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Abstract
Finite population inference is a central goal in survey sampling. Probability sam-
pling is the main statistical approach to finite population inference. Challenges 
arise due to high cost and increasing non-response rates. Data integration provides 
a timely solution by leveraging multiple data sources to provide more robust and 
efficient inference than using any single data source alone. The technique for data 
integration varies depending on types of samples and available information to be 
combined. This article provides a systematic review of data integration techniques 
for combining probability samples, probability and non-probability samples, and 
probability and big data samples. We discuss a wide range of integration methods 
such as generalized least squares, calibration weighting, inverse probability weight-
ing, mass imputation, and doubly robust methods. Finally, we highlight important 
questions for future research.

Keywords  Generalizability · Meta-analysis · Missing at random · Transportability

1  Introduction

Probability sampling is regarded as the gold standard in survey statistics for finite 
population inference. Fundamentally, probability samples are selected under known 
sampling designs and, therefore, are representative of the target population. Because 
the selection probability is known, the subsequent inference from a probability sam-
ple is often design-based and respects the way in which the data were collected; see 
Särndal et  al. (2003), Cochran (1977) and Fuller (2009) for textbook discussions. 
Kalton (2019) provided a comprehensive overview of the survey sampling research 
in the last 60 years.

However, many practical challenges arise in collecting and analyzing probabil-
ity sample data (Baker et al. 2013; Keiding and Louis 2016). Large-scale survey 
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programs continually face heightened demands coupled with reduced resources. 
Demands include requests for estimates for domains with small sample sizes and 
desires for more timely estimates. Simultaneously, program budget cuts force 
reductions in sample sizes, and decreasing response rates make non-response bias 
an important concern.

Data integration is a new area of research to provide a timely solution to the 
above challenges. The goal is multi-fold: (1) minimize the cost associated with 
surveys, (2) minimize the respondent burden, and (3) maximize the statistical 
information or equivalently the efficiency of survey estimation. Narrowly speak-
ing, survey integration means combining separate probability samples into one 
survey instrument (Bycroft 2010). Broadly speaking, one can consider combin-
ing probability samples with non-probability samples. Recently, in survey sta-
tistics, non-probability data become increasingly available for research purposes 
and provide unprecedented opportunities for new scientific discovery; however, 
they also present additional challenges such as heterogeneity, selection bias, high 
dimensionality, etc. The past years have seen immense progress in theories, meth-
ods, and algorithms for surmounting important challenges arising from non-prob-
ability data analysis. This article provides a systematic review of data integration 
for combining probability samples, probability and non-probability samples, and 
probability and big data samples.

Section 2 establishes notation and reviews these methods in the context of com-
bining multiple probability samples. Existing methods for probability data integra-
tion can be categorized into two types depending on the level of information to be 
combined: a macro approach combining the summary statistics from multiple sur-
veys and a micro approach creating synthetic imputations.

Section 3 describes the motivation, challenges, and methods for integrating prob-
ability and emergent non-probability samples. We also draw connections of survey 
data integration to combine randomized clinical trials and real-world data in Bio-
statistics. We then discuss a wide range of integration methods including calibra-
tion weighting, inverse probability weighting, mass imputation, and doubly robust 
methods.

We then consider data integration methods for combining probability and big 
non-probability samples. Depending on the roles in statistical inference, there are 
two types of big data: one with large sample sizes (large n) and the other with rich 
covariates (large p). In the first type, the non-probability sample can be large in sam-
ple size. How to leverage the rich information in the big data to improve the finite 
population inference is an important research. In the second type, there are a large 
number of variables. There is a large literature on variable selection methods for 
prediction, but little work on variable selection for data integration that can success-
fully recognize the strengths and the limitations of each data source and utilize all 
information captured for finite population inference. Section 4 presents robust data 
integration and variable selection methods in this context.

To summarize, Sect. 5 describes the direction of future research along the line 
of data integration including sensitivity analysis to assess the robustness of study 
conclusions to unverifiable assumptions, hierarchical modeling, and some caution-
ary remarks.
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2 � Combining probability samples

2.1 � Multiple probability samples and missingness patterns

Combining two or more independent survey probability samples is a problem fre-
quently encountered in the practice of survey sampling. For simplicity of exposition, 
let U = {1,… ,N} be the index set of N units for the finite population, with N being 
the known population size. Let (xT

i
, yi)

T be the realized value of a vector of random 
variables (XT, Y)T for unit i, where X consists of auxiliary variables and Y is the 
study variable of interest. The parameter of interest is the finite population mean of 
Y, i.e., �y = N−1

∑N

i=1
Yi throughout the article. Let Ii be the sample indicator, such 

that Ii = 1 indicates the selection of unit i into the sample and Ii = 0 otherwise. The 
probability �i = P(Ii = 1 ∣ i ∈ U) is called the first-order inclusion probability and 
is known by the sampling design. The design weight is di = �−1

i
 . The joint prob-

ability �ij = P(IiIj = 1 ∣ i, j ∈ U) is called the second-order inclusion probability and 
is often used for variance estimation of the design-weighted estimator. In particular, 
�ii = �i for all i. The sample size is n =

∑N

i=1
Ii.

