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Abstract
Community-based public health interventions often rely on representative, spatially
referenced outcome data to draw conclusions about a finite population. To estimate
finite-population parameters, we are posed with two challenges: to correctly account
for spatial association among the sampled and nonsampled participants and to cor-
rectly model missingness in key covariates, which may be also spatially associated.
To accomplish this, we take inspiration from the preferential sampling literature and
develop a general Bayesian framework that can specifically account for preferential
non-response. This framework is first applied to threemissing data scenarios in a simu-
lation study. It is then used to account for missing data patterns seen in reported annual
household income in a corner-store intervention project. Through this, we are able to
construct finite-population estimates of the percent of income spent on fruits and veg-
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etables. Such a framework provides a flexible way to account for spatial association
and complex missing data structures in finite populations.

Keywords Spatial process · Missing data · Preferential sampling · Bayesian model ·
Public health

1 Introduction

Evaluations of prospective public health interventions can be strengthened by collect-
ing outcomes from representative samples of the study population. It would not be
surprising for there to be spatial patterns of association among individuals sampled
from clusters of households in a neighborhood where an intervention was imple-
mented, nor would it be surprising for there to be missing data on key study covariates.
This manuscript outlines a strategy for evaluating community-based interventions that
draws on frameworks for inference fromfinite-population sampling, Bayesian analysis
of spatial process models, and methods for handling missing data.

Our primary application is provided by a study of a “corner store conversion” inter-
vention implemented in under-resourced areas of Los Angeles (Ortega et al., 2015).
In the realm of food purchasing, disparities by income exist in fruit and vegetable
(FV) consumption (Grimm et al., 2012), nutrition (Casey et al., 2001), and overall
food insecurity (Ribar & Hamrick, 2003; Rose, 1999). These problems are observed
in “food swamps”, communities with higher numbers of unhealthy establishment that
serve fast-food or sell junk food (Rose et al., 2009) than stores with healthy food
options. Corner store interventions are one public health strategy to change the food
environment in the hope of improving eating behaviors at the individual and commu-
nity level (Langellier et al., 2013). To facilitate improved FV sales, such interventions
commonly increase the amount of fresh FVs sold in a store (Langellier et al., 2013),
and may provide refrigeration units (Paek et al., 2014), store remodeling (Langellier
et al., 2013), cooking demonstrations (Ortega et al., 2015), increased signage (Law-
man et al., 2015), and business consulting (Ortega et al., 2015). Among these studies,
findings regarding availability and sales of fruits, vegetables, and other healthy foods
have been mixed (Albert et al., 2017; Lawman et al., 2015; Paek et al., 2014; Song et
al., 2009; Thorndike et al., 2017).

The focus of analysis in these interventions have been the patrons of these corner
stores while few studies have examined the effect of these interventions at the commu-
nity level. Notably, in such an intervention in two low-income, predominantly Latino
communities in California, East Los Angeles and Boyle Heights, Ortega et al. (2016)
reported no significant improvements to FV purchasing or consumption. However,
one variable of interest, the percentage of annual reported income spent on fruits and
vegetables (PIFV), was not fully investigated in earlier reports due to complexities
associated with the high rate of missing data on reported income. As many of the
intervention components sought to influence the community context, it is important
to assess the extent to which any intervention effect was discernible with attention to
the potential for available data to be incomplete.
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Non-response of household income is a common occurrence in survey research
(Schenker et al., 2006; Watson & Starick, 2011; Yan et al., 2010), but any method
for handling missing data must address two key challenges. First, there is evidence
that reported income is spatially associated in neighborhoods (Breau et al., 2018;
Chakravorty, 1996). One approach to account for this is to employ spatial process
modeling (Banerjee et al., 2014; Cressie & Wikle, 2011; Ripley, 2004), embedded
within a Bayesian inference framework, where inferences flow from averaging over
(i.e., carrying out iterative-simulation-based numerical integration applicable to) joint
distributions of observable values and unobserved parameters that encode conditional-
independence assumptions in a generic framework such as

[data, process, parameters] = [data | process] × [process | parameters] × [parameters] . (1)

Here, the data are assumed to be a partial realization of a Gaussian stochastic pro-
cess, where the covariance between elements are defined by C(dab), a function of
the distance, dab between any two locations �a and �b. While there are many valid
ways to represent such structure, a flexible choice is the Matérn family (Rasmussen
& Williams, 2006) of functions, defined as C(dab) = σ 2 + δ2 if dab = 0 and
C(dab) = δ2

2ν−1�(ν)

(√
2νdabφ

)ν
Kν

(√
2νdabφ

)
if dab > 0, where Kν(·) is the mod-

ified Bessel function. Here ν is a smoothness parameter, σ 2 describes the variation
due to measurement error, δ2 measures the spatial variance, φ is a decay parameter
which determines the rate of decline in spatial association. The exponential function,
C(dab) = δ2exp(−φdab) if dab > 0, is a special case when ν = 1/2. Unlike the
literature of small area estimation (Clayton & Kaldor, 1987; Ghosh & Rao, 1994;
Rao, 2003), where the sampling units are regions such as counties, states or census-
tracts, spatial process models consider quantities that, at least conceptually, exist in
continuum over the entire domain.

A recent application of Bayesian spatial techniques to high dimensional survey is
given by Bradley et al. (2015), who employed a multivariate spatio-temporal mixed
effects model to examine differences in monthly income by gender, finding that men
have larger average incomes in multiple industries, with the largest differences in the
finance and insurance fields. Suchmodels have effect dimension reduction by applying
Moran’s I basis functions to the spatio-temporal setting and outperform univariate spa-
tial models in mean-square prediction error. Bradley et al. (2016) furthered this model
by developing a hierarchical Bayesian approach to survey fusion, assuming a latent
process shared by each survey dataset. Using data from the American Community
Survey and Local Area Unemployment Statistics, they demonstrated higher precision
in estimates of unemployment compared to analyzing each dataset separately. Bradley
et al. (2016) also developed a Bayesian technique to account for a spatial change of
support in count data and incorporate known survey variances.

A second challenge is that non-response to income questions might depend on
underlying income values and associated demographic characteristics. Greenlees et
al. (1982), David et al. (1986) and Riphahn and Serfling (2005) all noted evidence
from population-based surveys that individuals with higher incomes were less likely
to respond, although in surveys of lower income communities, it is plausible that the
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direction of the association between income and non-response would be reversed. As
we suspect our outcome is spatially associated, however, we turn to the recent literature
regarding preferential sampling to better understand this problem.

