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Abstract
This paper focuses on the parameter estimation for the d-variate Farlie–Gumbel–
Morgenstern (FGM) copula ( d ≥ 2 ), which has 2d − d − 1 dependence parameters 
to be estimated; therefore, maximum likelihood estimation is not practical for a large 
d from the viewpoint of computational complexity. Besides, the restriction for the 
FGM copula’s parameters becomes increasingly complex as d becomes large, which 
makes parameter estimation difficult. We propose an effective estimation algorithm 
for the d-variate FGM copula by using the method of inference functions for mar-
gins under the restriction of the parameters. We then discuss its asymptotic normal-
ity as well as its performance determined through simulation studies. The proposed 
method is also applied to real data analysis of bearing reliability.

Keywords Inference functions for margins · Maximum likelihood estimation · FGM 
copula · Asymptotic normality · Multivariate distribution

1 Introduction

A copula is a function that joins several one-dimensional distribution functions to 
form a multivariate distribution function with dependency (Nelsen 2006). The cop-
ula works as a multivariate distribution function by itself.
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In reliability engineering, the copula is used as a useful tool for reliability analy-
sis of systems in which dependent failures sometimes occur. A dependent failure of 
systems and/or system components may occur due to sharing heat, vibration, and 
tasks (McCool 2012). We should consider the dependence of components to pre-
cisely assess the reliability of the system. For example, Eryilmaz and Tank (2012) 
showed that the positive dependence between two components improves the mean 
time to failure of a two-component series system by using an Farlie–Gumbel–Mor-
genstern (FGM) copula and Ali–Mikhail–Haq copula. Navarro et al. (2007) devel-
oped a reliability model for coherent systems with dependent components by using 
several types of copulas including the FGM copula.

There have been many studies on the FGM copula. Earlier studies (Farlie 1960; 
Gumbel 1960; Morgenstern 1956) discussed families of the bivariate FGM copula. 
Johnson and Kotz (1975) formulated the FGM copula as a multivariate distribu-
tion. The multivariate FGM copula is useful as an alternative to a multivariate nor-
mal distribution because it has a simple form and can express mutual dependencies 
among two or more variables (Jaworski et  al. 2010). Therefore, the FGM copula 
has been applied to statistical modeling in various research fields such as econom-
ics (Patton 2006), educational engineering (Shih et al. 2019), finance (Cossette et al. 
2013) and reliability engineering (Navarro et al. 2007; Navarro and Durante 2017).

However, there are no practical estimation methods of the parameters of the mul-
tivariate FGM copula. The reason mainly depends on the computational complexity 
of estimating a large number of the parameters. It is known that the d-variate FGM 
copula consists of 2d − d − 1 constrained parameters for d ≥ 2 . In fact, the d-vari-
ate FGM copula has relatively many parameters compared with other multivariate 
copulas (e.g., a d-variate Gaussian copula has d(d − 1)∕2 (≤ 2d − d − 1) correlation 
parameters (Jaworski et  al. 2010)). This implies that estimation for the multivari-
ate FGM copula’s parameters is computationally more complicated than that for the 
other copulas’ parameters. Besides, maximum likelihood estimation (MLE) is infea-
sible over such a high dimensional space with the parameter constraint.

The method of inference functions for margins (IFM) is one acceptable estimation 
method for parameters of copulas. It was proposed by Joe and Xu (1996), and exten-
sively reviewed by Xu (1996). This method first estimates the univariate parameters 
from separate univariate likelihood functions of a copula. It then estimates bivari-
ate, trivariate and multivariate parameters step by step from respective bivariate, 
trivariate, and multivariate marginal likelihoods with lower order parameters fixed 
as the estimated values. The advantages of IFM are its computational efficiency and 
asymptotic normality that holds under several regularity conditions (Xu 1996; Joe 
2005; Patton 2006). However, the following two problems exist when we apply IFM 
to the multivariate FGM copula: (1) it is not known how to consider the complex 
restriction for the FGM copula’s parameters, and (2) it has not been found whether 
the estimators of IFM for the multivariate FGM copula have asymptotic normality.

In this paper, we propose an effective estimation algorithm for the multivariate 
FGM copula by using IFM. The proposed algorithm requires linear optimization to 
consider the restriction of the multivariate FGM copula’s parameters. Besides, we 
analyze the asymptotic normality of the estimators given by the proposed algorithm.
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The remainder of this paper is organized as follows. In Sect. 2, we introduce the 
definition and property of the multivariate FGM copula. In Sect. 3, we propose esti-
mation algorithms for the multivariate FGM copula based on MLE and IFM. Their 
asymptotic properties are analytically investigated in Sect. 4. Section 5 consists of 
simulation results to compare MLE and IFM for the multivariate FGM copula from 
the viewpoint of estimation accuracy and computation time. In Sect. 6, our proposed 
method is applied to real data analysis of bearing reliability. Finally, we conclude 
our study with a summary in Sect. 7.

2  FGM copula

Let U = (U1,… ,Ud) be a random vector that follows a d-variate FGM copula with 
d uniform marginal distributions in the interval [0, 1]. Let � denote the parameter 
vector of the d-variate FGM copula. According to Johnson and Kotz (1975) and p. 
108 of Nelsen (2006), the joint distribution function of the d-variate FGM copula, 
denoted by Cd , is defined as

where (u1,… , ud) ∈ [0, 1]d and �j1⋯jk
∈ � is a parameter. Since � ≠ 0 means that the 

random variables are obviously dependent, we call an element of � a dependence 
parameter. For d = 2 and 3, we obtain

The d-variate FGM copula consists of 
∑d

j=2

�
d

j

�
= 2d − d − 1 dependence param-

eters. The correlation and regression properties for any pair of U were studied by 
Johnson and Kotz (1977).

The joint density function of U , denoted by cd , is given by

� is a parameter vector such that the joint density function cd(u1,… , ud;�) is non-
negative for every uj ∈ [0, 1] . Thus, � must satisfy the following restriction (Johnson 
and Kotz 1975; Jaworski et al. 2010).

Cd(u1,… , ud;�) = Pr[U1 ≤ u1,… ,Ud ≤ ud]

=

d∏
j=1

ui

(
1 +

d∑
k=2

∑
1≤j1<⋯<jk≤d

𝜃j1⋯jk
(1 − uj1 )⋯ (1 − ujk )

)
,

C2(u1, u2;�) = u1u2(1 + �12(1 − u1)(1 − u2)),

C3(u1, u2, u3;�) = u1u2u3(1 + �12(1 − u1)(1 − u2) + �13(1 − u1)(1 − u3)

+ �23(1 − u2)(1 − u3) + �123(1 − u1)(1 − u2)(1 − u3)).

cd(u1,… , ud;�) =
𝜕d

𝜕u1 ⋯ 𝜕ud
C(u1,… , ud;�)

= 1 +

d∑
k=2

∑
1≤j1<⋯<jk≤d

𝜃j1⋯jk
(1 − 2uj1 )⋯ (1 − 2ujk ).
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for j = 1,… , d . Since cd(u1,… , ud;�) is a linear function of each uj , the substitu-
tion of uj = 0, 1 in every 2d possible combinations will yield necessary and sufficient 
conditions of � (Johnson and Kotz 1975). Thus, we can write Eq. (1) in a compact 
form as follows.

for j = 1,… , d . For example, when d = 2 , the parameter vector becomes � = (�12) , 
and we have −1 ≤ �12 ≤ 1 . When d = 3 , the parameters � = (�12 , �13 , �23 , �123) are 
required to hold 23 inequalities as follows (Johnson and Kotz 1975).

