ(θ). The others can
be handled analogously.

Next, we turn to looking at I12,n(θ) = {Ikl
12,n(θ)}k,l :

I11
12,n(θ) = ϕ11,n(θ)∂λ∂β�n(θ) + ϕ21,n(θ)∂μ∂β�n(θ),

I12
12,n(θ) = ϕ11,n(θ)∂λ∂σ �n(θ) + ϕ21,n(θ)∂μ∂σ �n(θ),

I21
12,n(θ) = ϕ12,n(θ)∂λ∂β�n(θ) + ϕ22,n(θ)∂μ∂β�n(θ),

I22
12,n(θ) = ϕ12,n(θ)∂λ∂σ �n(θ) + ϕ22,n(θ)∂μ∂σ �n(θ).

We can deduce that I12,n(θ)
p−→u 0 just by inspecting the four components separately

in a similar way that we managed I11,n(θ). Let us only mention the lower-left q × 1
component: recalling the properties (2.1) and |ϕ22,n| �u l ′, we see that

I21
12,n(θ) = − (h1−1/β)−1

n

n∑
j=1

(
ϕ12,n (log c)(λ,β) + ϕ12,n ε(λ) g(β) + ϕ12,n ε(λ) ε(β) (∂g)
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+ ϕ12,n ε(λ,β) g + ϕ22,n ε(μ) g(β) + ϕ22,n ε(β) ε(μ) (∂g) + ϕ22,n ε(β,μ) g

)

= O(h1+1/β) + Ou,p(n
−1/2 ∨ h1/β) + Ou,p

(
(n−1/2 ∨ h1/β) l ′

)
+ Ou,p(n

−1/2) + Ou,p
(
n−1/2(l ′)2

)+ Ou,p
(
n−1/2(l ′)2

) p−→u 0.

Thus, the claim (2.11) follows.
Proof of (2.13). Note that

sup
θ ′∈Nn(c;θ)

|ε j (θ
′)| �u |ε j (θ)| + snj (θ; c),

where |snj (θ; c)| � ou(1)(1 + |Yt j−1 |). Also, for each k, l,m ∈ Z+, we have Pθ -a.s.
the (rough) estimate:

1

n

∣∣∂kβ∂ lσ ∂m(λ,μ)�n(θ)
∣∣ �u (l ′)k h(1−1/β)m 1

n

n∑
j=1

(1 + |Yt j−1 |)m
{
1 + log

(
1 + |ε j (θ)|2)}k .

Then, as in the proof of Eq.(14) in Brouste and Masuda (2018), for each c > 0, we
can find a constant R = R(c) > 0 such that (still rough, but sufficient)

sup
θ1,...,θ p∈Nn (c;θ)

∣∣∣ϕn(θ)
{∂2θ �n(θ
1, . . . , θ p) − ∂2θ �n(θ)}ϕn(θ)

∣∣∣

�u sup
θ ′,θ1,...,θ p∈Nn (c;θ)

∣∣∣ϕn(θ)

{
∂3θ �n(θ

1, . . . , θ p)[θ ′ − θ]
}

ϕn(θ)

∣∣∣

�u
(l ′)C√

n
sup

β ′,β ′′∈B(β;R/l ′)
h(1/β ′−1/β ′′)3 sup

θ ′∈Nn (c;θ)

1

n

n∑
j=1

(1 + |Yt j−1 |)m
{
1 + log

(
1 + |ε j (θ

′)|)}3

�u
(l ′)C√

n

1

n

n∑
j=1

(1 + |Yt j−1 |)m
{
1 + log

(
1 + |ε j (θ)|)}3 � Ou,p

(
(l ′)C√

n

)
p−→u 0,

where B(β; R/l ′n) denotes the closed ball with center β and radius R/l ′. This shows
(2.13). The proof of Theorem 2.1 is complete.

3 Asymptotically efficient estimator

From now on, we fix a true value θ0 ∈ �, and the stochastic symbols and convergences
will be taken under P := Pθ0 ; accordingly, we write E := Eθ0 . Having Theorem 2.1
in hand, we can proceed with the construction of an asymptotically efficient estimator.
It is known that any asymptotically centering estimator θ̂∗

n :

ϕn(θ0)
−1(θ̂∗

n − θ0) = In(θ0)−1�n(θ0) + op(1) (3.1)

is regular; by Theorem 2.1, the right-hand side converges in distribution to
MNp,θ0

(
0, I(θ0)

−1
)
. This, together with the convolution theorem in turn, gives the
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asymptotic minimax theorem: for any measurable (loss) function L : R
p → R+ such

that L(u) = τ(|u|) for some non-decreasing τ : R+ → R+ with τ(0) = 0, we have

lim inf
n→∞ E

[
L
(
ϕn(θ0)

−1(θ̂∗
n − θ0)

)]
≥ E

[
L
(I(θ0)

−1/2Z
)]

. (3.2)

Recalling that L (�n(θ), In(θ)|Pθ ) ⇒ L (I(θ)1/2Z , I(θ)
)
, where Z ∼ Np(0, I )

(Theorem 2.1) and in view of the lower bound in (3.2), we may call that any estimator
θ̂∗
n satisfying (3.1) asymptotically efficient. Again by Theorem 2.1, the good local
maximum point θ̂n of �n(θ) is asymptotically efficient. We refer to Jeganathan (1982,
Theorems 2 and 3, and Proposition 2) and also Jeganathan (1995, Theorem 8) for more
information and details of the above arguments.

Theorem 2.1 is based on the classical Cramér-type argument. The well-known
shortcoming is its local character: the result just tells us the existence of an asymptoti-
callywell behaving root of the likelihood equation, but does not give information about
which local maxima is the one when there are multiple local maxima, and equivalently
multiple roots for the likelihood equations Lehmann (1999, Section 7.3). Indeed, the
log-likelihood function �n of (2.4) is highly nonlinear and non-concave. In this section,
we try to get rid of the locality by a Newton–Raphson type of improvement, which
in our case will not only remedy the aforementioned inconvenience of the multiple-
root problem, but also enable us to bypass the numerical optimization involving the
stable density φβ . In Brouste and Masuda (2018, Section 3), for the β-stable Lévy
process (the special case of (1.1) with λ = 0 and X ≡ 1), we provided an initial
estimator based on the sample median and the method of moments associated with
logarithm and/or lower-order fractional moments. However, it was essential in Brouste
and Masuda (2018) that the model is a Lévy process, for which we could apply the
median-adjusted central limit theorem for an i.i.d. sequence of random variables. In
the present case, we need a different sort of argument.

In Theorem 2.1, the process X = (Xt )t∈[0,T ] was assumed to be observed con-
tinuously in [0, T ]. In this section, we will instead deal with a discrete-time sample
(Xt j )

n
j=0 under the additional condition:

∃κ ∈ (1/2, 1], max
j≤n

∣∣∣∣1h
∫
j
(Xt − Xt j−1)dt

∣∣∣∣ � hκ . (3.3)

We will explicitly construct an estimator θ̂∗
n which is asymptotically equivalent to

the MLE θ̂n , by verifying the asymptotically centering property (3.1); for this much-
thinned sample, we may and do keep calling such a θ̂∗

n asymptotically efficient.

