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Abstract
Real world data (RWD) are generating greater interest in recent times despite being 
not new. There are various purposes of the RWD analytics in medical research as 
follows: effectiveness and safety of medical treatment, epidemiology such as inci-
dence and prevalence of disease, burden of disease, quality of life and activity of 
daily living, medical costs, etc. The RWD research in medicine is a mixture of digi-
tal transformation, statistics or data science, public health, and regulatory science. 
Most of the articles describing the RWD or real-world evidence (RWE) in medi-
cal research cover only a portion of these specializations, which might lead to an 
incomplete understanding of the RWD. This article summarizes the overview and 
challenges of the RWD analysis in medical fields from methodological perspectives. 
As the first step for the RWD analysis, data source of the RWD should be compre-
hended. The progress of the RWD is closely related to the digitization, especially of 
medical administrative data and medical records. Second, the selection of appropri-
ate statistical and epidemiological methods is highly critical for an RWD analysis 
than those for randomized clinical trials. This is because it contains greater varie-
ties of bias, which should be controlled by balancing the underlying risk between 
treatment groups. Last, the future of the RWD is discussed in terms of overcoming 
limited data by proxy confounders, using unstructured text data, linking of multiple 
databases, using the RWD or RWE for a regulatory purpose, and evaluating values 
and new aspects in medical research brought by the RWD.
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1 Introduction

In the field of medical research, randomized clinical trials (RCTs) are the golden stand-
ard to estimate the causal inference between treatment interventions and outcomes. 
Real world data (RWD) are the data relating to patient health status and/or the delivery 
of the healthcare, routinely collected from a variety of sources regardless of the size of 
data (Hiramatsu et al., 2021; US Food & Drug Administration, 2018). Data from obser-
vational studies are also considered as RWD. The RWD are mutually complementary 
to limitations of RCTs, such as a small sample size of trials, participants with limited 
age groups including a smaller number of people, or no older people and minors, par-
ticipants with limited complications, short follow-up duration, etc.

The RWD are generating greater interest in recent times although the RWD has been 
used since more than decades ago. Progress of the RWD is closely related to digiti-
zation, especially of medical administrative data and medical records. The UK estab-
lished the first European electronic health records (EHR) database of Clinical Practice 
Research Datalink (CPRD) in 1987. In the US, the HITECH Act was enacted in 2009, 
providing funds toward encouraging medical practices to better adopt and make mean-
ingful use of the EHR (Menachemi & Collum, 2011). In Japan, electronic claim of 
public health insurance was legalized in 1976, finally becoming an obligation in 2011. 
At present, the National Database of Health Insurance Claims and Specific Health 
Checkups of Japan (NDB) cover 99% of claims in Japan.

Various purposes of analysis using the RWD (hereafter, RWD analysis) in medical 
research include effectiveness and safety of medical treatment, epidemiology such as 
incidence and prevalence of disease, burden of disease, quality of life and activity of 
daily living, and medical costs. As an example of comparative effectiveness, long-term 
survival advantage among patients who underwent coronary-artery bypass grafting 
(CABG) was shown compared with percutaneous coronary intervention (PCI), using 
a large study population of 189,793 patients in total, from claims and patient regis-
try databases (Weintraub et al., 2012). These days, the RWD and real-world evidence 
(RWE) are used for regulatory submission (Feinberg et al., 2020), as well as for other 
activities during clinical development and post-launch of drugs in the pharmaceutical 
industry (Fig. 1) (Togo et al., 2019).

The RWD in medicine is a mixture of digital transformation, statistics, data science, 
public health, reimbursement, pricing of products and regulatory science. Unfortu-
nately, most of the articles describing the RWD in medical research cover only a por-
tion of these specializations and that might lead to RWD’s incomplete understanding. 
Further, describing various sources of the RWD and relating analytic issues as biases 
(systematic errors) remain insufficient as well. Therefore, this article summarizes the 
overview of data source of the RWD and challenges of the RWD analysis in medical 
fields from methodological perspectives.
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2  Source of RWD

There are two approaches to collecting RWD: primary and secondary data collection 
(Schneeweiss & Patorno, 2021). Primary data are collected directly from study par-
ticipants for the purposes of the study, and may be collected either retrospectively 
(via patient charts or other data sources), or prospectively (Mueller et  al., 2018). 
Secondary data are obtained from existing health care data collection infrastruc-
tures, such as administrative claims databases, EHR databases, existing patient reg-
istries or study cohorts, or individual patient medical records.