The condition given by Eq. (2) becomes increasingly complex as d becomes large. 
When we estimate the dependence parameters, we need to consider this condition.

Multivariate FGM distributions can be constructed by the Sklar’s theorem 
(Nelsen 2006). Suppose X = (X1,… ,Xd) is a random vector that follows the 
d-variate FGM distribution with arbitrary continuous marginal distributions. For 
j = 1,… , d , let Fj(xj;�j) and fj(xj;�j) be the jth marginal distribution function and 
the density function with a parameter vector �j , respectively. Let us define � as 
� = (�1,… , �d) . Then, the cumulative distribution function of X , denoted by Hd , 
is represented as

where Fj(xj;�j) ≡ 1 − Fj(xj;�j).
The joint density function of X , denoted by hd , is given by

(1)1 +

d∑
k=2

∑
1≤j1<⋯<jk≤d

𝜃j1⋯jk
(1 − 2uj1 )⋯ (1 − 2ujk ) ≥ 0, uj ∈ [0, 1],

(2)1 +

d∑
k=2

∑
1≤j1<⋯<jk≤d

𝜃j1⋯jk
𝜀j1 ⋯ 𝜀jk ≥ 0, 𝜀j = ±1,

(3)

1 + �12 + �13 + �23 + �123 ≥ 0 (�1 = �2 = �3 = 1)

1 + �12 − �13 − �23 − �123 ≥ 0 (�1 = �2 = 1, �3 = −1)

1 − �12 + �13 − �23 − �123 ≥ 0 (�1 = �3 = 1, �2 = −1)

1 − �12 − �13 + �23 − �123 ≥ 0 (�2 = �3 = 1, �1 = −1)

1 − �12 − �13 + �23 + �123 ≥ 0 (�1 = 1, �2 = �3 = −1)

1 − �12 + �13 − �23 + �123 ≥ 0 (�2 = 1, �1 = �3 = −1)

1 + �12 − �13 − �23 + �123 ≥ 0 (�3 = 1, �1 = �2 = −1)

1 + �12 + �13 + �23 − �123 ≥ 0 (�1 = �2 = �3 = −1)

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

Hd(x1,… , xd;�,�) = Pr[X1 ≤ x1,… ,Xd ≤ xd]

= Cd(F1(x1;�1),… ,Fd(xd;�d);�)

=

d∏
j=1

Fj(xj;�j)

(
1 +

d∑
k=2

∑
1≤j1<⋯<jk≤d

𝜃j1⋯jk
Fj1

(xj1 ;�j1 )⋯Fjk
(xjk ;�jk )

)
,
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where fj ≡ fj(xj;�j) and Fj ≡ Fj(xj;�j).

3  Estimation

In this section, we first introduce MLE and its limitation for the multivariate FGM 
distribution. To solve the limitation, we then propose an estimation algorithm for the 
multivariate FGM distribution by using IFM.

3.1  Maximum likelihood estimation

MLE is one of the natural choices to estimate parameters of probability distributions 
because its estimators satisfy asymptotic normality under several regularity condi-
tions (Lehmann and Casella 1998; Joe 2014). With this method, we estimate all the 
parameters � and � simultaneously. For a sample size n, with observed independent 
random vectors xi = (xi1,… , xid) for i = 1,… , n , the full-dimensional log-likelihood 
function of � and � can be written as

Thus, the estimators of MLE, denoted as �̂ and �̂ , are given by

To find (�̂, �̂) , we need to use numerical optimization techniques because Eq.  (4) 
does not have closed form expression. The problems of numerical optimization 
in Eq.  (4) are high-dimensionality and the parameter constraints given by Eq.  (2). 
Numerical optimization in a high-dimensional and constrained space requires a large 
amount of computational resources. This issue relates to computational feasibility.

Numerical optimization might take a large amount of computation time and fail as 
the dimension increases. Also, the estimation accuracy of MLE worsens because the 
numerical optimization technique may not find the global optimum but a local one. 
Even if all the marginal distributions are uni-parameter distributions (i.e., �j = �j ), Eq. 
(4) consists of the 2d − 1 unknown parameters � and � . Moreover, the ignorance of 

hd(x1,… , xd;�,�) =
𝜕d

𝜕x1 ⋯ 𝜕xd
Hd(x1,… , xd;�,�)

=

d∏
j=1

fj

(
1 +

d∑
k=2

∑
1≤j1<⋯<jk≤d

𝜃j1⋯jk
(1 − 2Fj1

)⋯ (1 − 2Fjk
)

)
,

𝓁 ≡ 𝓁(�,�;x1,… , xn)

≡

n∑
i=1

log hd(xi1,… , xid;�,�)

=

n∑
i=1

d∑
j=1

log fj +

n∑
i=1

log

(
1 +

d∑
k=2

∑
1≤j1<⋯<jk≤d

𝜃j1⋯jk
(1 − 2Fj1

)⋯ (1 − 2Fjk
)

)
.

(4)(�̂, �̂) = arg max
�,�

�(�,�;x1,… , xn).
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parameter constraints is one of the most common reasons why the Newton-Raphson 
type algorithms diverge (MacDonald 2014). Therefore, other simple estimation meth-
ods have been required for the multivariate FGM distribution’s parameters.

3.2  The method of inference functions for margins

To reduce the computational difficulty of MLE, we introduce IFM for estimation of the 
multivariate FGM distribution. With this method, we estimate the dependence param-
eters one by one so that each estimation result satisfies the condition given by Eq. (2).

As the first step, let us define k-dimensional marginal likelihood functions for 
k = 1, 2,… , d − 1 . It is easy to see that the k-dimensional marginal distribution func-
tion is as follows.

Thus, for example, we have

The key point of these functions is that their variables are controlled by only the 
parameters with the same subscripts of the marginal distribution functions. We then 
obtain the following log-likelihood functions of the k-dimensional marginal distri-
bution for k < d and 1 ≤ j1 < ⋯ < jk ≤ d.

Hk(x1,… , xk;⋅) =

k�
j=1

Fj

⎛
⎜⎜⎝
1 +

k�
p=2

�
1≤j1<⋯<jp≤k

𝜃j1⋯jp
(1 − Fj1

)⋯ (1 − Fjp
)

⎞
⎟⎟⎠
.

H1(xj1 ;�j1 ) = Fj1
,

H2(xj1 , xj2 ;�j1 , �j2 , �j1j2 ) = Fj1
Fj2

(1 + �j1j2(1 − Fj1
)(1 − Fj2

)),

H3(xj1 , xj2 , xj3 ;�j1 , �j2 , �j3 , �j1j2 , �j1j3 , �j2j3 , �j1j2j3 )

= Fj1
Fj2

Fj3
(1 + �j1j2(1 − Fj1

)(1 − Fj2
) + �j1j3 (1 − Fj1

)(1 − Fj3
)

+ �j2j3 (1 − Fj2
)(1 − Fj3

) + �j1j2j3(1 − Fj1
)(1 − Fj2

)(1 − Fj3
)).