3.1 Newton–Raphson procedure

To proceedwith a discrete-time sample {(Xt j ,Yt j )}nj=0, we introduce the approximate-
likelihood function Hn(θ) by replacing ζ j (λ) by Xt j−1 in the definition (2.4) of the
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genuine log-likelihood function �n(θ) (recall the notation l ′ := log(1/h)):

Hn(θ) =
n∑
j=1

(
− log σ + 1

β
l ′− 1

β
log η(λβh) + logφβ

(
ε′
j (θ)

))
, (3.4)

where

ε′
j (θ) := Yt j − e−λhYt j−1 − μ · Xt j−1h

σh1/βη(λβh)1/β
. (3.5)

Of course, this approximation is not for free: to manage the resulting discretization
error specified later on, we additionally impose that

β0 >
2

1 + 2κ
. (3.6)

Then we have at least β0 > 2/3, so that small values of β0 are excluded; this is the
price we have to pay for dealing with a discrete-time sample from X in an efficient
way. Accordingly, in the sequel, we will reset the parameter space of β to be a domain
�β such that �β ⊂ (2/3, 2).

Toward construction of an asymptotically efficient estimator θ̂∗
n satisfying (3.1),

we will prove a basic result about a Newton–Raphson type of procedure. As in
(2.15), we write rn = rn(β0) = √

nh1−1/β0 . Write n−1/2ϕ̃n(θ) for the lower-right
2 × 2-part of ϕn(θ), so that the definition (2.5) with θ = θ0 becomes ϕn(θ0) =
diag(r−1

n Iq+1, n−1/2ϕ̃n(θ0)). We then introduce the diagonal matrix

ϕ0,n = ϕ0,n(β0) := diag

(
r−1
n Iq+1, n

−r/2
(
1 0
0 l ′
))

(3.7)

for a constant
0 < r ≤ 1. (3.8)

The difference between ϕn and ϕ0,n is only in the lower-right component for (β, σ ),
and note that thematrix ϕ−1

n ϕ0,n may diverge in norm. Then, suppose that we are given
an initial estimator θ̂0,n = (λ̂0,n, μ̂0,n, β̂0,n, σ̂0,n) such that ϕ

−1
0,n(θ̂0,n − θ0) = Op(1),

namely,

(
rn(λ̂0,n − λ0), rn(μ̂0,n − μ0), n

r/2(β̂0,n − β0),
nr/2

l ′
(σ̂0,n − σ0)

)
= Op(1).

Let us write a = (λ, μ) and b = (β, σ ). Based on the approximate-likelihood
function (3.4) and θ̂0,n , we recursively define the k-step estimator θ̂k,n (k ≥ 1) by

θ̂k,n = θ̂k−1,n +
{
diag

(
−∂2aHn(θ̂k−1,n), −∂2bHn(θ̂k−1,n)

)}−1
∂θHn(θ̂k−1,n) (3.9)

on the event Fk−1,n := {| det(∂2aHn(θ̂k−1,n))|∧ | det(∂2bHn(θ̂k−1,n))| > 0} and assign
an arbitrary value to θ̂k,n on the complement set Fc

k−1,n ; below, it will be seen (as in
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the proof of Theorem 2.1) that P[Fk−1,n] → 1. Hence, the arbitrary property does
not matter asymptotically and we may and do suppose that P[Fk−1,n] = 1 for k ≥ 1.
In our subsequent arguments, the inverse-matrix part in (3.9) must be block diagonal:
see Remark 3.3 below.

In what follows, θ̂n denotes the good local maxima of the likelihood function �n(θ),
when (Xt )t≤T is observable; by Theorem 2.1, we have P[∂θ�n(θ̂n) = 0] → 1 and
ϕn(θ0)

−1(θ̂n − θ0) = In(θ0)−1�n(θ0) + op(1) ⇒ MNp,θ0

(
0, I(θ0)

−1
)
. Define the

number

K := min{k ∈ N : 2k−1r > 1/2} = min{k ∈ N : k > log2(1/r)}. (3.10)

We deduce the asymptotic equivalence of θ̂n and θ̂K ,n :

ϕn(θ0)
−1(θ̂K ,n − θ̂n) = op(1), (3.11)

starting from the initial estimator θ̂0,n ; (3.11) concludes (3.1) (hence, (3.2) as well)
with θ̂∗

n = θ̂K ,n .
We assume that ϕ−1

0,n(θ̂0,n − θ0) = Op(1) (hence also ϕ−1
0,n(θ̂0,n − θ̂n) = Op(1)).

Then, to establish (3.11), we first look at the amount of improvement through (3.9)
with k = 1. Write ϕn = ϕn(θ0) and ϕ̃n = ϕ̃n(θ0), and introduce

Î0,n := −ϕ

n diag

(
∂2aHn(θ̂0,n), ∂2bHn(θ̂0,n)

)
ϕn

= diag

(
−r−2

n ∂2aHn(θ̂0,n), −1

n
ϕ̃

n ∂2bHn(θ̂0,n)ϕ̃n

)
=: (Î0,a,n, Î0,b,n

)
.

We apply Taylor’s expansion around θ̂n to (3.9) with k = 1: for some random point
θ̂ ′
0,n on the segment joining θ̂0,n and θ̂n ,

θ̂1,n − θ̂n = θ̂0,n − θ̂n + ϕn Î−1
0,nϕ



n ∂θHn(θ̂0,n)

= ϕn Î−1
0,n

{
ϕ

n ∂θHn(θ̂n)

+ ϕ

n

(
diag

(
−∂2aHn(θ̂0,n), −∂2bHn(θ̂0,n)

)
− (− ∂2θHn(θ̂

′
0,n)
)) [θ̂0,n − θ̂n]

}

=: ϕn Î−1
0,n

(
R′
0,n + R′′

0,n

)
. (3.12)

In what follows, we will derive the rate of convergence of θ̂1,n − θ̂n in several steps.
Here again, we may and do work under the localization (See Sect. 2.2).

Step 1. First, we show that Î−1
0,n = Op(1). We have

Î0,a,n = −r−2
n ∂2aHn(θ0) − r−2

n

(
∂2aHn(θ̂0,n) − ∂2aHn(θ0)

)
, (3.13)

Î0,b,n = −1

n
ϕ̃

n ∂2bHn(θ0)ϕ̃n − 1

n
ϕ̃

n

(
∂2bHn(θ̂0,n) − ∂2bHn(θ0)

)
ϕ̃n . (3.14)
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The first terms on the right-hand sides above tend to Iλ,μ(θ0) and Iβ,σ (θ0) in prob-
ability, respectively. The second terms equal op(1), by similar considerations to the

verification of (2.13) in the proof of Theorem 2.1. Hence, Î0,n p−→ I(θ0) and in par-
ticular Î−1

0,n = Op(1) since I(θ0) is a.s. positive definite.