The main advantage of probability sampling is to ensure design-based inference. 
For example, the Horvitz–Thompson (HT) estimator of the population mean of y, 
denoted by �y , is �̂HT = N−1

∑
i∶Ii=1

�−1
i
yi , and the design-variance estimator is:

We consider multiple sources of probability data. For multiple datasets, we use the 
subscript letter to indicate the respective sample; for example, we use dA,i as the 
design weight of unit i in sample A.

Depending on the available information from multiple data sources, each sample 
has planned missingness by design. As illustrated in Table 1, the combined sample 
exhibits different missingness patterns: monotone and non-monotone. For monotone 
missingness, our framework covers two common types of studies. First, we have a 
large main dataset, and then collect more information on important variables for a 
subset of units, e.g., using a two-phase sampling design (Neyman 1938; Cochran 
1977; Wang et  al. 2009). Consider the U.S. Census of housing and population as 
an example. The short form consists of 100% sample, for which basic demographic 
information was obtained. The long form consists of about 16% sample, for which 
other social and economic information as well as demographic information were 
obtained. Deming and Stephan (1940) considered this setup as a classical two-phase 
sampling problem and use calibration weighting for demographic variable to match 
the known population counts from the short form.

Second, we have a smaller and carefully designed validation dataset with 
rich covariates, and then link it to a larger main dataset with fewer covariates. 
The setup of two independent samples with common items is often called non-
nested two-phase sampling. Consider the US consumer expenditure survey as an 
example. Two independent samples were selected from the same finite popula-
tion, including a diary survey sample, referred to as sample A, and a face-to-face 

V̂HT = nN−2
∑
i∶Ii=1

∑
j∶Ij=1

(�ij − �i�j)

�ij

yi

�i

yj

�j
.
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survey sample, referred to as sample B. In sample A, observe auxiliary informa-
tion X and outcome Y, whereas in sample B, observe common auxiliary informa-
tion X. Zieschang (1990) considered using sample weighting to estimate detailed 
expenditure and income items combining sample A and sample B. Another exam-
ple is the Canadian Survey of Employment, Payrolls, and Hours considered by 
Hidiroglou (2001). Sample A is a small sample from Statistics Canada Business 
Register, in which the study variables Y, number of hours worked by employees, 
and summarized earnings were observed. Sample B is a large sample drawn from 
a Canadian Customs and Revenue Agency administrative data, in which auxiliary 
variables X were observed.

Finally, we will consider combining two independent surveys with non-
monotone missing patterns. Statistical matching technique will be introduced in 
Sect. 2.2.1 as a general statistical tool under this setup.

2.2 � Two approaches for probability data integration

We classify probability data integration methods based on the level of information 
to be combined: a macro approach and a micro approach. In the macro approach, we 
obtain summary information such as the point and variance estimates from multiple 
data sources and combine those to obtain a more efficient estimator of the parameter 
of interest, such as population means or totals. In the micro approach, we create 
single synthetic data that contain all available information from all data sources. The 
synthetic data can be used to estimate various types of the parameters.

Table 1   Missingness patterns in the combined samples: “ ✓ ” means “is measured”

d is the design weight, where the subscript indicates the sample, X is the vector of auxiliary variables, 
and Y, Y

1
 , and Y

2
 are scalar outcome variables

Monotone missingness

d X Y

Sample A ✓ ✓ ✓

Sample B ✓ ✓

Non-monotone missingness I

d X Y
1

Y
2

Sample A ✓ ✓ ✓ ✓

Sample B ✓ ✓ ✓

Sample C ✓ ✓ ✓

Non-monotone missingness II

d X Y
1

Y
2

Sample A ✓ ✓ ✓

Sample B ✓ ✓ ✓
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2.2.1 � Macro approach: generalized least‑squares (GLS) estimation

Renssen and Nieuwenbroek (1997), Hidiroglou (2001), Merkouris (2004), Wu 
(2004), Ybarra and Lohr (2008), and Merkouris (2010) considered the problem 
of combining data from two independent probability samples to estimate totals 
at the population and domain levels. Merkouris (2004) and Merkouris (2010) 
provided a rigorous treatment of the survey integration through the generalized 
method of moments.

