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Abstract
This paper is a contribution to a special issue on Data Science: Present and Future,
because the main topic has been and will be in an active area of contemporary data
science. High-frequency financial data are commonly available by now. To estimate
Brownian and jump functionals from high-frequency financial data under market
micro-structure noise, we introduce a new local estimation method of the integrated
volatility and higher order variation of Ito’s semi-martingale processes. Although
extending the realized volatility (RV) estimation to the general diffusion-jump pro-
cesses without micro-market noise is straightforward, estimating Brownian and jump
functionals in the presence of micro-market noise may not be easy. In this study, we
develop the local SIML (LSIML) method, which is an extension of the separating
information maximum likelihood (SIML) method proposed by Kunitomo et al. (Sep-
arating information maximum likelihood method for high-frequency financial data,
2018) and Kunitomo and Kurisu (Jpn J Stat Data Sci (JJSD) 4(1):601–641, 2021).
The new LSIML method is simple, and the LSIML estimator has some desirable
asymptotic properties and reasonable finite sample properties.
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1 Introduction

This paper is a contribution to a special issue on Data Science: Present and Future,
because the main topic has been and will be in an active area of contemporary data
science. High-frequency financial data are commonly available by now and there is
a tremendous impact on data science. We are proposing a new approach, which is
simple as a statistical method, to solve the difficult problem involved in this study.

In statistics and financial econometrics, several statistical methods for estimating
integrated volatility and co-volatility from high-frequency data have been proposed.
Integrated volatility is a type of Brownian functional, and realized volatility (RV)
estimate has been often used when any micro-market noise does not exist and the
underlying diffusion process is directly observed. The asymptotic distribution of
the RV estimator depends on the fourth-order integrated Brownian functional as the
asymptotic variance in the stable-convergence sense. Thus, we need to estimate the
fourth-order integrated moments to make statistical inference on integrated volatil-
ity when the number of observations increases in a fixed interval. However, the RV
estimator is known to be quite sensitive to the presence of micro-market noise in
high-frequency financial data. Several statistical methods have been proposed to esti-
mate the integrated volatility and co-volatility (for the details of some developments of
financial econometrics, see (Ait-Sahalia & Jacod 2014; Barndorff-Nielsen et al., 2008;
Jacod et al., 2009; Zhang & Per, 2005). In particular, Malliavin and Mancino (2009)
have developed the Fourier series method, while (Kunitomo et al., 2018), referred
to as KSK (2018), independently developed the separating information maximum-
likelihood (SIML) estimation. We use the latter formulation in this study, which is
closely related to the former method; see Mancino et al. (2017).

When market micro-structure noise cannot be ignored in high-frequency financial
data, KSK (2018) have developed the SIML method for estimating volatility and co-
volatilities of security prices when underlying processes are the class of diffusion
processes. In this study, we extend the SIML method and develop the local SIML
(LSIML) estimation method for estimating higher order Brownian and jump func-
tionals, such as the fourth-order integrated moments and the jump part of quadratic
variation. The LSIML method was originally suggested in Chapter 8 of KSK (2018),
but they did not provide the detailed exposition. (To avoid the possible duplication of
explanations on the SIML method, we sometimes refer to the corresponding parts of
KSK (2018), and Kunitomo and Kurisu (2021, referred to as KK (2021).) Our main
motivation for developing the LSIML method is to improve the SIML method and
to estimate some Brownian and jump functionals, which are general than the volatil-
ity and co-volatility. For instance, the fourth-order integrated moments appear as the
asymptotic variance of the limiting distribution of several estimation methods, includ-
ing the SIML estimation. As the main purpose of this study is to propose the use of
the LSIML method, we attempt to make our formulation not in the most general case,
but concentrate on the simple cases to make the results easy to understand.

In this paper, we show that the LSIMLmethod has some desirable asymptotic prop-
erties, such as consistency and asymptotic normality. More importantly, there could
be some applications to the jump-diffusion case. The LSIML method has reasonable
finite sample properties, as demonstrated through several simulations. As the LSIML
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method is a straightforward extension of the SIML estimation, it is quite simple and
useful for practical applications. Although other methods could be used for estimating
higher order Brownian and jump functionals, the LSIML method has some merits,
such as its simplicity and desirable asymptotic properties.

The reminder of this paper is organized as follows. In Sect. 2, we discuss the
framework of the estimation problem of some Brownian and Jump functionals when
market micro-structure noise in high-frequency financial data exists. In Sect. 3, we
generalize the estimation problemofRV and explain themethod of the local estimation
in our study. In Sect. 4, we propose the LSIML method under market micro-structure
noise, which is a generalization of the SIML method originally developed by KSK
(2018). In Sect. 5, we investigate the asymptotic properties of the local SIMLmethod,
such as consistency and asymptotic normality. In Sect. 6, we discuss the problem of
selecting key parameters required in the LSIML estimation method. In Sect. 7, we
discuss the possible generalizations of our results in more general settings, including
the jump-diffusion and multivariate models. In Sect. 8, we provide some finite sample
properties of the LSIML estimation based on a set of Monte Carlo simulation and
provide the empirical result of the high-frequency data analysis as an illustration. In
Sect. 9, we provide some concluding remarks, and mathematical details are given in
the Appendix.

2 Estimation of Brownian and jump functionals

To identify the essential feature of the local estimation method in this study, we first
consider the basic and simple time-varying cases when p = 1 (where p is the dimen-
sion). Let

Y (t (n)
i ) = X(t (n)

i ) + εnv(t (n)
i ) (i = 1, . . . , n) (1)

be the (one-dimensional) observed (log-)price at t (n)
i (0 = t (n)

0 ≤ t (n)
1 ≤ · · · ≤ t (n)

n =
1) and v(t (n)

i ) (= vi ) be a sequence of i.i.d. random variables with E[vi ] = 0 and
E[v2i ] = σ 2

v (> 0). We consider the case when

εn = 1

nδ
, (2)

where δ (≥ 0) is a constant. When δ = 0, (1) is the market micro-structure noise
model, while it is the high-frequency financial model without micro-market noise
when δ = +∞. When 0 < δ < +∞, (1) corresponds to the small-noise high-
frequency model.
The underlying continuous-time Brownian martingale is given by

X(t) = X(0) +
∫ t

0
σsdBs (0 ≤ s ≤ t ≤ 1) , (3)
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and we assume that it is independent of v(t (n)
i ), σs (= σs(x)) is the (instantaneous)

volatility function, which is bounded and Lipschitz-continuous, and Bs is the standard
Brownian motion.

Although the LSIML method can be applied to more general Itô semi-martingales
under weaker conditions, such as the Hölder condition, we first consider the simple
situation, because it provides the essential feature of the LSIML method in a simple
manner. (See Sect. 7 for its possible extensions.) We assume that, when the volatility
process is stochastic, it has a representation of Ito’s Brownian semi-martingale as

σ 2
t = σ0 +

∫ t

0
μσ
s ds +

∫ t

0
ωσ
s dB

σ
s (0 ≤ s ≤ t ≤ 1) , (4)

where Bσ
s is another Brownian motion, which may be correlated with Bs , and

μσ
s (= μσ

s (σ 2)) andωσ
s (= ωσ

s (σ 2)) are the drift and diffusion coefficients, which are
assumed to be deterministic, bounded and Lipschitz-continuous. They can be relaxed
to some extent, but the generalization of the underlying process is not within the scope
of this paper, except for some in Sect. 7.

The first problem of our interest is how to estimate Brownian functionals of the
form

V (g, 2r) =
∫ 1

0
g(s)σ 2r

s ds (5)

for any positive integer r and a known function g(s) from a set of observations of
Y (tni ) (i = 1, . . . , n). We denote V (2r) = V (g, 2r) when g(s) = 1 (0 ≤ s ≤ 1) for
convenience.

This type of Brownian functionals has important examples. A clear example is the
integrated volatility that corresponds to the case when r = 1.

Example 1 When r = 1, we have the integrated volatility, which is given by

V (2) =
∫ 1

0
σ 2
s ds . (6)

Example 2 The asymptotic variance of the SIML estimator of integrated volatility
V (2) is given by

2V (4) = 2
∫ 1

0
σ 4
s ds . (7)

Note that the estimation of V (4) with r = 2 under market micro-structure noise is
a non-trivial task. Zhang and Per (2005), Barndorff-Nielsen et al. (2008), Jacod et
al. (2009), and Ait-Sahalia and Jacod (2014) discussed different estimation methods
of integrated quarticity (

∫ 1
0 σ 4

u du), a higher order Brownian functional with different
g(s) functions. However, it seems that they are more complicated than the method
developed in this study.
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One important class of continuous-time processes is Ito’s jump-diffusion process.
A simple process may be expressed as

X(t) = X(0) +
∫ t

0
σsdBs +

∑
0≤s≤t

�Xs (0 ≤ s ≤ t ≤ 1) , (8)

where the jump term with Xt − Xt− �= 0 and �X = Xt − Xt−, which is indepen-
dent of Bs (i.e., the Brownian motion). The term

∑
0≤s≤t �Xs is formally defined as∫ t+

0

∫
X f1(s, x, ·)Np(dsdx) + ∫ +t

0

∫
X f2(s, x .·)N̂p(dsdx) with measurable functions

fi (i = 1, 2), Poisson random measure Np(dtdx), and the compensator N̂p(dtdx).
(See Chapter II of Ikeda and Watanabe (1989).)

In this study,weuse the simple caseswhen the number of jumps is finite in [0, 1], and
the sizes of jumps fi (i = 1, 2) are bounded with E[�Xs] = 0. It is certainly possible
to extend our analysis to more general jump processes with additional conditions.

As market micro-structure noise exists, which could be regarded as jump com-
ponent at each observation, distinguishing the jump term in the underlying Ito’s
semi-martingales may be difficult from the market micro-structure noise, or mea-
surement error in the statistical terminology. It is because, in the general theory of
stochastic processes, there are small jumps and also large jumps. (See Ikeda and
Watanabe (1989), Jacod and Protter (2012), and Kunitomo and Kurisu (2017) for
details.) Our interpretation of jumps in the present study would be to detect large
jumps of Ito’s semi-martingales from noisy high-frequency observations.

In this situation, the fundamental quantity of the stochastic process is quadratic
variation (QV), which is an extension of the integrated volatility, given by

V (2) =
∫ 1

0
σ 2
s ds +

∑
0≤s≤1

(�Xs)
2 . (9)

Example 3 Whenwe have jumps under market micro-structure noise, wemay be inter-
ested in the continuous part of QV by

VC (2) =
∫ 1

0
σ 2
s ds (10)

and the jump part of QV by

VJ (2) =
∑

0≤s≤1

(�Xs)
2 . (11)

Whenmarketmicro-structure noise exists, the random jumpprocessmaybe difficult
to distinguish from the noise. However, for many applications, the roles of stochastic
(large) jumps and market micro-structure noise (or measurement error) vary, and they
can be distinguished in the high-frequency financial data.
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3 Local estimation for the no-market micro-structure-noise case

For simplicity, we use t (n)
j − t (n)

j−1 = 1/n ( j = 1, . . . , n) and tn0 = 0. We divide
(0, 1] into b(n) sub-intervals, and in every interval, we allocate c(n) observations. We
consider the sequence c∗(n), such that c∗(n) → ∞, and we can take b(n) → ∞ and
c(n) ∼ n/b(n) as n → ∞. A typical choice of observations in each interval would
be c(n) = [nγ ] and c∗(n) = nγ (0 < γ < 1), whereupon b(n) ∼ [n1−γ ]. Because
some extra observations exist (where n may not be equal to b(n)c(n) and b(n) is a
positive integer), we must adjust the number of terms in each interval c(n) = c∗(n) +
(several terms). Although finite sample effects can occur, we ignore the effects of
extra terms in the following development, because they are asymptotically negligible,
and hence, we take b(n)c(n) = n.