Step 2. Next, we show that R′
0,n = ϕ


n ∂θHn(θ̂n)) is op(1). Observe that

ϕ

n ∂θHn(θ̂n) = ϕ


n ∂θ�n(θ̂n) + ϕ

n

(
∂θHn(θ̂n) − ∂θ�n(θ̂n)

)
.

For the first term, we have ϕ

n ∂θ�n(θ̂n) = op(1), since P[|sn∂θ�n(θ̂n)| > ε] ≤

P[|∂θ�n(θ̂n)| �= 0] → 0 for every ε > 0 and sn ↑ ∞. To manage the second term, we
need to estimate the gap betweenHn(θ) and �n(θ) by taking the different convergence
rates of their components into account. By the definitions (2.4) and (3.4),

Hn(θ) − �n(θ) =
n∑
j=1

(
logφβ(ε′

j (θ)) − logφβ(ε j (θ))
)

=
n∑
j=1

(∫ 1

0
gβ

(
ε j (θ) + s(ε′

j (θ) − ε j (θ))
)
ds

)
(ε′

j (θ) − ε j (θ).)

(3.15)

From the expressions (2.3) and (3.5) and since κ ≤ 1, a series of straightforward
computations shows that the partial derivatives of

dε, j (θ) := ε′
j (θ) − ε j (θ)

= 1

σh1/βη(λβh)1/β

(
μ ·
∫
j
(e−λ(t j−s) − 1)Xsds + μ ·

∫
j
(Xs − Xt j−1)ds

)

satisfy the following bounds: |∂μdε, j (θ)| � h1+κ−1/β , |∂λdε, j (θ)| � h2−1/β ,

|∂βdε, j (θ)| � h1+κ−1/βl ′, and |∂σdε, j (θ)| � h1+κ−1/β . Obviously, h1/β̃n−1/β0 =
1+ op(1) for any β̃n such that nv(β̃n − β0) = Op(1) for some v > 0; below, we will
repeatedly make use of this fact without mention. Further, under (3.6), it holds that

∃δ1 > 0,
√
n h1+κ−1/β0 = O(n−1/2−κ+1/β0) = O(n−δ1). (3.16)

By piecing together these observations, the basic property (2.1), and the expression
(3.15), under (3.3) we can obtain

∣∣∣ϕ

n

(
∂θHn(θ̂n) − ∂θ�n(θ̂n)

)∣∣∣
�
∣∣∣r−1
n ∂μHn(θ̂n)

∣∣∣+
∣∣∣r−1
n ∂λHn(θ̂n)

∣∣∣+
∣∣∣∣ l ′√

n
∂βHn(θ̂n)

∣∣∣∣+
∣∣∣∣ l ′√

n
∂σHn(θ̂n)

∣∣∣∣
� Op

(√
n h1+κ−1/β0 ∨ √

n hκ
)

+ Op

(√
n h1+κ−1/β0 ∨ √

n hκ
)
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+ Op

(√
n h1+κ−1/β0(l ′)C

)
+ Op

(√
n h1+κ−1/β0(l ′)C

)

� Op
(
n−δ1 ∨ n1/2−κ

) p−→ 0.

This concludes that R′
0,n = op(1).

Step 3. Let R′′
0,n =: (R′′

0,a,n, R
′′
0,b,n) ∈ R

q+1 × R
2. The goal of this step is to show

R′′
0,a,n = op(1) and R′′

0,b,n = Op(n1/2−r (l ′)C ); at this stage, the latter component may
not be stochastically bounded if r ≤ 1/2 (recall (3.8)). We have R′′

0,n = A0,nH0,n ,
where

A0,n := ϕ

n

(
∂2aHn(θ̂

′
0,n) − ∂2aHn(θ̂0,n) sym.

∂a∂bHn(θ̂
′
0,n) ∂2bHn(θ̂

′
0,n) − ∂2bHn(θ̂0,n)

)
ϕn,

H0,n := ϕ−1
n (θ̂0,n − θ̂n).

Under the assumption ϕ−1
0,n(θ̂0,n − θ0) = Op(1), recalling the block-diagonal forms

(2.5) and (3.7), we see that

H0,n = ϕ−1
n ϕ0,n ϕ−1

0,n(θ̂0,n − θ0) − ϕ−1
n (θ̂n − θ0) =

(
Op(1)

Op(n(1−r)/2l ′)

)
, (3.17)

where the components Op(1) ∈ R
q+1 and Op(n(1−r)/2l ′) ∈ R

2; here and in what
follows, we use the stochastic-order symbols for random variables of different dimen-
sions, which will not cause any confusion.

We will show that all the components of A0,n are at most Op
(
n−r/2(l ′)C

)
:

A0,n = Op
(
n−r/2(l ′)C

)
. (3.18)

For the diagonal parts of A0,n , from the same arguments as in proving (3.13) and
(3.14) with the assumption ϕ−1

0,n(θ̂0,n − θ0) = Op(1), it holds that

∣∣∣r−2
n

(
∂2aHn(θ̂

′
0,n) − ∂2aHn(θ̂0,n)

)∣∣∣+
∣∣∣∣1n ϕ̃


n

(
∂2bHn(θ̂

′
0,n) − ∂2bHn(θ̂0,n)

)
ϕ̃n

∣∣∣∣
= Op

(
n−r/2(l ′)C

)
.

Write θ = (θl)
p
l=1 and so on, and also let ∂a∂bHn(θ̂

′
0,n) ∈ R

2 × R
q+1 for the size of

the matrix. Then, for the non-diagonal part of A0,n , we expand it as follows:

1

rn
√
n
ϕ̃

n ∂a∂bHn(θ̂

′
0,n) =: 1

rn
√
n
∂a∂bHn(θ0)

+
p∑

l=1

(
(h1−1/β0)−1

n
∂θl ∂a∂bHn(θ̂

′′
0,n)

)
(θ̂ ′

0,n,l − θ0,l).
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As in the previous diagonal case, the second term on the right-hand side equals
Op(n−r/2(l ′)C ). As for the first term, we write

1

rn
√
n
∂a∂bHn(θ0) = 1

rn
√
n
∂a∂b�n(θ0) + 1

rn
√
n
∂a∂b (Hn(θ0) − �n(θ0)) .