Major data sources of secondary data are presented in Table  1 (Nabhan et  al., 
2019). Each database of secondary data has strengths and limitations. The over-
view of medical databases in Japan is annually surveyed by the Japanese Society 
for Pharmacoepidemiology and provided on the website (Pharmacoepidemiology & 
Database Taskforce, Japanese Society for Pharmacoepidemiology, 2021). The larg-
est medical database in Japan is the National Database of Health Insurance Claims 
and Specific Health Checkups of Japan (NDB), which covers approximately 99% of 
health insurance claims in Japan. Although its use was limited to certain organiza-
tions for public welfare and academic institutions, NDB has been open to private 
companies for research of public health since October 2020 (Kaneyama et al., 2017; 
Kohsaka et al., 2021).

When selecting an appropriate data source for a research, protection of data pri-
vacy is one of the key elements, as well as strengths and limitations of each data 
source. The RWD includes medical data with sensitive personal information. There-
fore, data privacy has to be protected for any types of data source in compliance 
with national data protection laws such as the US Health Insurance Portability and 
Accountability Act (HIPAA), the EU General Data Protection Regulation (GDPR), 
and the Japan Act on the Protection of Personal Information (Personal Information 
Protection Commission, Government of Japan, 2020; Office of Civil Rights, Depart-
ment of Health and Human Services, 2002; The European Parliament & the Council 
of the European Union EUR-Lex, 2019; Wirth et al., 2021). In Japan, medical data 

Fig. 1  Use of real-world data during clinical development and post-launch in pharmaceutical industry
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is regarded as sensitive information and consent from patients (opt-in consent) is 
required to use such data for secondary purposes unless it is anonymized according 
to the act. However, for academic research, medical information regarding public 
health can be used with opt-out consent to provide patients an opportunity to refuse 
inclusion in the research (Ministry of Education, Culture, Sports, Science and Tech-
nology et al., 2021). Although database linkage enables large data creation, a wide 
range of personal information makes data linkage difficult, or at times, even impos-
sible, because of data privacy.

3  Statistical and epidemiological methods for the RWD analysis

Although the RWD can be leveraged for various research questions, the selection of 
appropriate statistical and epidemiological methods is highly critical than those for 
RCTs. In traditional clinical trials, randomization has long been an essential tool for 
minimizing bias by balancing underlying risk between treatment groups (Sherman 
et al., 2016). Among dozens of biases that have been defined, the major biases are 
the selection bias and the information bias (Table 2) (Rothman et al., 2008). A bias 
needs to be prevented by adequate designing of the study, since bias once identified, 

Table 1  Major data sources of secondary data (Nabhan et al., 2019)

Data source Description

Administrative claims database A health insurance claim is a request made for direct payment or 
reimbursement for medical services from hospitals, clinics, phar-
macy. Claims data are systematic and well-structured. Large claims 
databases are available in many countries. However, claims are 
recorded to maximize the reimbursement and the data sometimes 
might be unrepresented as the disease name of clinical practice

EHR database (Evans, 2016) An EHR is an individual patient health record. A typical EHR may 
include a patient’s medical history, diagnoses, treatment plans, 
immunization dates, allergies, radiology images, pharmacy records, 
and laboratory and test results. Although EHR databases are more 
likely to capture important health information about patients than 
administrative data, most of that information is unstructured

Patient registry A patient registry is defined as an organized system that collects 
data and information on a group of people defined by a particular 
disease or condition, and that serves a pre-determined scientific, 
clinical and/or public health (policy) purpose (European Medical 
Agency, 2020). In addition to its use as secondary data, a registry-
based study is another way of leveraging registry system. Registry 
often includes clinical outcomes, but missing data is common

Wearable, censor Sensors and/or software apps on smartphones and tablets that can 
collect health‐related data remotely i.e., outside of the healthcare 
provider’s office (Izmailova et al., 2018). These provide monitoring 
treatment response, including the monitoring of efficacy and safety 
of treatment, and monitoring of patient‐reported outcomes and/or 
quality of life measures
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cannot be reverted. Confounding is another challenge in the RWD analysis. It can be 
controlled either in the study design or in its analysis.

Basic principles to prevent a bias and confounding in design are random alloca-
tion (generally not applicable in RWD), subject selection or localization, stratifica-
tion, and matching. Common epidemiological study designs using these principles 
are cohort studies of new-user design, nested case–control studies, and self-control 
studies (Table  3) (Strom et  al., 2019). Furthermore, study designs for regulatory 
decision making in combination with clinical trials emerge (Table  3) (Baumfeld 
et al., 2020), whereas the purpose of those designs is to support the evidence from 
clinical trials rather than to prevent bias. The epidemiological study designs are 
adaptive to the studies for regulatory decision making as well.

Statistical methods should be carefully selected in the RWD analysis for causal 
inference and estimation of treatment effect, as well as the study design. We sum-
marize some statistical methods.