When market micro-structure noise does not exist, we simply use the log-return
process r j = y(t (n)

j ) − y(t (n)
j−1) from the log-price process y(t (n)

j ). We order data r j
in each sub-intervals and denote rk,(i) (k = 1, . . . , c(n); i = 1, . . . , b(n)).

There can be two types of local estimation methods. (We explain the first type
method in this section and the second method in the next section.) When p = 1, let
the 2r th moment of rk,(i) (r ≥ 1) in the ith interval be

M∗
2,(i) =

c(n)∑
k=1

[rk,(i)]2r . (12)

Then, we define the first type of the local realized moment (LRM) estimator of V (2r)
by

V̂ ∗(2r) = nr−1

ar

b(n)∑
i=1

M2r ,(i), (13)

where

ar = 2r !
r !2r .

When r = 1, it is the RV, because ar = 1. In this construction of the first type LRM
estimation, we should normalize the sample moment by the scale factor nr−1/ar and
to use the local Gaussianity of underlying continuous martingales. (Note that ar is the
2r (r ≥ 1) moment of Gaussian distribution, for instance.) For a constant volatility,
the variance of rk,(i) is proportional to σ 2(1/n) and we need to normalize the higher
order moment r2rk,(i) (r ≥ 1) by ar because of the local Gaussianity as the interval
decreases.

For the first type LRM estimator when there does not exist any jump term, we
have the next result on the asymptotic properties, which could be obtained straight-
forwardly by extending the standard arguments developed in the existing literature to
the present case. (See, for example, Section 4.1.2 and Eq. (4.6) of Ait-Sahalia and
Jacod (2014) on the standard argument in financial econometrics.)
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Proposition 1 Assume that market micro-structure noise does not exist; that is, εn = 0
with p = 1 and r ≥ 1 in (1), (3) and (4). Assume also that Y (t (n)

i ) = X(t (n)
i ) and

σs (0 ≤ s ≤ 1) is bounded and Lipschitz-continuous.

(i) As n −→ ∞

V̂ ∗(2r) − V (2r)
p−→ 0 . (14)

(ii) As n −→ ∞
√
n
[
V̂ ∗(2r) − V (2r)

] L−s→ N [0,W ] , (15)

where L − s denotes the stable convergence (SC), and

W = c∗
r

∫ 1

0
[σx (s)]

4r ds, (16)

where c∗
r (= a2r/a2r − 1) is a positive constant.

We notice that we have used the SC in Proposition 1, because W is a random variable
when the volatility function is stochastic in general. We use the SC in the following
analysis, and we provide a brief discussion on the central limit theorem CLT), and SC
at the end of the Appendix.

4 Local SIML estimation

In this section, we introduce two types of local estimation methods. We consider
the estimation problem of some Brownian and jump functionals when market micro-
structure noise exists as (1), (2) with δ ≥ 0, and (3) or (8). We utilize the same
localization of the estimation method in Sect. 3, and then divide (0, 1] into b(n)

sub-intervals, and at every interval, we allocate c(n) observations. We consider the
sequence c∗(n) and c(n), such that c(n), c∗(n) → ∞ (c(n) = c∗+(some extra terms)),
and we take b(n), c(n) → ∞ and b(n) ∼ n/c∗(n) as n → ∞. We choose that
observations in each interval would be c∗(n) = nγ (0 < γ < 1), whereupon
b(n) ∼ n1−γ , but we assume n = b(n)c(n) for the resulting simplicity.

Then, we apply the SIML method developed by KSK (2018) to each sub-intervals.
To use the SIML transformation in each local interval, we setmc = [c(n)α] (0 < α <

0.5) in the ith interval (i = 1, . . . , b(n)), and the transformed data are denoted as zk,(i)
as the kth data in the ith interval Ic(i) (k = 1, . . . , c(n); i = 1, . . . , b(n)). Here, we
explain the procedure for the general case when p ≥ 1 by following the notations in
Chapter 3 of KSK (2018) for the p−dimensional stochastic process y(t (n)

i ). In each
sub-interval, we transform the c(n)× p observation matrixYc(n),(i) to c(n)× pmatrix
Zn,(i) (= (z

′
k,(i))) (i = 1, . . . , b(n)) by

Zc(n),(i) = h−1/2
c(n) Pc(n)C

−1
c(n)

(
Yc(n),(i) − Ȳ0,(i)

)
, (17)
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where hc(n) = 1/c(n), and c(n) × c(n) matrices

C−1
c(n) =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1

⎞
⎟⎟⎟⎟⎠ , (18)

Pc(n) = (p jk) , p jk =
√

2

c(n) + 1
2

cos

[
2π

2c(n) + 1
(k − 1

2
)( j − 1

2
)

]
. (19)

The initial conditions are given by the p × 1 vector y0,(i) (which is the initial vector
in the ith interval), and 1c(n) = (1, 1, . . . , 1)‘

Ȳ0,(i) = 1c(n) · y′
0,(i) (i = 1, . . . , b(n)). (20)

Then, we have the spectral decomposition

C−1
c(n)C

′−1
c(n) = Pc(n)Dc(n)Pc(n) , (21)

where Dc(n) is a diagonal matrix with the kth element dk = 2
[
1 − cos(π( 2k−1

2c(n)+1 ))
]

(k = 1, . . . , c(n)). We define

ak,c(n) = c(n)dk = 4c(n) sin2
[
π

2

(
2k − 1

2c(n) + 1

)]
(k = 1, . . . , c((n)). (22)

When p = 1 and for any positive integer r , let the secondmoment in the ith sub-interval
be

M2,(i) = 1

mc

mc∑
k=1

[zk,(i)]2 . (23)

Then, we define the second type of the LSIML estimator of V (2r) by

V̂ (2r) = b(n)r−1
b(n)∑
i=1

[M2,(i)]r . (24)

If we take c(n) = n, b(n) = 1 and r = 1, then we have the SIML estimator for
integrated volatility as a special case. In this construction of the LSIML estimator, we
have c(n) observations in each interval. Thus, we must normalize (24), because the
scale factor is c(n)/n = b(n)−1.

We note that the second type V̂ (2r) in (23) and (24) is slightly different from the
first type V̂ ∗(2r) in (12) and (13) when r ≥ 2. In this paper, we mainly investigate the
asymptotic properties of V̂ (2r) in (23) and (24), because the results and derivations in
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Appendix are considerably simpler than V̂ ∗(2r) in (12) and (13). (See Kunitomo and
Sato (2018, unpublished) for some detail of the first type.) However, we shall report
some simulation results in Sect. 8 and it may be interesting to compare two types of
estimation methods.

5 Asymptotic properties of the local SIML

Weconsider the casewhen σs is a time-varying continuous and bounded functionwhen
p = 1. First, we consider the asymptotic properties of the LSIML estimation for the
case of r = 1. Second, we discuss the case when r ≥ 2. The SIML estimation method
was originally developed for the case of constant volatility. However, it has some
desirable asymptotic properties when the instantaneous volatility is time-dependent
and also stochastic in the form of (4). The LSIML estimation shares these asymptotic
properties of the SIML method. Given that we need some arguments based on the
SC and the martingale CLT (MCLT) in the stochastic case, we explain the asymptotic
properties in this section as if the time-varying volatility was a deterministic func-
tion. (This paper mainly reports simulation results in this case to save the space.) A
discussion on the SC is given at the end of the Appendix.

(i) When r = 1
First, we consider the asymptotic behavior of the quantity
M2,(i) = (1/mc)

∑mc
k=1 z

2
k,(i) in the ith interval Ic(i) = ((i − 1) c(n)

n , i c(n)
n ] (we

use the notation t (n)
i−1 = (i − 1) c(n)

n , and t (n)
i = i c(n)

n (i = 1, . . . , b(n))), when we
take n = b(n)c(n), mc = [c(n)α] (0 < α < 0.5) and mc → ∞ as n → ∞. We
summarize the result for the case of r = 1, which corresponds to Proposition 1without
any market micro-structure noise. This presentation may be useful to understand the
results in more general cases with the presence of market micro-structure noise. The
derivation is given in the Appendix.

Theorem 2 When r = 1 and p = 1 in (1), (2), (3) and (4) with δ ≥ 0. Furthermore,
assume that v(t (n)

i ) is a sequence of i.i.d. random variables with E[vi ] = 0, E[v4i ] <

+∞, σs (0 ≤ s ≤ 1) is bounded and Lipschitz-continuous. We set α∗
1 = 1 + (2δ −

1)/(2γ ), α∗
2 = 1 + (4δ − 3)/(5γ ), and 0 < γ < 1.

Then, we have the following asymptotic properties of the LSIML estimator with
0 < γ < 1:

(i) For mc = [c(n)α] and 0 < α < min{0.5, α∗
1}, as n −→ ∞

V̂ (2) − V (2)
p−→ 0. (25)

(ii) For mc = [c(n)α] and 0 < α < min{0.4, α∗
2}, as n −→ ∞

√
mcb(n)

[
V̂ (2) − V (2)

] L−s→ N [0,W ] (26)

123



840 Japanese Journal of Statistics and Data Science (2022) 5:831–870

in the SC sense, where

W = 2
∫ 1

0
σ 4
s ds. (27)

If we use δ = 0.0 and γ = 3/4 (4/5), then the first condition for consistency
implies that 0 < α < 1/3 (3/8), while the second condition for asymptotic normality
implies that 0 < α < 1/5 (1/4).

(ii) When r ≥ 2
We investigate the asymptotic properties of the LSIML estimator when p = 1 and

r ≥ 2. A generalization of Theorem 2 when r ≥ 2 and p = 1 is as follows, which is
the summary of the asymptotic properties of the LSIML estimation. The derivation is
given in the Appendix.

Theorem 3 When p = 1 and r ≥ 2 in (1), (2), (3), and (4) with δ ≥ 0, assume that
v(t (n)

i ) is a sequence of i.i.d. random variables with E[vi ] = 0, E[v4ri ] < +∞ and
σs (0 ≤ s ≤ 1) is bounded and Lipschitz-continuous. We define α∗

1 = 1 + (2δ −
1)/(2γ ), α∗

2 = 1 + (4δ − 3)/(5γ ), and 0 < γ < 1. Then, we have the following
asymptotic properties of the LSIML estimator:

(i) For mc = [c(n)α] and 0 < α < min{0.5, α∗
1} (α∗

1 > 0), as n −→ ∞

V̂ (2r) − V (2r)
p−→ 0. (28)

(ii) We assume the additional condition γα > 1−γ and 0 < γ < 1. Formc = [c(n)α]
and 0 < α < min{0.4, α∗

2} (α∗
2 > 0), as n −→ ∞

√
mcb(n)

[
(V̂ (2r) − V (2r)) + (V (2r) − V ∗∗(2r))

] L−s→ N [0,W ] (29)

in the SC sense, where

W = 2r2
∫ 1

0
σ 4r
s ds , (30)

and

V ∗∗(2r) = [b(n)]r−1
b(n)∑
i=1

(∫ t (n)
i

t (n)
i−1

σ 2
s ds

)r

. (31)

When r ≥ 2, we need an asymptotic bias term in (29) to express the limiting
distribution of estimator. As shown in the Appendix, we have some complications in
the evaluation of stochastic orders in this case. When r = 1, however, any bias term
does not exist, and we obtain the result in Theorem 2.