𝓁j1
≡ 𝓁j1

(�j1 ;x1,… , xn) ≡

n∑
i=1

log fj1 (xij1 ;�j1 ),

𝓁j1j2
≡ 𝓁j1j2

(�j1 , �j2 , �j1j2 ;x1,… , xn)

≡

n∑
i=1

log h2(xij1 , xij2 ;�j1 , �j2 , �j1j2 ),

𝓁j1j2j3
≡ 𝓁j1j2j3

(
�j1 , �j2 , �j3 , �j1j2 , �j1j3 , �j2j3 , �j1j2j3 ;x1,… , xn

)

≡

n∑
i=1

log h3
(
xij1 , xij2 , xij3 ;�j1 , �j2 , �j3 , �j1j2 , �j1j3 , �j2j3 , �j1j2j3

)
,

⋮

𝓁j1⋯jd−1
≡ 𝓁j1⋯jd−1

(�j1 ,… , �jd−1 , �j1j2 ,… , �j1⋯jd−1
;x1,… , xn)

≡

n∑
i=1

log hd−1(xij1 ,… , xijd−1 ;�j1 ,… , �jd−1 , �j1j2 ,… , �j1⋯jd−1
).
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Now, we propose an estimation algorithm based on IFM for the d-variate FGM dis-
tribution. With IFM, we first estimate the parameters of marginal distributions as

for j1 = 1, 2,… , d.
Next, we estimate bivariate, trivariate and d-variate dependence parameters step by 

step. For 1 ≤ j1 < j2 ≤ d , the bivariate dependence parameters �j1j2 are estimated as 
follows.

where �j1j2 must satisfy Eq. (2) whose parameters already estimated are fixed by their 
estimated values, e.g., �12 = �̃12, �13 = �̃13,… , and so on.

After all the bivariate dependence parameters are estimated, the estimates of the 
trivariate dependence parameters �j1j2j3 are given by

where �j1j2j3 must satisfy Eq.  (2) whose parameters already estimated are fixed by 
their estimated values, e.g., �12 = �̃12, �13 = �̃13,… , �123 = �̃123, �124 = �̃124,… , and 
so on.

In the same manner, we estimate all dependence parameters of higher dimensions 
in order. Finally, �12⋯d is estimated in a bottom-up fashion. Thus, we can estimate all 
dependence parameters by repeatedly maximizing functions with one unknown param-
eter (one equation per dependence parameter). Therefore, IFM can be used to estimate 
the dependence parameters of the d-variate FGM distribution no matter how large d is 
(even if MLE is infeasible).

If MLE is feasible, an estimator of IFM can be considered as a good starting point 
for the numerical maximization of the full log-likelihood function (Joe 2014). In Sec. 
5.2, the detailed procedure of IFM for the d-variate FGM distribution is demonstrated 
in the case of d = 3.

The proposed algorithm for the d-variate FGM distribution has the following char-
acteristic remarks that are not seen when IFM is applied to other copulas.

Remark 1 For a given k, IFM for the d-variate FGM distribution requires lin-
ear optimization to determine the allowable range of a dependence parameter as 
aj1⋯jk

≤ �j1⋯jk
≤ bj1⋯jk

 where aj1⋯jk
= min �j1⋯jk

 and bj1⋯jk
= max �j1⋯jk

 under the 
condition of Eq. (2), respectively.

For example, let us consider the case that d = 3 and the dependence parameters are 
estimated in the order of �12 → �23 → �13 → �123 . In this case, we have a12 = min �12 
and b12 = max �12 s.t. Eq. (3), respectively. Then, a12 = −1 and b12 = 1 hold as solu-
tions of these two optimization problems. Eq. (50 can be represented as

𝜹j1 = argmax
𝜹j1

�j1
(𝜹j1 ;xj1 ),

(5)𝜃j1j2 = argmax
𝜃j1 j2

�j1j2
(𝜹j1 , 𝜹j2 , 𝜃j1j2 ;xj1 , xj2 ),

𝜃j1j2j3 = argmax
𝜃j1 j2 j3

�j1j2j3
(𝜹j1 , 𝜹j2 , 𝜹j3 , 𝜃j1j2 , 𝜃j1j3 , 𝜃j2j3 , 𝜃j1j2j3 ;xj1 , xj2 , xj3 ),
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After �̃12 is obtained, a13 and b13 are given by min �13 and max �13 s.t. Eq. (3) where 
�12 = �̃12 , respectively. The same discussion can be done for a23, b23, a123 , and b123 . 
In this way, the parameters of Eq. (2) are fixed by their estimated values one by one.

Remark 2 Since 𝓁j1⋯jk
 is a single nonlinear equation, some numerical optimization is 

required to solve argmin
aj1⋯jk

≤�j1⋯jk
≤bj1⋯jk

𝓁j1⋯jk
 and argmax

aj1⋯jk
≤�j1⋯jk

≤bj1⋯jk

𝓁j1⋯jk
 . A possible initial 

value of numerical optimization is (aj1⋯jk
+ bj1⋯jk

)∕2.

One can use an interior point method as a numerical optimization method for 
such constrained nonlinear optimization problems (e.g., Mathematica supports an 
interior point method by the functions FindMinimum and FindMaximum).

Remark 3 For a given k, the order of estimating the 
(
d

k

)
 dependence parameters 

(i.e., �j1⋯jk
’s) is exchangeable. The number of possible ways to estimate �j1⋯jk

 ’s is (
d

k

)
!.

For example, when d = 3 and k = 2 , we have �12, �13 , and �23 . The estimation 
order of these parameters is exchangeable because �12,�13 , and �23 do not depend 
on (�13, �23) , (�12, �23) , and (�12, �13) , respectively. Thus, there are 6 ways to esti-
mate these three parameters in the permutations of (�12, �13, �23) , (�12, �23, �13) , 
(�13, �12, �23) , (�13, �23, �12) , (�23, �12, �13) , and (�23, �13, �12) . In total, we have 
∏d

k=2

�
d

k

�
! ways to estimate all 2d − d − 1 dependence parameters.

The value of �̃ may change depending on the estimation order of �j1⋯jk
 ’s for a 

small sample. This is because aj1⋯jk
 and bj1⋯jk

 depend on the values of the depend-
ence parameters already estimated. The estimation using a small sample may 
yield large estimation errors. As a result, large estimation errors of the depend-
ence parameters obtained at the beginning of the algorithm (e.g., �̃12, �̃13,… ) tend 
to shorten allowable ranges [aj1⋯jk

, bj1⋯jk
] of other dependence parameters to be 

estimated. Therefore, we should estimate � by using various ways as long as the 
computation time is acceptable. If we obtain M different estimates �̃1,… , �̃M by 
M ways, we can select the best estimate so that the estimate yields the largest log-
likelihood value as argmax

�̃�m

�(𝜹, �̃�m;x1,… , xn) for m = 1,… ,M.

4  Asymptotic normality

An estimator of MLE satisfies asymptotic normality under regularity conditions 
(Cramer 1945). It is also known that an estimator of IFM supports asymptotic 
normality if the copula satisfies regularity conditions (Joe 2014). However, no 
studies found that the same property holds in the multivariate FGM distribution.

𝜃12 = argmax
−1≤𝜃12≤1

�12(𝜹1, 𝜹2, 𝜃12;x1, x2).
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In this section, therefore, we argue that asymptotic normality of MLE and IFM 
hold for the FGM distribution. We then compare their asymptotic efficiencies for 
specific parameter cases.