Wehave seen the explicit expressions of the components of ∂2θ �n(θ) in Sect. 2.2. Based
on them, it can be seen that all the components of r−1

n n−1/2∂a∂b�n(θ0) take the form:

1

n

n∑
j=1

π j−1(θ0)ψ(ε j (θ0)) + O(h2)

for some Ft j−1 -measurable random variable π j−1(θ0) such that |π j−1(θ0)| � (1 +
|Yt j−1 |)(l ′)C and for some odd function ψ (hence, E[ψ(ε j (θ0))] = 0); the last
term “O(h2)” only appears in ∂λ∂β�n(θ). Burkholder’s inequality for the martin-
gale difference arrays gives n−1∑n

j=1 π j−1(θ0)ψ(ε j (θ0)) = Op(n−1/2(l ′)C ). We

conclude that r−1
n n−1/2∂a∂b�n(θ0) = Op(n−1/2(l ′)C ). Next, we write Hn(θ) −

�n(θ) =∑n
j=1 Bj (θ)dε, j (θ) for the expression (3.15). The following estimates hold:

|dε, j (θ)| � h1+κ−1/β , |∂a∂bdε, j (θ)| � h1+κ−1/β(1 + l ′), |Bj (θ)| � 1, |∂a B j (θ)| �
(1+|Yt j−1 |)h1−1/β , |∂bB j (θ)| � 1+l ′, and |∂a∂bB j (θ)| � (1+l ′)(1+|Yt j−1 |)h1−1/β .
Therefore, by (3.16),

∣∣∣∣ 1

rn
√
n
∂a∂b (Hn(θ0) − �n(θ0))

∣∣∣∣ =
∣∣∣∣∣∣

1

rn
√
n

n∑
j=1

∂a∂b
(
Bj (θ)dε, j (θ)

)∣∣
θ=θ0

∣∣∣∣∣∣
� (1 + l ′)h1+κ−1/β0 1

n

n∑
j=1

(1 + |Yt j−1 |)

= Op

(
(l ′)C√

n

)√
n h1+κ−1/β0 = op

(
(l ′)C√

n

)
.

Since r ≤ 1, we have concluded (3.18).
The desired stochastic orders now follows from (3.17) and (3.18):

R′′
0,n = A0,nH0,n = Op

(
n−r/2(l ′)C

) ( Op(1)
Op(n(1−r)/2l ′)

)
=
(

op(1)
Op
(
n1/2−r (l ′)C

)
)

)
.

(3.19)

Step 4. We are now able to derive the convergence rate of θ̂1,n − θ̂n . Recall the
definition (3.10) of K ∈ N and the initial rate of convergence (3.7).

• First, we consider r > 1/2. Then, R′′
0,n = op(1) from (3.19), so that we can take

ϕ1,n = ϕn : by Steps 1 to 3 and (3.12), ϕ−1
n (θ̂1,n − θ̂n) = op(1). This means that a

single iteration is enough if we can take r > 1/2 from the beginning.
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• Turning to r ∈ (0, 1/2], we pick a constant ε′ ∈ (0, r/2) (hence r − ε′ > r/2),
which is to be taken sufficiently small later. Define

ϕ1,n = ϕ1,n(ε
′) := diag

(
r−1
n Iq+1, n

−(r−ε′)
(
1 0
0 l ′
))

.

Again by Steps 1–3 and (3.12), ϕ−1
1,nϕn Î−1

0,n = diag(Op(1), Op
(
(l ′)Cnr−ε′−1/2

)
)

and

ϕ−1
1,n(θ̂1,n − θ̂n) =

(
Op(1) O
O Op

(
(l ′)Cnr−ε′−1/2

)
){

op(1) +
(

op(1)
Op
(
n1/2−r (l ′)C

)
)}

= op(1) +
(

op(1)
Op
(
n−ε′

(l ′)C
)
)

= op(1).

It follows that the rate of convergence for estimating (β, σ ) gets improved from
diag(nr/2, nr/2/l ′) of θ̂0,n to diag(nr−ε′

, nr−ε′
/l ′) of θ̂1,n ; this can be seen as a

matrix-norming counterpart of the (near-)doubling phenomenon in the one-step
estimation (see for example Zacks 1971, Section 5.5). To improve the rate further,
we apply (3.9) to obtain θ̂2,n from θ̂1,n , so that the rate of convergence for estimating
(β, σ ) gets improved from diag(nr−ε′

, nr−ε′
/l ′) to diag(n2r−3ε′

, n2r−3ε′
/l ′); here

again, we can control the constant ε′ > 0 to be sufficiently small. This procedure
is iterated K − 1 times, resulting in the rate diag(n2

K−2r−ε′
0 , n2

K−2r−ε′
0/l ′) with ε′

0
being small enough to ensure that 2(2K−2r − ε′

0) > 1/2. Then, the last (K th-step)
application of (3.9) is the same as in the case of r > 1/2 mentioned above.

These observations conclude (3.11).
Thus, we have arrived at the following claim.

Theorem 3.1 Suppose that θ̂0,n satisfies that ϕ−1
0,n(θ̂0,n − θ0) = Op(1) with (3.7) and

(3.8), and define K as in (3.10). Then, the K -step estimator θ̂K ,n, defined through
(3.9) satisfies (3.11), and hence is asymptotically efficient (by Theorem 2.1):

ϕn(θ0)
−1(θ̂K ,n − θ0) = In(θ0)−1�n(θ0)+op(1)

L−→ MNp,θ0

(
0, I(θ0)

−1
)

. (3.20)

Because of the diagonality of ϕ0,n , Theorem 3.1 makes it possible to construct an
initial estimator θ̂0,n = (λ̂0,n, μ̂0,n, β̂0,n, σ̂0,n) individually for each component.

Having (3.20) in hand, we can construct consistent estimators Îλ,μ,n
p−→ Iλ,μ(θ0)

and Îβ,σ,n
p−→ Iβ,σ (θ0), and then prove the Studentization:

(
Î1/2

λ,μ,n

√
n h1−1/β̂K ,n

(
λ̂K ,n − λ0

μ̂K ,n − μ0

)
, Î1/2

β,σ,n

√
n ϕ̃n(θ̂K ,n)

−1
(

β̂K ,n − β0

σ̂K ,n − σ0

))
L−→ Np(0, Ip).

(3.21)
Indeed, this follows by noting the following facts.

• For construction of Îλ,μ,n and Îβ,σ,n :
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– In the expressions (2.8) and (2.9), we can replace the (Riemann) dt-integrals
by the corresponding sample quantities:

1

n

n∑
j=1

(
Y 2
t j−1

,Yt j−1Xt j−1

) p−→ 1

T

∫ T

0

(
Y 2
t ,Yt Xt

)
dt .

– The elements of the form Eθ0 [H(ε;β0)] = ∫ H(ε;β0)φβ0(ε)dε with H(ε;β)

smooth in β can be evaluated through a numerical integration involving the
density φβ(ε) and its partial derivatives with respect to (β, ε), with plugging
in the estimate β̂K ,n for the value of β (the initial estimator β̂0,n is enough).