First described in Diggle et al. (2010), preferential sampling is a technique in which
the probability of selection on a spatial domain increases as a function of intensity of
the measurement. Diggle and colleagues present a joint model in which the selection
sites and the measured values arise from the same spatial process. Pati et al. (2011)
presents amodel for preferential sampling in a fullyBayesian frameworkby including a
function of intensity as a predictor of the outcome to account for informative sampling.
In addition, preferential sampling has been shown to give biased predictions (Gelfand
et al., 2012; Lee et al., 2015) and parameter estimation (Antonelli et al., 2016). In our
corner-store scenario, we consider “preferential” response, in which the probability
of a spatially associated variable being reported is dependent on the underlying value
of that variable.

Finally, as we are interested in estimating average percentage of income spent on
fruits and vegetables for all individuals in a community, we examine the problem from
a finite-population perspective, considering those who reported income to be the sam-
pled or observed cases. Finite-population survey sampling (Cochran, 1977; Hartley &
Sielken, 1975; Horvitz & Thompson, 1952; Royall, 1970) considers sampling designs
in the statistical modeling and inference on finite populations. Bayesian models (Eric-
son, 1969; Gelman, 2007; Ghosh & Meeden, 1997) can incorporate aspects of study
design and often perform better with small datasets while yielding similar results to
design-based results in large datasets (Little, 2004). Estimation of finite-population
quantities within spatial process settings has not received much attention in the liter-
ature. Recent work includes a method for block kriging which connects geostatistical
models and classical design-based sampling (Hoef, 2002), a spline-based estimator
of the mean for samples drawn from a spatially-correlated population (Cicchitelli &
Montanari, 2012), and the use of linear spatial interpolator to create a design-based
predictor of values at unobserved locations (Bruno et al., 2013). Chan-Golston et
al. (2020) demonstrated that accounting for both design and spatial association in a
two-stage sampling context led to better model fit and better coverage of the finite-
population parameters.

The rest of the paper is as follows: Sect. 2 elaborates on data collected during the
corner-store intervention described in Ortega et al. (2016) and provides an in depth
explanation of the income non-response by community, Sect. 3 presents a Bayesian
framework that accommodates preferential non-response, and Sect. 4 examines a sim-
ulation study of the proposed framework. Section 5 presents a data analysis to assess
the extent of any intervention effect on the percentage of income spent on fruits and
vegetables utilizingmodel-based finite-population estimates of the outcome of interest
both pre-intervention and post-intervention. The paper concludes with a discussion in
Sect. 6.
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2 Motivating application

Supported by NIH center-grant funding focused on reducing population-based health
disparities, and with input from a consultant who had experience with previous corner-
store conversions in Northern California, researchers identified 4 pairs of corner stores
in the East Los Angeles and Boyle Heights communities of Los Angeles to compare
the active intervention with a control intervention. The active intervention of “corner-
store conversion” included a reorganization of store items to promote healthy food
purchasing, an external transformation of the store, a social marketing campaign and
cooking demonstrations put on by local youth, connections to local wholesalemarkets,
and refrigeration units (Ortega et al., 2016). Both the active and control interventions
provided training to improve bookkeeping and accounting. A more detailed review of
the study design and implementation is provided by Ortega et al. (2015). To assess
the potential effects of this intervention, a survey was given to residents within a
specified radius of each of the eight corner stores. This community survey sought to
extensively catalog the food purchasing of residents, including where they shopped,
what types of food they bought, and who was being supported by their food purchases.
As such, the survey was directed to adults who were identified as the main food
purchaser of the family. Many other items were also collected, including demographic
characteristics, health problems, family history of residency, and government food
program participation (such as the Supplemental Nutrition Assistance Program and
the Special Supplemental Program for Women, Infants, and Children). This survey
was conducted in each of the eight communities surrounding the store (generally
a 2–3 block radius) before the conversion and then again roughly one year after the
conversion. There were 1035 observations collected at baseline and 1052 observations
collected at follow-up, with approximately 60% of the individuals surveyed at baseline
surveyed again at follow-up.

While there is a strong interest in describing PIFV in each community, the sample
had high levels of missingness in income (one-third) at both baseline and follow-up,
which are presented in Table 1. Noticeably, PIFV is highest on average at baseline
in Communities 1 and 7, 26.0% and 46.5%, respectively, which also observed lower
levels of response and income compared to the averages of the total. With high levels
of non-response, it is important to know if this value is being inflated due to themissing
values of income. In addition, while the number of sampled units ranged from 114 to
143, the percentage ofmissingness rangedwidely from4.9 to 66.6%. For this paper, we
consider the sampled data to be the finite population of eight communities in East Los
Angeles and Boyle Heights. This is a reasonable assumption, as the response rate of
80% and 71% at baseline and follow-up suggest that a majority of individuals in these
communities are represented in this dataset. Amount spent on fruits and vegetables
was reported on weekly, bi-weekly, or monthly scale. These values were multiplied by
52, 26, and 12, respectively, to reflect the annual amount spent on fruits and vegetables
in a household. Reported yearly income is continuous and ranged from $0 to $300,000.
Twenty-four individuals reported a higher amount spent on fruits and vegetables than
their income, so their income was imputed to the value spent on FV, so that PIFV was
nomore than 100 and no annual incomewas equal to 0. Both annual income and annual
amount spent on FV were log-transformed to produce a more normal distribution of
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Table 1 Annual income and FV expenditures by site and time-point

Site Time N Income FV expenditure

% response M (SD) M (SD) % of income M (SD)

1 B 117 54.70 24.79 (25.23) 2.10 (1.39) 26.0 (33.3)

F 124 49.19 37.57 (27.98) 2.62 (1.81) 11.2 (14.9)

2 B 137 72.99 33.04 (25.20) 2.25 (1.41) 11.4 (13.2)

F 134 78.36 32.64 (33.63) 2.58 (1.65) 13.6 (16.0)

3 B 122 59.84 25.77 (16.28) 2.37 (1.52) 16.8 (19.5)

F 130 88.46 26.17 (22.33) 2.40 (1.70) 13.6 (11.4)

4 B 131 58.02 24.68 (17.32) 2.19 (1.66) 13.6 (14.8)

F 128 34.38 29.90 (20.41) 2.29 (1.87) 11.4 (10.9)

5 B 117 70.94 39.82 (43.28) 2.26 (1.68) 10.6 (11.3)

F 143 95.10 35.95 (36.19) 2.36 (1.59) 10.9 (10.7)

6 B 114 64.04 28.67 (22.72) 1.95 (1.50) 9.2 (7.1)

F 129 72.09 29.77 (28.58) 1.80 (1.30) 10.5 (14.0)

7 B 125 61.60 17.52 (20.02) 2.18 (1.28) 46.5 (43.7)

F 122 52.46 31.68 (29.38) 2.28 (1.50) 15.6 (16.7)

8 B 119 54.62 39.39 (46.85) 2.23 (1.55) 15.2 (21.9)

F 123 52.85 34.12 (33.52) 2.31 (1.76) 11.3 (10.4)

Total B 982 62.22 29.39 (29.70) 2.20 (1.50) 18.3 (25.7)

F 1033 66.12 32.13 (30.31) 2.33 (1.67) 12.3 (13.3)

Income and FV expenditure are presented in units of $1000
B baseline, F follow-up, M mean and SD standard deviation

the outcome. The analysis was restricted to cases with no missing covariates and with
a recorded amount spent on FV. This resulted in a final dataset with 982 observations
at baseline and 1033 at follow-up.