3.1  Stratification, matching, and weighting using propensity score

Propensity score is the probability of treatment assignment (Z = 1 for treated, Z = 0 
for control) conditional on measured baseline covariates (X) and the propensity 
score for subject i (i = 1, …, n) is ei = Pr

(
Zi = 1||Xi

)
 (Rosenbaum & Rubin, 1983). 

The propensity score is often applied to stratification and matching to balance large 
numbers of covariates. However, the balancing between treatment groups using pro-
pensity score requires the assumption of no unobserved confounders which is rarely 
true in research using the RWD. Other difficulty is the distribution of propensity 
scores. It often does not overlap adequately between treatment groups when the 
treatment choice is strongly related with patient backgrounds.

Inverse probability weighting (IPW) using propensity score, or inverse prob-
ability of treatment weighting (IPTW) is an alternative method to estimate treat-
ment effect with covariate adjustment. The inverse probability of treatment weight 
is defined as wi = Zi∕ei +

(
1 − Zi

)
∕
(
1 − ei

)
 . The weight can be highly large when 

a subject has very low propensity score. A number of alternatives are proposed to 
stabilize weights such as wi = Pr(Z = 1)Zi∕ei + Pr(Z = 0)

(
1 − Zi

)
∕
(
1 − ei

)
, where 

Pr(Z = 1) and Pr(Z = 0) are the marginal probability of treatment and control in the 
overall sample (Austin & Stuart, 2015).

A large number of RWD studies with application of propensity have been pub-
lished, but only a few reviews suggested the pitfall and the guidance (Austin, 2007; 
Yao et al., 2017; Zakrison et al., 2018).

3.2  Structural models and doubly robustness

The difficulty of a RWD analysis, in addition to that caused by non-randomization, 
is bias due to time-varying exposures and confounders. These effects post-treatment 
initiation are not considered in Intent-to-Treat approach, which is generally employed 
in RCTs. Marginal structural models produce consistent estimates of the average 
causal treatment effects even in the presence of treatment changes, time-dependent 
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confounders, and missing at random study dropout as application of inverse-proba-
bility weighting (Faries et al., 2014). Structural nested mean model is also applied 
to time-varying exposures and confounders, and are fitted using g-estimation. This 
model is better tailored for dealing with failure of the standard assumptions of no 
unmeasured confounders (Vansteelandt & Sjolander, 2016). Several applications of 
time-depending confounders have been reported in a wide range of diseases (Clare 
et al., 2019; Yang et al., 2014). Of these, one example is the comparative effective-
ness study of angiotensin receptor blockers (ARBs), in patients with chronic heart 
failure (CHF), using a national cohort of beneficiaries of the US Department of Vet-
erans Affairs medical care system (Desai et al., 2012). A marginal structural model 
in reducing mortality in CHF included the time-dependent confounder of hospitali-
zation, which lies on the causal pathway from treatment to death. ARB treatment 
history and hospitalization were defined on monthly basis.

The idea of doubly robustness is to combine outcome and exposure modelling 
in a fashion that provides a valid estimate if either model is correct. For example, 
matching using propensity scores in a model for exposure, and then regressing 
outcomes on exposure and covariates in the matched sample. Robins et al. (1994) 
developed an improved augmented inverse probability weighting (AIPW) using the 
process of double robustness property involving 2 basic steps: first, fitting a propen-
sity score model, and then fitting models that estimate the outcome Yi under treat-
ment and control conditions, f

(
Z||Xi

)
 (Kurz, 2021; Qi & Sun, 2014; Robins et al., 

1994). The average treatment effect of AIPW can be estimated by 

3.3  Instrumental variable

Instrumental variable is the approach without assuming potential unobserved con-
founders. Instrumental variables naturally create quasi-random treatment choice and 
is related to the interested treatment. The instrumental variable estimator is simple: 
(E[Y|T = 1 ] − E[Y|T = 0 ])∕(E[Z|T = 1 ] − E[Z|T = 0 ]) , where T is the instrumen-
tal variable (Strom et al., 2019). An example of instrumental variable is site-level 
preference for the use of embolic protection devices (EPD) for assessing causality of 
EPD use during transcatheter aortic valve replacement (TAVR) on in-hospital stroke 
(Butala et al., 2021). However, the difficulty in finding a valid instrumental variable 
is the reason for its relatively limited use (Faries et al., 2014).

3.4  Machine learning, AI

At times, the RWD is a large and high-dimensional data. Machine learning methods 
are used for identifying groups with disease prognostic or treatment response from 
a large data (Bakouny & Patt, 2021; Bica et al., 2021) In addition, machine learn-
ing and deep learning are leveraged for propensity score estimation. Application of 

1
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∑
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AI to the RWD is an intensive research field to use complex RWD including texts, 
images, voice data, etc. Disease diagnosis from image data and outcomes, such as 
treatment response and adverse effects, extracted from physician notes are popular 
and practical themes using AI.