When γ = 3/4 (or4/5), the condition γα > 1 − γ in Part (ii) implies that
α > 1/3 (or1/4).
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It may be interesting to find that the form of the asymptotic variance for the LSIML
estimation is the same as that for RV as in Proposition 1 when market micro-structure
noise does not exist except that n (= b(n)c(n)) is replaced by b(n)mc.

6 Optimal choice of ˛ and �

Because the properties of theLSIMLestimationmethod depend crucially on the choice
of c(n) and mc, which are dependent on n, we should investigate the asymptotic and
the small-sample effects of their choice.

As explained in the derivation of Theorem 2 in the Appendix [(A.81), (A.89), and
(A.90)], the asymptotic bias of the LSIML estimator is proportional to

ABn ∼
[
b(n) × m2

c

c(n)

]
(εn)

2 , (32)

and the asymptotic variance is proportional to

AVn ∼ 1

mcb(n)
= 1

n
[c(n)]1−α . (33)

Hence, when n is large, we may approximate the mean squared error of the LSIML
estimator as

gn = c1g
1

n
[c(n)]1−α + c2g

[
b(n) × m2

c

c(n)

]2
(εn)

4 , (34)

where c1g and c2g are some constants.
By setting c(n) = nγ and b(n) = n1−γ ; (0 < γ < 1), we can re-write

g∗
n = c1g

1

n
[c(n)]1−α + c2g

[
n2(1−γ )−2γ+4αγ−4δ

]
. (35)

Then, by ignoring the difference of c(n) = [nγ ] and c(n)∗ = nγ as similar
terms, and differentiating MSE with respect to α, we obtain the condition, such that
n−1c(n)1−α (= n−1+γ (1−α)) is proportional to n−[2(1−γ )−2γ+4αγ−4δ]. By rearranging
the related terms, we obtain the next result.

Theorem 4 When p = 1 and r = 1 in (1), (2), (3) and (4) with δ ≥ 0, assume that
v(t (n)

i ) is a sequence of i.i.d. random variables with E[vi ] = 0 and E[v4ri ] < +∞,
and σs (0 ≤ s ≤ 1) is bounded and Lipschitz-continuous. An optimal choice of
mc = [c(n)α] and c(n) = [nγ ] (with εn = n−δ , 0 < γ < 1, and δ ≥ 0) to minimize
MSE, when n is large, is approximately given by

1 − γ (1 − α) = 2(1 − γ ) − 2γ + 4αγ + 4δ , (36)
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which implies the choice as

α∗ = 1 − γ − 2(1 − γ ) + 4δ

3γ
= 1 + 4δ − 1

3γ
. (37)

For example, when δ = 0, α∗ = 1− 1/(3γ ). When δ = 0 and we take α∗, then the
MSE is proportional to n−[1−γ+γα∗], which is

MSE ∼ n−2/3 . (38)

Because the MSE in Proposition 1 is proportional to n−1, we have some loss of
efficiency when market micro-structure noise in high-frequency data exists.

When r ≥ 2, the result of Theorem 4 holds if the volatility function is constant
in [0, 1]. However, in the general case, we need slightly different conditions, and
further complication may occur. This is because we have an additional bias term due
to V (2r) − V ∗(2r) of (29) in Part (ii) of Theorem 3 in the general case.

7 Possible extensions

Our results in the previous sections have possible generalization.We discuss two cases
of the jump-diffusion process and the multivariate diffusion models in this section.

7.1 Continuous part and jump part of quadratic variation

We consider the estimation problem in Example 3 in Sect. 2. When market micro-
structure noise does not exist in the continuous-time Ito-process as X(t) = X(0) +∫ t
0 σsdBs + ∑

0≤s≤t �Xs (0 ≤ s ≤ t ≤ 1), the method of estimating the continuous
and jump parts of quadratic variation is known. For instance, in Chapters 9 and 13
of (Jacod & Protter, 2012), the truncation functionals were developed, and many
theoretical results in high-frequency asymptotics were reported. However, when some
market micro-structure noise exists, it seems that any unified estimation method is
not available. The LSIML method provides a useful solution for this purpose. In this
subsection, we investigate the simple case of the diffusion-jump model, and then
assume that p = 1, the jump size is bounded, and a finite number of jumps in [0, 1]
can occur in [0, 1]. The discussion is based on Sect. 2 of KK (2021), and the general
discussion of diffusion-jump processes has been given in Jacod and Protter (2012).

We consider the truncated functionals of the LSIML estimation. From Sect. 3,
when p = 1 and r = 1, let the second moment in the ith sub-interval be M2,(i) =
1
mc

∑mc
k=1[zk,(i)]2. We define the truncated LSIML functionals VJ (2) and VC (2) by

V̂J (2) =
b(n)∑
i=1

M2,(i) I (M2,(i) > un) (39)
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and

V̂C (2) =
b(n)∑
i=1

M2,(i) I (M2,(i) ≤ un), (40)

respectively, where I (·) is the indicator function.
Here, we take the truncation parameter un (a sequence of positive constants), such

that

An = 1

u2n

[
1

b(n)
+ b(n)

c(n)2−4α

]
p−→ 0 . (41)

(See Lemma A-3 in the Appendix.) Then, we can estimate the continuous part and
jump part of the quadratic variation in a simple manner.

We summarize the asymptotic properties of the truncated LSIML estimator as the
next result. The proof is given in the Appendix.

Theorem 5 When r = 1 and p = 1 in (1), (2), (4) with δ ≥ 0, and (8) instead
of (3), assume that v(t (n)

i ) is a sequence of i.i.d. random variables with E[vi ] = 0,
E[v4i ] < +∞, σs (0 ≤ s ≤ 1) is Lipschitz-continuous, and jumps are bounded. We
also assume that α∗

1 > 0, α∗
2 > 0 in Theorem 2, and the condition (41) on An. Then,

we have the following asymptotic properties of the truncated LSIML estimator with
0 < γ < 1.

(i) For mc = [c(n)α] and 0 < α < min{0.5, α∗
1}, as n −→ ∞

V̂C (2) − VC (2)
p−→ 0 (42)

and

V̂J (2) − VJ (2)
p−→ 0 . (43)

(ii) For mc = [c(n)α] and 0 < α < min{0.4, α∗
2}, as n −→ ∞

√
mcb(n)

[
V̂J (2) − VJ (2)

] L−s→ N [0,WJ ] (44)

and

√
mcb(n)

[
V̂C (2) − VC (2)

] L−s→ N [0,WJ ] (45)

in the SC sense, where

WJ = 4
∑

0<s≤1

σ 2
s (�X(s))2 (46)
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and

WC = 2
∫ 1

0
σ 4
s ds , (47)

respectively.

For example, if we take c(n) = nγ , b(n) = n1−γ , and mc = [c(n)]α ,
[b(n)]−1u2n[c(n)]2−4α = u2nn

−1+γ (3−4α). (41) is positive and converges to zero, as
n → ∞, if we set α = 0.39 and γ = 0.75 because of −1 + γ (3 − 4α) > 0.

KK (2021) have derived the CLT for the SIML estimation when the underlying
process is the class of Ito’s jump-diffusion process in the multivariate case. When
p = 1, in their Corollary 2.1, the asymptotic variance of the limiting distribution is
given by

W = 2

⎡
⎣
∫ 1

0
σ 4(s)ds + 2

∑
0<s≤1

σ 2(s)(�X(s))2

⎤
⎦ . (48)

AsW = WJ +WC , it can be regarded as a decomposition of the variance, and Theorem
5 is an extension of Theorem 2.1 of KK (2021).

7.2 Multivariate processes

For multivariate processes, there are possible generalizations when p ≥ 1. Let

Y(t (n)
i ) = X(t (n)

i ) + εnv(t
(n)
i ) (i = 1, . . . , n) (49)

be the (p-dimensional) observed (log-)prices Y(t (n)
i ) = (Y j (t

(n)
i )) at tni (0 = tn0 ≤

t (n)
1 ≤ · · · ≤ t (n)

n = 1) and v(t (n)
i ) (= (v j (t

(n)
i )) be a sequence of (p×1) i.i.d. random

vectors with E[v(t (n)
i )] = 0 and E[v(t (n)

i )v(t (n)
i )

′ ] = �v (> 0).
As the underlying continuous-time process, we consider the class of multi-

dimensional diffusion processes.As the theory of continuous-time stochastic processes
X(t (n)

i ) (= (X j (t
(n)
i )) instead of (3), a general form of the stochastic differential equa-

tion (SDE) for the p-dimensional continuous-time stochastic processes is given by

dX = μtdt + σ tdBt , (50)

which has been called the diffusion-type continuous process, where μ(s) is the p × 1
drift vector, σ (s) is the p×q1 diffusionmatrix, andBt is the q1×1 Brownian motions.
(50) also has the representation as

X(t) = X(0) +
∫ t

0
μ(s)ds +

∫ t

0
σ (s)dBs , (51)
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where the first term is an integration in the sense of Riemann, while the second term is
an Itô’s stochastic integration with respect to the Brownian motion Bt (q1 × 1 vector).

Thus, we need some regularity conditions onμ(·) and σ (·). A detailed theory of the
SDE, and stochastic integration has been explained by Ikeda and Watanabe (1989).
When the volatility process σ (t) = (σi j (t)) is stochastic, we take a diffusion-type
process as

σi j (t) = σi j (0) +
∫ t

0
μσ
i j (s)ds +

∫ t

0
ωσ
i j (s)dB

σ
s (0 ≤ s ≤ t ≤ 1) , (52)

where μi j (s) is the drift coefficient, ωω
i j (s) is 1 × q2 diffusion coefficients, and Bσ

s is
another q2 × 1 Brownian motion vector, which may be correlated with Bs .

As an example of the estimation problem, we may assume p × p variance–
covariance (or the integrated volatility) matrix �x = ∫ 1

0 σ sσ
′
sds, which is the same

as V(2) = (Vgh(2)) in our notation. In this case, the terms (1/mc)
∑mc

k=1[zk,(i)]2 and
the asymptotic variance 2

∫ 1
0 [σx (s)]4 ds in Sect. 5 are replaced by

V̂ (g, h; 2) =
b(n)∑
i=1

1

mc

mc∑
k=1

[zg,k,(i)zh,k,(i)] (53)

and

∫ 1

0

[
σ (x)
gg (s)σ (x)

hh (s) + (σ
(x)
gh (s))2

]
ds , (54)

where we set p = 2 and

�x =
∫ 1

0
�x (s)ds =

(
σ

(x)
gg σ

(x)
gh

σ
(x)
gh σ

(x)
hh

)
.