Other individual-level variables that were hypothesized to affect PIFV were age
at time of interview, gender, household size, marital status (collapsed into a binary
classification distinguishing other possibilities from being in a marriage or marriage-
like relationship), and education level (collapsed into a binary classification of at least a
high-school education or less than a high-school education).Due to the homogeneity of
ethnicity in the sample, Latino ethnicity was not considered in the analyses. Summary
statistics of these covariates by time-point are presented in Table 2.

Individual locations (addresses) were provided and geographic coordinates were
assigned to each address. As there were multiple apartment complexes in these com-
munities, individuals living in different units of the same complex were assigned the
same geographic coordinates. Thus, among the 8 communities, there were 635 identi-
fied locations. At baseline, 518 of these locationswere observed, 366 of these locations
had a least one individual who reported their income, and on average 1.90 individuals
shared the same location. At follow-up, 562 of these locations were observed, 472 of
these locations had a least one individual who reported their income, and on average
2.38 individuals shared the same location. Considering both time-points, 555 locations
had at least one reported income.
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Table 2 Description of the sample data by time-point

Baseline N = 982 Follow-up N = 1033

Demographic % or M (SD) % orM (SD)

Intervention 50.7 50.5

Control 49.3 49.5

Gender

Male 21.6 20.0

Female 78.4 80.0

Marital status

Married/common law marriage 56.9 58.6

Single/separated/divorced/widoweda 43.1 41.4

Education level

≥ High school 50.5 49.9

< High schoolb 49.5 50.1

Age 45.61 (16.0) 46.9 (15.5)

Household size 4.0 (1.9) 4.0 (2.0)

M mean and SD standard deviation
a This category also contains 6 responses of “Don’t Know” and 1 refused response
b This category also contains 9 responses of “Don’t Know” and 3 refused responses

Fig. 1 Variograms of income (log-scale), amount spent on FV, and PIFV

Variograms of the PIFV outcome, amount spent on FV, and log-income were con-
structed. All variograms suggested evidence of spatial association, as shown in Fig. 2.
To explore our primary outcome and determine if there is any evidence of preferen-
tial response in income, a linear model was first fit using the previously described
covariates, as well as a indicators for time-point, intervention status, and the interac-
tion of these two indicators to detect an interaction effect, predicting the log-percent
of income spent on fruits and vegetables. For individuals who did not report income,
predictions of this log-percent were made using the results of the linear model. By
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Fig. 2 Linear interpolation plots from full simulated data and 3 scenarios

dividing the reported amount spent on fruits and vegetables by this percent, we have
constructed a prediction of income for the non-respondents. Then, a logistic regression
model predicting the response of income was fit with an intercept term and income
(either the reported value for those that responded or the predicted value from the lin-
ear model for those that did not respond). This model found income to be significantly
associated with the probability of response. An observed coefficient estimate of 0.12
(SE = 0.05) suggests that individuals with higher values of income are more likely to
report income, and, conversely, lower income in these communities are more likely
to be under-reported. Further, a logistic regression model with random intercepts for
location was fit and the standard deviation corresponding to the random intercept was
0.67.

3 Representing spatial structure in finite-population inference

3.1 A general framework

Formally, define a spatial domain LLL ⊆ RRR2, where a finite population of size T is
located in N locations, LLL FP = {�1, . . . , �N }, T ≥ N . Suppose there are Mi units
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at the i th location, hence T = ∑N
i=1 Mi . Further, suppose that t , t ≤ T , units are

sampled from the finite population and thus n, n ≤ N , locations are represented in this
sample. Taking the first n locations to be sampled, define the sampled and nonsampled
location sets as LLL s = {�1, . . . , �n} and LLL ns = {�n+1, . . . , �N }, respectively. In
addition, denoting mi the number of sampled units at the i th location, i = 0, . . . , N ,
we have that t = ∑N

i=1 mi = ∑n
i=1 mi , as mi = 0 for i = n + 1, . . . , N . In the

context of our data, we have that T = 2015, t = 1294, N = 635, and n = 555.
We are interested in measuring annual reported income on the natural log-scale, y,
which is a vector of sampled and nonsampled measurements, e.g., y = [y�

s , y�
ns]�.

Denoting y j (�i ) as the annual income on the natural log scale of the j th individual
at the i th location, let ys = [y1(�1), . . . , ym1(�1), . . . , y1(�n), . . . , ymn (�n)]� and
yns = [ym1+1(�1), . . . , yM1(�1), . . . , ymN+1(�N ), . . . , yMN (�N )]�. In addition, let
z j (�i ) be the reported amount spent on fruits and vegetables on the natural log-scale
corresponding to y j (�i ). This is measured for all members of the finite population
and, therefore, vectors zs and zns , defined in the same manner as ys and yns , denote
reported values of FV expenditures corresponding to individuals who reported and did
not report income, respectively. We examine the log-percent of income spent on fruits
and vegetables, which can be written as z− y, by modeling y with an offset term of z.
Assume that there is a Gaussian spatial process, ω(·), defined onLLL with covariance
function Kω(d), and that y is a partial realization of this process. Finally, define the
inclusion mechanism as a spatial process onLLL , which is dependent on y and another
Gaussian spatial process, υ(·), defined on the same domain with covariance function
Kυ(d). A joint model defined in the form of our generic spatial paradigm (1) is

[y(·) | ω(·)] × [I (·) | y(·), υ(·)] × [ω(·)] × [υ(·)] (2)

The first component of (2) is the conditional distribution of y, [y(·) | ω(·)]. Assum-
ing y is a T × 1 vector, this conditional distribution can be written as

y j (�i ) = z j (�i ) − x j (�i )
�β + ω(�i ) + ε j (�i ) ; ε j (�i )

i id∼ N (0, σ 2) . (3)