Without loss of generality, let us consider asymptotic normality of 
each estimator of MLE and IFM for d = 3 and �j = �j . Let � be (�,�) (i.e., 
� = (�1,… , �7) = (�1, �2, �3, �12, �13, �23, �123) ), and a parameter with the subscript 
0 denotes the true value of the parameter (e.g., �0 and �0 ). Then, for a random 
vector of the FGM distribution X = (X1,X2,X3) , the following theorems hold 
under suitable regularity conditions including interchange of differentiation and 
integration (see pp. 462-463 of Lehmann and Casella (1998) for the consistency 
and asymptotic normality of MLE and Joe (2014) for the reference of IFM).

Theorem 1 The estimator of MLE �̂  satisfies the following equation for n → ∞.

where D

→
 denotes the convergence in distribution, and I is the Fisher information 

matrix, which is given by

where T represents transpose of a vector or matrix, and

Theorem 2 The estimator of IFM �̃  satisfies the following equation for n → ∞.

where

√
n(�̂ − �0)

D

→ N(0, I−1),

(6)I = −E

[
�2 log h3(X1,X2,X3;�)

����T

|||||�=�0

]
,

h3(X1,X2,X3;�) =

3∏
j=1

fj(Xj;�j)

(
1 + �12(1 − 2F1(X1;�1))(1 − 2F2(X2;�2))

+ �13(1 − 2F1(X1;�1))(1 − 2F3(X3;�3))

+ �23(1 − 2F2(X2;�2))(1 − 2F3(X3;�3))

+ �123(1 − 2F1(X1;�1))(1 − 2F2(X2;�2))(1 − 2F3(X3;�3))

)
.

√
n(�̃ − �0)

D

→ N(0,V),

(7)

V = D−1M(D−1
)

T,

D = E

[
�s(X;�)

��

||||�=�0

]
,

(8)M = E[s(X;�0)s(X;�0)
T
],
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Note that we cannot obtain the explicit forms of D and V but can compute them 
for a specific �0 . Proofs for Theorems 1 and 2 are given in Appendix.

A natural question arises: how much is �̂ relatively efficient compared with �̃  ? To 
take into account this question, we investigate numerical examples. To simplify the 
asymptotic covariance matrices, let us consider the case in which � is given. That is, 
the parameters of interest are only � . Suppose (�12, �13, �23, �123) = (0.3, 0.3, 0.3, 0.3) . 
Then, each asymptotic covariance matrix is given by

Note that we use the closed Newton-Cotes formula of degree 3 to numerically com-
pute integrations for I−1 and V. Since the ith diagonal element of Eq. (10) is less than 
that of Eq. (11) for i = 1,… , 4 , we can find that MLE is more effective than IFM. 
For example, the variance of �̂12 is around 97% (= 8.48∕8.70) of the variance of �̃12.

As another example, let us consider the case of (�12, �13, �23, �123) = (0, 0, 0, 0) 
(i.e., the independent case). Then, each asymptotic covariance matrix is analytically 
obtained as

Hence, the variances of �̂ are 100% of those of �̃ if (�12, �13, �23, �123) = (0, 0, 0, 0).

(9)
s(X;�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
s3
s4
s5
s6
s7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

��1
log f1(X1;�1)

�

��2
log f2(X2;�2)

�

��3
log f3(X3;�3)

�

��12
log h2(X1,X2;�1, �2, �12)

�

��13
log h2(X1,X3;�1, �3, �13)

�

��23
log h2(X2,X3;�2, �3, �23)
�

��123
log h3(X1,X2,X3;�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

h2(X1,X2;�1, �2, �12) = f1(X1;�1)f2(X2;�2)(1

+ �12(1 − 2F1(X1;�1))(1 − 2F2(X2;�2)).

(10)I−1 =

⎛⎜⎜⎜⎝

8.48 0.721 0.721 − 0.486

0.721 8.48 0.721 − 0.486

0.721 0.721 8.48 − 0.486

−0.486 − 0.486 − 0.486 24.32

⎞⎟⎟⎟⎠
,

(11)V =

⎛⎜⎜⎜⎝

8.70 0.736 0.736 − 0.498

0.736 8.70 0.736 − 0.498

0.736 0.736 8.70 − 0.498

−0.498 − 0.498 − 0.498 24.32

⎞⎟⎟⎟⎠
.

I−1 = V =

⎛⎜⎜⎜⎝

9 0 0 0

0 9 0 0

0 0 9 0

0 0 0 27

⎞⎟⎟⎟⎠
.
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5  Simulation study

In this section, we conduct simulation studies to evaluate the effectiveness of our 
proposed method in the estimation of the multivariate FGM distribution. We first 
explain how to generate simulation samples from the multivariate FGM distribu-
tion. Then, we compare MLE and IFM from the viewpoint of estimation accuracy 
and computation time and provide some discussion.

5.1  Generating the simulation samples

The conditional method (Xu 1996; Joe 2014) allows us to generate samples 
from the multivariate FGM distribution with arbitrary marginal distributions. 
Let (X1,… ,Xd) be a random vector of the d-variate FGM distribution. For 
j = 2, 3,… , d , we define the conditional distribution functions as follows.

Let v1,… , vd be samples from the i.i.d. uniform distribution in the interval [0, 1]. 
We construct a random sequence through the following processes.

• Let u1 = C−1
1
(v1).

• Let u2 = C−1
2|1(v2|u1),...,

• Let ud = C−1
d|1⋯d−1

(vd|u1,… , ud−1).
• Return (x1, x2,… , xd) = (F−1

1
(u1;�1),F

−1
2
(u2;�2),… ,F−1

d
(ud;�d)).

Consequently, the random sequence (x1, x2,… , xd) follows the d-variate FGM 
distribution.

We need to know the closed form of C−1
j|1⋯j−1

(⋅|⋅) to use the conditional method 
for the d-variate FGM distribution. The conditional distribution function is gener-
ally given by

Since

it follows that

Cj|12⋯j−1(uj|u1,… , uj−1) = Pr[Uj ≤ uj|U1 = u1,… ,Uj−1 = uj−1].

Cj|1⋯j−1(uj|u1,… , uj−1) =
∫

uj

0

cj(u1,… , uj−1, u)

cj−1(u1,… , uj−1)
du.

cj(u1,… , uj) = cj−1(u1,… , uj−1) +

j∑
p=2

∑
1≤j1<⋯<jp=j

𝜃j1⋯jp
(1 − 2uj1 )⋯ (1 − 2ujp),

(12)
cj(u1,… , uj)

cj−1(u1,… , uj−1)
= 1 +

∑j

p=2

∑
1≤j1<⋯<jp=j

𝜃j1⋯jp
(1 − 2uj1)⋯ (1 − 2ujp)

cj−1(u1,… , uj−1)
.
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By integrating both sides of Eq. (12), we obtain

where

From Du2
j
− (1 + D)uj − Cj|1⋯j−1(uj|u1,… , uj−1) = 0 , the inverse function 

C−1
j|1⋯j−1

(uj|u1,… , uj−1) takes one of the values of

for which it is positive and less than 1. For example, for j = 2 , we have

As far as we have found, the signs of Eq. (13) for j = 2, 3, 4 and 5 are +,−,− , and −, 
respectively. Consequently, we can generate samples of the multivariate FGM distri-
bution by using the conditional method with Eq. (13).

