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Abstract
The dynamics of the wild boar population has become a pressing issue not only for 
ecological purposes, but also for agricultural and livestock production. The data 
related to the wild boar dispersal distance can have a complex structure, including 
excess of zeros and right-censored observations, thus being challenging for mod-
eling. In this sense, we propose two different zero-inflated-right-censored regression 
models, assuming Weibull and gamma distributions. First, we present the construc-
tion of the likelihood function, and then, we apply both models to simulated data-
sets, demonstrating that both regression models behave well. The simulation results 
point to the consistency and asymptotic unbiasedness of the developed methods. 
Afterwards, we adjusted both models to a simulated dataset of wild boar dispersal, 
including excess of zeros, right-censored observations, and two covariates: age and 
sex. We showed that the models were useful to extract inferences about the wild 
boar dispersal, correctly describing the data mimicking a situation where males dis-
perse more than females, and age has a positive effect on the dispersal of the wild 
boars. These results are useful to overcome some limitations regarding inferences in 
zero-inflated-right-censored datasets, especially concerning the wild boar’s popula-
tion. Users will be provided with an R function to run the proposed models.

Keywords  Dispersal · Distance · Wild boar · Zero-inflated data · Censored data

1  Introduction

The dynamics of wild animal populations is an important issue not only for eco-
logical purposes, but also for agricultural and livestock production (Cumming et al., 
2012). The wild boar (Sus scrofa) is considered to have one of largest geographical 
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ranges of all terrestrial mammals (Lewis et  al., 2017). It causes several types of 
losses related to the environment, agricultural activities, and animal production/
trade by spreading diseases (Meng et  al., 2009; Sánchez-Vizcaíno et  al., 2019). 
With the re-emergence of African Swine Fever (ASF) as a threat to the global pig 
industry (Sánchez-Cordón et al., 2018), there is an ongoing need for better quanti-
tative descriptions of the movement and land-occupation behaviors of wild boars 
(McClure et al., 2015; Morelle et al., 2014).

Animal dispersal occurs when individuals leave their social group or home range, 
redistributing the population (Breed & Moore, 2016). According to Casas-Díaz et al. 
(2013), dispersal is an important characteristic of the wild boar’s ecology and should 
be taken into account in the design of disease monitoring programs as these animals 
can affect the spread of diseases and the probability of new outbreaks. Several tech-
niques are used to measure animal dispersal [e.g., radio telemetry, GPS, ground sur-
veys, or hunting statistics (Morelle et al., 2014)], and datasets produced by recapture 
with hunting bags are important sources of information for veterinary epidemiology 
(Keuling et al., 2018; Scillitani et al., 2010; Vicente et al., 2018).

Animal dispersal data may have a complex structure: it may be right-skewed 
given the short-distance dispersal; have excessive zeros, because many animals 
do not disperse at all or they disperse distances that are inside the error margin of 
telemetry (Keuling et al., 2008). Also, censored observations may occur, when an 
animal’s track is lost (e.g., collars or ear tags are lost, or animals move away from 
the hunting perimeter) (Podgórski et  al., 2014; Prévot & Licoppe, 2013; Truvé & 
Lemel, 2003). This data structure is challenging from an inferential perspective, 
creating issues for researchers attempting to formulate hypotheses or build models 
using dispersal distance information (Bowman et al., 2002). Thus, many authors dis-
card the censored data and also avoid fitting generalized linear models. As a conse-
quence, the datasets are not correctly used in making inferences and testing hypoth-
eses about dispersal distances (Prévot & Licoppe, 2013; Truvé & Lemel, 2003). 
Evidently, improvements in quantitative analytical techniques on dispersal distance 
are still needed (Whitmee & Orme, 2013).

According to Lambert (1992), the zero values can have the following sources: 
they can come from a population where the value would always be zero, called 
“structural zeros”; alternatively, they can be “sampling zeros” from a population 
whose observations belong to some probability distribution. To analyze a zero-
inflated non-negative outcome (semi-continuous outcome) data, Manning et  al. 
(1981) proposed a two-part model (2PM), separating the zero and positive values 
explicitly in two submodels (parts). Liu et al. (2010) proposed an extension of the 
2PM, assuming a generalized gamma distribution of the positive values. Lee et al. 
(2010) proposed a two-part multilevel modeling, in which the zero proportion is 
modeled by logistic regression and the continuous values by gamma regression. 
Gebregziabher et al. (2017) presented a family of models for zero-heavy continuous 
outcomes, with Weibull mixture regression as a special case, and with a marginal 
inference. Louzada et al. (2018) proposed a zero-inflated non-default rate regression, 
assuming that the positive values follow a Weibull distribution.

To consider the whole data structure of wild boar dispersal distances, we 
propose an extension of the zero-inflated gamma model (Lee et  al., 2010), 
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incorporating the right-censored observations in the continuous values through 
the gamma regression. Furthermore, we consider the zero-inflated, right-censored 
Weibull regression (Louzada et al., 2018), discarding the cure rate of the model. 
In the models proposed in this paper, both techniques allow the incorporation of 
the whole data (without excluding zeros and the right-censored observations) to 
make inferences. This includes covariates in the model, as the survival models 
can also be used to assess distances, as seen in Reader (2000) and Chatwin et al. 
(2013). The gamma is a flexible distribution; it describes a different type of sur-
vival pattern according to the hazard rate: increasing, decreasing, or constant; it 
fits a variety of lifetime data adequately and has the exponential distribution as a 
particular case (Lawless, 2011). The Weibull distribution is also flexible and has 
a monotonically increasing, decreasing, or constant hazard rate (Klein & Moe-
schberger, 2003); is probably the most used parametric lifetime model (Wienke, 
2011); it has been widely used to model right-skewed data and has also motivated 
proposals of various types of generalizations (Liao et  al., 2020; Ramos et  al., 
2018; Shinohara et al., 2020).