Here i = 1, . . . , 635, j = 1, . . . , Mi , and ε ∼ N (0,�ε), where �ε = σ 2I.
Each ε j (�i ) corresponds to y j (�i ) and ε is defined in the same manner as y. Sim-
ilarly, define the covariates corresponding to the j th unit at the i th location as
x j (�i ). Here each 10 × 1 vector x j (�i ) corresponds to the outcome y j (�i ). This
vector of coefficients corresponds to the 10 × 1 vector β, β ∼ N (0,�β), and
includes an intercept term, gender, household size, relationship status, age, age2,
time-point, intervention status, and an interaction between intervention status and
time-point. Following the notational convention of ys and yns , define the 2015 × 10
matrix X = [X�

s ,X�
ns]� as the collection of covariates from sampled and nonsam-

pled individuals, where Xs = [x1(�1), . . . , xm1(�1), . . . , x1(�n), . . . , xmn (�n)]� and
Xns = [xm1+1(�1), . . . , xM1(�1), . . . , xmN+1(�N ), . . . , xMN (�N )]�. In addition, note
that as the offset z j (�i ) is placed on the right-hand side of this equation, we subtract
the x j (�i )

�β term to improve interpretation. In this way, a positive component in β

corresponds to a positive increase in z − y, our outcome of interest.
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Spatial variation is accounted for with the 635× 1 vector ω ∼ N (0, 6ω), where 6ω

is a 635 × 635 matrix defined by the covariance function Kω(d). Finally, construct a
2015 × 635 site indicator matrix A = [A�

s ,A�
ns]�, where As = [⊕555

i=11mi : 0] and
Ans = [⊕635

i=11Mi−mi ] (⊕ denotes the Kronecker sum). Thus the row inA correspond-
ing to measurement y j (�i ) has value 1 in i th column and 0 elsewhere. We then have
that y ∼ N (z − Xβ + Aω,�ε).

The second component of (2), [I (·) | y(·), υ(·)] describes the response mechanism.
Here the T × 1 vector I has element I j (�i ) = 1 if the corresponding j th individual in
the i th location reported their income, e.g., y j (�i ) is observed, and I j (�i ) = 0 if they
did not report their income. This can be expressed as

I j (�i ) ∼ Ber(π j (�i )) ; logit(π j (�i )) = y j (�i )ηy + q j (�i )
�η + υ(�i ). (4)

The probability of response for each individual in the finite population is permitted to
vary by its corresponding value of y, which is captured in the regression coefficient
ηy , ηy ∼ N (0, σ 2

ηy
). Similar to our modeling of the outcome, q j (�i ) is a 2 × 1

vector composed of an intercept term and age, which corresponds to a 2 × 1 vector
of coefficients η, η ∼ N (0,�η). Additional spatial variability in the probability of
inclusion is accounted for with υ, υ ∼ N (0, 6υ), where 6υ is a 635× 635 matrix and
is defined by covariance function Kυ(d).

In addition, we take the two processes, ω and υ, to be independent. Collecting
additional variance parameters in θ , the joint posterior distributionof (2) is proportional
to

p(ω,υ, θ ,β, η, ηy, yns |ys, I)
∝ p(θ) × N (ω|0,�ω) × N (υ|0,�υ) × N (β|0,�β)

× N (η|0,�η) × N (ηy |0, σ 2
ηy

) ×
N∏

i=1

Mi∏

j=1

Ber(I j (�i )|π j (�i ))

×
N∏

i=1

Mi∏

j=1

N (y j (�i )|z j (�i ) − x j (�i )
�β + ω(�i ), σ

2) ,

(5)

where

Ber(I j (�i )|π j (�i )) =
(

exp[y j (�i )ηy + q j (�i )
�η + υ(�i )]

1 + exp[y j (�i )ηy + q j (�i )�η + υ(�i )]

)I j (�i )

×
(

1

1 + exp[y j (�i )ηy + q j (�i )�η + υ(�i )]
)1−I j (�i )

.
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3.2 MCMC estimation strategy

Markov chain Monte Carlo must be used to sample from (5). A Gibbs update can be
employed to sample the posterior distributions for β and ω , which are

β|· ∼ N

((∑−1

β
+ X�

s

∑−1

ε
Xs

)−1
X�
s

∑−1

ε
(ys − zs − Asω),

(∑−1

β
+ X�

s

∑−1

ε
Xs

)−1
)

;

ω|· ∼ N

((∑−1

ω
+ A�

s

∑−1

ε
As

)−1
A�
s

∑−1

ε
(ys − zs + Xsβ),

(∑−1

ω
+ A�

s

∑−1

ε
As

)−1
)

,

respectively. The conditional distributions for the remaining parameters are not avail-
able in closed form but can be sampled using aMetropolis–Hastings step. Specifically,
we have

yns |ys,ω, θ ,β ∝ p(θ) × N (ω|0,�ω) × N (β|0,�β) ×
N∏

i=1

Mi∏

j=1

Ber(I j (�i )|π j (�i ))

×
N∏

i=1

Mi∏

j=1

N (y j (�i )|z j (�i ) − x j (�i )
�β + ω(�i ), σ

2) ,

η|y, θ ∝ p(θ) × N (η|0,�η) ×
N∏

i=1

Mi∏

j=1

Ber(I j (�i )|π j (�i )) ,

ηy |ys, θ ∝ p(θ) × N (ηy |0, σ 2
ηy

) ×
N∏

i=1

Mi∏

j=1

Ber(I j (�i )|π j (�i )) , and

υ|ys, θ ∝ p(θ) × N (υ|0,�υ) ×
N∏

i=1

Mi∏

j=1

Ber(I j (�i )|π j (�i )) .

The posterior samples of yns are then used to obtain posterior finite-population
estimates. Specifically, we are interested in the mean income of finite population,
1
T

∑N
i=1

∑Mi
j=1 exp[y j (‘i )], and the mean PIFV, 1

T

∑N
i=1

∑Mi
j=1 exp[z j (‘i ) − y j (‘i )].

These values are calculated overall, by site and by time-point.

3.3 Alternative models encompassing responsemechanism and the extent of
spatial variation in data

Four models are considered in the form of (2) and are described below. For these
models, regression parameters are considered independent, e.g., �β = σ 2

β I10 and

�η = σ 2
η I2, and their associated variance parameters, σ 2

β and σ 2
η , are fixed in both the

simulation and data analysis. Similarly, σηy is fixed. The spatial covariance functions
are taken to be exponential, as described in Sect. 1.

Model 1. Non-spatial in outcome with ignorable response This model is a stan-
dard linear regression model and, therefore, spatial effects (ω and υ) are fixed at 0.
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Inclusion parameters are also fixed at 0 so that the probability of inclusion is a fixed
number. We take θ = σ 2 and p(θ) = IG(σ 2|a, b).

Model 2. Non-spatial association in outcome with preferential response Pref-
erential response is now accounted for through ηy but spatial effects are again fixed at
0. Similar to Model 1, θ = σ 2 and p(θ) = IG(σ 2|a, b).