5.2  Short example

By using simulation data, we demonstrate the procedure of IFM for the d-variate 
FGM distribution. The settings of this example are as follows. 

1. The sample size is 1000.
2. All the marginal distributions are the i.i.d. uniform distribution in the interval 

[0, 1] (i.e., the target parameters are the only dependence parameters).
3. For d = 3 , (�12, �13, �23, �123) = (0.3, 0.3, 0.3, 0.3).

We generated random samples under the settings and estimate the parameters 
from the samples.

We estimated the dependence parameters through the following steps. 

Step 1: �̃12 = arg max
�12

�12 = arg max
−1≤�12≤1

�12 = 0.298.

Step 2: �̃13 = arg max
�13,�12=0.298

�13 = arg max
−1≤�13≤1

�13 = 0.272.

Step 3: �̃23 = arg max
�23,�12=0.298,�13=0.272

�23 = arg max
−0.431≤�23≤0.974

�23 = 0.365.

Step 4: �̃123 = arg max
�123,�12=0.298,�13=0.272,�23=0.365

� = arg max
−0.609≤�123≤0.609

� = 0.222.

Cj|1⋯j−1(uj|u1,… , uj−1) = (1 + D)uj − Du2
j
,

D =

∑j

p=2

∑
1≤j1<⋯<jp=j

𝜃j1⋯jp
(1 − 2uj1)⋯ (1 − 2ujp−1)

cj−1(u1,… , uj−1)
.

(13)
1 + D ±

√
(1 + D)2 − 4Duj

2D
,

C−1
2�1(v2�u1) =

1 + �12(1 − 2u1) +
√
(1 + �12(1 − 2u1))

2
− 4�12(1 − 2u1)v2

2�12(1 − 2u1)
.
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Note that the allowable ranges of the dependence parameters are calculated based on 
Remark 1 in each step.

As mentioned in Remark 3, Step 1, 2, and 3 are exchangeable although we esti-
mated the dependence parameters in the order of �12, �13 , and �23 in this example. If 
the order is changed, the estimation result might be different from the above result. 
To illustrate this phenomenon, we conducted another experiment by changing the 
sample size from 1000 to 100. We estimated all dependence parameters by MLE 
and IFM with possible six estimation orders (see Table 1). Note that (�, �) bellow 
each estimated value in Table 1 represents the allowable range of the correspond-
ing dependence parameter (i.e., � = aj1⋯jk

 and � = bj1⋯jk
 ). For example, �12 was esti-

mated in the interval [−1, 1] in the estimation order of �12 → �13 → �23 → �123.
As shown in Table 1, there were 3 different types of estimation results for IFM, 

and all �̃123 were 0 under the conditions of Eq. (2) and (�12, �13, �23) = (�̃12, �̃13, �̃23) . 
The reason why we obtained such results due to the difference of the estimation 
order mainly depended on the accumulation of estimation errors in the process of 
IFM. For example, the estimated values �̃13 were different between the cases that 
the dependence parameters were estimated in the orders of �12 → �13 → �23 → �123 
and �12 → �23 → �13 → �123 (i.e., 0.707 and 0.518). While the allowable range of �13 
thirdly estimated in the latter case was [−0.156, 0.518] , that secondly estimated in 
the former case was [−1, 1] . �̃13 could not be 0.707 in the latter case. Therefore, the 
value of �̃ changed depending on the estimation order.

The result of MLE was also different from the results of IFM. Based on the log-
likelihood values, the result of MLE should be chosen as the best estimate in this 
example.

Table 1  Comparison among simulation results of estimating (�
12
, �

13
, �

23
, �

123
) = (0.3, 0.3, 0.3, 0.3) by 

possible 6 IFM ways and MLE

Method (Estimation order) �
12

�
13

�
23

�
123

Log likeli-
hood

IFM ( �
12

→ �
13

→ �
23

→ �
123

) 0.181 0.707 0.474 0 4.871
(−1, 1) (−1, 1) (−0.112, 0.474) (0, 0)

IFM ( �
12

→ �
23

→ �
13

→ �
123

) 0.181 0.518 0.663 0 4.898
(−1, 1) (−0.156, 0.518) (−1, 1) (0, 0)

IFM ( �
13

→ �
12

→ �
23

→ �
123

) 0.181 0.707 0.474 0 4.871
(−1, 1) (−1, 1) (−0.112, 0.474) (0, 0)

IFM ( �
13

→ �
23

→ �
12

→ �
123

) 0.370 0.707 0.663 0 5.004
(0.370, 0.956) (−1, 1) (−1, 1) (0, 0)

IFM ( �
23

→ �
12

→ �
13

→ �
123

) 0.181 0.518 0.663 0 4.898
(−1, 1) (−0.156, 0.518) (−1, 1) (0, 0)

IFM ( �
23

→ �
13

→ �
12

→ �
123

) 0.370 0.707 0.663 0 5.004
(0.370, 0.956) (−1, 1) (−1, 1) (0, 0)

MLE 0.298 0.639 0.610 0.048 5.065
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5.3  Estimation accuracy

In this subsection, we investigated the estimation accuracy of the proposed algo-
rithm through Monte Carlo simulation under the conditions that parameters of mar-
ginal distributions � are known and unknown.

5.3.1  When ı is known

We again considered that all the marginal distributions were given, and � was 
known. For d = 4 , we conducted the simulation under the following settings. 

1. The sample sizes n were 100, 1000, and 10,000, and the number of iteration times 
m was 100.

2. All the marginal distributions were the i.i.d. uniform distribution in the interval 
[0, 1]. This means that the target parameters are only the dependence parameters.

3. We considered the following four situations of the dependence parameters. 

(a) (�12, �13, �14, �23, �24, �34, �123, �124, �134, �234, �1234)

  = (0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.2).
(b) (�12, �13, �14, �23, �24, �34, �123, �124, �134, �234, �1234)

  = (0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.5).
(c) (�12, �13, �14, �23, �24, �34, �123, �124, �134, �234, �1234)

  = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2).
(d) (�12, �13, �14, �23, �24, �34, �123, �124, �134, �234, �1234)

  = (0, 0, 0, 0, 0, 0,−0.2,−0.2,−0.2,−0.2,−0.2).

Under the settings, we calculated the following Bias and root-mean-squared error 
(RMSE) as indicators of estimation accuracy for each estimator of IFM.

where �̃⋅,i is �̃⋅ ’s estimate obtained in the ith iteration step and �̃⋅,(0) is the true value 
of �̃⋅ . Bias and RMSE represent the average and dispersion of the estimation errors, 
respectively.

The numerical results are presented in Tables 2, 3, 4, and 5. Note that MLE can-
not work in the case of n = 10,000 due to too much computation time for 100 itera-
tions (represented as N/A). Besides, only one estimation order of �̃  was considered 

Bias(�̃) =
⎡⎢⎢⎣

1

m

∑m

i=1
(�̃12,i − �12(0))

⋮
1

m

∑m

i=1
(�̃1234,i − �1234(0))

⎤⎥⎥⎦
,

RMSE(�̃) =

⎡
⎢⎢⎢⎣

�
1

m

∑m

i=1
(�̃12,i − �12(0))

2

⋮�
1

m

∑m

i=1
(�̃1234,i − �1234(0))

2

⎤
⎥⎥⎥⎦
,
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to finish the experiments within reasonable computation time (e.g., there are 17280 
estimation orders for d = 4 as discussed in Remark 3).