The most important fact is that both the SIML and LSIML methods are simple, and
using them,when the dimension p of underlying processes is large, and interpreting the
results is straightforward. This aspect is quite different from other estimation methods
previously proposed. Recently, KK (2021) have considered a statistical procedure to
detect factors of the hidden covariationwith the rank rx (which is the number of hidden
factors) when it is substantially less than the observed dimension p. We expect that,
under a set of regularity conditions, we have the similar results on the asymptotic
properties of the local SIML estimator in more general settings.
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8 Simulations and empirical data analysis

8.1 Simulations

We conducted simulations when r = 1 and r = 2 on the estimation of the true
parameters of V (2), V (4), VC (2), and VJ (2). We note that the estimated variance of
the SIML estimator of integrated volatility corresponds to 2V̂ (4) in the univariate case.
In our simulations, we set b(n) = [n1−γ ], c(n) = [nγ ] such that b(n)c(n) = n, and
the number of replications is 3000. We set σ 2

v as the variance of noise. Furthermore,
we have investigated several cases in which the instantaneous volatility function σ 2

s
is given by

σ 2
s = σ 2

0

[
a0 + a1s + a2s

2
]
, (55)

where ai (i = 0, 1, 2) are constants, and we have some restrictions, such that σs > 0
for s ∈ [0, 1].

This is a typical time-varying (but deterministic) case, and the integrated volatility
V (2) is given by

V (2) =
∫ 1

0
σ 2
s ds = σ 2

0

[
a0 + a1

2
+ a2

3

]
. (56)

In this case, we used several intra-day volatility patterns including the flat (or constant)
volatility,monotone (decreasing or increasing)movements, andU-shapedmovements.

(i) As the first exercise, we take (1), (2), and (3) with δ = 0.0. In Tables 1, 2, 3, 4 and
5, the true parameter values of V (2) and V (4) are

∫ 1
0 σ 2

s ds and
∫ 1
0 σ 4

s ds, respectively.
In the tables, mean and Var are the mean and variance of simulated variables for the
second type LSIML estimator

V̂ (2r) = b(n)r−1
b(n)∑
i=1

(M2,(i))
r (57)

where

M2,(i) = 1

mc

mc∑
k=1

[zk,(i)]2 , (58)

and the first type LSIML estimator

V̂ ∗(2r) = b(n)r−1

ar

b(n)∑
i=1

M2r ,(i) , (59)
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Table 1 Estimation of integrated
volatility and fourth-order
functional (a0 = 1.0, a1 =
0.0, a2 = 0.0; σ 2

v =
0.0005, b(n) = 5, c(n) = 521;
α = 0.4, γ = 0.795)

n = 2605 V (2) = 2.0 V (4) = 4.0

V̂ (2) and V̂ (4)

Mean 2.001 4.671

Var 0.133 2.837

AV 0.133 3.10

V̂ ∗(2) and V̂ ∗(4)

Mean 2.009 4.053

Var 0.134 2.837

AV 0.133 2.843

Table 2 Estimation of integrated
volatility and fourth-order
functional
(a0 = 1.0, a1 = 0.0, a2 =
0.0; σ 2

v = 0.0005, b(n) =
10, c(n) = 1, 000;
α = 0.33, γ = 0.75)

n = 10,000 V (2) = 2.0 V (4) = 4.0

V̂ (2) and V̂ (4)

Mean 2.012 4.950

Var 0.092 2.400

AV 0.090 2.400

V̂ ∗(2) and V̂ ∗(4)

Mean 2.013 4.056

Var 0.092 1.973

AV 0.089 1.895

where

M2r ,(i) = 1

mc

mc∑
k=1

[zk,(i)]2r (60)

and ar = 2r !
r ! 2r , respectively.

In Tables 1, 2, 3, 4, 5 and 6, AV is the limiting variance calculated from (26), (27)
and (29), (30). (Kunitomo and Sato (2018) discussed V̂ ∗(2r) in detail.)

If we take c(n) = n, b(n) = 1 and r = 1, then we have the SIML estimator
for integrated volatility as a special case. In the LSIML estimation, we have c(n)

observations in each interval and there are b(n) intervals. Then, we need to normalize
(57) and (59), because the scale factor is c(n)/n = b(n)−1 and we impose the local
Gaussianity for underlying continuous martingales.

Tables 1 and 2 correspond to the case of flat volatility, while the other tables
correspond to the case of time-varying, but non-stochastic volatility.

From Tables 1, 2, 3, 4 and 5, we confirm that the LSIML method performs well for
the estimation of integrated volatility. Although some loss of estimation accuracy may
occur when the underlying true stochastic process is known, the LSIML method pro-
vides desirable finite and asymptotic properties. One important result in our simulation
is the estimation of 2V (4), which is the asymptotic variance of the SIML estimator
of integrated volatility. As presented in the tables, the mean and variance (Var) of
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Table 3 Estimation of integrated
volatility and fourth-order
functional
(a0 = 6.0, a1 = −24.0, a2 =
24.0; σ 2

v = 0.0005, b(n) =
10, c(n) = 1, 000;
α = 0.33, γ = 0.75)

n = 10,000 V (2) = 2.0 V (4) = 7.2

V̂ (2) and V̂ (4)

Mean 2.012 8.700

Var 0.160 19.400

AV 0.160 17.056

V̂ ∗(2) and V̂ ∗(4)

Mean 2.023 7.167

Var 0.160 15.093

AV 0.160 17.056

Table 4 Estimation of integrated
volatility and fourth-order
functional
(a0 = 6.0, a1 = −24.0, a2 =
24.0; σ 2

v = 0.0005, b(n) =
40, c(n) = 1, 261;
α = 0.45, γ = 0.66)

n = 50,440 V (2) = 2.0 V (4) = 7.2

V̂ (2) and V̂ (4)

Mean 2.069 8.100

Var 0.015 1.510

AV 0.015 1.599

V̂ ∗(2) and V̂ ∗(4)

Mean 2.070 7.457

Var 0.016 1.650

AV 0.015 1.599

Table 5 Estimation of integrated
volatility and fourth-order
functional
(a0 = 6.0, a1 = −24.0, a2 =
24.0; σ 2

v = 0.0005, b(n) =
18, c(n) = 5, 622;
α = 0.33, γ = 0.75)

n = 101,196 V (2) = 2.0 V (4) = 7.2

V̂ (2) and V̂ (4)

Mean 2.021 8.124

Var 0.048 5.057

AV 0.047 5.016

V̂ ∗(2) and V̂ ∗(4)

Mean 2.022 7.273

Var 0.049 5.128

AV 0.047 5.016

the empirical distribution have reasonable values when the volatility function is flat.
(AV stands for the asymptotic variance.) When the volatility function is time-varying,
there are some bias in V̂ (4), which may be expected from Part (ii) of Theorem 3. In
this case, the bias of V̂ ∗(4) is smaller than V̂ (4). This suggests that the asymptotic
distribution of V̂ ∗(4) is simple as Kunitomo and Sato (2018) has suggested.

To investigate the asymptotic distribution of the LSIML estimator in the form of
V̂ (4), we give some typical empirical distribution of a set of simulated data in Fig. 1
(r = 1, b(n) = 14, c(n) = 3371, α = 0.4, a0 = 6.0, a1 = −24.0, a2 = 24.0) and
Fig. 2 (r = 2, b(n) = 76, c(n) = 677, α = 0.4, a0 = 6.0, a1 = −24.0, a2 = 24.0).
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Fig. 1 Normalized histogram
and normalized distribution
(V̂ (2))

Fig. 2 Normalized histogram
and normalized distribution
(V̂ (4))

We confirm that we have the asymptotic normality of the SIML estimator and the
limiting normal distribution provides a reasonable approximation of the finite sample
distribution. Also we found that, when r = 2, we have a small bias with the limiting
normal distribution.

As Fig. 3, we show a typical empirical histograms of V̂ (4) and V̂ ∗(4) by setting
n = 50, 440, c(n) = 1261, b(n) = 40, α = 0.45, σ 2

x = 1.0, σ 2
v = 0.0005, and

a0 = 6.0, a1 = −24.0, a2 = 24.0 as an illustration. The former (or the underlaid
blue histogram for the second type) has some bias, but less variance of the latter (or
the overlaid orange histogram for the first type). These observations are consistent
with the results reported in Theorem 3. (We have the bias term V ∗∗(4) when r = 2
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Fig. 3 Histogram of V̂ ∗(4) (left)
and V̂ (4) (right)

in the second type estimation method.) The more details of the first and second type
estimation methods are currently under investigation.
(ii) As a second example, we present Tables 6, 7, 8, 9 and 10 for the jump-diffusion case
under market micro-structure noise. We set the true parameter values of VC (2) = 2.0
and λ = 3/n for the diffusion-Poisson-jump model with the intensity 3/n. The jump
size is 0.7 and 0.0, where 0.0 means no-jump. (We report only the results for the
flat-volatility case, that is a1 = a2 = 0 to save the space.) In the tables, mean and Var
are the mean and variance of the estimated values of VC (2) and VJ (2) based on 3000
replications, respectively.

When there does not have any jump (jump size = 0.0), the means of estimated
VJ (2) are close to zero while the estimated VC (2)’s are close to 2 when VC (2) = 2.0
and VJ (2) = 0.0. When the true jump part of QV is not zero, there can be some bias
in the estimation of the continuous part of QV. In Tables 6, 7, 8, 9 and 10 we basically
confirm that the LSIML estimation method of the continuous and jump parts of QV
performs well. In our experiment, after some trials, we have set the threshold value as

un = (mean of M2,(i)) + Q995 × SD(M2,(i) < mean of M2,(i)) , (61)

where SD(·) is the standard deviation and Q995 is the 0.995 quantile.
We also show the empirical distribution of the continuous- and jump parts of the

LSIML estimator under market micro-structure noise in Fig. 4 (c(n) = 1000, b(n) =
100, α = 0.4, Jump size =0.8, λ = 6/n ). Since the jump size and intensity are
different from those in Tables 6, 7, 8, 9 and 10, the mean of the histogram of VJ(2) is
around 0.82 × 6 = 3.84. We confirm that the limiting normal distribution in Theorem
5 provides reasonable approximation to the finite sample distributions of the estimator
of the continuous and jump parts of QV.
(iii) As the summary of our simulations, we found that the LSIML estimator of inte-
grated volatility V (2) and V (4) perform quite well as we expected. We also confirmed
that the continuous and jump parts of the QV in the presence of market micro-structure
noise can be estimated. The behaviors of the LSIML estimator for higher Brownian
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Table 6 Estimation of V (2)
(a0 = 1.0, a1 = 0.0, a2 =
0.0; σ 2

v = 0.0005, b(n) =
100, c(n) = 1000;
α = 0.4, λ = 3/n, jump size
=0.0)

n = 100,000 VC (2) = 2.0 VJ (2)

Mean 2.107 0.030

Var 0.007 0.001

Table 7 Estimation of V (2)
(a0 = 1.0, a1 = 0.0, a2 =
0.0; σ 2

v = 0.0005, b(n) =
10, c(n) = 10, 000;
α = 0.4, λ = 3/n, jump size
=0.0)

n = 10,000 VC (2) = 2.0 VJ (2)

Mean 1.991 0.0209

Var 0.026 0.006

Table 8 Estimation of V (2)
(a0 = 1.0, a1 = 0.0, a2 =
0.0; σ 2

v = 0.0005,
b(n) = 100, c(n) = 1, 000;
α = 0.4, λ = 3/n, jump size
=0.7)

n = 100,000 VC (2) = 2.0 VJ (2)

Mean 2.073 1.52

Var 0.007 0.803

Table 9 Estimation of V (2)
(a0 = 1.0, a1 = 0.0, a2 =
0.0; σ 2

v = 0.0005,
b(n) = 10, c(n) = 10, 000;
α = 0.4, λ = 3/n, jump size
=0.7)

n = 100,000 VC (2) = 2.0 VJ (2)

Mean 2.875 0.623

Var 1.214 0.372

and jump functionals as r = 1 and r = 2 are reasonable despite the difficulties of the
problem involved because of the presence of market micro-structure noise.