Model 3. Spatial association in outcome with preferential response This model
accounts for spatial association in the outcome but fixes Æ = 0. Therefore, θ =
[σ 2, δ2ω, φω]� and p(θ) = IG(σ 2|a, b) × IG(δ2ω|aω, bω) ×Uni f (φω|cω, dω).

Model 4. Spatial association in outcome and probability of inclusion with
preferential response This model expands upon Model 3 by permitting spatial
association in the probability of response. We take θ = [σ 2, δ2ω, φω, δ2υ, φυ ]� and
p(θ) = IG(σ 2|a, b) × IG(δ2ω|aω, bω) × Uni f (φω|cω, dω) × IG(δ2υ |aυ, bυ) ×
Uni f (φυ |cυ, dυ).

3.4 Model comparison and assessment strategy

Model fit was evaluated in two ways. In general, consider a sample of size t drawn
from a population of size T with outcome y = [y�

s , y�
ns]�. Without loss of generality,

say yh ∈ ys if h = 1, . . . , t and yh ∈ yns if h = t + 1, . . . , T . Replicated datasets,
y(l)
rep = [y(l)

rep,1 . . . y(l)
rep,t ]�, can be generated from the pointwise posterior predictive

distribution at each iteration l. These are used to formulate the predictive model choice
criteria:

D =
t∑

h=1

(yh − E[yrep,h | ys])2 +
t∑

h=1

var(yrep,h | ys)

described in Gelfand and Ghosh (1998), and the Gneiting–Raftery Score (Gneiting &
Raftery, 2007),

GRS = −
t∑

h=1

(yh − E[yrep,h | ys])2
var(yrep,h | ys) −

t∑

h=1

log var(yrep,h | ys).

In this formulation, lower values of D and higher values of GRS are indicative of
better model fit. For L iterations, we approximate E[yrep,h | ys] ≈ 1

L

∑L
l=1 y

(l)
rep,h and

var(yrep,h | ys) ≈ 1
L−1

∑L
l=1(y

(l)
rep,h − 1

L

∑L
l=1 y

(l)
rep,h)

2. For simulated datasets, where
yns is known, these measures can be extended to all observations, e.g., summing to T
instead of t in each score.

4 Simulation

To examine the ability of the proposed models to capture various sampling schemes, a
simplified dataset was simulated and three response scenarios were implemented. For
simplicity, in this simulation study, we predict income (on the log-scale) with only the

123



Japanese Journal of Statistics and Data Science (2022) 5:407–430 419

covariates gender and household size for a finite population of size 2000, e.g., z j (�i )
is fixed at 0 and −x j (�i ) is replaced by x j (�i ) for all i and j in (3). For each unit of
the population, gender was drawn from a bernoulli distribution with the probability of
female set to 0.8 and household sizewas drawn from aPoisson distributionwith amean
of 4. To induce spatial correlation, a 5 × 5 square was created and 500 locations were
randomly assigned within the square and distance matrix was constructed from these
locations. The spatial process parameters were fixed at σ 2 = 1, δ2ω = 1, and φω = 0.5.
Each unit of the population was randomly assigned to a location, with the requirement
that at least one unit was located at each location. Regression parameters were fixed at
β = [β0, βfem, βhhs]� = [10,−0.2, 0.1]�, to reflect an average income of exp(10) =
$22,000 in the reference group, a small average reduction in income for females, and a
small average increase in income for larger household sizes. Log-income values were
generated from (3).

Three scenarios were considered to reflect possible response scenarios in which
there is spatial association in the outcome. In Scenario 1, income is from a spatial
process but there is no preferential response. This arises from Model 3, fixing ηy = 0
and q = [1, . . . , 1]�. The probability of inclusion was set at 0.5, which is equivalent
to fixing η = 0. This resulted in a selection of 54% of the simulated data. In the
second scenario, income is from a spatial process which is reported preferentially, as
described in Model 3. Here, ηy was set to 0.5 and η = [η0, ηfem] = [−4,−1]�, to
reflect higher odds of response for larger values of income and lower odds of response
for women. The choice of these coefficients resulted in 54.15% of the simulated
data having income responses. The third scenario considers income as coming from
a spatial process whose response in preferential and whose inclusion probability is
dependent on another spatial process, which is described in Model 4. To reflect this,
we set φυ = 1.5 and δ2υ = 1; this resulted in responses in 48.1% of the simulated
data. All data generation and analyses were performed using R version 3.6.1 (R Core
Team, 2018).

Linear interpolation plots from the full simulated data and the subset data from the
three scenarios are shown in Fig. 2. As expected, Scenario 1 (a simple random sample)
is the most similar to the full dataset. In the cases of preferential response (Scenarios 2
and 3), the interpolated plots have larger regions of high income than the true dataset.
This is most apparent in the western region of the graph, where values below 8 are rare
in this instance. Comparing Scenarios 2 and 3, there appears to be some smoothing,
with fewer pockets of low income in the west and northeast of the graph, which is due
to the spatial association induced on the probability of response in Scenario 3.

Models were run for 10,000 iterations with 1000 burn-in, as examination of
individual trace plots suggested sufficient mixing and convergence of the non-
spatial parameters. At each iteration g, estimates of the nonsampled units were

drawn and estimates for the population mean, ȳ(g) = 1
T

( ∑n
i=1

∑mi
j=1 exp[y j (�i )] +

∑N
i=1

∑Mi
j=mi+1 exp[y j (�i )(g)]

)
were calculated. The variance parameterσ 2

β was fixed

at 1000 to reflect an uninformative prior, while the σ 2
η and σηy terms were fixed at 10 as

a weakly informative prior restricting the range of the logistic regression coefficients.
The non-spatial, σ 2, and spatial, δ2ω and δ2υ , variance components were assigned prior
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Table 3 Simulation results of scenario 1: spatial outcome, random response

Model 1 Model 2 Model 3 Model 4
Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

ȳ (9.94) 9.94 (9.88, 10.00) 9.90 (9.41, 10.14) 9.91 (9.86, 9.98) 9.90 (9.83, 9.97)

β0 (10) 9.55 (9.29, 9.82) 9.52 (9.06, 9.91) 9.49 (8.64, 10.32) 9.47 (8.54, 10.31)

βfem (−0.2) −0.21 (−0.42, 0.00) −0.2 (−0.42, 0.01) −0.17 (−0.32, −0.02) −0.17 (−0.33, −0.01)

βhhs (0.10) 0.14 (0.10, 0.19) 0.14 (0.10, 0.18) 0.12 (0.09, 0.15) 0.12 (0.09, 0.15)

σ 2 (1) 2.04 (1.87, 2.22) 2.08 (1.89, 2.38) 1.01 (0.92, 1.11) 1.01 (0.92, 1.11)

η0 (0) −0.24 (−5.24, 2.11) −0.17 (−0.91, 0.72) −0.45 (−1.49, 0.70)

ηy (0) 0.04 (−0.19, 0.58) 0.03 (−0.06, 0.11) 0.06 (−0.05, 0.17)

φω (0.5) 0.79 (0.36, 1.29) 0.77 (0.30, 1.29)

δ2ω (1) 0.87 (0.5, 1.59) 0.91 (0.52, 1.73)

φυ (0) 1.31 (0.33, 1.97)

δ2υ (0) 0.05 (0.02, 0.13)

D 6799.8 6857.1 4163.0 4166.1

GRS −3474.1 −3460.6 −2041.2 −2042.3

distributions of IG(2,10), to reflect a small point mass centered at 10. The spatial range
parameters, φω and φυ , were assigned prior distributions of Unif(0.1, 2), to reflect a
spatial range of 1.5 (3/2) to 30 (3/0.1). MCMC sampling was performed using the
computer program JAGS (Plummer, 2017) in R.