3.5  Sensitivity analysis

Although it may be strange to deal with sensitivity analysis along with the meth-
ods mentioned above, it is worth referring to sensitivity analysis to understand the 
robustness of a study’s findings in a RWD analysis. Sensitivity analysis for quantify-
ing a bias is sometimes called bias analysis. For unobserved confounders, external 
adjustment is to adjust relative risk using external evidence. For misclassification of 
disease or exposure, statistics can be adjusted using sensitivity and specificity esti-
mated in a validation study or external literatures. For assessing the effect of a bias 
in the study design, definitions of baseline period, outcomes, and exposure can be 
varied in the sensitivity analysis (Rothman et al., 2008). Causal effects estimated in 
observational studies are not binary signals, with or without statistical significance, 
but are numerical quantities. To quantify the effect as unbiasedly and precisely as 
possible, multiple studies using the different RWD sources, and meta-analysis of 
them could provide a highly reliable estimate (Hernán, 2021). The practical imple-
mentation, and quite a few assumptions of the sensitivity and bias analysis are con-
tinuously discussed.

4  Discussion

There are several approaches to overcome the limited data of a RWD database. 
Although administrative database has limited information, high dimensional propen-
sity score approach can be exploited by applying proxy confounders of variables 
created from a large quantity of structured data, such as disease and prescription 
records (Bosco-Lévy et  al., 2021). For the EHR, unstructured text data including 
physician’s progression notes and repots of test results is drawing attention. Clinical 
outcomes are derived from unstructured medical records using retrospective review 
and automated analysis, using natural language processing and AI. This is critical 
for the progress of comparative effectiveness research using the RWD. Linking mul-
tiple databases enables patient follow-up for a long period of time, or covers a wide 
range of personal information. The data privacy regulation in each country makes 
data linking difficult or at times, even impossible. As a countermeasure for medical 
research, in Japan, “Act on Anonymized Medical Data That Are Meant to Contrib-
ute to Research and Development in the Medical Field” (Next Generation Medical 
Infrastructure Law) was enforced in 2018 that allows certified enterprises to deal 
with identifiable medical information from multiple facilities.

In drug development, pharmaceutical companies and regulatory authorities con-
sider utilizing an external control arm for a non-randomized clinical trial of a sin-
gle arm when randomization may not be feasible or ethical (Nishioka et al., 2021; 
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US Food & Drug Administration, 2018) Bias is greater problematic in compari-
son between treatment arms from clinical trial and the RWD, than the comparison 
between treatment arms within a database of the RWD. However, there is a strong 
need of the external control arm in rare disease area, and regulatory guidance has 
been issued in several countries. In Japan, the Ministry of Health, Labour, and Wel-
fare (MHLW) and the Pharmaceuticals and Medical Devices Agency (PMDA) have 
been working to promote the RWD use for regulatory decision making. They have 
issued several guidelines, including the RWD use for post-marketing surveillance 
and registry data use for drug applications (Nishioka et al., 2021; Ishii et al., 2021).

The RWD provides new aspects on medical research. Research using the RWD 
provides results with an increased speed. It is based on larger data than research 
using primary data collection, with a relatively low cost, once the platform is estab-
lished. Demands of rapid RWE in post-marketing safety surveillance are increasing 
considerably after the COVID-19 pandemic  (Naidoo et  al., 2021). For example, a 
study to explore the frequency and severity of myocarditis after COVID-19 vaccina-
tion used the data until May 24, 2021 from the database of Clalit Health Services in 
Israel, and the results were published in the New England Journal of Medicine just 
after about 4.5 months from the data period (Barda et al., 2021). Another aspect is 
new technologies as means of collecting the RWD novel outcomes created by digital 
devices, such as mobility and sleep by wristwatch type wearable and ECG by skin 
patch, yielding new values of drug effectiveness. These data from new technologies 
provide opportunities to apply new methodologies of data science dealing with large 
data of intensive longitudinal time periods (Izmailova et al., 2018).

There still exists large potential for improvement in the ways of demonstrating the 
reliability or degree of bias, and the uncertainty about the evidence obtained from 
the new types of RWD. We would rather quantify them for considering the effect on 
decision making, than emulating the inference of RCTs. Moreover, the RWD reflect 
“real world” of local regions, and it is important to understand the local healthcare 
system and clinical practices to evaluate values for reimbursement and pricing. 
Therefore, Statistics and data science have opportunities for contributing toward pre-
senting new methodologies for the RWD.

5  Conclusion

The RWD is not new, but rapidly evolving in terms of data source, digital devices for 
data collection, application fields, and regulations. Statistics and data science should 
be updated corresponding to these rapid changes for various sources and settings in 
the RWD. We emphasize on improving methodologies for explaining relevance of 
the obtained evidence including biases and uncertainty.
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