8.2 Empirical data analysis

To demonstrate the use of the LSIML method introduced in previous sections, we
provide an empirical result of high-frequency data analysis in Table 11. We reported
the LSIML estimates of V (2) and V (4) for each set of parameters with different
frequencies to see their effects. We used the same dataset in Sect. 4 of KSK (2018),
which is the high-frequency tick-data of Nikkei-225 Futures at April 16, 2007, traded
at Osaka Stock Exchange (OSE). The data are 1s, 5s, 10s, and other frequencies [see
KSK (2018) for more details], and we have taken α = 0.4, 1.0 and several values of
γ . We have calculated the estimates of V (2) and V (4) and shown only the results of
high frequency with 1s, 5s and 10s, because we wanted to show stability of estimates

Table 10 Estimation of V (2)
(a0 = 1.0, a1 = 0.0, a2 =
0.0; σ 2

v = 0.0005,
b(n) = 200, c(n) = 500;
α = 0.4, λ = 3/n, jump size
=0.7)

n = 100,000 VC (2) = 2.0 VJ (2)

Mean 2.257 1.502

Var 0.005 0.808
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Fig. 4 Normalized histogram of the LSIML estimator of VC (2) and VJ (2)

with respect to the data-frequency and parameters taken for an illustration. We have
chosen a particular day, which had typical normal movements in Japanese financial
markets.

There are several interesting findings. The estimated values of the LSIML estimator
are fairly stable, and they do not depend on the choice of observation lengths (1s, 5s,
and 10s) except for the case when α = 1.0. (The last case with α = γ = 1 does
not satisfy the conditions in Sect. 5.) The estimated standard deviation of V (2) is√
2V̂ (4)/(mcb(n)), where V̂ (4) is an estimated value of V (4)), and its values are

highly significant in all cases. The estimated values of V (2) are quite similar to the
estimated values of the SIML estimator reported in Sect. 4 of KSK (2018).

The estimated values of RV correspond to the case when α = 1.0, and the esti-
mated values of RV on V (2) and V (4) are significantly different from the LSIML
estimates. For instance, the estimate of V (2) for 1s with α = 1 is ten-times larger
than the corresponding estimates with other α’s . The values of V (2) with α = 0.4 are
5.21E−04, 4.80E−05, and 4.78E−05, while the value of V (2)with α = 1 4.95E−04,
2.60E−04, and 1.76E−04. The differences of the estimates of V (2) for 5s and 10s
from the one with α = 1 become smaller, but still they are significant. We have a
similar observation on the estimates of V (4).

From these observations, the bias due to the existence of micro-market noise is
significant in this empirical example. (Note that V̂ (4) is asymptotically the same as
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Table 11 Estimation result of
the local SIML for Nikkei-225
Future

1s α=0.4 α=0.4 α=0.4 α=1

γ=0.66 γ=0.75 γ=0.8 γ=1

V (2) 5.64E−05 5.21E−05 5.27E−05 4.95E−04

V (4) 4.07E−09 2.54E−09 3.32E−09 2.74E−07

5s α=0.4 α=0.4 α=0.4 α=1

γ=0.66 γ=0.75 γ=0.8 γ=1

V (2) 4.86E−05 4.80E−05 5.33E−05 2.60E−04

V (4) 3.76E−09 2.68E−09 2.86E−09 8.19E−08

10s α=0.4 α=0.4 α=0.4 α=1

γ=0.66 γ=0.75 γ=0.8 γ=1

V (2) 5.11E−05 4.78E−05 4.21E−05 1.76E−04

V (4) 4.20E−09 2.56E−09 2.60E−09 3.82E−08

V̂ ∗(4) despite the small differences in finite samples.) As an empirical conclusion from
this example, the estimated values of RV for V (4) as well as V (2) have significant
biases due to market micro-structure noise, and its use is not recommended in practice.
Furthermore, the use of RV may cause some problems in applications such as the risk
managements. This may be also true for the estimates of other Brownian and jump
functionals in empirical studies. On the other hand, we have found that the LSIML
estimation gives a solution for practical situations.

9 Concluding remarks

In this study, we have developed the LSIML method for estimating higher order
Brownian and second-order jump functionals, which is a new statistical method. We
extended the SIML method proposed by KSK (2018). The main motivation of the
LSIML method is to estimate higher order Brownian and jump functionals, including
integrated volatility and co-volatility when market micro-structure noise in the high-
frequency financial data exists. We have shown that the LSIML method has desirable
asymptotic properties, such as consistency and asymptotic normality in the SC sense.
Moreover, the LSIML method has reasonable finite sample properties, which are
illustrated through several simulations and an empirical data analysis. Although other
methods for estimating higher orderBrownian and jump functionals could be available,
the LSIML method is simple and it has desirable asymptotic properties. Hence, it
should be useful for empirical applications, includingmeasurement of financialmarket
betawith possible jumpsundermarketmicro-structure noise,which are currently under
investigation.
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Appendix : Mathematical derivations

In this Appendix, we give some details of the derivations of the results in Sects. 5 and
7. Since we use the stable convergence (SC) in Theorems 2, 3, and 5, we provide some
discussion how we apply the basic arguments of the martingale CLT (MCLT) and the
SC to our situation at the end of this Appendix. We use some notations of KSK (2018)
and KK (2021). First, we prepare several lemmas.

1. Some Lemmas

Lemma A-1 Let r be any positive integer and ak,c(n) is given by (22). Then

1

mc

mc∑
k=1

ark,c(n) ∼
(

π2r

2r + 1

)
m2r

c

c(n)r
(A.62)

as c(n),mc → ∞ and mc/c(n) → 0.

Proof of LemmaA-1 Since mc/c(n) → 0 as n → ∞ and sin x ∼ x when x is small,
we evaluate

1

mc

mc∑
k=1

ark,c(n) = [π ]2r m2r
c

c(n)r

[
1

mc

mc∑
k=1

(
k

mc

)2r

+ o(1)

]

= π2r

2r + 1

[
m2r

c

c(n)r
+ o(1)

]
,

because

1

mc

mc∑
k=1

(
k

mc

)2r

−
∫ 1

0
x2rdx = o(1) .

�
Lemma A-2 Let

bk j = √
c(n)[pkj − pk, j+1] = 2

√
c(n)√

2c(n) + 1
cos θk j − 2

√
c(n)√

2c(n) + 1
cos θk, j+1

(A.63)

123

http://creativecommons.org/licenses/by/4.0/


Japanese Journal of Statistics and Data Science (2022) 5:831–870 855

for k = 1, . . . , c(n); j = 1, . . . , c(n) − 1 and

bk,c(n) = 2
√
c(n)√

2c(n) + 1
cos θk,c(n) , θk j = 2π

2c(n) + 1

(
k − 1

2

)(
j − 1

2

)
.

Then

c(n)∑
j=1

[bkj ]2 = ak,c(n) ,

c(n)∑
j=1

[bkj ]4 = O

(
1

c(n)
[ak,c(n)]2

)
,

and, for any positive integers k1, k2, there exists a constant K1, such that

c(n)∑
j=1

[bk1 j ]2[bk2 j ]2 ≤ K1
ak1,c(n)ak2,c(n)

c(n)
.

Proof of LemmaA-2 We use the decomposition as

2c(n) + 1

c(n)

c(n)−1∑
j=1

[bkj ]2 =
c(n)−1∑
j=1

[(1 − eiθk )eiθk j ]2 +
c(n)−1∑
j=1

[(1 − e−iθk )e−iθk j ]2

+2(c(n) − 1)(1 − eiθk )(1 − e−iθk ) ,

where θk = [2π/(2c(n) + 1)](k − 1/2) (k = 1, . . . , c(n)), and θk j = [2π/(2c(n) +
1)](k − 1/2)( j − 1/2).

We use the relation

c(n)∑
j=1

[eiθk j ]2 = eiθk
1 − ei(4π/(2c(n)+1))(k−1/2)c(n)

1 − e2iθk

= eiθk
1 + e−iθk

1 − e2iθk
, (A.64)

because ei(4π/(2c(n)+1)(k−1/2)c(n) = ei(π/(2c(n)+1)(2k−1)(2c(n)+1−1) = eiπ(2k−1)e−iθk .
Then, we use the relations

(1 − eiθk )2
c(n)∑
j=1

[eiθk j ]2 + (1 − e−iθk )2
c(n)∑
j=1

[e−iθk j ]2 = 2 − 2 cos θk = 4 sin2
θk

2
.

and

[(1 − eiθk )eiθk,c(n) ]2 + [(1 − e−iθk )e−iθk,c(n) ]2 = −[4(1 − cos θk) − 4 sin2 nθk]
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after some calculations. As [(2c(n) + 1)/c(n)]b2k,c(n) = 4 cos2 θk,c(n) = 4 sin2 θk , it
is straightforward to obtain

2c(n) + 1

c(n)

c(n)∑
j=1

b2k j = 2c(n) + 1

c(n)

c(n)−1∑
j=1

b2k j + 4 cos2 θk,c(n)

= 2c(n) + 1

c(n)

c(n)−1∑
j=1

[(1 − eiθk )eiθk j + (1 − e−iθk )e−iθk j ]2 + 4 cos2 θk,c(n)

= 4 sin2
θk

2
+ 2(c(n) − 1)[(1 − eiθk )(1 − e−iθk )]2 − [4(1 − cos θk) − 4 sin2 nθk]

+4 cos2 θk,c(n)

= [2c(n) + 1]4 sin2 θk

2
,

and we have the result. (The important point is that, as the dominant term, we have
the second term in the last expression.)

Using similar but tedious arguments for the fourth powers, after some calculations
(we only need to evaluate the dominant term), we find that

[2c(n) + 1]2
c(n)2

c(n)−1∑
j=1

[bkj ]4 =
c(n)−1∑
j=1

[eiθk j (1 − eiθk ) + e−iθk j (1 − e−iθk )]4

= [6c(n) + O(1)] × 42 sin4
θk

2
.

The last statement of LemmaA-2 follows by applying theCauchy–Schwartz inequality
to

c(n)∑
j=1

[bk1 j ]2[bk2 j ]2 ≤
[ c(n)∑

j=1

[bk1 j ]4
]1/2[ c(n)∑

j=1

[bk1 j ]4
]1/2

,

and using the above relation. �
Lemma A-3 Assume the conditions in Theorem 2 for the diffusion-plus-noise model.
Let M2,(i) = 1

mc

∑mc
k=1[zk,(i)]2 (k = 1, . . . , c(n); i = 1, . . . , b(n)).

Then

E[(M2,(i))
2] = O

(
1

(b(n))2
+ m4

c

(c(n))2

)
. (A.65)

Also

b(n)∑
i=1

P(‖M2,(i)‖ > un)
p−→ 0 (A.66)
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if

An = 1

u2n

[
1

b(n)
+ b(n)

c(n)2−4α

]
p−→ 0 . (A.67)

Proof of LemmaA-3 (i) Let M (1)
2,(i) = 1

mc

∑mc
k=1[zk,(i)]2 for z(1)k,(i) = zk,(i) when εn = 0.