– Again, note that nv(β̂K ,n − β0, σ̂K ,n − σ0) = op(1) for any sufficiently small

v ∈ (0, 1/2), so that h1−1/β̂K ,n/h1−1/β0 = (1/h)1/β̂K ,n−1/β0
p−→ 1. The values

ϕlm(θ0) contained in Iβ,σ (θ0) are estimated by plugging in θ̂K ,n in (2.6):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β̂−2
K ,nl

′ϕ11,n(θ̂K ,n) + σ̂−1
K ,nϕ21,n(θ̂K ,n)

p−→ ϕ21(θ0),

β̂−2
K ,nl

′ϕ12,n(θ̂K ,n) + σ̂−1
K ,nϕ22,n(θ̂K ,n)

p−→ ϕ22(θ0),

ϕ11,n(θ̂K ,n)
p−→ ϕ11(θ0),

ϕ12,n(θ̂K ,n)
p−→ ϕ12(θ0).

We can replace (β̂K ,n, σ̂K ,n) by (β̂0,n, σ̂0,n) all through the above.

• Since ϕ−1
n (θ̂K ,n − θ0) = Op(1), it follows that

√
n ϕ̃n(θ̂K ,n)

−1
(

β̂K ,n − β0

σ̂K ,n − σ0

)
= √

n
(
ϕ̃n(θ0)

−1 + Op
(
(l ′)Cn−1/2))(β̂K ,n − β0

σ̂K ,n − σ0

)

= √
n ϕ̃n(θ0)

−1
(

β̂K ,n − β0

σ̂K ,n − σ0

)
+ Op

(
(l ′)Cn−1/2)

= √
n ϕ̃n(θ0)

−1
(

β̂K ,n − β0

σ̂K ,n − σ0

)
+ op(1).

The property (3.21) entails

∣∣∣∣∣Î
1/2
λ,μ,n

√
n h1−1/β̂K ,n

(
λ̂K ,n − λ0

μ̂K ,n − μ0

)∣∣∣∣∣
2

+
∣∣∣∣∣Î

1/2
β,σ,n

√
n ϕ̃n(θ̂K ,n)

−1
(

β̂K ,n − β0

σ̂K ,n − σ0

)∣∣∣∣∣
2

L−→ χ2(p) = χ2(q + 3),

which can be used for constructing an approximate confidence ellipsoid and for
goodness-of-fit testing, in particular variable selection among the components of X .
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Remark 3.2 From the proof of Theorem3.1, we see that it is possible toweaken (3.6) as
β0 > 2/3 if the integrated-process sequence (

∫
j Xsds)nj=1 is observable. Moreover, It

is possible to remove (3.6) if themodel is theMarkovianYt = Y0+
∫ t
0 (μ−λYs)ds+σ Jt

with constant μ ∈ R with modifying the definition (3.5) as in the estimating function
of Clément and Gloter (2020). However, we worked under (3.3) and (3.5) to deal with
a possibly time-varying X .

Remark 3.3 The standard form of the one-step estimator is not (3.9), but

θ̂k,n = θ̂k−1,n +
(
−∂2θHn(θ̂k−1,n)

)−1
∂θHn(θ̂k−1,n).

By inspecting the proof of Theorem 3.1, we found that the off-block-diagonal part
−∂a∂bHn(θ̂k−1,n) made the claim therein invalid. This has happened since the rate
of convergence for estimating the component b = (β, σ ) could be too slow. Still,
because of the block-diagonality of the original form (2.7), it seems to be a natural
and reasonable strategy to use the block-diagonal form from the beginning of defining
(3.9).

Remark 3.4 The necessity ofmore than one iteration (K ≥ 2)would be a technical one.
If we could verify the tail-probability estimate supn P[|rn(λ̂0,n − λ0, μ̂0,n − μ0)| ≥
s] � s−M for a sufficiently large M > 0, then it is possible to deduce the optimality
of the one-step Newton–Raphson procedure even when a strategy of construction
(β̂0,n, σ̂0,n) is not smooth in (λ̂0,n, μ̂0,n) as in the function M̂n(a′) in Section 3.2.2.
However, the model under consideration is heavy tailed and it seems impossible to
deduce such a bound since we cannot make use of the localization for that purpose.

3.2 Specific preliminary estimators

In this section, we consider a specific construction of θ̂0,n = (λ̂0,n, μ̂0,n, β̂0,n, σ̂0,n)

satisfying ϕ−1
0,n(θ̂0,n − θ0) = Op(1) with ϕ0,n given by (3.7). We keep assuming that

the available sample is {(Xt j ,Yt j )}nj=0 and the conditions (3.3) and (3.6) are in force.
We will proceed in two steps.

(1) First, we will estimate the trend parameter (λ, μ) by the least absolute deviation
(LAD) estimator, which will turn out to be rate optimal, and asymptotically mixed-
normally distributed; although the identification of the asymptotic distribution is
not necessary here, it would be of independent interest (see Section 3.2.3).

(2) Next, by plugging in the LAD estimator we construct a sequence of residuals for
the noise term, based onwhichwewill consider the lower-order fractional moment
matching.

Recall that we are working under the localization (2.10) by removing large jumps of
J .
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3.2.1 LAD estimator

Let us recall the autoregressive structure together (2.2) with the approximation of the
(non-random) integral:

Yt j = e−λ0hYt j−1 + μ0 · ζ j (λ0)h + σ0

∫
j
e−λ0(t j−s)d Js

= Yt j−1 − λ0hYt j−1 + μ0 · Xt j−1h + σ0

∫
j
e−λ0(t j−s)d Js + h1/β0δ′

j−1, (3.22)

where

δ′
j−1 = δ′

j−1(θ0) := h−1/β0
(
Yt j−1(e

−λ0h − 1 + λ0h) + μ0 · (ζ j (λ0) − Xt j−1

)
h
)

is an Ft j−1 -measurable random variable such that

|δ′
j−1| � (1 + |Yt j−1 |)h1+κ−1/β0 . (3.23)

We define the LAD estimator (λ̂0,n, μ̂0,n) ∈ R
q+1 by any element (λ̂0,n, μ̂0,n) ∈

argmin(λ,μ)Mn(λ, μ), leaving (β, σ ) unknown, where

Mn(λ, μ) :=
n∑
j=1

∣∣Yt j − Yt j−1 − (−λYt j−1 + μ · Xt j−1

)
h
∣∣ . (3.24)

This is a slight modification of the previously studied approximate LAD estimator in
Masuda (2010) concerning the ergodic locally stable OU process.

We introduce the following convex random function onR×R
q (recall the notation

(2.15)):

�n(u, v) := 1

σ0η(λ0β0h)1/β0 h1/β0

{
Mn

(
λ0 + u

rn
, μ0 + 1

rn
v

)
− Mn(λ0, μ0)

}
.