Given the lack of a dataset fully describing zeros, dispersal distances, and 
censored data, we apply both techniques to an artificial dataset that mimics the 
wild boar population’s dispersal. The simulated animal population includes three 
subpopulations: animals for which no dispersal was registered (zeros); animals 
that showed some measurable distance, and animals whose track has been lost 
(censored). Such data mimic situations of capture–recapture using hunting bags 
in which a proportion of animals moved away from the hunting perimeter. The 
manuscript is structured as follows.

First, we present the definitions and the construction of the zero-inflated-censored 
Weibull (ZIWeibull) and the zero-inflated-censored gamma (ZIGamma) models. 
Next, we show the properties of the models’ estimators and compare the two mod-
els. Finally, we demonstrate their application to the artificial wild boar dispersal 
dataset. An R function was created to enable users to run the models with their own 
data. Instructions regarding this function and package installation details are avail-
able in Appendix (instructions for installing the R functions and run the models).

2 � Formulation of the models

Let T denote the random variable of interest, and it is the observable time to 
event, called lifetime or failure time. Finally, consider xxx1,xxx2,xxx3 three vectors of 
the covariates, where xxx1 relates to the zero-inflation probability, xxx2 relates to the 
scale, and xxx3 relates to the shape of the lifetime distribution.

We propose an alteration of the zero-inflated non-default regression model 
(Louzada et al., 2018), using the zero-inflated and regression parts while remov-
ing the cure rate part of the model. Thus, the probability density function (PDF) 
and the cumulative density function (CDF) of the observable lifetime time T of 
the zero-inflated model are, respectively, given by
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where p0 ∈ (0, 1) is the zero-inflation probability, f(t) is the probability density func-
tion, and F(t) is the cumulative density function of the observable lifetime time.

The observed data are denoted by Dobs = {(ti, �i), i = 1,… , n} , where �i = 1 if 
the event of interest occurs and �i = 0 if it is right-censored, i = 1,… , n . Assum-
ing independent and non-informative censoring, the likelihood function L(���;Dobs) is 
given by

where ��� = (p0i,���) , ��� denotes the parameter vector associated to the probability den-
sity function f(t) and, consequently, to the survivor function S(t); p0i is the zero-
inflate probability of the ith subject.

Considering the relation f (t) = h(t)S(t) and S(t) = exp{−H(t)} in (2), where h(t) 
is the hazard function and H(t) is the cumulative hazard function, we obtain the fol-
lowing likelihood function:

Therefore, the log-likelihood function for ��� = (p0i,���) , corresponding to the observed 
data and the likelihood function as in (3), is given by

To obtain the maximum-likelihood estimates for the vector ��� = (p0i,���) , we must 
find the score functions U(���) =

� log{L(���;Dobs)}

����
 . To solve the non-linear system of equa-

tions U(���) =
� log{L(���;Dobs)}

����
= 0 , we chose the function “optim” in the R software (R 

Core Team, 2019) for numerical maximization, with the method “BFGS”, according 

(1)

f0(t) =

{
p0, if t = 0

(1 − p0)f (t), if t > 0

and

F0(t) = p0 + (1 − p0)F(t), t ≥ 0,

(2)L(𝜃𝜃𝜃;Dobs) =
∏

i ∶ ti = 0

p0i

∏
i ∶ ti > 0

{[
(1 − p0i)fi(ti)

]𝛿i[(1 − p0i)Si(ti)
]1−𝛿i},

(3)L(𝜃𝜃𝜃;Dobs) =
∏

i ∶ ti = 0

p0i

∏
i ∶ ti > 0

{[
hi(ti)

]𝛿i[(1 − p0i) exp
[
−Hi(ti)

]]}
.

(4)

log{L(𝜃𝜃𝜃;Dobs)} =
∑

i ∶ ti = 0

log(p0i) +
∑

i ∶ ti > 0

𝛿i log
[
hi(ti)

]

+
∑

i ∶ ti > 0

log
{
(1 − p0i) exp

[
−Hi(ti)

]}

=
∑

i ∶ ti = 0

log(p0i) +
∑

i ∶ ti > 0

𝛿i log
[
hi(ti)

]

+
∑

i ∶ ti > 0

log(1 − p0i) −
∑

i ∶ ti > 0

Hi(ti).
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to Louzada et al. (2018). Details on non-linear optimization can be found in Press 
et al. (2007).

The standard errors (SE) of the estimators are obtained through the diagonal of the 
inverted Fisher information matrix. The Fisher information matrix can be generically 
defined by

where Kpp denotes second-order partial derivatives of ��� with respect to the covari-
ates vector associated with p0 , K������ denotes second-order partial derivatives of ��� with 
respect to the vector ���.

According to Ospina and Ferrari (2012), the confidence intervals of the compo-
nents of the vector ��� can be obtained through 𝜃̂̂𝜃𝜃 ± z1−𝛼∕2[K(𝜃̂̂𝜃𝜃)

−1]1∕2 , with asymptotic 
coverage 100(1 − �)% , and z1−�∕2 is the (1 − �∕2)-th quantile of the standard nor-
mal distribution. For more details on the asymptotic theory, see Ospina and Ferrari 
(2012) and Louzada et al. (2018).

The approach presented thus far can be used for any choice of hazard function 
h(t) and, consequently, any cumulative hazard function H(t). In the following sec-
tion, we present the equations when the Weibull and gamma distributions are chosen 
to adjust the survival times.

2.1 � Zero‑inflated‑censored Weibull model

If we consider the Weibull distribution to model the non-negative random variable 
T|T > 0 , in other words T|T > 0 ∼ Weibull(𝛼w, 𝜆w) , which here denotes the observ-
able survival time, we obtain the following probability density function:

where 𝛼w > 0 is the shape parameter and 𝜆w > 0 is the scale parameter of the 
distribution.