We focus on the monotone missingness pattern. The same discussion applies to 
the other patterns. From each probability sample, we obtain different estimators 
for the means of common items. The GLS approach combines those estimates as 
an optimal estimator. Let �̂x,A and �̂x,B be unbiased estimators of �x from sample A 
and sample B, respectively. Let �̂B be an unbiased estimator of �y from sample B.

To combine the multiple estimates, we can build a linear model of three esti-
mates with two parameters as follows:

where (e1, e2, e3)T has mean (0, 0, 0)T , variance–covariance:

and var(⋅) and cov(⋅) are the variance and covariance induced by the sampling prob-
ability. If the two samples are independently obtained from the sample population, 
we have cov(�̂x,A, �̂x,B) = 0 and cov(�̂x,A, �̂B) = 0.

Based on model (1), treat (�̂x,A, �̂x,B, �̂B) as observations and define a sum of 
squared error term:

The optimal estimator of (�x,�y) that minimizes Q(�x,�y) is:

and

where

(1)
⎛
⎜⎜⎝

�̂x,A

�̂x,B

�̂B

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

1 0

1 0

0 1

⎞
⎟⎟⎠

�
�x

�y

�
+

⎛
⎜⎜⎝

e1
e2
e3

⎞
⎟⎟⎠
,

V =

⎛⎜⎜⎝

var(�̂x,A) cov(�̂x,A, �̂x,B) cov(�̂x,A, �̂B)

cov(�̂x,A, �̂x,B) var(�̂x,B) cov(�̂x,B, �̂B)

cov(�̂x,A, �̂B) cov(�̂x,B, �̂B) var(�̂B)

⎞⎟⎟⎠
,

Q(�x,�y) =

⎛⎜⎜⎝

�̂x,A − �x

�̂x,B − �x

�̂B − �y

⎞⎟⎟⎠

T

V−1
⎛⎜⎜⎝

�̂x,A − �x

�̂x,B − �x

�̂B − �y

⎞⎟⎟⎠
.

(2)�̂∗
x
= �∗�̂x,A + (1 − �∗)�̂x,B

(3)

�̂GLS = �̂B +

(
ĉov(�̂x,A, �̂B)

ĉov(�̂x,B, �̂B)

)T(
v̂ar(�̂x,A) ĉov(�̂x,A, �̂x,B)

ĉov(�̂x,A, �̂x,B) v̂ar(�̂x,B)

)−1(
�̂∗
x
− �̂x,A

�̂∗
x
− �̂x,B

)
,
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To see the efficiency gain of �̂GLS over �̂B , using (2), we express:

The variance of �̂GLS is:

which is not larger than var(�̂B) . The GLS estimator for non-monotone missingness 
can be constructed similarly. See Fuller and Breidt (1999) for an application in the 
National Resource Inventory.

2.2.2 � Micro approach: mass imputation

Mass imputation (also called synthetic data imputation) is a technique of creat-
ing imputed values for items not observed in the current survey by incorporat-
ing information from other surveys. Breidt et al. (1996) discussed mass imputa-
tion for two-phase sampling. Rivers (2007) proposed a mass imputation approach 
using nearest-neighbor imputation, but the theory is not fully developed. Schen-
ker and Raghunathan (2007) reported several applications of synthetic data 
imputation, using a model-based method to estimate totals and other parameters 
associated with variables not observed in a larger survey but observed in a much 
smaller survey. Legg and Fuller (2009) and Kim and Rao (2012) developed syn-
thetic imputation approaches to combining two surveys. Chipperfield et al. (2012) 
discussed composite estimation when one of the surveys is mass imputed. Beth-
lehem (2016) discussed practical issues in sample matching for mass imputation.

The primary goal is to create a single synthetic dataset of proxy values ŷi for 
the unobserved yi in sample B and then use the proxy data together with the asso-
ciated design weights of sample A to produce projection estimators of the popu-
lation mean �y . This is particularly useful when sample B is a large-scale survey 
and item Y is very expensive to measure. The proxy values ŷi are generated by 
first fitting a working model relating Y to X, E(Y ∣ X) = m(X;�0) based on the data 
{(xi, yi) ∶ i ∈ A} from sample A. Then, the synthetic values of Y can be created by 
ŷi = m(xi;�̂) for i ∈ B . Thus, sample A is used as a training sample for predicting 
Y in sample B. The mass imputation estimator of �y is �̂I = N−1

∑
i∈B dB,iŷi . Kim 

and Rao (2012) showed that �̂I is asymptotically design-unbiased if �̂  satisfies:

With (4):

�∗ =
v̂ar(�̂x,B) − ĉov(�̂x,A, �̂x,B)

v̂ar(�̂x,A) + v̂ar(�̂x,B) − 2ĉov(�̂x,A, �̂x,B)
.