Then, using (A.71) and (A.72) below, we decompose

M (1)
2,(i) =

c(n)∑
k,l=1

[δ(k, l)
∫ tnk (i)

tnk−1(i)
σ 2
s ds + (cklrk,(i)rl,(i) − δ(k, l)

∫ tnk (i)

tnk−1(i)
σ 2
s ds)] .

(A.68)

Since the first term is of the order Op(c(n)/n) and the second term is of the order
Op(1/[b(n)

√
b(n)mc]).

Let M (2)
2,(i) = 1

mc

∑mc
k=1[zk,(i)]2 for z(2)k,(i) = zk,(i) when σs = 0 (0 ≤ s ≤ 1). We

must evaluate the expected vales of ( 1
mc

)2
∑mc

k,k‘=1
(
∑c(n)

j=1 bk, jv j )
2(

∑c(n)

j ‘=1
bk‘, jv j ‘)

2 .
Then, using Lemma A-2, we can find a constant K1, such that

E[M (2)
2,(i)]2 ≤ K1

[
1

mc

c(n)∑
k=1

ak,c(n)

]2
. (A.69)

Using Lemma A-1, we have the first result under the conditions in Theorem 2.
(ii) Using the Markov inequality

b(n)∑
i=1

P(‖M2,(i)‖ > un) =
b(n)∑
i=1

P(‖M2,(i)‖2 > u2n)

≤
b(n)∑
i=1

E[(M2,(i))
2]

u2n

= O

(
1

u2n
b(n)

[
1

b(n)2
+ (mc)

4

c(n)2

])
, (A.70)

and b(n) = [n1−γ ], we have the result. �
2. Derivation of Theorem 2:
The derivation is an extension of the proofs of Theorems 3.1 and 3.3 of KSK (2018),

and we provide the essential and additional arguments.
(Step 1) With the transformation (17) when p = 1 in the set Ic(i) = (t (n)

i−1, t
(n)
i ],

wewrite zk,(i) = z(1)k,(i) + z(2)k,(i),where z
(1)
k,(i) and z

(2)
k,(i) correspond to the k−th elements

of
Z(1)
c(n),(i) = h−1/2

c(n) Pc(n)C
−1
c(n)(Xc(n),(i) − ȳ0,(i)) and Z(2)

c(n),(i) = h−1/2
c(n) Pc(n)C

−1
c(n)

Vc(n),(i), respectively, where Xc(n),(i) and Vc(n),(i) are the c(n) × 1 state vector and
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the noise vector in Ic(i) (i = 1, . . . , b(n)). Then, we have E[Z(1)
c(n),(i)] = 0 and

E[Z(2)
c(n),(i)] = 0 and

E[Z(2)
c(n),(i)Z

(2)′
c(n),(i)] = σ 2

v h
−1
c(n)D

(2)
c(n) , (A.71)

where Dc(n) = diag(dk) (k ∈ Ic(i)) in (21). (We take the interval (t (n)
i (k −

1), t (n)
i (k)] ∈ Ic(i) (i = 1, . . . , c(n); k = 1, . . . , c(n), and we have t (n)

i (k) − t (n)
i (k −

1) = 1/n.)
When σs is a time-varying and deterministic function

E[Z(1)
c(n),(i)Z

(1)′
c(n),(i)] = h−1

c(n)Pc(n)D
(σ )
c(n)Pc(n), (A.72)

whereD(σ )
c(n) = diag(σ 2(t (n)

k (i)) (for k ∈ Ic(i)) and σ 2(t (n)
k (i)) = ∫ t (n)

k (i)

t (n)
k−1(i)

σ 2
s ds, which

is σ 2
s at s = t (n)

k−1(i).
When σs is stochastic under the assumption that it is bounded and Lipschitz-

continuous, we can use the similar argument based on the standard approximation

in stochastic calculus for
∫ t (n)

k (i)

t (n)
k−1(i)

σ 2
s ds by σ 2(t (n)

k−1(i))[t (n)
k (i) − t (n)

k−1(i)]. (See (A.93)
below for details.)

We use the decomposition

M2,(i) = 1

mc

mc∑
k=1

[z(1)k,(i) + z(2)k,(i)]2

= 1

mc

mc∑
k=1

[z(1)k,(i)]2 + 1

mc

mc∑
k=1

[z(2)k,(i)]2 + 2
1

mc

mc∑
k=1

[z(1)k,(i)z
(2)
k,(i)]2

= M (1)
2,(i) + M (2)

2,(i) + 2M (12)
2,(i) (, say) . (A.73)

For the third term, we utilize the well-known inequality that [M (12)
2,(i)]2 ≤ M (1)

2,(i)M
(2)
2,(i),

and we find that the effects M (12)
2,(i) (i = 1, . . . , b(n)) are stochastically negligible.

In Ic(i), we write z(2)k,(i) = ∑c(n)
j=1 bkjv j (i), v j (i) are noise terms in Ic(i) (i =

1, . . . , b(n)) and bkj are the corresponding coefficients of h−1/2
c(n) Pc(n)C

−1
c(n). We re-

write

z(1)k,(i) =
√

4c(n)

2c(n) + 1

c(n)∑
j=1

sk j r j,(i) , (A.74)

sk j = cos θk j and θk j = (2π/(2mc + 1))(k − 1/2)( j − 1/2) ( j, k = 1, . . . , c(n)).
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(Step 2) We use the relation of trigonometric functions for z(1)k,(i) and re-write

M (1)
2,(i) = 1

mc

mc∑
k=1

[z(1)k,(i)]2 =
c(n)∑
k,l=1

cklrk,(i)rl,(i) , (A.75)

where rk,(i) (= X(t (n)
i (k)) − X(t (n)

i (k − 1))) are returns in the interval (t (n)
i (k −

1), t (n)
i (k)] ∈ Ic(i) (i = 1, . . . , c(n); k = 1, . . . , c(n)), and ckl = (2/mc)

∑mc
j=1 sk j sl j .

Due to the basic properties of ckl (k, l = 1, . . . , c(n)) (see Lemmas 5.1
and 5.2 of KSK (2018)), (A.75) is a consistent estimator of the hidden volatility∫
Ic(i)

σ 2
s ds[c(n)/n] in Ic(i), although we need the last term c(n)/n, because the

total sample size is n in KSK (2018), while we use its fraction in the intervals
Ic(i) (i = 1, . . . , b(n)) in the local SIML estimation.When there exists market micro-
structure noise, however, we further must evaluate the effects of noise in M2,(i). (We
used the notations and derivations of the asymptotic properties of the SIMLmethod in
Chapter 5 of KSK (2018) when p = 1, which corresponds to the case when εn = 1.)

For consistency of the LSIML, we shall consider a set of sufficient conditions, such
that we obtain n → ∞

b(n)∑
i=1

[M (1)
2,(i) −

c(n)∑
k=1

∫ tni (k)

tni (k−1)
σ 2
s ds]

p−→ 0 (A.76)

and

b(n)∑
i=1

[M (2)
2,(i)]

p−→ 0. (A.77)

We use the key relation that, for any i = 1, . . . , b(n) and k = 1, . . . , c(n), by applying
Ito’s formula, we find that

r2k,(i) =
∫ tni (k)

tni (k−1)
σ 2
s ds + 2

∫ tni (k)

tni (k−1)
σsdBs , (A.78)

and r2k,(i) − ∫ tni (k)
tni (k−1) σ 2

s ds is a sequence of Brownian martingales. Then (as the basic

idea of the proof), we use the martingale convergence and the CLT for martingales in
the following analysis.

(Step 3) Using the analogous arguments as Chapter 5 of KSK (2018) to the local
interval Ic(i) (i = 1, . . . , b(n)), we evaluate the conditions that (i) the effects of noises
are relatively negligible, (ii) the order of

√
mc

∑c(n)
k,l=1[cklrk,(i)rl,(i) −δ(k, l)rk,(i)rl,(i)]

is relatively negligible, and (iii) the order of the stochastic part around the volatility

√
mc

c(n)∑
k,l=1

[cklrk,(i)rl,(i) − δ(k, l)
∫ tni (k)

tni (k−1)
σ 2
s ds] , (A.79)
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which is the dominant factor and of the order Op(c(n)/n). Since each term with
i (i = 1, . . . , b(n)) are asymptotically uncorrelated, the normalized stochastic part
around the volatility should be in the form of

√
mcb(n)

⎛
⎝b(n)∑

i=1

c(n)∑
k,l=1

[cklrk,(i)rl,(i) − δ(k, l)
∫ tni (k)

tni (k−1)
σ 2
s ds]

⎞
⎠ , (A.80)

Next, we use Lemma A-1 in the Appendix [see the proof of Lemma 5.3 of KSK
(2018)] to evaluate the asymptotic bias. If σs = 0 (0 ≤ s ≤ 1) and εn (= ε) is a fixed
constant, using (21) and (22), the bias term is proportional to E[m−1

c
∑mc

k=1[z(2)k,(i)]2]
in all intervals and it is given as ε2n σ 2

v times

1

mc

mc∑
k=1

ak,c(n) = O

(
1

mc
× m3

c

c(n)

)
= O

(
m2

c

c(n)

)
.

In the general case with micro-market noises, we use the transformation (17) in the
local SIML estimation, and then, the bias term of

∑b(n)
i=1 [1/mc]∑mc

k=1 z
2
k,(i) in each

interval is asymptotically equivalent to a constant ((π2/3)σ 2
v ) times

AB1n = b(n)
(mc)

2

c(n)
[εn]2 . (A.81)

Because σs is bounded and Lipschitz-continuous, in Ic(i) (i = 1, . . . , b(n)), we
can take a positive constant K2, such that

∣∣∣∣∣
∫
s∈(t (n)

i−1,t
(n)
i ]

σ 2
s ds − σ 2(t (n)

i−1)

[
c(n)

n

]∣∣∣∣∣ ≤ K2

∣∣∣∣∣
∫
s∈(t (n)

i−1,t
(n)
i

[
s − (i − 1)

c(n)

n

]
ds

∣∣∣∣∣
= O

((
c(n)

n

)2
)

,

which is O(1/b(n)2). Then, we have the relation that

⎡
⎣b(n)∑

i=1

1

mc

mc∑
k=1

z2k,(i)

⎤
⎦ −

∫ 1

0
σ 2
s ds

p−→ 0 , (A.82)

provided that the bias can be negligible, that is max{ 1
b(n)

, 1
mc

} −→ 0 and AB1n → 0
as n → ∞.

(Step 4) For the asymptotic normality of V̂ (2) without any asymptotic bias term,
we use the fact that the dominant factor of (A.75) is a martingale part. The proof of
the asymptotic normality in the present case is similar to Chapter 5 of KSK (2018),
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but some extra arguments are needed because of the local estimation. A sufficient
condition for the asymptotic normality (see Theorem 3.3 of KSK (2018)) would be

AB2n = √
mcb(n)b(n)

(mc)
2

c(n)
[εn]2 −→ 0 (A.83)

as n → ∞.
If we set c(n) = nγ , b(n) = n1−γ and mc = [c(n)]α , then

AB1n = n1−2γ+2γα−2δ , (A.84)

and

AB2n = n
1−γ
2 + αγ

2 +1−2γ+2γα−2δ = n1−2δ+ 5
2αγ+ 1

2 (1−5γ ) . (A.85)

By setting α∗
1 = 1+ (2δ − 1)/(2γ ), and α∗

2 = 1+ (4δ − 3)/(5γ ), we have the result
on the asymptotic distribution of the local SIML estimation in the simplest case.