Replacing the hazard function h(t) and the cumulative hazard function H(t) from 
the log-likelihood function (4) with the hazard function and the cumulative hazard 
function from the Weibull distribution (6), we obtain the following log-likelihood 
function:

The inclusion of covariates determines the effect of covariates on the observable 
survival time and the probability of zeros. The parameters (p0i, �w, �w) are related to 

(5)K(���) =

(
Kpp 0

0 K������

)
,

(6)f (t) =
�w

�w

(
t

�w

)�w−1

exp

[
−

(
t

�w

)�w
]
, t ≥ 0,

(7)

log{L(𝜃𝜃𝜃;Dobs)} =
∑

i ∶ ti = 0

log(p0i) +
∑

i ∶ ti > 0

𝛿i

[
log

(
𝛼w

𝜆w

)
+ (𝛼w − 1) log

(
ti

𝜆w

)]

+
∑

i ∶ ti > 0

log(1 − p0i) −
∑

i ∶ ti > 0

(
ti

𝜆w

)𝛼w

.
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the proportion of zeros, the shape, and the scale parameters of the Weibull distribu-
tion, respectively. The systematic components of the regression version of the zero-
inflated-censored Weibull model are given by

where �0i = xxxT
1i
���1 , �1i = xxxT

2i
���2 , and �2i = xxxT

3i
���3 are the linear predictors and; ��� ’s are 

the unknown regression coefficient vectors. The link functions G1(.) , G2(.) , and G3(.) 
provide the connection between the linear predictor and the parameters of the prob-
ability density function. According to the fit by Louzada et al. (2018), G1(.) is set as 
the logistic regression G1(p0i) = log

(
p0i

1−p0i

)
 , with p0i =

e
xxxT
1i
���1

1+e
xxxT
1i
���1

 . Since the scale and 
shape parameters are defined on the positive real line, the G2(.) and G3(.) link func-
tions are chosen as G2(�wi) = log(�wi) and G3(�wi) = log(�wi) . Thus, �wi = exxx

T
2i
���2 and 

�wi = exxx
T
3i
���3.

Considering the observable time T|T > 0 ∼ Weibull(𝛼w, 𝜆w) and the probability 
density function f0(t) (see (1)), the expected value of T is defined by

where � (.) is the gamma function.
Replacing the parameters in (9) by the relations in (8), we have the following 

expected value given covariates:

2.2 � Zero‑inflated‑censored gamma model

The zero-inflated-censored gamma model is an extension of Lee’s model (Lee 
et al., 2010). It is based on the concept of two-part or “hurdle” models, in which 
zeros and non-zeros are considered two independent processes (Mullahy, 1986; 
Nobre et  al., 2017), and the right-censored data are considered in the continu-
ous values. Here, the zeros will be modeled as “success events” using a logistic 
regression. The positive observable survival time is modeled by a gamma regres-
sion survival model.

Let Z be a binary variable, where Z = 1 when the observable time was zero in 
the database, and Z = 0 otherwise. Therefore, Z has Bernoulli distribution with p0 
parameter, Z ∼ Ber(p0) . Since the zero probability, P(Z = 1) = p0 , is independent 
of the time distribution, the likelihood function (2) can be rewritten as follows:

(8)

⎧
⎪⎨⎪⎩

G1(p0i) = �0i
G2(�wi) = �1i
G3(�wi) = �2i,

(9)�(T) = (1 − p0)�w�

(
1 +

1

�w

)
,

(10)�(T|xxx1,xxx2,xxx3) =
(
1 −

exxx
T
1
�1�1�1

1 + exxx
T
1
�1�1�1

)
exxx

T
2
�2�2�2�

(
1 +

1

exxx
T
3
�3�3�3

)
.
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where ��� = (p0i,���) and ��� denotes the parameter vector associated with the probability 
density function f(t). Factoring the likelihood allows for the estimation of p0i to be 
made independently of the fit for the time distribution. To model the zero probabil-
ity, p0i , we used a logistic regression with G4(p0i) = log

(
p0i

1−p0i

)
.

Considering the observable time T|T > 0 ∼ Gamma(𝛼g, 𝜆g) , with a shape param-
eter �g and a scale parameter �g , we obtain the following probability density function:

where 𝛼g > 0 is the shape parameter and 𝜆g > 0 is the scale parameter of the 
distribution.

Considering the likelihood function (11), the relations f (t) = h(t)S(t) and 
S(t) = exp{−H(t)} , assuming gamma distribution to the observable survival time, pro-
duce the following log-likelihood function:

where Si(ti) = ∫ ∞

ti

1

�
�g
g � (�g)

u�g−1 exp
(
−

u

�g

)
du.

We obtain the maximum-likelihood estimates for ��� = (p0i, �g, �g) using iterative 
techniques from the “glm” function for estimate p0i and from the package “flexsurv” 
(Jackson, 2016) to estimate �g and �g . Both functions are implemented in the software 
R (R Core Team, 2019).

The inclusion of the covariates associated with the observable time was achieved 
through the scale and shape parameters of the gamma distribution. The systematic 
component of the regression version of the zero-inflated-censored gamma model is 
given by

(11)

L(𝜃𝜃𝜃;Dobs) =

⎧
⎪⎨⎪⎩

�
i ∶ Zi = 1

p0i

�
i ∶ Zi = 0

(1 − p0i)

⎫
⎪⎬⎪⎭

⎧
⎪⎨⎪⎩

�
i ∶ ti > 0

fi(ti)
𝛿i Si(ti)

1−𝛿i

⎫
⎪⎬⎪⎭
,

(12)f (t) =
1

𝜆
𝛼g
g 𝛤 (𝛼g)

t𝛼g−1 exp

(
−

t

𝜆g

)
, t > 0,

(13)

log{L(𝜃𝜃𝜃;Dobs)} =
∑

i ∶ Zi = 1

log(p0i) +
∑

i ∶ Zi = 0

log(1 − p0i)

+
∑

i ∶ ti > 0

𝛿i

[
𝛼g log

(
ti

𝜆g

)
− log

[
ti𝛤 (𝛼g)

]
−

(
ti

𝜆g

)]