�̂GLS = �̂B − ĉov(�̂B, �̂x,B − �̂x,A)
{
v̂ar(�̂x,B − �̂x,A)

}−1
(�̂∗

x
− �̂x,B).

var(�̂B) − cov(�̂B, �̂x,B − �̂x,A)
{
var(�̂x,B − �̂x,A)

}−1
cov(�̂B, �̂x,B − �̂x,A),

(4)
∑
i∈A

dA,i{yi − m(xi;�̂)} = 0.
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and

The asymptotic unbiasedness holds regardless of whether the regression model is 
true or not. However, a good regression model will reduce the variance of �̂I . For 
variance estimation, either linearization or replication-based sampling (Kim and 
Rao 2012) can be used.

2.3 � Mass imputation with non‑monotone missingness

For non-monotone missingness, the mass imputation method of Kim and Rao 
(2012) is not directly applicable as the sample with partial observations may con-
tain additional information for parameter estimation. Often, one can consider a joint 
model of all variables and use the EM algorithm to estimate the model parameters. 
The joint model deduces the conditional distribution of the missing variables given 
the observed values for imputation.

For illustration, consider the non-monotone missingness I structure in Table  1. 
The goal is to develop mass imputation for both Y2 in sample B and Y1 in sample C. 
It is attempting to specify the conditional distribution of Y2 given (X, Y1) to impute Y2 
in sample B and the conditional distribution of Y1 given (X, Y2) to impute Y1 in sam-
ple C. However, this approach may result in model incompatiability. That is, there 
does not exist a joint model of (Y1, Y2) given X that leads to the corresponding condi-
tional distributions. To avoid model incompatibility, we use a joint model for (Y1, Y2) 
given X for prediction though specifying the sequential conditional distribution:

where � = (�T
1
, �T

2
)T , �1 , and �2 are unknown parameters.

For parameter estimation, it suffices to use observations in sample A; however, 
this approach ignores the partial information in sample B and sample C and, there-
fore, is not efficient. Let the joint set of sampling indexes be S = A ∪ B ∪ C . Assum-
ing no overlap between the samples, we define:

and let di be the design weight for unit i ∈ S without specifying which sample it 
belongs to. That is, di = dA,i if i ∈ A . To incorporate all available information, the 
EM algorithm can be used as follows. 

�̂I =N−1
∑
i∈B

dB,iŷi + N−1
∑
i∈A

dA,i(yi − ŷi)

=N−1
∑
i∈B

dB,im(xi;�0) + N−1
∑
i∈A

dA,i{yi − m(xi;�0)} = P̂B + Q̂A,

var(�̂I) = var(P̂B) + var(Q̂A).

(5)f (Y1, Y2 ∣ X;�) = f1(Y1 ∣ X;�1)f2(Y2 ∣ X, Y1;�2),

�S,i = P(i ∈ S ∣ i ∈ U) =

⎧⎪⎨⎪⎩

�A,i if i ∈ A

�B,i if i ∈ B

�C,i if i ∈ C,
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E-step	� Let �(t) be the parameter estimate at iteration t. Compute the conditional 
expectation of the pseudo-log-likelihood functions: 

 where yi,obs is the observed part of (y1i, y2i).
M-step	� Update the parameter � by maximizing Q1(�1 ∣ �

(t)) and Q2(�2 ∣ �
(t)) with 

respect to �1 and �2.

 The E-step and M-step can be iteratively computed until convergence, leading to 
the pseudo maximum likelihood estimator �̂ .

Given �̂  , mass imputation can be done for both Y2 in sample B and Y1 in sample 
C. The imputation model for Y2 in sample B is f2(Y2 ∣ X, Y1;�̂2) . Also, the imputation 
model for Y1 in sample C is:

To generate imputed values from (6), one may use Markov Chain Monte Carlo 
methods or the parametric fractional imputation of Kim (2011).

We now consider the non-monotone missingness II structure in Table 1. Sample 
A and sample B are probability samples which were selected from the same finite 
population. In sample A, observe (X, Y1) and in sample B, observe (X, Y2) . The ques-
tion of interest is the associational relationship of Y1 and (X, Y2) . If (X, Y1, Y2) were 
jointly observed, one can fit a simple regression model of Y2 on (X, Y2). However, 
based on the available data, Y1 and Y2 were not available simultaneously.