The results of Scenario 1 are presented in Table 3. While the credible intervals for
each model contain the true value of regression coefficients for female and household
size, as well as the true finite-population mean, the non-spatial models fail to contain
the true intercept and the non-spatial variance values in their credible intervals. As
expected, both spatial models were able to correctly capture the spatial parameters,
φω, and δ2ω, for the outcome. In addition, the coefficients η0 and ηy are small and
have credible intervals containing 0 for Models 2–4, which suggests that these models
correctly demonstrate no evidence of preferential response. The response-level spatial
parameters in Model 4 also suggest no evidence of spatial variability, as the credible
interval of φυ is nearly the same range as the prior distribution given and the spatial
variance, δ2υ , is very close to 0. In addition, the fit of Model 4 is negligibly poorer than
Model 3, as there is no spatial association in the probability of response.

The results of Scenario 2 are given in Table 4 and examines a preferential response
of a spatially associated outcome. Importantly, unlike Scenario 1, the two non-spatial
models fail to capture the true finite-populationmean of 9.94within their 95% credible
intervals. This is also true of the intercept term, β0, and non-spatial variance, σ 2,
although we expect σ 2 to be larger, as it absorbing the variability in the outcome
attributed to spatial association.Model 1 also incorrectly provides a positive estimative
of βfem whose credible interval does not contain the true value of −0.2. Moreover,
while Models 2–4 provide similar estimates of ηfem, Model 2 fails to capture the true
values of η0 and ηy in its credible intervals, unlike the two spatial models. Possibly
due to the poor modeling of income, Model 2 spuriously concludes that there is no
evidence of preferential sampling. Finally, as in Scenario 1, both spatial models have

123



Japanese Journal of Statistics and Data Science (2022) 5:407–430 421

Table 4 Simulation results of scenario 2: spatial outcome, preferential sampling

Model 1 Model 2 Model 3 Model 4
Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

ȳ (9.94) 10.36 (10.31, 10.42) 10.17 (9.97, 10.41) 9.99 (9.92, 10.05) 10.00 (9.91, 10.08)

β0 (10) 9.87 (9.66, 10.09) 9.74 (9.47, 10.01) 9.56 (8.63, 10.4) 9.54 (8.64, 10.37)

βfem (−0.2) 0.08 (−0.10, 0.25) −0.01 (−0.20, 0.19) −0.14 (−0.28, 0.01) −0.13 (−0.28, 0.01)

βhhs (0.10) 0.11 (0.07, 0.15) 0.11 (0.07, 0.15) 0.11 (0.08, 0.14) 0.11 (0.07, 0.14)

σ 2 (1) 1.71 (1.57, 1.86) 1.77 (1.61, 1.96) 0.99 (0.89, 1.09) 0.98 (0.89, 1.09)

η0 (−4) −1.56 (−3.93, 1.42) −3.50 (−4.52, −2.63) −3.34 (−4.86, −1.94)

ηfem (−1) −0.93 (−1.18, −0.69) −0.92 (−1.18, −0.67) −0.92 (−1.17, −0.68)

ηy (0.5) 0.25 (−0.05, 0.49) 0.44 (0.36, 0.55) 0.43 (0.29, 0.58)

φω (0.5) 0.75 (0.29, 1.32) 0.73 (0.27, 1.28)

δ2ω (1) 0.84 (0.46, 1.66) 0.84 (0.46, 1.68)

φυ (0) 0.96 (0.11, 1.95)

δ2υ (0) 0.04 (0.01, 0.11)

D 6928.4 6721.4 4141.9 4144.2

GRS −3829.3 −3609.0 −2048.3 −2055.0

similar estimates and correctly capture the spatial parameters φω and δ2ω. In Model 4,
even though φυ varies, it estimates very small values of δ2υ , which correctly suggests
little evidence of spatial association in the probability of response. The model fit
statistics both slightly favor Model 3 to Model 4, due to the lack of response-level
spatial association, and prefer the spatial to non-spatial models.

When incorporating spatial association into the probability of income response,
seen in Table 5, Model 4 outperforms the other three models in terms of model fit
by correctly accounting for this additional association in the logistic regression com-
ponent of the model. As before, non-spatial models have poorer model fit and larger
estimates of the non-spatial variance term.UnlikeModels 2–4,Model 1 fails to include
the true finite-population mean in its credible interval, which may be attributable to a
disregard for the preferential response. As in Scenario 2, Model 1 incorrectly provides
a positive estimate of βfem, and all models except Model 2 contain the true intercept in
their credible intervals. Models 2–4 each correctly capture the logistic regression coef-
ficients, η0, ηfem, and ηy . In addition, the spatial models provide reasonable estimates
of φω and δ2ω, and in the case of Model 4, φυ and δ2υ .

5 Data analysis

5.1 Implementation

As before, Models 1–4 were implemented using JAGS (Plummer, 2017) in R
and run for 10,000 iterations with 1000 burn-in, as examination of individ-
ual trace plots suggested sufficient mixing and convergence of the non-spatial
parameters. At each iteration g, the finite-population mean income, ȳ(g) =

123



422 Japanese Journal of Statistics and Data Science (2022) 5:407–430

Table 5 Simulation results of scenario 3: spatial outcome, non-ignorable sampling, spatial inclusion

Model 1 Model 2 Model 3 Model 4
Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

ȳ (9.94) 10.38 (10.32, 10.44) 9.91 (9.73, 10.07) 9.84 (9.74, 9.93) 9.99 (9.84, 10.13)

β0 (10) 9.97 (9.73, 10.20) 9.58 (9.33, 9.85) 9.50 (8.54, 10.39) 9.60 (8.65, 10.54)

βfem (−0.2) 0.06 (−0.13, 0.26) −0.12 (−0.33, 0.09) −0.14 (−0.3, 0.01) −0.09 (−0.25, 0.07)