The minimizer of �n is ŵn := (ûn, v̂n), where ûn := rn(λ̂0,n − λ0) and v̂n :=
rn(μ̂0,n − μ0). Further, letting z j−1 := (−Yt j−1 , Xt j−1), w := (u, v), and

ε′
j := 1

η(λ0β0h)1/β0 h1/β0

∫
j
e−λ0(t j−s)d Js

Pθ0∼ i.i.d. L(J1),

we also introduce the quadratic random function

��
n(w) := �′

n[w] + 1

2
�0[w,w],
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where

�′
n := −

n∑
j=1

1

s0,n
√
n
sgn
(
ε′
j + δ′

j−1

)
z j−1,

�0 := 2φβ0(0)

σ 2
0

1

T

∫ T

0

(
Y 2
t −Yt X


t
−Yt Xt X⊗2

t

)
dt,

where s0,n := σ0η(λ0β0h)1/β0 = (1 + o(1))σ0. The a.s. positive definiteness of �0

(see Sect. 2) implies that argmin��
n a.s. consists of the single point ŵ�

n := −�−1
0 �′

n .
Then, our objective is to prove that

ŵn = ŵ�
n + op(1). (3.25)

The proof is analogous to Mas10ejs (2010, Proof of Theorem 2.1); hence, we will
appropriately omit the full technical details, referring to the corresponding parts
therein.

By (3.22) and (3.24), we have

�n(w) =
n∑
j=1

(∣∣∣∣∣ε′
j + δ′

j−1

s0,n
− 1

s0,n
√
n
w · z j−1

∣∣∣∣∣−
∣∣∣∣∣ε′

j + δ′
j−1

s0,n

∣∣∣∣∣
)

.

As in Masuda (2010, Eq.(4.6)), we can write �n(w) = �′
n[w] + Qn(w), where

Qn(w) := 2
n∑
j=1

∫ w·z j−1/(s0,n
√
n)

0

{
I

(
ε′
j + δ′

j−1

s0,n
≤ s

)
− I

(
ε′
j + δ′

j−1

s0,n
≤ 0

)}
ds.

Let us suppose that

�′
n = Op(1), (3.26)

Qn(w) = 1

2
�0[w,w] + op(1), w ∈ R

1+q . (3.27)

Then, we canmake use of the argument of Hjørt and Pollard (2011) to conclude (3.25).
To see this, we note the inequality due to Hjørt and Pollard (2011, Lemma 2): for any
ε > 0,

P
[|ŵn − ŵ�

n | ≥ ε
] ≤ P

⎡
⎢⎣ sup

w: |w−v̂
�
n |≤ε

|δn(w)| ≥ 1

2

⎛
⎜⎝ inf

(w,z): |z|=1,
w=ŵ

�
n+εz

��
n(w) − ��

n(ŵ
�
n)

⎞
⎟⎠
⎤
⎥⎦ ,
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where δn(w) := �n(w) − �
�
n(w). Obviously, �

�
n(ŵ

�
n) = −(1/2)�′

n · �−1
0 �′

n . By
straightforward computations, we obtain

inf
(w,z): |z|=1,
w=ŵ

�
n+εz

��
n(w) − ��

n(ŵ
�
n) ≥ ε2λmin(�0).

Also, because of the convexity, we have the uniform convergence supw∈A |δn(w)| p−→ 0
for each compact A ⊂ R

1+q (see Hjørt and Pollard (2011, Lemma 1)). Note that
ŵ

�
n = Op(1) by (3.26) and the a.s. positive definiteness of �0. Given any ε, ε′ > 0,

we can find sufficiently large K > 0 and N ∈ N for which the following three
estimates hold simultaneously:

sup
n

P[|ŵ�
n| > K ] < ε′/3,

sup
n≥N

P

[
sup

w: |w|≤K+ε

|δn(v)| > ε′
]

< ε′/3,

P

[
ε′ ≥ ε2

2
λmin(�0)

]
< ε′/3.

Piecing together the above arguments concludes that, for any ε, ε′ > 0, there exists

an N ∈ N such that supn≥N P
[
|ŵn − ŵ

�
n| ≥ ε

]
< ε′. This establishes (3.25), and it

follows that
ŵn = −�−1

0 �′
n + op(1) = Op(1). (3.28)

It remains to prove (3.26) and (3.27). Below, we will write P j−1 and E j−1 for the
conditional probability and expectation given Ft j−1 , respectively.
Proof of (3.26) follows on showing �n(1) = Op(1) and R1,n = op(1), where

�n(t) :=
[nt]∑
j=1

1

σ0
√
n

{
sgn

(
ε′
j + δ′

j−1

s0,n

)
− E j−1

0

[
sgn

(
ε′
j + δ′

j−1

s0,n

)]}
z j−1,

t ∈ [0, 1],

R1,n :=
n∑
j=1

1

σ0
√
n
E j−1
0

[
sgn

(
ε′
j + δ′

j−1

s0,n

)
z j−1

]
. (3.29)

The (matrix-valued) predictable quadratic variation process of {�n(·)}t∈[0,1] is given
by

〈�n(·)〉t := σ−2
0

1

n

[nt]∑
j=1

{
sgn

(
ε′
j + δ′

j−1

s0,n

)
− E j−1

0

[
sgn

(
ε′
j + δ′

j−1

s0,n

)]}2

z⊗2
j−1.
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We apply the Lenglart inequality Jacod and Shiryaev (2003, I.3.31) for the submartin-
gale |�n(t)|2: for any K , L > 0,

sup
n

P

[
sup

t∈[0,1]
|�n(t)| ≥ K

]
� L

K
+ sup

n
P

⎡
⎣1

n

n∑
j=1

|z j−1|2 ≥ Cσ 2
0 L

⎤
⎦

� L

K
+ sup

n
P

⎡
⎣1

n

n∑
j=1

(1 + |Yt j−1 |)2 ≥ CL

⎤
⎦ .

We have n−1∑n
j=1(1+|Yt j−1 |)2 = Op(1). To conclude that �n := �n(1) = Op(1),

let L and K sufficiently large in this order. To see R1,n = op(1), we proceed in exactly
the same way as in Masuda (2010, pp. 544–545): by partly using (3.6) and (3.23),

|R1,n| =
∣∣∣∣∣∣
1

n

n∑
j=1

2
√
n z j−1

∫ δ′
j−1/s0,n

0
φβ0(y)dy

∣∣∣∣∣∣
� 1

n

n∑
j=1

√
n|z j−1||δ′

j−1| � 1

n

n∑
j=1

(1 + |Yt j−1 |)2
√
nh1+κ−1/β0

= Op

(√
nh1+κ−1/β0

)
= Op

(
h1/2+κ−1/β0

)
= op(1).

Thus, we have obtained (3.26), and now we can replace �′
n by �n in (3.28):

ŵn = −�−1
0 �n + op(1) = Op(1). (3.30)

Proof of (3.27). We decompose Qn(w) =: ∑n
j=1 ζ j (w) as Qn(w) = Q1,n(w) +

Q2,n(w), where Q1,n(w) := ∑n
j=1 E

j−1[ζ j (w)] and Q2,n(w) := ∑n
j=1(ζ j (w) −

E j−1[ζ j (w)]). Then, for each w ∈ R
1+q , we can readily mimic the flow of Masuda

(2010, pp.545–546) (for handling the term Qn(u) therein). The sketches are given
below.