This problem fits into the statistical matching framework (D’Orazio et al. 2006). 
In statistical matching, the goal is to create Y1 for each unit in sample B by find-
ing a “statistical twin” from the sample A. Typically, one assumes the conditional 
independence assumption that Y1 and Y2 are conditionally independent given X,   or 
equivalently:

Then, the “statistical twin” is solely determined by “how close” they are in terms 
of X’s. However, in a regression model of Y1 on (X, Y2) , (7) sets the regression coef-
ficient associated with Y2 to be zero a priori, which is contrary to the study question 
of interest.

For a joint modeling of (X, Y1, Y2) without assuming (7), identification is an 
important issue. Consider the following joint model of (Y1, Y2) given X : 

Q1(�1 ∣ �
(t)) =

∑
i∈S

diE
{
log f1(y1i ∣ xi;�1) ∣ xi, yi,obs;�

(t)
}

Q2(�2 ∣ �
(t)) =

∑
i∈S

diE
{
log f2(y2i ∣ xi, y1i;�2) ∣ xi, yi,obs;�

(t)
}
,

(6)f (Y1 ∣ X, Y2;�̂) =
f1(Y1 ∣ X;�̂1)f2(Y2 ∣ X, Y1;�̂2)

∫ f1(Y1 ∣ X;�̂1)f2(Y2 ∣ X, Y1;�̂2)dY1

.

(7)f (Y1 ∣ X, Y2) = f (Y1 ∣ X).

(8)Y1 =�0 + �1X + e1,



633

1 3

Japanese Journal of Statistics and Data Science (2020) 3:625–650	

where cov(e1, e2) = 0 . Because (X, Y1) is observed in sample A, (�0, �1) is identifi-
able. Because (X, Y2) is observed in sample B, f (Y2 ∣ X) is identifiable.

Coupling (8) and (9) leads to:

Thus, only �0 + �0�2 and �1 + �1�2 are identifiable, and (�0, �1, �2) is not.
In general, non-linear relationships can help achieve identification. For example, 

if the linear relationship of X–Y1 in (8) is:

Again, (�0, �1, �2) is identifiable from sample A. Coupling (9) and (10) leads to:

Thus, �0 + �0�2 , �1 + �1�2 and �2�2 are identifiable from sample B. As long as 
�2 ≠ 0 , (�0, �1, �2) is then identifiable. For an identifiable model, parameter estima-
tion can be implemented either using the EM algorithm or GLS.

Other assumptions can be invoked to achieve model identification. Kim et  al. 
(2016) used an instrumental variable assumption for model identification and 
develop fractional imputation methods for statistical matching. Park et  al. (2016) 
presented an application of the statistical matching technique using fractional impu-
tation in the context of handling mixed-mode surveys. Park et al. (2017) applied the 
method to combine two surveys with measurement errors.

3 � Combining probability and non‑probability samples

3.1 � Combining a probability sample with a non‑probability sample

Statistical analysis of non-probability survey samples faces many challenges as 
documented by Baker et al. (2013). Non-probability samples have unknown selec-
tion/inclusion mechanisms and are typically biased, and they do not represent the 
target population. A popular framework in dealing with the biased non-probability 
samples is to assume that auxiliary variable information on the same population is 
available from an existing probability survey sample. This framework was first used 
by Rivers (2007) and followed by a number of other authors including Vavreck and 
Rivers (2008), Lee and Valliant (2009), Valliant and Dever (2011), Elliott and Val-
liant (2017), and Chen et al. (2018), among others. Combining the up-to-date infor-
mation from a non-probability sample and auxiliary information from a probability 
sample can be viewed as data integration, which is an emerging area of research in 
survey sampling (Lohr and Raghunathan 2017).

Data integration for finite population inference is similar to the problem of com-
bining randomized experiments and non-randomized real-world evidence studies 

(9)Y2 =�0 + �1X + �2Y1 + e2,

Y2 = (�0 + �0�2) + (�1 + �1�2)X + �2e1 + e2.

(10)Y1 =�0 + �1X + �2X
2 + e1.

Y2 = (�0 + �0�2) + (�1 + �1�2)X + (�2�2)X
2 + �2e1 + e2.
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for causal inference of treatment effects (Keiding and Louis 2016). In randomized 
clinical trial, the treatment assignment mechanism is known and, therefore, treat-
ment effect evaluation based on randomized clinical trial is unconfounded. However, 
due to restrictive inclusion and exclusion criteria, the trial sample may be narrowly 
defined and can not represent the real-world patient population. On the other hand, 
by the real-world data collection mechanism, the real-world evidence study is often 
representative of the target population. Combining trial and real-world evidence 
studies can achieve more robust and efficient inference of treatment effect for a tar-
get patient population. Table 2 draws a parallel comparison of data sources between 
data integration in survey sampling and that in treatment effect evaluation.