βhhs (0.1) 0.09 (0.05, 0.13) 0.11 (0.07, 0.15) 0.10 (0.07, 0.14) 0.10 (0.07, 0.13)

σ 2 (1) 1.81 (1.66, 1.98) 2.04 (1.81, 2.29) 1.14 (1.02, 1.27) 1.07 (0.96, 1.19)

η0 (−4) −4.48 (−6.25, −2.87) −5.04 (−6.15, −3.79) −3.52 (−6.09, −1.07)

ηfem (−1) −0.85 (−1.11, −0.61) −0.84 (−1.1, −0.60) −0.97 (−1.25, −0.70)

ηy (0.5) 0.52 (0.35, 0.72) 0.58 (0.46, 0.70) 0.44 (0.21, 0.70)

φω (0.5) 0.67 (0.26, 1.20) 0.64 (0.22, 1.17)

δ2ω (1) 0.84 (0.45, 1.73) 0.82 (0.40, 1.83)

φυ (1.5) 1.53 (0.58, 1.98)

δ2υ (1) 0.91 (0.48, 1.82)

D 7035.3 6798.4 4397.1 4295.4

GRS −3819.5 −3466.9 −2153.9 −2119.1

exp
[
1
T

( ∑n
i=1

∑mi
j=1 y j (�i ) + ∑N

i=1
∑Mi

j=mi+1 y j (�i )
(g)

)]
, and the finite-population

mean percentage of income spent on fruits and vegetables, ȳ(g) = 1
T

(∑n
i=1

∑mi
j=1 exp

[
z j (�i ) − y j (�i )

]+∑N
i=1

∑Mi
j=mi+1 exp

[
z j (�i ) − y j (�i )(g)

] )
, were calculated using

estimates of the nonsampled units drawn at that iteration. The variance parameter σ 2
β

was fixed at 1000 to reflect an diffuse prior, while the σ 2
η and σηy terms were fixed

at 0.68 as a weakly informative prior restricting the range of the exponentiated logis-
tic regression coefficients to 1

5 and 5. The non-spatial σ 2, and spatial, δ2ω, variance
components were assigned prior distributions of IG(2,10) and IG(2,2), respectively,
to reflect small point masses centered at 10 and 2. The prior for δυ was assigned to be
uniform distribution ranging from 0 to 0.75, so that the standard deviation reported in
Sect. 2 is included in this range. This tight prior was found to improve convergence
in the other logistic regression parameters. The spatial range parameters, φω and φυ ,
were assigned prior distributions of Unif (0.1, 2), to reflect a spatial range of 1.5 (3/2)
to 30 (3/0.1). Computation times on a 2018 MacBook Pro laptop were negligible for
Models 1 and 2 but were approximately 15 h for Model 3 and 24 h for Model 4.

5.2 Results

The results of this analysis are presented in Table 6. Notably, there is no evidence
of an intervention effect on PIFV in any of the models, denoted by the coefficient
βtreat∗follow being small and all credible intervals containing 0. An improvement in
the intervention effect would have seen a larger positive coefficient. This finding
supports previous findings of no community-level changes as reported in Ortega et al.
(2016). The four models yield comparable estimates of all β regression coefficients,
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so the following interpretations are based on Model 4. All else equal, the amount
of spending on fruits and vegetables by men was estimated to have occurred with
a multiple of 58% (exp(−0.54)) applied to the corresponding spending by women.
Larger reported households were associatedwith higher amounts of household income
spent on fruits and vegetables, with PIFVmultiplicatively increasing by 15% for every
additional household member. Spending on fruits and vegetables by food purchasers
who reported having less than a high-school education was estimated to have occurred
with a multiple of 1.8 times the spending of those with a high-school diploma or more
education. There was a small negative linear effect of age on the outcome, as well as a
small positive quadratic term. PIFV was also lower at follow-up, which is consistent
with the raw percentages presented in Table 1. Therewere no differenceswere detected
for partner status.

Confirming the preliminary analyses discussed in Sect. 2, all three models that
account for preferential response conclude that larger incomes are more likely to
provide their income. Models 2–4 agree that age is not associated with the probability
of response. Accounting for association in the probability of response appears to also
best fits the data, as evidenced by the lowest value of D and highest GRS value.
Interestingly, the model fit for Model 2 is poorest (on the GRS scale), suggesting
that accounting for preferential sampling while not accounting for spatial association
(either at the outcome or response levels) leads to poorer fit. In addition, Model 3
fits poorer than Model 1 (and Model 2 on the D scale), which suggests that spatial
association at the outcome level may have been accounted for with the inclusion of
additional covariates.

However, our estimation of the finite-population mean of the percent of income
spent on fruits and vegetables is very model specific. Most importantly, it is evident
that in ignoring the presence of preferential sampling, Model 1 spuriously underes-
timates this percentage. The reason for this is clearly explained by examining each
corresponding model’s finite-population estimate of income. As Model 1 does not
account for the fact that individuals with lower incomes are less likely to report their
income, there is much less variability in the average income of the community. This
leads to a spurious estimate almost $10,000 and 30% larger than the next closest
estimate of $29,364.66, given by Model 2. It is important to note that Model 1’s esti-
mates are also much larger than the averages presented in Table 1, while Models 2–4
present credible intervals that contain these values. While it is true that the additional
variability from accounting for preferential sampling leads to larger posterior credible
intervals, we note that no part of Model 1’s credible interval is contained in any of the
other models. Despite this apparent disagreement, Model 4’s incorporation of spatial
association in the response mechanism results in a compromise between Model 1 and
3. This trend is also observed in the finite-population mean fraction, where higher
estimated incomes in Model 1 correspond to much lower estimated fractions than the
other models. Based on model fit statistics, we conclude that Model 4 provides the
best estimate of the finite-population fraction mean, which is 26%.

In addition, as posterior samples are drawn for all individuals with non-response,
finite-population estimates can be constructed for each community at both time-points,
which are presented for each model in Table 7. Bolded estimates represent instances
where the 95% credible intervals do not include the raw average reported in Table 1.
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Fig. 3 Linear interpolation plots of estimated PIFV by site and time-point from model 4

Importantly, these results emphasize the importance of imputation. Models 2–4 show
remarkable similarity in these estimates and conclude that raw data of 6 of the 8 sites
underestimates the percentage of income spent on fruits and vegetables at baseline
and all but 1 of the 8 underestimate at follow-up. Model 3 additionally identifies site
1 at baseline, but this is not supported by the rest of the models. Even in the case of
Model 1, at baseline 3 were found to underestimate the percentage and 1 suggested
overestimation, and at follow-up, 2 communities were found to underestimate as well.
Encouragingly, in all but one case (site 7 at baseline) of the disagreements with the raw
data thatModel 1 identified,Models 2–4 also identified these cases. In addition,Models
2–4 suggest that the baseline total is underestimating the true average and all models
agree that the follow-up total is underestimated. Interpolated maps corresponding to
these finite-population estimates from Model 4 are presented in Fig. 3.