+
∑

i ∶ ti > 0

(1 − 𝛿i)
[
log

[
S(ti)

]]
,

(14)

⎧⎪⎨⎪⎩

G4(p0i) = �0i
G5(�gi) = �1i
G6(�gi) = �2i,
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where �0i = xxxT
1i
���1 , �1i = xxxT

2i
���2 , and �2i = xxxT

3i
���3 are the linear predictors, and � ’s are 

the unknown regression coefficient vectors. The link functions G4(.) , G5(.) , and G6(.) 
provide the connection between the linear predictor and the parameters of the prob-
ability density function. G4(.) is a set of logistic regression G4(p0i) = log

(
p0i

1−p0i

)
 , 

with p0i =
e
xxxT
1i
���1

1+e
xxxT
1i
���1

 . According to Jackson (2016) G5(.) and G6(.) , link functions are 
G5(�gi) = log(�gi) and G6(�gi) = log(�gi) . Thus, �gi = exxx

T
2i
���2 and �gi = exxx

T
3i
���3.

Assuming the failure time T|T > 0 ∼ Gamma(𝛼g, 𝜆g) and the probability density 
function (1), the expected value of T is defined by �(T) = (1 − p0)�g�g . Consider-
ing the inclusion of the covariates, we obtain the following expected value given 
covariates:

3 � Simulation studies

In this section, we present a simulation study to evaluate the models proposed in the 
previous section. The ZIWeibull model was fitted in a dataset generated from a 
Weibull distribution, and the ZIGamma model was fitted in a dataset generated from 
a gamma distribution. The models’ parameters were estimated as described in 
Sect. 2. Computer codes are available online (see “Availability of data and codes” 
section for more information). To check the performance of the estimators, we 
examine the coverage probabilities of the 95% confidence intervals, the bias and 
root-mean-square errors, as well as the estimator’s asymptotic consistency. We con-
sider five sample sizes n = (200, 400, 600, 800, 1000) , and for each scenario, we 
generate 1000 datasets. In the process of generating each data set, we considered 
failure times to follow Weibull and gamma distributions with the following regres-
sion structure: �i = e�1+x3i�2 , �i = e�3+x2i�4 , and p0i =

e�5+x1i�6

1+e�5+x1i�6
 , where the covariate 

vectors are specified by xi ≡ xi1 = xi2 = xi3 ∼ Normal(0, 1) and the regression coef-
ficients by �1 = 0.5, �2 = 0.5, �3 = 1.5, �4 = 2, �5 = −3, �6 = 1.

To simulate random samples of size n, we suppose that the time until the occur-
rence of the event of interest has the cumulative distribution function F(t) given 
by F0(t) = p0i + (1 − p0i)F(t), t ≥ 0 . The algorithmic steps to generate the random 
samples are as follows:

1. Generate xi ∼ Normal(0, 1) and calculate p0i, �i, �i;
2. Generate ui from a uniform distribution U(0, 1);
3. Generate vi from a uniform distribution U(p0i, 1);
4. If ui ≤ p0i , set ti = 0;
5. If ui > p0i , set ti equals to the inverse function F−1

0
(vi);

6. Generate the censoring times ci from a gamma distribution G(0.25, 128.2), 
specified to control the censoring percentage;

7. If ti < ci , set �i = 1 ; otherwise, set �i = 0;
8. If ti = 0 ; set Zi = 1 , otherwise, set Zi = 0.

(15)�(T|xxx1,xxx2,xxx3) =
(
1 −

exxx
T
1
�1�1�1

1 + exxx
T
1
�1�1�1

)
exp(xxxT

2
�2�2�2) exp(xxx

T
3
�3�3�3).
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For the zero-inflated-censored model, since failure times have a Weibull distribu-
tion, the average time until the event of interest is calculated by

For the zero-inflated-censored model, since failure times have a gamma distribution, 
the average time until the event of interest is calculated by

For both models proposed, considering the 1000 replications of each scenario, 
Fig. 1 shows that as the sample size increases from 200 to 1000, the means of the 
six estimated parameters ( 𝛽1,… , 𝛽6 ) converge on the true values of the parameters 
(0.5, 0.5, 1.5, 2,−3, 1).

Figure 2 shows that for both models, the increase of the sample size from 200 
to 1000 reduces asymptotically the variance, pointing to the minimal variance of 
the parameters estimated in these models. In Appendix (parameter estimates in the 
simulation studies), several summary statistics for the parameters are provided, such 
as mean, standard deviation (SD), confidence interval, bias, mean squared error, and 
coverage probability. Notably, for all sample size scenarios, the means of the stand-
ard errors (SE) are similar to the SD, indicating the good performance of the mod-
els. The coverage probability is remarkably close to the nominal value of 95%.

(16)�(T|x1, x2, x3) =
(
1 −

e�5+x1�6

1 + e�5+x1�6

)
e�3+x2�4 �

(
1 +

1

e�1+x3�2

)
.

(17)�(T|x1, x2, x3) =
(
1 −

e�5+x1�6

1 + e�5+x1�6

)
e�1+x3�2 ⋅ e�3+x2�4 .

Fig. 1   Mean values of the 𝛽  estimated by the ZIWeibull model (when dataset were generated by the 
ZIWeibull model) and ZIGamma model (when datasets were generated by the ZIGamma model) using 
different sample sizes. The solid horizontal line is the true value
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For both ZIGamma and ZIWeibull models, the expected values of the propor-
tion of zeros were similar, for all sample sizes, converging asymptotically to the 
true value (Table  1). The average times-to-event estimated by the ZIWeibull and 
ZIGamma models was close to the true value, regardless the scenario of gamma or 
Weibull distribution for both datasets generation (Table 1).

4 � Wild boar dispersal application

In this section, we adjust the ZIWeibull and ZIGamma models to the wild boar 
natal dispersal study based on recapture by hunting bag (Truvé & Lemel, 2003). 
Dispersal occurs when wild boars leave their territory for new territories or home 
ranges (Breed & Moore, 2016). Dispersal accounts for three distinct subpopula-
tions of animals: a segment that will not disperse, i.e., have zero distance; a seg-
ment that will disperse measurably (event), and animals whose dispersal is unknown 
(right-censored).