Survey statisticians and biostatisticians have provided different methods for com-
bining information from multiple data sources. Lohr and Raghunathan (2017) and 
Rao (2020) provided comprehensive reviews of statistical methods for finite popu-
lation inference. In biostatistics, meta-analysis has been a long-standing method to 
synthesize evidences from multiple trial and observational data. Meta-analysis com-
bines aggregate information to accommodate heterogeneity in treatment effects esti-
mated from trial and observational data; see Verde and Ohmann (2015) for an over-
view of different modeling techniques in meta-analysis. Existing methods for data 
integration of a probability sample and a non-probability sample can be categorized 
into three types as follows. The first type is the so-called propensity score adjust-
ment (Rosenbaum and Rubin 1983). In this approach, the probability of a unit being 
selected into the non-probability sample, which is referred to as the propensity or 
sampling score, is modeled and estimated for all units in the non-probability sample. 
The subsequent adjustments, such as propensity score weighting or stratification, 
can then be used to adjust for selection biases; see, e.g., Lee and Valliant (2009), 
Elliott and Valliant (2017) and Chen et al. (2018). Stuart et  al. (2011, (2015) and 
Buchanan et al. (2018) used propensity score weighting to generalize results from 
randomized trials to a target population. O’Muircheartaigh and Hedges (2014) pro-
posed propensity score stratification for analyzing a non-randomized social experi-
ment. One notable disadvantage of the propensity score methods is that they rely on 
an explicit propensity score model and are biased and highly variable if the model 
is mis-specified (Kang and Schafer 2007). The second type uses calibration weight-
ing (Deville and Särndal 1992; Kott 2006). This technique calibrates auxiliary infor-
mation in the non-probability sample with that in the probability sample, so that 

Table 2   Data integration in survey sampling and biostatistics

a In survey sampling, some probability samples may not observe the study variable of interest; for treat-
ment effect evaluation, randomized experiments provide unbiased estimation of treatment effect due to 
treatment randomization

Survey sampling Treatment effect evaluation Representative of the 
finite population

Unbiased 
estima-
tiona

Probability sample Real-world evidence study ✓

Non-probability sample Randomized experiment ✓
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after calibration, the weighted distribution of the non-probability sample is similar 
to that of the target population. The third type is mass imputation, which imputes 
the missing values for all units in the probability sample. In the usual imputation 
for missing data analysis, the respondents in the sample constitute a training dataset 
for developing an imputation model. In the mass imputation, an independent non-
probability sample is used as a training dataset, and imputation is applied to all units 
in the probability sample; see, e.g., Breidt et al. (1996), Rivers (2007), Kim and Rao 
(2012), Chipperfield et al. (2012), Bethlehem (2016) and Yang and Kim (2018).

3.2 � Setup and assumptions

Non-probability samples become increasingly popular in survey statistics, but may 
suffer from selection bias that limits the generalizability of results to the target popu-
lation. We consider integrating a non-probability sample with a carefully designed 
probability sample which provides the representative covariate information of the 
target population.

Let X ∈ ℝ
p be a vector of auxiliary variables (including an intercept) that are 

available from two data sources, and let Y ∈ ℝ be the study variable of interest. We 
consider combining a probability sample with X, referred to as sample A, and a non-
probability sample with (X, Y), referred to as sample B, to estimate �y the population 
mean of Y. We focus on the case where the study variable Y is observed in sam-
ple B only, but the other auxiliary variables are commonly observed in both data. 
Although the big data source has a large sample size, the sampling mechanism is 
often unknown, and we cannot compute the first-order inclusion probability for Hor-
vitz–Thompson estimation. The naive estimators without adjusting for the sampling 
process are subject to selection biases, as illustrated in Table 3. On the other hand, 
although the probability sample with design weights represents the finite population, 
it does not observe the study variable. The complementary features of probability 
samples and non-probability samples raise the question of whether it is possible to 
develop data integration methods that leverage the advantages of both sources.

Because the sampling mechanism of a non-probability sample is unknown, the 
target population quantity is not identifiable in general. Unlike the previous case in 
Sect. 2, the sampling mechanism of sample B is unknown and, therefore, �y is not 
identifiable in general.