The estimation accuracy improved with a power of 10 samples. To obtain esti-
mates with Bias of less than 0.1, we require approximately 100, 1000, and 10,000 
samples for �j1j2 , �j1j2j3 , and �1234 , respectively. As for RMSE, ratio values of the 
results of IFM to those of MLE for the corresponding dependence parameters are 
close to 1 in most of the cases.

5.3.2  When ı is unknown

We next investigated the estimation accuracy when the marginal distributions were 
given, but � was unknown. In this case, it is expected that the accuracy of IFM 
worsen because the estimation accuracy for the dependence parameters is affected 
by the error for the marginal parameters. To check how much the performance wors-
ens, we conducted the simulation under the following settings for d = 4 . 

1. The sample size n was 100, and the number of iteration times m was 100.
2. All the marginal distributions were an i.i.d. exponential distribution. We fixed the 

marginal parameters as (�1, �2, �3, �4) = (1, 1, 1, 1).
3. T h e  d e p e n d e n c e  p a r a m e t e r s  w e r e  f i x e d  a s 

(�12, �13, �14, �23, �24, �34, �123, �124, �134, �234, �1234)

  = (0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.2).

The estimation results of the marginal parameters and dependence parameters are 
summarized in Tables 6 and 7, respectively. In Table 6, since n = 100 was enough to 
estimate the marginal parameters precisely, all biases are close to 0. Hence, the esti-
mation accuracy for the dependence parameters did not significantly worsen even if 
the marginal parameters were unknown. Bias and RMSE for the dependence param-
eters in Table 7 were almost the same as those for the dependence parameters shown 
in the result of n = 100 of Table 2. Therefore, we infer from these results that IFM 
and MLE for the parameter estimation of the FGM distribution work well under the 
condition that the sample size is enough to estimate � at least.

Table 6  Simulation 
results of estimating 
(�

1
, �

2
, �

3
, �

4
) = (1, 1, 1, 1) based 

on the average of 100 iterations

Method �
1

�
2

�
3

�
4

Bias IFM − 0.016 − 0.020 0.000 − 0.018
MLE − 0.018 − 0.024 − 0.001 − 0.190

RMSE IFM 0.092 0.113 0.095 0.102
MLE 0.093 0.116 0.096 0.103
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5.4  Computation time

In this subsection, we discuss the investigation of the computation times of MLE 
and IFM. We implemented IFM for the d-variate FGM distribution in Mathemat-
ica 11.3 and a PC equipped with Intel(R)Core(TM) i7-6700k 4.00-GHz, 32GB-
RAM running on Windows 10 professional 64bit. We conducted the simulation 
under the following settings. 

1. The dimensions d were 4 and 5.
2. The sample sizes n were 100, 1000, and 10,000.
3. All the marginal distributions were the i.i.d. uniform distribution in the interval 

[0, 1]. This means that the target parameters are only the dependence parameters.
4. For d = 4 , the values of the dependence parameters are as follows: 

�j1j2 = 0, �j1j2j3 = 0.2 , and �1234 = 0.2 for 1 ≤ j1 < j2 < j3 ≤ 4.
5. For d = 5 , the values of the dependence parameters are as follows: 

�j1j2 = 0, �j1j2j3 = 0, �j1j2j3j4 = 0.2 , and �12345 = 0.2 for 1 ≤ j1 < j2 < j3 < j4 ≤ 5.

Figure 1 illustrates the computation times to estimate the dependence param-
eters under the above situation. We can find that IFM works faster than MLE in 
all cases, and both MLE and IFM require more computational time as d and n 
increase. If d = 5 and n = 10,000 , MLE cannot work due to running out of mem-
ory (represented as N/A). Therefore, to estimate the parameters of the multivari-
ate FGM distribution, we should not use MLE but IFM from the viewpoint of 
computational cost. A theoretical analysis of the computational complexity of 
IFM is required for future work.

Table 7  Simulation results of estimating (�
12
, �

13
, �

14
, �

23
, �

24
, �

34
, �

123
, �

124
, �

134
, �

234
, �

1234
) = (0, 0, 0,

0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.2) if � is unknown based on the average of 100 iterations

Bias Method �
12

�
13

�
14

�
23

�
24

�
34

IFM − 0.082 0.046 0.036 − 0.040 0.055 0.010
MLE − 0.081 0.022 0.025 − 0.031 0.041 0.006
Method �

123
�
124

�
134

�
234

�
1234

IFM 0.102 0.110 0.109 0.171 0.201
MLE 0.103 0.084 0.046 0.087 0.153

 RMSE Method �
12

�
13

�
14

�
23

�
24

�
34

IFM 0.297 0.272 0.308 0.283 0.296 0.304
MLE 0.273 0.227 0.254 0.261 0.283 0.292
Method �

123
�
124

�
134

�
234

�
1234

IFM 0.315 0.314 0.280 0.291 0.338
MLE 0.308 0.342 0.334 0.323 0.3377
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6  Case study

In the previous section, we showed several aspects of the parameter estimation 
scheme proposed in this paper by utilizing simulation data. In this section, in 
turn, we depict another numerical example based on the actually collected data 
set. This is called Bearing data set, which is available in NASA Ames Prognos-
tics Data Repository (Lee et al. 2007).

6.1  Bearing data set

This data set was collected for the purpose of the investigation of how four bear-
ings with a coaxial rotating shaft degraded in time. For this case study, we employ 
“Set No. 1”  data set from the original data set. This “Set No.1”  contains 2156 
files, and each file has 20480 data points of vibration signal yielded in one second 
from 4 working bearings with 2 data-collection channels of accelerometers on the 
test rig (see Fig. 2). Therefore one data file has 20480 lines, and each line has 8 
numerical values (4 bearings × 2 channels). Also, one file was saved as a log file 
every 10 minutes (N.B., the first 43 files are logged every 5 minutes). Hence we 
obtain about 44.1 million ( ≈ 2156 × 20480 ) lines of 8-dimension vibration signal 
values.

In order to reduce the size of the data set, we extracted the first line from every 
2156 files. And from the structure of the test rig, we decided to use 4 channels of 
#1, #3, #5, and #7 from bearing #1, #2, #3, and #4, respectively. After such a data 
preparation, we finally obtain 2156 actual samples of 4-variate data set as follows 
( i = 1, 2,… , 2156 ). 

⋅  xi1 = the ith vibration signal (unit: arbitrary) of channel #1 in bearing #1.
⋅  xi2 = the ith vibration signal (unit: arbitrary) of channel #3 in bearing #2.
⋅  xi3 = the ith vibration signal (unit: arbitrary) of channel #5 in bearing #3.
⋅  xi4 = the ith vibration signal (unit: arbitrary) of channel #7 in bearing #4.