Examples of such a data structure in wild boar dispersal are available in Keul-
ing et  al. (2010), Prévot and Licoppe (2013), and Jerina et  al. (2014). These 
authors report a dataset structure compatible with that of Koenig et al. (1996) and 
Paradis et al. (1998) who reported that recaptures often occur in the same location 
at which the animal was marked, creating zeros, or animals moving more than the 
limit set for recapture in generating right-censored data. Unfortunately, the full 
datasets for these papers are not publicly available. To address this limitation, we 

Fig. 2   Variance for the 𝛽  estimated by the ZIWeibull model (when dataset was generated by the 
ZIWeibull model) and ZIGamma model (when dataset was generated by the ZIGamma model) using dif-
ferent sample sizes
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created a dataset that mimics a real situation. Details about the data generation 
are available in Appendix (Information used to generate the applied dataset). The 
computer code used to generate the data and the dataset spreadsheet are available 
as Electronic supplementary material.

Applied to wild boars, our interest is to adjust the dispersal distance, denoted 
by the random variable D, representing the observable distance. Therefore, 
the likelihood contribution of a dispersal distance Di of an animal, or i, can 
assume two different values: p0i , if animal i has a dispersal equal to zero, and 
(1 − p0i)f0(di) , if animal i has a dispersal larger than zero.

The models’ parameters were tested under null hypothesis of equality to zero 
using a Wald test. For both ZIWeibull and ZIGamma models, the regression coef-
ficients �2 (age), �3 (sex) are accounting for the shape parameter ( � ), and �5 (age), 
�6 (sex) are associated with the scale parameter ( � ). The effects of the regression 
coefficients �8 (age) and �9 (sex) are associated with the proportion of zeros ( p0 ). 
Thus, regression coefficients have an indirect effect on the proportion of zeros 
estimated and on the expected dispersal distance, as we can see below for the 
ZIWeibull and ZIGamma models, respectively

Table 1   The simulation results of estimating the probability of zero and for the expected time, given 
these two values for the covariates x = −1 and x = 1 and gamma and Weibull scenarios for data genera-
tion

ℙ(p
0i|⋅) denotes the probability of zero; �(T|⋅) denotes the expected time

True values for Weibull dataset Model fitted Sample size

200 400 600 800 1000

ℙ(p
0i|x = −1) = 0.018 ZIGamma 0.017 0.017 0.017 0.017 0.017

ZIWeibull 0.016 0.017 0.017 0.018 0.018
ℙ(p

0i|x = 1) = 0.119 ZIGamma 0.115 0.116 0.118 0.118 0.119
ZIWeibull 0.114 0.116 0.118 0.118 0.119

�(T|x = −1) = 0.595 ZIGamma 0.594 0.598 0.599 0.602 0.604
ZIWeibull 0.592 0.591 0.593 0.593 0.594

�(T|x = 1) = 25.920 ZIGamma 25.566 25.540 25.428 25.411 25.371
ZIWeibull 25.856 25.961 26.001 25.919 25.943

True values for gamma dataset Model fitted Sample size

200 400 600 800 1000

ℙ(p
0i|x = −1) = 0.018 ZIGamma 0.016 0.016 0.017 0.017 0.017

ZIWeibull 0.016 0.016 0.017 0.017 0.017
ℙ(p

0i|x = 1) = 0.119 ZIGamma 0.114 0.116 0.118 0.117 0.118
ZIWeibull 0.114 0.116 0.118 0.118 0.119

�(T|x = −1) = 0.595 ZIGamma 0.592 0.593 0.593 0.595 0.597
ZIWeibull 0.592 0.591 0.593 0.593 0.594

�(T|x = 1) = 79.280 ZIGamma 79.620 79.862 79.387 79.210 78.965
ZIWeibull 81.554 81.152 81.850 81.711 81.596
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where �w = e�1+�2age+�3sex , �w = e�4+�5age+�6sex , and p0 =
e�7+�8age+�9sex

1+(e�7+�8age+�9sex)
 obtained 

through the ZIWeibull model adjust, and �g = e�1+�2age+�3sex , �g = e�4+�5age+�6sex , and 
p0 =

e�7+�8age+�9sex

1+(e�7+�8age+�9sex)
 obtained through the ZIGamma model.

In the ZIGamma model, the proportion of zeros in the simulated wild boar 
dataset is not significantly dependent on age (�8 = −0.016 P value = 0.163), or 
sex (�9 = 0.423 P value = 0.135), as shown in Table  2. On the other hand, age 
(𝛽5 = 0.04 Pvalue < 0.001) and sex (�6 = −0.64 P value = 0.001) are associated 
with the scale parameter of the curve. For the shape of the curve, there is association 
of age (�2 = −0.01 P value = 0.028) but not sex (�3 = 0.027 P value = 0.98). For the 
ZIWeibull model, the proportion of zeros in the simulated wild boar dataset is also 
not dependent on age (P value = 0.162) or on sex (P value = 0.134), see �8 (age) and 
�9 (sex) in Table 2. However, age and sex are associated with the scale of the curve 
(𝛽5 = 0.032 and 𝛽6 = −0.644 Pvalue < 0.001 for both); and age was associated with 
the shape (�2 = −0.007 P value = 0.042) (Table 2).

Because the generated dispersal distance is affected by sex and age, we have cho-
sen to calculate the mean distance using the average age for both sexes. For males, 
the average age was 15 months, so the estimated mean distance was 13.9 km and 
13.66 km with the ZIWeibull and ZIGamma models, respectively. For females, the 
mean age was 12 months, at which age the estimated mean distance was 6.1 km and 
6.08 km with the ZIWeibull and ZIGamma models, respectively.