The CLT in the stable-convergence sense will be discussed at the end of the
Appendix. �
3. Derivation of Theorem 3:

The derivation of Theorem 3 is an extension of the proof of Theorem 2, and we
show the additional steps.

(Step 1) For r ≥ 2, we decompose

V̂ (2r) − V (2r)

= [b(n)]r−1
b(n)∑
i=1

[
M2,(i) −

∫
(t (n)
i−1,t

(n)
i ]

σ 2
s ds +

∫
(t (n)
i−1,t

(n)
i ]

σ 2
s ds

]r
− V (2r)

= [b(n)]r−1
b(n)∑
i=1

[ ∫
(t (n)
i−1,t

(n)
i ]

σ 2
s ds

]r
− V (2r)

+[b(n)]r−1
b(n)∑
i=1

rC1

[ ∫
(t (n)
i−1,t

(n)
i ]

σ 2
s ds

]r−1[
M2,(i) −

∫
(t (n)
i−1,t

(n)
i ]

σ 2
s ds

]

+[b(n)]r−1
b(n)∑
i=1

r∑
j=2

rC j

[ ∫
(t (n)
i−1,t

(n)
i ]

σ 2
s ds

]r− j[
M2,(i) −

∫
(t (n)
i−1,t

(n)
i ]

σ 2
s ds

] j

.

(A.86)

There are three terms in (A.86) and we evaluate each term from the representation

M2,(i) −
∫

(t (n)
i−1,t

(n)
i ]

σ 2
s ds =

[
M (1)

2,(i) −
∫

(t (n)
i−1,t

(n)
i ]

σ 2
s ds

]
+ [M (2)

2,(i) + M (12)
2,(i)] .
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First, we consider the effects of M (1)
2,(i) −

∫
(t (n)
i−1,t

(n)
i ] σ

2
s ds (i = 1, . . . , b(n)) as if it were

M2,(i) − ∫
(t (n)
i−1,t

(n)
i ] σ

2
s ds in the above expression.

Under the assumption of Lipschitz condition on σ 2
s , we evaluate its order as

[∫
(t (n)
i−1,t

(n)
i ] σ

2
s ds −σ 2(t (n)

i−1)[t (n)
i − t (n)

i−1]| = Op([ 1
b(n)

]2). Then, the first term of (A.86)

converges to zero in probability, because σ 2
s is bounded, and

∣∣∣∣
∫

(t (n)
i−1,t

(n)
i ]

σ 2
s ds

∣∣∣∣ = Op([t (n)
i − t (n)

i−1]) = Op

(
c(n)

n

)
= Op

(
1

b(n)

)
.

For the second and third terms of (A.86), we use the relation that
b(n)[M2,(i) − ∫

(t (n)
i−1,t

(n)
i ] σ

2
s ds] = Op(1/

√
mc) from the derivation of Theorem 2.

Then, by evaluating the orders of other terms and using Theorem 2, we have the
consistency.

(ii) For the asymptotic normality of the LSIML estimator, we want to evaluate the
stochastic behavior of

√
b(n)mc)[V̂ (2r) − V (2r)] (r ≥ 2). When r ≥ 2, we have the

term

V (2r)∗∗ = [b(n)]r−1
b(n)∑
i=1

[ ∫
(t (n)
i−1,t

(n)
i ]

σ 2
s ds

]r
.

Then,wefind thatV ∗(2r)−V (2r) = Op(1/b(n)), and
√
b(n)mc)[V ∗(2r)−V (2r)] =

Op(
√

mc
b(n)

) is not necessarily negligible in the general case. (It is zero when the

volatility function is constant.) Hence, we need to normalize
√
b(n)mc)[V̂ (2r) −

V (2r) + (V (2r) − V ∗(2r))] .

(Step 2) Then, we evaluate the limiting distribution of the normalized LSIML
estimator from the second term of (A.86). It is approximately equivalent to the random
variable

AMn(2r) = √
b(m)mc

b(n)∑
i=1

r [σ(t (n)
i−1)]2(r−1)

[
M (1)

2,(i) −
∫

(t (n)
i−1,(t

(n)
i ]

σ 2
s ds

]
,(A.87)

and its asymptotic variance is given by

AV(2r) = r2 × 2
∫ 1

0
σ 4(r−1)+4
s ds .

The order of the third term of (A.86) multiplied by
√
b(m)mc is Op(

√
b(m)mc) ×

Op((1/
√
mc)

2) = Op(
√
b(n)/

√
mc). Then, it goes to zero if b(n)/mc → 0 as n →

∞. A sufficient condition for this is 1 − γ − γα < 0.
(Step 3) It remains to show that the effects of the bias due to the presence of market

micro-structure on M (2)
2,(i) M

(12)
2,(i) (i = 1, . . . , b(n)) in the third term of (A.86) are
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stochastically negligible for the asymptotic normality of (A.87). We use the relation
that for any positive integer r ≥ 2

[M2,(i) −
∫

(t (n)
i−1,t

(n)
i ]

σ 2
s ds]r =

r∑
j=0

rC j

[
M (1)

2,(i) −
∫

(t (n)
i−1,t

(n)
i ]

σ 2
s ds

] j

[M (2)
2,(i) + M (12)

2,(i)]r− j .

and evaluate the order of each term.
We need straightforward, but tedious calculations for each term involving

M (2)
2,(i) (i = 1, . . . , b(n)).
(Step 4) We prepare the following lemma.

Lemma A-4 Under the assumptions in Theorem 3, for any positive integer r ≥ 2, there
exists a (positive) constant K ∗

r , such that

E[(M2,(i))
r ] ≤ K ∗

r

[
1

mc

mc∑
k=1

ak,(i)

]r
(i = 1, . . . , b(n)) .

Then, we have

[b(n)]r−1
b(n)∑
i=1

E[(M2,(i))
r ] ≤ K ∗

r [AB1n]r , (A.88)

where AB1n is given by (A.81).

(A Sketch of Proof of Lemma A-4 when r = 2.) We state Lemma A-4 for the
general case, but we only illustrate a typical evaluation for the case r = 2 with
the terms involving [M (2)

2,(i)]2. Because E[M2,(i)] = (1/mc)
∑mc

k=1 ak,(i) and we have
fourth-ordermoments ofmarket noise, usingLemmaA-2 and lengthy (but elementary)
calculations, we evaluate the result as E[(M2,(i))

2] = [E(M2,(i)))]2 + E[M2,(i) −
E(M2,(i)))]2. For instance, we find a (positive) constant K ∗

21 (= K ∗
2 − 1), such that

[ mc∑
k=1

E[(z(2)k,(i))
2 − E((z(2)k,(i))

]2

=
mc∑

k1,k2=1

E
([ c(n)∑

j1=1

b2k1, j1(v j1(i)
2 − σ 2

v ) +
∑
j1 �= j2

bk1, j1bk1, j2v j1(i)v j2(i)

]

×
[ c(n)∑

j3=1

b2k2, j3(v j3(i)
2 − σ 2

v ) +
∑
j3 �= j2

bk2,, j3bk2,, j4v j3(i)v j4(i)

])

≤ K ∗
2

[ mc∑
k=1

ak,(i)

]2
,

where we denote v j (i) is the jth market noise in the set Ic(i) (i = 1, . . . , b(n)).
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(Step 5) The effects ofM (12)
2,(i) (i = 1, . . . , b(n)) are evaluated in a similarway.After

the results of many (straightforward and tedious) calculations, we find that the third
term of (A.86) is asymptotically negligible for the asymptotic normality of (A.87).

From (A.86) and (A.87), we find that the dominant factor of the normalized LSIML
estimator is a linear combination of M (1)

2,(i) (i = 1, . . . , n), which is essentially the
same as (A.75) and (A.79) in the derivation of Theorem 2. Using (A.81) and (A.83),
the condition for consistency of the LSIML estimator of V (2r) becomes

AB1n −→ 0 . (A.89)

Since the asymptotic bias from the third term of (A.86) is
√
b(n)mc × [AB1n]2 =

AB1n × AB2n at most and other terms are of higher orders, the condition for the
asymptotic normality without bias becomes

AB2n −→ 0 . (A.90)

(Step6) In the general case of stochastic volatility,we need theSC, because the limiting
terms as

∫ 1
0 σ 2r

s ds are stochastic. Since we are considering higher order Brownian
motions of the form (5) under (4) and the dominant terms are martingale differences,
it is possible to show the stable-convergence. Some additional discussions on the CLT
and the SC are provided at the end of the Appendix. �

4. Derivation of Theorem 5:
The derivation is an extension of the proofs of Theorem 2 in Sect. 5 and Theorem

2.1 of KK (2021), and we show the additional arguments. (Step 1) We use the decom-
position method for the diffusion part and jump part, which was used in the derivation
of Theorem 2.1 of KK (2021).

In the set Ic(i) = (t (n)
i−1, t

(n)
i ], (i = 1, . . . , b(n)) we set zk,(i) = z(1)k,(i) + z(2)k,(i),

where z(1)k,(i) and z(2)k,(i) (k = 1, . . . , c(n)) correspond to the kth elements of Z(1)
c(n),(i) =

h−1/2
c(n) Pc(n)C

−1
c(n)(Xc(n),(i) − ȳ0,(i)) and Z(2)

c(n),(i) = h−1/2
c(n) Pc(n)C

−1
c(n)Vc(n),(i) (Xc(n),(i)

andVc(n),(i) are the c(n)×1 state vector and the noise vector, respectively, in Ic(i) (i =
1, . . . , b(n))). We use the decomposition M2,(i) = M (1)

2,(i) + [M (2)
2,(i) + M (12)

2,(i) as in the
derivation of Theorem 2.
Because M (2)

2,(i)I(M2,(i) ≤ u) ≤ M (2)
2,(i), we can apply Conditions in Theorem 2 to

M (2)
2,(i) = (1/mc)

∑mc
k=1[z(2)k,(i)]2 and then the asymptotic bias ABn in (A.17) is asymp-

totically negligible. Also, we can use |M (12)
2,(i)I(M2,(i) ≤ u)| ≤ |M (12)

2,(i)|, and we find

that the effects M (12)
2,(i) (i = 1, . . . , b(n)) are stochastically negligible.

Next, we use the representation

M (1)
2,(i) = 1

mc

mc∑
k=1

[z(1)k,(i)]2 =
c(n)∑
k,l=1

cklrk,(i)rl,(i) , (A.91)

where rk,(i) (= X(tni (k))−X(tni (k−1))) are returns in the interval (tni (k−1), tni (k)] ∈
Ic(i) (i = 1, . . . , c(n); k = 1, . . . , c(n)).
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Here, we take tni (k) − tni (k − 1) = 1/n, ckl = (2/mc)
∑mc

j=1 sk j sl j , and then

approximate rk,(i) (= X(t (n)
k (i))) − X(t (n)

k−1(i))) by

r (n)
k,(i) = σ(t (n)

k (i))�B(t (n)
k (i) +

∑
s∈Ik (i)

�X(s) , (A.92)

where �B(t (n)
k (i)) = B(t (n)

k (i)) − B(t (n)
k−1(i)) and Ik(i) = (t (n)

k−1(i), t
(n)
k (i)].