Table 3   Illustration of the 
total error from the simple 
mean estimator of Ȳ

N
 based 

on probability simple random 
sample and big non-probability 
sample

fA = nA∕N and fB = nB∕N are the sampling fractions of sample A 
and sample B, respectively; rB is the correlation between the out-
come Y and the inclusion indicator IB ; SY is the population variance 
of Y

Total error (MSE) = Variance + Bias2

Probability sample {(1 − fA)∕nA}S
2

Y
0

Non-probability 
sample (Big 
data)

≈ 0 r2
B
{(1 − fB)∕fB}S

2

Y
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Two datasets were considered from the 2005 Pew Research Centre (PRC) and the 
2005 Behavioral Risk Factor Surveillance System (BRFSS). The goal of the PRC 
study was to evaluate the relationship between individuals and community (Chen 
et al. 2018; Kim et al. 2018). The 2005 PRC data are non-probability sample data 
provided by eight different vendors, which consist of nB = 9301 subjects. Yang et al. 
(2019) focus on two study variables, a continuous Y1 (days had at least one drink 
last month) and a binary Y2 (an indicator of voted local elections). The 2005 BRFSS 
sample is a probability sample, which consists of nA = 441,456 subjects with survey 
weights. This dataset does not have measurements on the study variables of inter-
est; however, it contains a rich set of common covariates with the PRC dataset. The 
covariate distributions from the PRC sample and the BRFSS sample are consider-
ably different, e.g., age, education (high school or less), financial status (no money 
to see doctors, own house), retirement rate, and health (smoking). Therefore, the 
PRC dataset is not representative of the target population, and the naive analyses of 
the study variables are subject to selection biases.

Let f (Y ∣ X) be the conditional distribution of Y given X in the superpopulation 
model � that generates the finite population. We make the following assumption.

Assumption 1  (i) The sampling indicator IB of sample B and the study variable Y 
is independent given X; i.e., P(IB = 1 ∣ X, Y) = P(IB = 1 ∣ X) , referred to as the sam-
pling score �B(X) ; and (ii) 𝜋B(X) > 0 for all X.

Assumptions 1 (i) and (ii) constitute the strong ignorability condition (Rosen-
baum and Rubin 1983). This assumption holds if the set of covariates contains 
all predictors for the outcome that affect the possibility of being selected in sam-
ple B. This setup has previously been used by several authors; see, e.g., Rivers 
(2007) and Vavreck and Rivers (2008). Assumption 1 (i) states the ignorability 
of the selection mechanism to sample B conditional upon the covariates. Under 
Assumption 1 (i), E(Y ∣ X) = E(Y ∣ X, IB = 1) , denoted by m(X), can be estimated 
based on sample B. Assumption 1 (ii) implies that the support of in sample B is 
the same as that in the finite population. Assumption 1 (ii) does not hold if certain 
units would never be included in the non-probability sample. The plausibility of 
this assumption can be easily checked by comparing the marginal distributions of 
the auxiliary variables in sample B with those in sample A.

Under the sampling ignorability assumption, there are two main approaches: (1) 
the weighting approach by constructing weights for sample B to improve the repre-
sentativeness of sample B; (2) the imputation approach by creating mass imputa-
tion for sample A using the observations in sample B. There is considerable interest 
in bridging the findings from a randomized clinical trial to the target population. 
This problem has been termed as generalizability (Cole and Stuart 2010; Stuart et al. 
2011; Hernan and VanderWeele 2011; Tipton 2013; O’Muircheartaigh and Hedges 
2014; Stuart et al. 2015; Keiding and Louis 2016; Buchanan et al. 2018), external 
validity (Rothwell 2005), or transportability (Pearl and Bareinboim 2011; Rudolph 
and van der Laan 2017) in the statistics literature, and has connections to the covari-
ate shift problem in machine learning (Sugiyama and Kawanabe 2012).
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3.3 � Propensity score weighting

Under Assumption 1 (i) and (ii), we can build a model for �B(X) = P(IB = 1 ∣ X) 
and use it to adjust for the selection bias in sample B. In practice, the propensity 
score function �B(X) is unknown and needs to be estimated from the data. Let 
�B(X;�) be the posited models for �B(X) , where � is the unknown parameter. Sev-
eral authors have proposed different estimation strategies. For example, �̂ can be 
obtained by a weighted regression of IB,i on xi combining sample A and sample 
B ( IB,i = 0 for i ∈ A and IB,i = 1 for i ∈ B ), weighted by the design weights from 
sample A, which is valid if the size of sample B is relatively small (Valliant and 
Dever 2011). Chen et al. (2018) proposed estimating � by solving:

which is a sample version of the population estimating equation 
S(�) =

∑
i∈U

�
IB,i − �(xi;�)

�
xi = 0. Instead of using (11), one can also use:

which is closely related to the calibration weighting approach for nonresponse 
adjustment.

Given �̂ , the inverse probability of sampling weighting estimator of �y is:

Variance estimation of �̂IPW can be obtained by the standard M-estimation theory.
One of the notable disadvantages of the propensity score methods is that they 

rely on an explicit propensity score model and are biased if the model is mis-
specified (Kang and Schafer 2007). Moreover, if the estimated propensity score is 
close to zero, �̂IPW will be highly unstable.