For the regression models proposed here, increase in the mean distance is asso-
ciated with increased age and males dispersing more than females, as shown in 
Fig. 3. On average, males are known to disperse more than females. For both sexes, 
increased age increases the distances. These findings are expected, as we intention-
ally generated an applied dataset while attempting to account for the matrilineal, ter-
ritorial societal structure (females and their offspring having very low dispersion), as 
well as for the solitary males that disperse more to seek territory and mating oppor-
tunities (Keuling et al., 2010).

To assess the models’ goodness-of-fit, we evaluated the following information 
criteria: Akaike and Bayes information criteria, (AIC and BIC). These were calcu-
lated according to qk − 2 log(L̂) , where k is the number of parameters, L̂ is the likeli-
hood, and q = 2 for AIC, or q = ln(n) , n = sample size for BIC (Brewer et al., 2016). 
As the ZIGamma model is a hurdle model, the full log-likelihood was calculated 
adding the log-likelihood of the logistic regression and the log-likelihood of the 
gamma regression (McDowell, 2003).

AIC are similar for both proposed models, but larger difference is observed in 
BIC which is smaller for the ZIGamma model (see Table 2). However, our aim here 

(18)

�(D|age, sex) =(1 − p0) × �w × �

(
1 +

1

�w

)

and

�(D|age, sex) =(1 − p0) × �g × �g,
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is not strictly to select the best model from between ZIGamma and ZIWeibull, but 
to present both as alternative methods in this applied context, allowing for the incor-
poration of all the information contained in the dataset to calculate the likelihood 
function.

5 � Discussion

Although the lack of a real dataset hampers the attempt to draw a direct conclusion 
about an actual wild boar population, our aim was to highlight that both ZIWeibull 
and ZIGamma can be useful tools for statistical inferences in wild boar dispersal. 
According to Whitmee and Orme (2013), dispersal is one of the principal mecha-
nisms underlying wild animals’ land occupation, and there is an urgent need to 
obtain quantitative empirical data and methods to analyze dispersal distance. The 

Table 2   Results of the ZIGamma and ZIWeibull models fitted for the simulated dataset of wild boar dis-
persal distance

SE is the standard error; CI is the confidence interval; for the hypothesis test, it was used a Wald test. � 
and � are the shape an scale parameters, respectively. ZIWeibull

AIC
= 2324.28 , ZIGamma

AIC
= 2320.45 , 

ZIWeibull
BIC

= 2360.21 , ZIGamma
BIC

= 2348.39

ZIGamma model

Estimate SE 95% CI P value

�
1
(�

g
) 1.06 0.130 (0.832; 1.349) –

�
2
 (age) − 0.01 0.005 (− 0.002; − 0.001) 0.028

�
3
 (sex) 0.027 0.141 (− 0.277; 0.279) 0.98

�
4
(�

g
) 8.27 1.49 (6.33; 12.3) –

�
5
 (age) 0.04 0.008 (0.028; 0.061) < 0.001

�
6
 (sex) − 0.64 0.194 (− 1.021; − 0.258) 0.001

�
7
 (Intercept) − 1.726 0.258 (− 2.251; − 1.237) –

�
8
 (age) − 0.016 0.011 (− 0.039; 0.005) 0.163

�
9
 (sex) 0.423 0.282 (− 0.126; 0.985) 0.135

ZIWeibull model

Estimate SE 95% CI P value

�
1
(�

w
) 0.014 0.081 (− 0.145; 0.173) –

�
2
(age) − 0.007 0.004 (− 0.014; − 0.0002) 0.042

�
3
(sex) 0.029 0.092 (− 0.178; 0.184) 0.974

�
4
(�

w
) 2.242 0.109 (2.027; 2.457) –

�
5
 (age) 0.032 0.005 (0.021; 0.043) < 0.001

�
6
 (sex) − 0.644 0.127 (− 0.893; − 0.395) < 0.001

�
7
 (Intercept) − 1.725 0.257 (− 2.231; − 1.219) –

�
8
 (age) − 0.016 0.011 (− 0.037; 0.006) 0.162

�
9
 (sex) 0.422 0.282 (− 0.131; 0.976) 0.134
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models presented here are designed to accommodate the proportions of individuals 
that will not disperse at all and zeros created by measurement error (accounting for 
the excess of zeros), the observable dispersal distance, and the cases in which the 
dispersal is greater than our capacity to follow it, or incomplete followings (right-
censoring). In this sense, researchers could count with an inferential tool avoiding 
data exclusion using the full dataset in the same likelihood function. For instance, 
Truvé and Lemel (2003) excluded censored data and split the dataset to fit a non-
parametric model to each covariate.

From an applied perspective, estimating the characteristics of wild boar popula-
tions [e.g., average dispersal across sexes and ages (Keuling et al., 2010)] is impor-
tant in enabling animal health managers and decision-makers to make evidence-
based decisions (EFSA, 2014; Morelle et al., 2014). For instance, risk assessment 
models for the introduction/spread of African Swine Fever are heavily dependent 
on parameters regarding the land occupation (De la Torre et al., 2015). Surveillance 
programs for commercial swine herds often consider the dynamics of the wild boar 
population in preventing diseases (Casas-Díaz et  al., 2013). As such, the models 
proposed here are useful for generating inferences about dispersal distance and test-
ing if covariates are associated with the distance, thus helping to overcome current 
gaps in our understanding of wild boar behavior (Guinat et al., 2016; EFSA, 2019).

For the zero-inflated-censored Weibull (ZIWeibull) model, the estimators were 
consistent and efficient, and both the standard deviation values and the estimated 
standard errors values are quite close, indicating a good adjustment. Likewise, for 
the ZIWeibull model, the coverage probabilities for the ZIGamma model were close 

Fig. 3   Values for the mean dispersal distance (Km) estimated by the ZIWeibull and ZIGamma regression 
models
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to the nominal level, and both the standard deviation values and the standard error 
values are remarkably close. The large sample theory for the models proposed in 
this paper is still an open question. However, our simulation studies show that the 
asymptotic validity seems to be satisfied. Finally, we note that the zero-inflated 
gamma model proposed in this paper can be extended to include the cure rate in 
the model. Furthermore, the zero-inflated-censored Weibull and gamma regression 
models can be extended to interval-censored survival data.