• We have

Q1,n(w) = 1

2
�n[w,w] + An(w),

where

�n := 2φβ0(0)

s20,n

1

n

n∑
j=1

(
Y 2
t j−1

−Yt j−1X


t j−1

−Yt j−1Xt j−1 X⊗2
t j−1

)
= �0 + op(1),

and where

|An(w)| �

∣∣∣∣∣∣
1

n

n∑
j=1

(w · z j−1)
2

{
φβ0

(
− δ′

j−1

s0,n

)
− φβ0 (0)

}∣∣∣∣∣∣
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+
∣∣∣∣∣∣

n∑
j=1

∫ w·z j−1/(s0,n
√
n)

0
s2
∫ 1

0
(1 − y)∂φβ0

(
sy − δ′

j−1

s0,n

)
dyds

∣∣∣∣∣∣
� 1

n

n∑
j=1

(1 + |Yt j−1 |)4(1 + |w|)4
(
h2(1+κ−1/β0) ∨ 1

n
∨ h1+κ−1/β0

√
n

)
= op(1).

• We have Q2,n(w) = op(1): by the Burkholder–Davis–Gundy inequality,

E

⎡
⎢⎣
⎛
⎝ n∑

j=1

(ζ j (w) − E j−1[ζ j (w)])
⎞
⎠

2
⎤
⎥⎦

�
n∑
j=1

E

⎡
⎣
(∫ |w·z j−1/(s0,n

√
n)|

0
I

(∣∣∣∣∣ε′
j + δ′

j−1

s0,n

∣∣∣∣∣ ≤ s

)
ds

)2
⎤
⎦

�
n∑
j=1

|w|√
n
E

[
|z j−1|

∫ |w·z j−1/(s0,n
√
n)|

0
P j−1

[∣∣∣∣∣ε′
j + δ′

j−1

s0,n

∣∣∣∣∣ ≤ s

]
ds

]

�
n∑
j=1

|w|√
n
E

[
|z j−1|

∫ |w·z j−1/(s0,n
√
n)|

0

(
s +

∣∣∣∣∣
δ′
j−1

s0,n

∣∣∣∣∣
)
ds

]

� (1 + |w|)3 1
n

n∑
j=1

E
[
(1 + |Yt j−1 |)3

]( 1√
n

∨ h1+κ−1/β0

)

= O

(
1√
n

∨ h1+κ−1/β0

)
= o(1).

Summarizing the above yields (3.27).
The tightness (3.30) is sufficient for our purpose. As a matter of fact, the LAD esti-

mator (λ̂0,n, μ̂0,n) is asymptotically mixed-normally distributed. We give the details
in Sect. 3.2.3.

3.2.2 Rates of convergence at the moment matching for (ˇ,�)

The remaining task is to construct a specific estimator (β̂0,n, σ̂0,n) such that

(
nr/2(β̂0,n − β0),

nr/2

l ′
(σ̂0,n − σ0)

)
= Op(1). (3.31)

This can be achieved simply by fitting some appropriate moments; for this purpose, the
localization does not make sense, since precise expressions of truly existing moments
without the localization come into play. Here we consider, as in Brouste and Masuda
(2018), the pair of the absolute moments of order r and 2r .
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Let a′ ∈ (0, β0/2) and define

M̂n(a
′) := 1

n

n∑
j=1

∣∣∣Yt j − Yt j−1 + λ̂0,nYt j−1h − μ̂0,n · Xt j−1h
∣∣∣a

′
.

Let

ε′′
j := 1

h1/β0

∫
j
e−λ0(t j−s)d Js = (1 + o(1))ε′

j ,

which are approximately i.i.d. with common distribution L(J1), and also let

Mn(a
′) := σ a′

0 ha
′/β0 1

n

n∑
j=1

∣∣∣ε′′
j

∣∣∣a
′
.

We can apply the central limit theorem to ensure that
√
n
(
h−a′/β0σ−a′

0 Mn(a′) − m

(a′;β0)
)

= Op(1) as soon as a′ < β0/2, where

m(a′;β0) := E
[|J1|a′] = 2a

′
√

π

�((a′ + 1)/2)�(1 − a′/β0)

�(1 − a′/2)
.

Moreover, it follows from the discussions in Sect. 3.2.1 that

h−a′/β0σ−a′
0 M̂n(a

′) = 1

n

n∑
j=1

∣∣∣∣ε′′
j + 1√

n

(√
nδ′

j−1 − ŵn · z j−1

)∣∣∣∣
a′

,

which in turn gives

na
′/2
∣∣∣h−a′/β0σ−a′

0

(
M̂n(a

′) − Mn(a
′)
)∣∣∣ ≤ 1

n

n∑
j=1

(√
n|δ′

j−1| + |ŵn||z j−1|
)a′

� Op

(√
n h1+κ−1/β0

)
+ Op(1) = Op(1).

It follows that

na
′/2
(
h−a′/β0σ−a′

0 M̂n(a
′) − m(a′;β0)

)
= Op(1 ∨ n(a′−1)/2) = Op(1).

Now we want to take a′ = r , 2r , which necessitates that r ∈ (0, β0/4) in the current
argument. Then, we conclude that

nr/2
(
h−r/β0σ−r

0 M̂n(r) − m(r;β0), h
−2r/β0σ−2r

0 M̂n(2r;β0) − m(2r;β0)
)

= Op(1),
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so that

nr/2
(
M̂n(r)2

M̂n(2r)
− m(r;β0)

2

m(2r;β0)

)
= Op(1).

There exists a bijection fr such that fr (m(r;β)2/m(2r;β)) = β; see Brouste and
Masuda (2018, Section 3.2) and the references therein for the related details. Therefore,
taking β̂0,n := fr (M̂n(r)2/M̂n(2r)) results in nr/2(β̂0,n − β0) = Op(1), as was to be
shown. The bisection method is sufficient for numerically finding β̂0,n .

Turning to σ̂0,n , we note that

nr/2
(
h−r/β0 M̂n(r)

m(r;β0)
− σ r

0

)
= Op(1). (3.32)

Let σ̂0,n :=
(

h−r/β̂0,n M̂n(r)
m(r;β̂0,n)

)1/r

: we claim that nr/2
l ′ (σ̂0,n − σ0) = Op(1). Since

m(r;β̂0,n)
m(r;β0) = Op(1),

∣∣∣∣∣hr(1/β̂0,n−1/β0)m(r; β̂0,n)

m(r;β0)
− 1

∣∣∣∣∣ ≤
∣∣∣hr(1/β̂0,n−1/β0) − 1

∣∣∣ Op(1) +
∣∣∣∣∣
m(r; β̂0,n)

m(r;β0)
− 1

∣∣∣∣∣ .