Fig. 1  Average computation times of estimating all dependence parameters of d-variate FGM distribu-
tion for d = 4, 5 (number of iterations: 5)
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 Note that the unit of the vibration signal is not indicated in the original references 
of Bearing data set (Qiu et al. 2006; Lee et al. 2007). Since the vibration signal was 
collected from the accelerometers, we can guess that the unit is any of voltage (mV) 
[or (V)] and acceleration (m/s2) which is proportional to a voltage value. For this 
reason, we assume that the vibration signal has an arbitrary unit in this study.

In this paper, we use this data set to find some dependence property among 
four bearings via their vibration signal data. Since these four bearings are oper-
ated by a single rotating shaft, it is expected that some common factors may affect 
the degradation of the bearings. For this, we apply 4-variate FGM copula to the 
data set and estimate its 11 dependence parameters.

6.2  Finding marginal distribution

We separate the data set into three sets from the viewpoint of the size. We call 
them Data-A, Data-B, and Data-C, respectively. Data-C is the overall data (2156 
lines). To make Data-A, we extracted the first 100 lines from Data-C. This means 
that this set was collected from the early stage of the operation time of four bear-
ings. The second one, Data-B, consists of 1000 lines (i.e., Data-A plus successive 
900 lines) to grasp the dependence property until the middle part of the data set. 
Data-C is used for the overall time domain analysis.

For each data set, we need to find the well-fitted marginal distribution firstly. 
Since the normal distribution was not fit these data sets, we chose the generalized 
t-distribution with the following probability density function:

Fig. 2  Illustration of test rig [cited from Qiu et al. (2006)]. Each bearing has 2 channels for data collec-
tion. Bearing #1 has channels #1 and #2, bearing #2 has channels #3 and #4, bearing #3 has channels #5 
and #6, and bearing #4 has channels #7 and #8, respectively
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where � = (a, b, c) and B[�, �] is the beta function defined by

This distribution has a location parameter a and a scale parameter b. The parameter 
c denotes the degree of freedom. Therefore if a = 0 and b = 1 , Eq. (14) describes the 
Student’s t-distribution.

Table  8 summarizes the estimation results of the marginal t-distribution and 
their p values by employing the Kolmogorov–Smirnov goodness-of-fit test. The 
right-most column also lists the p values if the normal distribution is applied. 
Therefore we choose t-distribution for the marginal, because all the cases are not 
rejected at the significance level of 0.05.

6.3  Parameter estimation and discussion

We estimated all the parameters included in the 4-variate FGM copula by the pro-
posed method. Note that only one estimation order of �̃  was considered to finish 

(14)f (x;�) =

�
1 + (

x−a

b
√
c
)
2
�
−

c+1

2

b
√
c B[

c

2
,
1

2
]

,

∫

1

0

t�−1(1 − t)�−1dt.

Table 8  List of estimated parameters of marginal t-distribution. Normal distribution is not suitable 
because of the several small p values

Channel 1 ã b̃ c̃ p (t-dist) p (normal dist.)

Data-A − 0.127 0.101 21.3 0.798 0.820
Data-B − 0.122 0.0914 42.0 0.402 0.508
Data-C − 0.119 0.0877 16.0 0.359 0.349

 Channel 3 ã b̃ c̃ p (t-dist) p (normal dist.)

Data-A − 0.113 0.111 73.9 0.667 0.632
Data-B − 0.116 0.0940 25.5 0.508 0.307
Data-C − 0.116 0.0905 26.8 0.183 0.128

 Channel 5 ã b̃ c̃ p (t-dist) p (normal dist.)

Data-A − 0.123 0.152 3.95 0.981 0.443
Data-B − 0.118 0.109 7.96 0.876 0.402
Data-C − 0.115 0.103 8.28 0.789 0.0157

 Channel 7 ã b̃ c̃ p (t-dist) p (normal dist.)

Data-A − 0.122 0.117 6.82 0.843 0.415
Data-B − 0.114 0.0905 4.63 0.863 2.88×10−3

Data-C − 0.116 0.0743 4.73 0.558 1.11×10−5
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the experiment within acceptable computation time. Table  9 is a list of them for 
each data set. In the statistical sense, the results of Data-C are the most meaningful 
because the size of the data set is the largest (2156 data points) among the three. The 
values in each row vary by the combination of bearings. Actually, it is not easy to 
infer the actual dependence structure among the bearings on the test rig from such 
information seen in this table, but we dare to state the degree of dependence by cat-
egorizing the estimated values. That is, we set three categories of the dependence 
as positive, negative, and almost zero between two bearings. By following this cat-
egorization, �̃12 , �̃34 are judged as positive, �̃13 , �̃23 , and �̃24 are negative, and �̃14 is 
almost zero.

Translating the subscript numbers 1, 2, 3, and 4 of � into the channel numbers 1, 
3, 5, and 7, respectively, we can infer that the bearings #1 and #4 are almost inde-
pendent because �̃14 belongs to the category of almost zero. It is understandable that 
this result from the illustration of Fig. 2 is possible since the bearing #1 and #4 are 
placed at both ends on the test rig equipment. It is reasonable that they may yield 
mutually independent vibration signals.

On the other hand, the degree of the positive and negative dependence between 
two bearings seems to also suggest some structural dependence depicted in Fig. 2. 
In the case of positive, the pair of bearings #1 and #2 adjoin, and the direction of 
the radial load is opposite. The same relationship can be seen at the pair of bearings 
#3 and #4. Therefore we can presume that these pairs of bearings may fail depend-
ently in the future. Regarding this matter, Qiu et al. (2006) reported that an inner 
race defect was discovered in the bearing #3 and a roller element defect and outer 
race defect were found in the bearing #4 at the end of the testing. This consequence 
results in supporting our inference stated above.

The last category, denoted as negative, contains three pairs of bearings as (#1, 
#3), (#2, #4), and (#2, #3). Among the three, the first two pairs of bearings suf-
fer the opposite radial load direction, but have more distance than the case of 
positive. Whereas in the case of (#2, #3), these bearings take the same direction 
of the radial load and are equipped closely. It is not clear that how these factors 
affect that the estimated values tend to be negative. It may be needed to do more 
research from the viewpoint of mechanical engineering and other theoretical con-
sideration to explain these interesting relationships between the estimated values 
and the physical layout of the equipment and other factors of the bearings.

Table 9  List of estimated parameters by IFM. Subscript numbers 1, 2, 3, and 4 of the � correspond to the 
channel numbers 1, 3, 5, and 7, respectively

Data �̃
12

�̃
13

�̃
14

�̃
23

�̃
24

�̃
34

�̃
123

�̃
124

�̃
134

�̃
234

�̃
1234

Data-A 0.308 – 0.207 0.0634 – 0.535 – 0.623 0.561 – 0.140 0.00618 0.168 0.0224 0.227
Data-B 0.465 – 0.161 – 0.0601 – 0.385 – 0.486 0.261 – 0.0434 – 0.0280 0.199 0.0461 0.0644
Data-C 0.487 – 0.130 0.0179 – 0.400 – 0.452 0.262 – 0.0162 0.0431 0.0810 0.0620 – 0.0110
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Moreover, it becomes more complicated to explain the dependence struc-
ture and estimated values among three or more bearings (i.e., �̃123,..., �̃1234 ). It 
is desired that the reasons and implications for these phenomena are revealed in 
future studies. In any case, however, we have confirmed that the proposed algo-
rithm for the parameter estimation of the FGM distribution worked well.