Appendix

Appendix for zero-inflated-censored Weibull and gamma regression models to esti-
mate wild boar population dispersal distance by Eduardo Costa, Silvana Schneider, 
Giulia Carlotto, Tainá Cabalheiro, and Mauro Oliveira

Instructions for installing the R functions and run the models

The function is available as a package format. The user may face some issues: if 
your R version does not support the package “devtools”, you will be not able to 
install “ZIdispersal” package. In this sense, the user should follow the steps:

1.	 Install and load the package devtools:

	 install.packages (”devtools”)	 library(devtools)	
OBS: If the installation of “devtools” do not not occur, then the user will 
not succeed the “ZIdispersal” installation.

2.	 Install and load the package ZIdispersal:

	 install_github(”eduardodefreitascosta/Zidisper-
sal/ZIdispersal”,	 force = T) library(ZIdispersal)

	   This package has 1 function: ZIreg.
	   For more details, please see the documentation (?ZIreg).
3.	 Download the applied data (wild boar dispersal) and run the applied models:
https://​github.​com/​eduar​dodef​reita​scosta/​ZIdis​persal/​blob/​master/​ZIdis​persal/​wild_​

boar.​rds
	   To run the ZIGamma

	 ZIreg(dist age + sex, zero = zero, censor = delta, 
data =	 wild_boar, dist = ”gamma”)

	   To run the ZIWeibull

	 ZIreg(dist  age + sex, zero = zero, censor = 
delta, data =	wild_boar, dist = ”weibull”

https://github.com/eduardodefreitascosta/ZIdispersal/blob/master/ZIdispersal/wild_boar.rds
https://github.com/eduardodefreitascosta/ZIdispersal/blob/master/ZIdispersal/wild_boar.rds
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Information used to generate the applied dataset

Dispersal distance was generated based on Truvé and Lemel (2003). The dis-
tances are dependent on sex and age (month). For females, the distance increases 
between seven and nine months, and the general average dispersal for females is 
6 km. For males, the distance increases from 10 to 13 months, and the general 
dispersal distance for males is approximately 10 km. The proportion of zeros was 
7% for males and 12% for females; 5% of censored observations were generated 
for females and 16% for males. To generate data as similar as possible to the real 
data found in Truvé and Lemel (2003), we consider a sample size n = 400 for ani-
mal dispersal consisting of 50% males and 50% females. We consider exponential 
distribution for age, with scale parameters of 12 for females and 15 for males. We 
also consider the zeros proportion of 15% and right-censoring when the distance 
is greater than 30 km.

The general average distance in the generated dataset was 8.68 km, 6.17 km 
for females and 11.11 km for males. The proportions of zeros were 12.5 % and 
18.5 % for males and females, respectively. The censoring proportions were 15 
% and 4.5 % for males and females, respectively. More details can be seen in 
Table 3.

For both sexes, the observed dispersal distance distribution is right-skewed, with 
more zeros for females and a larger tail on the right, and more right-censored data 
for males (Fig. 4).

Table 3   Descriptive statistics of the mean dispersal distance, percentage of zeros, and censored observa-
tions for males and females wild boars (below and above the mean age) in the applied dataset

Wild boar group Mean distance (km) Percentage of zero Percentage 
of censored

Male (total) 11.111 12.500 15.000
Male < 15 month 9.106 12.500 7.812
Male > 15 month 14.675 12.500 27.789
Female (total) 6.174 18.500 4.500
Female < 12 month 4.305 20.968 0.000
Female > 12 month 9.224 14.474 11.850
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Parameter estimates in the simulation studies

See Tables 4 and 5. 

Fig. 4   Distribution of the dispersal distance in km for males and females wild boars
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Table 4   Results of the simulation study for the zero-inflated-censored Weibull model adjustment consid-
ering different sample sizes

SD is the standard deviation calculated from 1000 parameter estimates, SE is the mean of the 1000 esti-
mated standard errors, CI is the mean of the confidence intervals, MSE is the mean of the 1000 estimated 
mean squared errors, and CP is the empirical coverage probability of the estimated 95% confidence inter-
vals