Recall that nr/2(β̂0,n −β0) = Op(1), hence the second term in the upper bound equals
Op(n−r/2). As for the first term, using that (1/β̂0,n −1/β0)l ′ = Op(l ′/nr/2) = op(1),
we observe

hr(1/β̂0,n−1/β0) − 1 = exp
(
r(1/β̂0,n − 1/β0)l

′)− 1 = Op

(
l ′

nr/2

)
= op(1).

These estimates combined with (3.32) conclude the claim: we have (3.31) for the
above constructed (β̂0,n, σ̂0,n). Given an r ∈ (0, β0/4), by Theorem 3.1, the K -
step estimator for K > log2(1/r) is asymptotically efficient; if β0 > 1 is supposed
beforehand, then we can take an r > 1/4 small enough to ensure that K = 2 is
enough.

3.2.3 Asymptotic mixed normality of the LAD estimator

Recall (3.30): ŵn = −�−1
0 �n + op(1). To deduce the asymptotic mixed normality, it

suffices to identify the appropriate asymptotic distribution of (�n, �0), equivalently
of (�n, �n).

First, we clarify the leading term of�n in a simpler form. We have E[sgn(ε′
j )] = 0

and E[sgn(ε′
j )
2] = 1, Observe that �n = �0,n + R1,n + R2,n , where R1,n is given in

(3.29) and

�0,n :=
n∑
j=1

1

σ0
√
n
sgn(ε′

j )z j−1,
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R2,n :=
n∑
j=1

1

σ0
√
n

(
sgn
(
ε′
j + δ′

j−1

)
− sgn(ε′

j )
)
z j−1.

We have already seen that R1,n = op(1). We claim that R2,n = op(1). Write R2,n =∑n
j=1 ξ j . The claim follows on showing that both

∑n
j=1 E

j−1[ξ j ] = op(1) and

|∑n
j=1 E

j−1[ξ⊗2
j ]| = op(1), but the first one obviously follows from R1,n = op(1).

The second one can be shown as follows: first, we have

n∑
j=1

E j−1[ξ⊗2
j ] = σ−2

0
1

n

n∑
j=1

E j−1
[(

sgn
(
ε′
j + δ′

j−1

)
− sgn(ε′

j )
)2]

z⊗2
j−1

= 2σ−2
0

1

n

n∑
j=1

(
1 − E j−1

[
sgn
(
ε′
j + δ′

j−1

)
sgn(ε′

j )
])

z⊗2
j−1.

Moreover,

E j−1
[
sgn
(
ε′
j + δ′

j−1

)
sgn(ε′

j )
]

=
(∫ ∞

0∨(−δ′
j−1)

+
∫ 0∨(−δ′

j−1)

−∞
−
∫ 0

−δ′
j−1

−
∫ −δ′

j−1

0

)
φβ0(y)dy = 1 + Dj−1

for someFt j−1 -measurable term Dj−1 satisfying the estimate |Dj−1| � |δ′
j−1| � (1+

|Yt j−1 |)h1+κ−1/β0 . These observations conclude that |∑n
j=1 E

j−1[ξ⊗2
j ]| = op(1).

It remains to look at �0,n . The mere convergence in distribution is unsuitable since
the matrix�0 is random.Wewill apply the weak limit theorem for stochastic integrals:
we refer the reader to Jacod and Shiryaev (2003, VI.6) for a detailed account of the
limit theorems as well as the standard notation used below.

We introduce the partial sum process

Snt :=
[nt]∑
j=1

1√
n
sgn(ε′

j ), t ∈ [0, 1].

We apply Jacod (2007, Lemma 4.3) to derive Sn
Ls−→ w′ in D(R) (the Skorokhod

space of R-valued functions, equipped with the Skorokhod topology), where w′ =
(w′)t∈[0,1] denotes a standardWiener process defined on an extended probability space

and independent of F . Here, the symbol
Ls−→ denotes the (F-)stable convergence in

law,which is strictly stronger than themereweak convergence and in particular implies
the joint weak convergence in D(Rq+2):

(Sn, Hn)
L−→ (w′, H∞) (3.33)
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for any R
q+1-valued F-measurable càdlàg processes Hn and H∞ such that Hn p−→

H∞ in D(Rq+1).
We note the following two points.

• We have Sn
L−→ w′ in D(R), and for each n ∈ N the process (Snt )t∈[0,1] is an

(F[nt]/n)-martingale such that supn,t |�Snt | ≤ 1. These facts combined with Jacod
andShiryaev (2003,VI.6.29) imply that the sequence (Sn) is predictably uniformly
tight.

• Given any continuous function f : Rq+1 → R
q ′
(for some q ′ ∈ N), we consider

the function Hn = (H1,n, H2,n) with

H1,n
t := (−Y[nt]/n, X[nt]/n

)
,

H2,n
t := 1

n

[nt]∑
j=1

f (Yt j−1 , Xt j−1).

Then, we have H1,n p−→ H1,∞ := (−Y , X) in D(Rq+1) and H2,n p−→ H2,∞ :=∫ ·
0 f (Ys, Xs)ds inD(Rq ′

),withwhich (3.33) concludes the jointweak convergence

in D(R2+q+q ′
):

(Sn, H1,n, H2,n)
L−→ (w′, H1,∞, H2,∞).

With these observations, we can apply Jacod and Shiryaev (2003, VI.6.22) to derive
the weak convergence of stochastic integrals:

(H1,n
− · Sn, H2,n)

L−→ (H1,∞
− · w′, H2,∞),

which entails that, for any continuous function f ,

⎛
⎝�0,n,

1

n

n∑
j=1

f (Yt j−1 , Xt j−1)

⎞
⎠ L−→

(
σ−1
0

T

∫ T

0
(−Ys , Xs)dw′

s ,
1

T

∫ T

0
f (Ys , Xs)ds

)

L=
⎛
⎝
{

σ−2
0

T

∫ T

0

(
Y 2
t −Yt X


t
−Yt Xt X⊗2

t

)
dt

}1/2

Z ,

1

T

∫ T

0
f (Ys , Xs)ds

)
,

where Z ∼ N (0, 1) is independent of F . Now, by taking

f (x, y) = 2φβ0(0)

σ 2
0

(
y2 −x
y

−xy x⊗2

)
,

we arrive at

(
�0,n, �0

) L−→
({

σ−2
0

1

T

∫ T

0

(
Y 2
t −Yt X


t
−Yt Xt X⊗2

t

)
dt

}1/2
Z ,
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2φβ0(0)

σ 2
0

1

T

∫ T

0

(
Y 2
t −Yt X


t
−Yt Xt X⊗2

t

)
dt

)
.

In sum, applying Slutsky’s theorem concludes that

ŵn = �−1
0 �0,n + op(1)

L−→ MNq+1,θ0

(
0,

σ 2
0

4φβ0 (0)2

{
1

T

∫ T

0

(
Y 2
t −Yt X


t
−Yt Xt X⊗2

t

)
dt

}−1)
.
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