In this approximation, using Lipschitz condition on σs in (t (n)
k−1(i), t

(n)
k (i)](k =

1, . . . , c(n); i = 1, . . . , b(n)), we can evaluate

∣∣∣∣
∫ t (n)

k (i)

t (n)
k−1(i)

σsdB − σ(t (n)
k−1(i))�B(t (n)

k (i)

∣∣∣∣ = Op

(
1

n
√
n

)
, (A.93)

and hence, we ignore the differences of approximations, which are of the higher orders.
For i = 1, . . . , b(n), let

QVi =
∫ t (n)

k (i)

t (n)
k−1(i)

σ 2
s ds +

∑
s∈Ik (i)

(�X(s))2 , (A.94)

and then, we decompose

M (1)
2,(i) − QVi =

c(n)∑
k,l=1

[
cklrk,(i)rl,(i) − δ(k, l)QVi

]

=
n∑

k=l=1

(ckk − 1)
[
(rk,(i))

2 − QVi
]

+
n∑

k �=l1

ckl

⎡
⎣rk,(i)rl,(i) −

∑
s∈Ik (i)

�X(s)
∑

s∈lk (i)
�X(s)

⎤
⎦

+
n∑

k �=l1

ckl

⎡
⎣ ∑
s∈Ik (i)

�X(s)
∑

s∈lk (i)
�X(s)

⎤
⎦

= (I )i + (I I )i + (I I I )i + (I V )i (, say) .

Using the similar evaluations (which are straightforward, but tedious) as the proof of
Theorem 2.1 of Kunitomo and Kurisu (2021), we have

b(n)∑
i=1

[(I )i + (I I )i + (I I I )i + (I V )i ] p−→ 0 (A.95)

under Condition (i) of Theorem 2. For (IV), because we have a finite number of
jumps, we can take the jump times 0 < i1(n) < · · · < iM < n and we can take
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0 < s1 < · · · < sM < 1, such that i j (n)/n → s j ( j = 1, . . . , M). Then

√
mc

b(n)∑
i=1

c(n)∑
k �=l=1

clk

⎡
⎣ ∑
s∈Ik (i)

�X(s)
∑

s∈Il (i)
�X(s)

⎤
⎦ = op

(
1√
mc

)
(A.96)

as mc → ∞ , because

ckl = 1

2mc

(
2c(n)

2c(n) + 1

)[
sin 2πmc(

k+l−1
2c(n)+1 )

sin(π k+l−1
2c(n)+1 )

+ sin 2πmc(
l−k

2c(n)+1 )

sin(π l−k
2c(n)+1 )

]
(k �= l) .

Next, for QV (i = 1, . . . , b(n)) the first term is of the order c(n) × (1/n) = 1/b(n),
and the second term is of the order c(n). Then, we find that for any positive constant
QVi × I (M2(i) < un) is of the order 1/b(n) when n is large. Hence, as n → ∞ for
any positive fixed constant u

b(n)∑
i=1

[
M (1)

2,(i) I (M2,(i) < un)
]

−
∫ 1

0
σ 2
s ds

p−→ 0 (A.97)

and

b(n)∑
i=1

[
M (1)

2,(i) I (M2,(i) > un)
]

−
∑

0≤s≤1

(�Xs)
2 p−→ 0 . (A.98)

Using Lemma A-3 in the Appendix, we have the consistency of the continuous part
and jump part of the quadratic variation.

(Step 2) For the asymptotic distribution, we consider

b(n)∑
i=1

c(n)∑
k �=l=1

ckl
[
rk,(i)rl,(i)

] =
b(n)∑
i=1

c(n)∑
k �=l

ckl
[
σ(t (n)

k−1(i))σ (t (n)
l−1(i))�B(t (n)

k (i))�B(t (n)
l (i))

+σ(t (n)
k−1(i))�B(t (n)

k (i))
∑

s∈Il (i)
�X(s)

+σ(t (n)
l−1(i)))�B(t (n)

l (i))
∑

s∈Ik (i)
�X(s)

⎤
⎦ .

Then, we need to evaluate the asymptotic behaviors of the continuous part of the
limiting distribution of

√
b(n)mc

b(n)∑
i=1

c(n)∑
k �=l

ckl
[
σ(t (n)

k−1(i))σ (t (n)
l−1(i))�B(t (n)

k (i))�B(t (n)
l (i))

]
, (A.99)
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and the jump part of the limiting distribution of

√
b(n)mc

b(n)∑
i=1

c(n)∑
k �=l

ckl

⎡
⎣σ(t (n)

k−1(i))�B(t (n)
k (i))

∑
s∈Il (i)

�X(s)

+σ(t (n)
l−1(i)))�B(t (n)

l (i))
∑

s∈Ik (i)
�X(s)

⎤
⎦ . (A.100)

Two parts of the limiting random variables in (A.99) and (A.101) are asymptotically
independent. Using Lemma 5.6 of KSK (2018), we can derive the variances of the
limiting distributions as (47) and (46). (See Lemma 8.3.3 of Anderson (1971) for the
Fejér’s kernel operation.) Finally, we apply lengthy arguments for CLT, which are
similar to the derivation of Theorem 2 in Sect. 2 and the proof of Theorem 2.1 in
KK (2021). Using Lemma A-3 in the Appendix, we have the asymptotic normality
of (A.99) and (A.101) in the SC sense. (We have omitted some details, but we give a
discussion on the CLT and the SC in the next subsection.) �
5. On the SC and the MCLT:

We give an outline of the underlying arguments of the CLT and the SC in Theorems
2, 3, and 5. We consider the simple diffusion model of (1)–(4) when μσ

s and ωσ
s in

(3) and (4) are bounded and Lipschitz-continuous with p = r = 1 and b(n) = 1.
Then, we denote c(n) = n and mc = mn as in KSK (2018) under the conditions
as mn → ∞ and mn = O(nα) (0 < α < 0.4). (For jump terms, we need some
additional arguments on the validity of asymptotic normality in the sense of the SC.)

Using Itô’s formula, we represent

σ 4
t = σ 4

0 +
∫ t

0
μσ∗
s ds +

∫ t

0
ωσ∗
s dBσ

s (0 ≤ s ≤ t ≤ 1) , (A.101)

whereμσ∗
s andωσ∗

s are the drift and diffusion coefficients and Bσ
s is Brownianmotion,

which may be correlated with Bs .
For 0 = tn0 < tn1 < · · · < tnn = 1, we write

V (4) = σ 4
0 +

n∑
j=1

[ ∫ tnj

tnj−1

(∫ t

0
μσ∗
s dsdt

)
+

∫ tnj

tnj−1

(∫ t

0
ωσ∗
s dBσ

s dt

)]
.(A.102)

Then, V (4) is a diffusion process and the last term of V (4) becomes the sum of

V n
i =

∫ tni

tni−1

(∫ 1

s
dtωσ∗

s dBσ
s

)
(i = 1, . . . , n). (A.103)

Using the typical arguments of stochastic orders, we can show that the effects of drift
terms are negligible as n → ∞. Using the similar arguments in Chapter 5 of KSK
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(2018), the leading martingale term of the SIML estimator is

Un =
n∑
j=2

Un
j , (A.104)

whereUn
j = [∑ j−1

i=1 2
√
mnci j ri ]r j , r j = X(tnj )−X(tnj−1), ci j = (2/mn)

∑mn
k=1 ski sk j

and si j = cos
[

2π
2c(n)+1 (i − 1

2 )( j − 1
2 )

]
(i, j = 1, . . . , n).

Then, we evaluate the conditional expectations as

Wn
j = E[Un

j V
n
j |F j−1,n] = [

j−1∑
i=1

2
√
mci j ri ]

∫ tnj

tnj−1

σs(1 − s)ωσ∗
s ds , (A.105)

where F j−1,n is the σ−field generated at tnj−1 ( j = 1, . . . , n). We notice that for any

j ( j = 1, . . . , n)
∫ tnj
tnj−1

σs(1 − s)ωσ∗
s ds = Op(n−1), which can be approximated as

[σ(tnj−1)(1 − tnj−1)ω
σ∗(tnj−1)][B(tnj ) − B(tnj−1)] with the error order being O(n−2).

By using (4) with t = tnj−1 for each j , σ(tnj−1) can be further represented as the sum of
drift terms and Brownian motion parts given Fi−1,n for tnj−1 > tni−1 ( j = 1, . . . , n).
By re-writing the sum of conditional expectations as

n∑
j=2

Wn
j =

n−1∑
i=1

[ n∑
j=i+1

√
mnci j

∫ tnj

tnj−1

σs(1 − s)ωσ∗
s ds

]
ri , (A.106)

it is possible to show that as n −→ ∞
n∑
j=2

Wn
j

p−→ 0 . (A.107)

To show this convergence, we use several facts that the function σs(1 − s)ωσ∗
s is

bounded and Lipschitz-continuous, σs is a Brownian semi-martingale with (4) for any

s, and rnj = ∫ tnj
tnj−1

σsdBs can be approximated by r∗n
j = σ(tnj−1)(B(tnj ) − B(tnj−1))

with errors order being O(n−2). We also have the representation for i �= j

ci j = 1

2mn

[
sin π

2n+1 (i + j − 1)mn

sin π
2n+1 (i + j − 1)

+ sin π
2n+1 (i − j)mn

sin π
2n+1 (i − j)

]
(A.108)

(see Section 3.2 and Lemma 5.2 of KSK (2018)).
Using the Fejér’s kernel as the proof of Theorem 5 for [√mnci j ]2, we can derive

the asymptotic variances of the normalized random variables. [See Lemma 5.6 and
the derivation of the asymptotic variance of the SIML estimator in KSK (2018).] It
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may be straightforward to find the (Lyapunov-type) condition

n∑
j=2

E[(Un
j )

4] −→ 0 , (A.109)

as n → ∞.
Using the convergence of each term and applying Theorem 2.2.15 of Jacod and

Protter (2012) to the martingale parts, we have the SC for a sequence of random
variables. (The derivation of the CLT for the main term in the normalized SIML
estimator Un , which has been given in Chapter 5 of KSK (2018).)

We write the normalized SIML estimator in the form of Un = ∑n
j=2U

n
j and it

is asymptotically uncorrelated with V (4) (= ∫ 1
0 σ 4

s ds) (and higher order Brownian
functionals). Then, we have the SC of the martingale Un to the limiting normal ran-

dom variable given
∫ 1
0 [σx (s)]4ds and Un/

√∫ 1
0 [σx (s)]4ds w−→ N (0, 2) (the standard

normal distribution) in the standard weak-convergence.
As a typical example. we have that as n −→ ∞

√
mn

[
V̂ (2) − V (2)

] L−s→ N [0,W ] , (A.110)

where

W = 2
∫ 1

0
σ 4
s ds . (A.111)

It is tedious, but straightforward to extend the above arguments to more general cases.
(See Jacod and Protter (2012), and Hausler and Luschgy (2015) for details of the SC.)

Finally, in Theorem 5 for the jump-diffusion model, we need to show that the CLT
can be applicable to (A.99) and (A.101) in the SC sense. As (A.102)–(A.104) in the
diffusionmodel, it is possible to re-write it as the sumofmartingale different sequences
and we can use the similar arguments. It is because both of (A.99) and (A.101) are
linear combinations of the underlying Brownian motions.
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