True Mean (SD) SE CI Bias MSE CP

Sample size n = 200
�
1

0.5 0.522 (0.089) 0.084 (0.347; 0.696) 0.022 0.008 0.938
�
2

0.5 0.505 (0.096) 0.091 (0.316; 0.694) 0.005 0.009 0.945
�
3

1.5 1.494 (0.070) 0.067 (1.357; 1.631) − 0.006 0.005 0.948
�
4

2 1.996 (0.088) 0.087 (1.823; 2.169) − 0.004 0.008 0.948
�
5

− 3 − 3.076 (0.408) 0.405 (− 3.875; − 2.277) − 0.076 0.172 0.946
�
6

1 1.029 (0.344) 0.339 (0.354; 1.704) 0.029 0.119 0.955
Sample size n = 400
�
1

0.5 0.509 (0.057) 0.059 (0.398; 0.620) 0.009 0.003 0.951
�
2

0.5 0.504 (0.061) 0.062 (0.385; 0.623) 0.004 0.004 0.953
�
3

1.5 1.495 (0.049) 0.048 (1.399; 1.592) − 0.005 0.002 0.949
�
4

2 2.002 (0.060) 0.060 (1.885; 2.119) 0.002 0.004 0.953
�
5

− 3 − 3.039 (0.267) 0.275 (− 3.562; − 2.516) − 0.039 0.073 0.947
�
6

1 1.013 (0.230) 0.231 (0.563; 1.464) 0.013 0.053 0.947
Sample size n = 600
�
1

0.5 0.509 (0.050) 0.048 (0.412; 0.607) 0.009 0.003 0.947
�
2

0.5 0.504 (0.051) 0.051 (0.403; 0.605) 0.004 0.003 0.946
�
3

1.5 1.499 (0.038) 0.039 (1.424; 1.573) − 0.001 0.001 0.951
�
4

2 2.002 (0.050) 0.049 (1.904; 2.100) 0.002 0.003 0.954
�
5

− 3 − 3.027 (0.219) 0.219 (− 3.456; − 2.599) − 0.027 0.049 0.944
�
6

1 1.017 (0.195) 0.187 (0.653; 1.399) 0.017 0.038 0.948
Sample size n = 800
�
1

0.5 0.506 (0.042) 0.041 (0.424; 0.588) 0.006 0.002 0.948
�
2

0.5 0.501 (0.044) 0.043 (0.415; 0.587) 0.001 0.002 0.944
�
3

1.5 1.497 (0.034) 0.034 (1.431; 1.564) − 0.003 0.001 0.948
�
4

2 2.000 (0.043) 0.042 (1.915; 2.085) 0.000 0.002 0.946
�
5

− 3 − 3.014 (0.187) 0.190 (− 3.381; − 2.647) − 0.014 0.035 0.946
�
6

1 1.006 (0.155) 0.161 (0.702; 1.309) 0.006 0.024 0.952
Sample size n = 1000
�
1

0.5 0.504 (0.038) 0.037 (0.430; 0.578) 0.004 0.001 0.944
�
2

0.5 0.500 (0.042) 0.039 (0.418; 0.583) 0.000 0.002 0.949
�
3

1.5 1.499 (0.031) 0.030 (1.438; 1.560) − 0.001 0.001 0.943
�
4

2 2.000 (0.040) 0.038 (1.923; 2.078) 0.000 0.002 0.946
�
5

− 3 − 3.012 (0.168) 0.170 (− 3.342; − 2.682) − 0.012 0.028 0.951
�
6

1 1.009 (0.143) 0.143 (0.730; 1.289) 0.009 0.020 0.948
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Table 5   Results of the simulation study for the zero-inflated-censored gamma model adjustment consid-
ering different sample sizes

SD is the standard deviation calculated from 1000 parameter estimates, SE is the mean of the 1000 esti-
mated standard errors, CI is the mean of the confidence intervals, MSE is the mean of the 1000 estimated 
mean squared errors, and CP is the empirical coverage probability of the estimated 95% confidence inter-
vals

True Mean (SD) SE CI Bias MSE CP

Sample size n = 200
�
1

0.5 0.539 (0.160) 0.150 (0.224; 0.855) 0.040 0.027 0.940
�
2

0.5 0.506 (0.156) 0.156 (0.199; 0.813) 0.007 0.025 0.943
�
3

1.5 1.456 (0.210) 0.198 (1.043; 1.869) − 0.044 0.046 0.954
�
4

2 1.996 (0.224) 0.219 (1.556; 2.435) − 0.004 0.050 0.952
�
5

− 3 − 3.05 (0.420) 0.403 (− 3.882; − 2.232) − 0.057 0.180 0.950
�
6

1 1.014 (0.348) 0.339 (0.331; 1.698) 0.015 0.122 0.948
Sample size n = 400
�
1

0.5 0.518 (0.105) 0.105 (0.311; 0.726) 0.019 0.012 0.954
�
2

0.5 0.499 (0.105) 0.107 (0.292; 0.707) 0.000 0.011 0.950
�
3

1.5 1.480 (0.140) 0.139 (1.203; 1.756) − 0.020 0.020 0.943
�
4

2 2.004 (0.148) 0.151 (1.714; 2.295) 0.005 0.022 0.955
�
5

− 3 − 3.05 (0.287) 0.278 (− 3.617; − 2.4905) − 0.054 0.086 0.941
�
6

1 1.026 (0.235) 0.232 (0.565; 1.487) 0.026 0.056 0.944
Sample size n = 600
�
1

0.5 0.509 (0.084) 0.085 (0.344; 0.674) 0.010 0.007 0.948
�
2

0.5 0.494 (0.088) 0.087 (0.321; 0.667) − 0.005 0.008 0.941
�
3

1.5 1.487 (0.109) 0.113 (1.273; 1.702) − 0.012 0.012 0.954
�
4

2 2.007 (0.122) 0.122 (1.767; 2.248) 0.008 0.015 0.952
�
5

− 3 − 3.02 (0.222) 0.222 (− 3.462; − 2.590) − 0.026 0.050 0.956
�
6

1 1.013 (0.184) 0.186 (0.652; 1.375) 0.014 0.034 0.957
Sample size n = 800
�
1

0.5 0.513 (0.073) 0.074 (0.369; 0.656) 0.013 0.006 0.950
�
2

0.5 0.500 (0.075) 0.075 (0.351; 0.648) 0.000 0.006 0.945
�
3

1.5 1.485 (0.095) 0.098 (1.297; 1.673) − 0.015 0.009 0.954
�
4

2 1.998 (0.10) 0.105 (1.790; 2.207) − 0.001 0.011 0.948
�
5

− 3 − 3.02 (0.195) 0.191 (− 3.410; − 2.642) − 0.027 0.039 0.950
�
6

1 1.011 (0.164) 0.161 (0.689; 1.333) 0.012 0.027 0.950
Sample size n = 1000
�
1

0.5 0.508 (0.066) 0.066 (0.375; 0.638) 0.008 0.004 0.950
�
2

0.5 0.501 (0.067) 0.066 (0.369; 0.633) 0.001 0.005 0.948
�
3

1.5 1.490 (0.086) 0.087 (1.320; 1.661) − 0.009 0.008 0.948
�
4

2 1.994 (0.096) 0.094 (1.804; 2.184) − 0.005 0.009 0.950
�
5

− 3 − 3.010 (0.177) 0.170 (− 3.364; − 2.670) − 0.017 0.032 0.949
�
6

1 1.011 (0.147) 0.143 (0.722; 1.299) 0.011 0.022 0.949
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