7  Conclusion

We proposed an algorithm for estimating the parameters of the multivariate FGM 
distribution in practical computation time. The computational complexity of MLE 
was reduced by using IFM. Because of this, IFM can estimate all the dependence 
parameters of the multivariate FGM distribution no matter how high the dimen-
sion d is. We then revealed that the estimators of IFM satisfy asymptotic normal-
ity for the multivariate FGM distribution. Therefore, The proposed algorithm is 
useful for estimating the parameters of the FGM distribution.

From the viewpoint of reliability engineering, the proposed algorithm can be 
applied to a quantitative evaluation of the dependence among system compo-
nents. If we have the lifetime data of system components, we can find the latent 
dependence structure among them by estimating the parameters of the multivari-
ate FGM distribution with arbitrary marginal distributions.

Appendix: Proofs

Before we prove Theorems 1 and  2, we introduce a lemma and theorem as 
follows.

Lemma 1 Let (X1,X2,X3) be a random vector of the trivariate FGM distribution. 
Then, E

[
s(X1,X2,X3;�0)

]
= 0 and E[ �

��
log h3(X1,X2,X3;⋅)|�=�0] = 0 hold.

Proof of Lemma 1 (9), we prove that each element of E
[
s(⋅;�0)

]
 is 0, that is,

for 1 ≤ j < k ≤ 3 . First, we have

E

[
�

��j
log fj(Xj;⋅)

]
= 0,

E

[
�

��jk
log h2(Xj,Xk;⋅)

]
= 0,

E

[
�

��123
log h3(X1,X2,X3;⋅)

]
= 0,
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where we assume that the order of the differentiation and integration can be changed 
in the third step. In the same manner, we obtain

and

Therefore, E
[
s(⋅;�0)

]
= 0 . Also, E[ �

��
log h3(X1,X2,X3;⋅)] = 0 holds in the same 

manner. Hence, the proof is complete.   ◻

Proof of Theorem  1 We provide a sketch of the proof of Theorem  1. Suppose 
Y,Y1,… ,Yn are i.i.d. random vectors of the d-variate FGM distribution. By apply-
ing the mean value theorem for the maximum log likelihood function at �0 , we 
obtain

where a matrix K(�) is given by

E

[
�

��j
log fj(Xj;⋅)

]
=

∫

∞

−∞

fj(xj;⋅)
�

��j
log fj(xj;⋅)dxj

=

∫

∞

−∞

�

��j
fj(xj;⋅)dxj

=

�

��j ∫

∞

−∞

fj(xj;⋅)dxj = 0,

E

[
�

��jk
log h2(Xj,Xk;⋅)

]
=

∫

∞

−∞

∫

∞

−∞

hjk(xj, xk;⋅)
�

��jk
log h2(xj, xk;⋅)dxjdxk

=

∫

∞

−∞

∫

∞

−∞

�

��jk
h2(xj, xk;⋅)dxjdxk

=

�

��jk ∫

∞

−∞

∫

∞

−∞

h2(xj, xk;⋅)dxjdxk = 0,

E

[
�

��123
log h3(X1,X2,X3;⋅)

]

=

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

h3(x1, x2, x3;⋅)
�

��123
log h3(x1, x2, x3;⋅)dx1dx2dx3

=

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

�

��123
h3(x1, x2, x3;⋅)dx1dx2dx3

=

�

��123 ∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

h3(x1, x2, x3;⋅)dx1dx2dx3 = 0.

(15)

0 =

��(�;Y1,… ,Yn)

��

||||�=�̂
=

��(�;Y1,… ,Yn)

��

||||�=�0
+ K(�)(�̂ − �0),
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and � ≡ diag(�1,… , �7)�̂ + diag(1 − �1,… , 1 − �7)�0 for (�1,… , �7) ∈ [0, 1]7 
(N.B., diag(a1,… , a7) is a diagonal matrix whose elements starting in the upper left 
corner are a1,… , a7 ). Let us assume the invertibility of I. From Eq. (15), we have

The first factor on the right-hand side of Eq. (16) can be applied to the law of large 
numbers because it is divided by the sample size n. By assuming �̂

p
→ �0 for n → ∞ , 

�
p
→ �0 also holds for n → ∞ . Recalling Eq. (6), we obtain

The second factor can be applied to the multivariate central limit theorem because it 
is divided by 

√
n . From Lemma 1 and Eq. (17), we obtain

Therefore, by applying Slutsky’s theorem (see e.g., Cramer (1945), p. 254) to Eqs. 
(17) and (18), the following equation holds.

Hence, the proof is complete.   ◻

Proof of Theorem 2 By the same analogy with the proof of Theorem 1, we provide a 
sketch of the proof of Theorem 2. Suppose Y,Y1,… ,Yn are i.i.d. random vectors of 
the d-variate FGM distribution. Let us define g(Y1,… ,Yn;�) as follows.

Note that g(⋅;�̃) = 0 holds because �̃ is defined as the solution of g(⋅;�) = 0 . By 
using the mean value theorem for g(⋅;�̃) at �0 , we have

K(�) =
�2�(�;Y1,… ,Yn)

����T

|||||�=�
,

(16)

√
n(�̂ − �0)

= −

�
1

n
K(�)

�
−1 1√

n

��(�;Y1,… ,Yn)

��

�����=�0
= −

�
1

n
K(�)

�
−1 1√

n

n�
i=1

�

��
log h3(Yi;�)

�����=�0

(17)
1

n
K(�)

p
→ −E

[
�2 log h3(Y;⋅)

����T

|||||�=�0

]
= I.

(18)
1√
n

n�
i=1

�

��
log h3(Yi;�)

�����=�0
D

→ N(0, I).

√
n(�̂ − �0)

D

→ N(0, I−1).

g(Y1,… ,Yn;�)

= (

��1

��1
,
��2

��2
,
��3

��3
,
��12

��12
,
��13

��13
,
��23

��23
,

��

��123
)

T.
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where

and � ≡ diag(�1,… , �7)�̃ + diag(1 − �1,… , 1 − �7)�0 for (�1,… , �7) ∈ [0, 1]7 . 
From Eq. (19), we have J(�)(�̃ − �0) = −g(Y1,… ,Yn;�0) . Thus,

The first factor on the right-hand side of Eq. (20) can be applied to the law of large 
numbers because it is divided by the sample size n. By assuming �̃

p
→ �0 for n → ∞ , 

�
p
→ �0 also holds for n → ∞ . Recalling Eq. (7), we obtain

The second factor can be applied to the multivariate central limit theorem because it 
is divided by 

√
n . From Lemma 1 and Eq. (8), we obtain

Therefore, by applying Slutsky’s theorem to Eqs. (21) and (22), the following equa-
tion holds.

Hence, the proof is complete.   ◻
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(19)
0 = g(Y1,… ,Yn;�̃)

= g(Y1,… ,Yn;�0) + J(�)(�̃ − �0),

J(�) =
�g(Y1,… ,Yn;�)

��

||||�=�,

(20)
√
n(�̃ − �0) = −

�
1

n
J(�)

�
−1 1√

n
g(⋅;�0).

(21)
1

n
J(�)

p
→ E

[
�s(Y;�)

��

||||�=�0

]
= D.

(22)
1√
n
g(Y1,… ,Yn;�0)

D

→ N(0,M).

√
n(�̃ − �0)

D

→ N(0,D−1M(D−1
)

T
).
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