6 Conclusion

This paper presents a new framework to account for data whose outcome is spatially
associated and where the probability of response is assumed to be associated with the
value of the outcome. We examine the implications of this data on finite-population
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Table 7 Finite-population estimates and 95% CI of percentage of income spent on fruits and vegetables by
community and timepoint

Site Time Data Model 1 Model 2 Model 3 Model 4

1 B 26.0 23.2 (19.6, 29.5) 34.2 (25.5, 49.4) 45.9 (31.9, 70.0) 33.3 (24.8, 48.3)

F 11.2 13.6 (10.4, 18.8) 24.4 (16.0, 38.8) 38.2 (23.7, 63.5) 23.9 (15.9, 37.4)

2 B 11.4 14.8 (11.8, 20.5) 21.9 (15.2, 34.5) 23.5 (16.0, 37.4) 20.4 (14.4, 31.5)

F 13.6 14.7 (12.8, 18.4) 19.0 (14.7, 26.9) 21.0 (15.8, 30.6) 18.9 (14.7, 26.8)

3 B 16.8 19.6 (15.6, 26.6) 30.9 (21.7, 46.5) 35.5 (24.3, 54.4) 30.5 (21.5, 45.8)

F 13.6 14.3 (13.0, 17.2) 17.1 (14.0, 23.9) 18.1 (14.5, 25.6) 16.7 (13.9, 22.3)

4 B 13.6 17.4 (13.6, 23.7) 29.2 (19.9, 45.5) 42.1 (26.8, 68.4) 27.4 (18.6, 42.9)

F 11.4 17.0 (12.3, 24.4) 33.4 (21.6, 53.2) 55.5 (33.5, 90.8) 31.8 (20.1, 50.7)

5 B 10.6 15.3 (11.6, 22.2) 23.8 (15.7, 38.8) 22.6 (15.2, 36.0) 20.5 (14.1, 32.3)

F 10.9 11.1 (10.6, 12.7) 12.0 (10.8, 15.3) 12.1 (10.8, 15.5) 11.8 (10.7, 14.6)

6 B 9.2 12.9 (9.8, 18.5) 21.5 (14.3, 34.6) 24.2 (15.6, 39.1) 19.4 (13.2, 30.3)

F 10.5 11.7 (9.8, 15.2) 17.2 (12.4, 26) 20.0 (14.0, 31.3) 16.3 (12.0, 24.1)

7 B 46.5 38.0 (34.0, 45.2) 48.1 (39.2, 64.2) 69.8 (50.7, 100.00) 57.5 (44.0, 81.8)

F 15.6 17.5 (13.8, 23.9) 26.7 (18.8, 40.4) 54.0 (33.8, 90.6) 41.1 (26.3, 66.6)

8 B 15.2 19.1 (14.7, 26.6) 31.0 (20.9, 48.3) 43.1 (27.5, 69.0) 30.8 (20.6, 47.9)

F 11.3 15.4 (11.6, 21.6) 24.7 (16.8, 38.5) 37.8 (23.9, 61.8) 26.5 (17.3, 42.4)

Total B 18.3 20.1 (18.2, 22.6) 30.1 (24.9, 37.6) 38.4 (30.7, 48.5) 30.0 (24.7, 37.4)

F 12.3 14.4 (13.1, 16.1) 21.6 (17.7, 27.1) 31.5 (24.7, 40.9) 23.0 (18.8, 29.2)

Models whose 95% credible intervals do not contain the raw mean average are bolded. One percentage has been
capped at 100.0

quantities and demonstrate how to perform Bayesian estimation on these values. This
works builds on an existing literature in spatial statistics, Bayesian finite-population
estimation, andmissing data and has awide range of applications in health, economics,
and environmental work.

Specifically, in our presented data analysis, we find that accounting for spatial
association at both the outcome and probability levels provides the best model fit. By
accounting for such associations and preferential responses in income, we are more
confident in concluding that therewas no effect on the percent of income spent on fruits
and vegetables at the community level attributable to the corner-store intervention.
We were, however, able to more accurately describe the individual communities by
estimating finite-population means at each site level. In fact, the finite population
estimates of income that stem from the modeling ignoring both spatial association
and preferential response are substantially larger than the other models and are less
believable, given the community. This directly contributed to lower estimates of the
percent of income spent on fruits and vegetables in these communities, compared to the
other models. In future projects, in these regions, interventions that focus on FV access
and knowledge could target areas with low estimated percentages. In addition, future
work can examine ways in which income information can be solicited from lower
income neighborhoods and what factors may be driving this non-response (besides
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the level of income). This work can also assist in more accurate needs assessments of
local communities and, therefore, improve the allocation of health resources. Further,
as there is interest in estimating intervention effects, new approaches described in the
casual inference literature which can account spatial association (Akbari et al., 2021)
may be appropriate.

The literature of Bayesian finite-population estimation in the presence of spatial
association is limited and future extensions to the work presented in this paper are
numerous. While this model draws on the preferential sampling framework described
by Diggle et al. (2010), we examined a missing data case that had similar evidence
of preferential response. However, a data analysis implementing this technique on a
dataset with preferential sampling from a finite population would be a strong addition
to the literature. The authors view the framework discussed in Sect. 3.1 to be flexible
enough to allow for other, more complicated sampling schemes as well, although
more simulation work would be needed to fully understand the implications of these
on finite-population quantities, especially if spatial association is assumed. Further,
while a linear relationship between the log-odds of response and incomewas assumed,
other relationships may be considered in future works.

In addition, while the sample size presented in the data analysis of this paper was
small, this framework can be extended to account for massive sample sizes. The prob-
lem of spatial modeling for big data stems from the inversion of dense covariance
matrices, but modern work in covariance approximation has made this feasible. Such
techniques include low-rank models, sparsity-inducing processes, and map reduc-
ing approaches (Banerjee, 2017; Heaton et al., 2018; Guhaniyogi & Banerjee, 2018;
Banerjee, 2020), see, e.g., and references therein.

Further, while the authors have only considered a Gaussian process to describe
the outcome variable, this framework could be extended to other processes, such as
mixtures of Gaussian processes (Neelon et al., 2014), a generalized Gaussian process
(Chan & Dong, 2011), or a spatial Dirichlet process (Gelfand et al., 2005). Extensions
to multivariate responses and spatio-temporal data may also serve useful, particularly
when examining health outcomes. Finally, learning about spatial difference boundaries
(Gao et al., 2022) from finite population estimates for regionally aggregated health
outcomes is witnessing growing interest among public health researchers and will
comprise future investigations.
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