3.4 � Calibration weighting

The second weighting strategy is calibration weighting or bench marking weight-
ing (Deville and Särndal 1992; Kott 2006). This technique can be used to cali-
brate auxiliary information in the non-probability sample with that in the prob-
ability sample, so that, after calibration, the non-probability sample is similar to 
the target population.

Instead of estimating the propensity score model and inverting the propensity 
score to correct for the selection bias of the non-probability sample, the calibra-
tion strategy estimates the weights directly. Toward this end, we assign a weight 
�B,i to each unit i in the sample B, so that:

(11)Ŝ1(�) =
∑
i∈B

xi −
∑
i∈A

dA,i�B(xi;�)xi = 0,

Ŝ2(�) =
∑
i∈B

1

�B(xi;�)
xi −

∑
i∈A

dA,ixi = 0,

(12)�̂IPW = �̂IPW(�̂) = N−1

N∑
i=1

IB,i

�B(xi;�̂)
yi.
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where 
∑

i∈A dA,ixi is a design-weighted estimate of the population total of X from 
the probability sample. Constraint (13) is referred to as the covariate balancing con-
straint (Imai and Ratkovic 2014), and weights QB = {�B,i ∶ i ∈ B} are the calibra-
tion weights. The balancing constraint calibrates the covariate distribution of the 
non-probability sample to the target population in terms of X. Instead of calibrat-
ing each X,   one can calibrate model-based calibration (McConville et  al. 2017; 
Chen et  al. 2018, 2019). In this approach, one can posit a parametric model for 
E(Y ∣ X) = m(X;�) and estimate the unknown parameter � based on sample B. The 
model-based calibration specifies the constraints for QB as:

We estimate QB by solving the following optimization problem:

subject to �B,i ≥ 0, for all i ∈ B ; 
∑

i∈B �B,i = N , and the balancing constraint (13) or 
(14).

The objective function in (15) is the negative entropy of the calibration weights; thus, 
minimizing this criteria ensures that the empirical distribution of calibration weights is 
not too far away from the uniform, such that it minimizes the variability due to hetero-
geneous weights. This optimization problem can be solved using convex optimization 
with Lagrange multiplier. Other objective functions, such as L(QB) =

∑
i∈B �

2
B,i

 , can 
also be considered. This optimization problem can be solved using convex optimization 
with Lagrange multiplier. By introducing Lagrange multiplier � , the objective function 
becomes:

Thus, by minimizing (16), the estimated weights are:

and �̂  solves the equation:

(13)
∑
i∈B

�B,ixi =
∑
i∈A

dA,ixi.

(14)
∑
i∈B

�B,im(xi;�̂) =
∑
i∈A

dA,im(xi;�̂).

(15)min
QB

{
L(QB) =

∑
i∈B

�B,i log�B,i

}
,

(16)L(�,QB) =
∑
i∈B

�B,i log�B,i − �T

{∑
i∈B

�B,ixi −
∑
i∈A

dA,ixi

}
.

�B,i = �B(xi;�̂) =
N exp

�
�̂Txi

�

∑
i∈B exp

�
�̂Txi

� ,

(17)U(�) =
∑
i∈B

exp
(
�Txi

){
xi −

1

N

∑
i∈A

dA,ixi

}
= 0,
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which is the dual problem to the optimization problem (15).
The calibration weighting estimator is:

Variance estimation of �̂cal can be obtained by the standard M-estimation theory 
by treating � as the nuisance parameter and (17) as the corresponding estimating 
equation.

The justification for �̂cal subject to constraint (13) relies on the linearity of the 
outcome model, i.e., m(X) = XT�∗ for some �∗ , or the linearity of the inverse prob-
ability of sampling weight, i.e., {�B(X)}−1 = XT�∗ for some �∗ (Fuller 2009; Theo-
rem 5.1). The linearity conditions are unlikely to hold for non-continuous variables. 
In these cases, �̂cal may be biased. The justification for �̂cal subject to constraint (14) 
relies on a correct specification of m(X;�) in the data integration problem.

Chan et  al. (2016) generalize this idea further to develop a general calibration 
weighting method that satisfies the covariate balancing property with increasing 
dimensions of the control variables m(x). Zhao (2019) developed a unified approach 
of covariate balancing PS method using tailored loss functions. The regularization 
techniques using penalty terms into the loss function can be naturally incorporated 
into the framework and machine learning methods, such as boosting, can be used. 
The covariate balancing condition, or calibration condition, in (13) can be relaxed. 
Zubizarreta (2015) relaxed the exact balancing constraints to some tolerance level. 
Wong et al. (2019) used the theory of reproducing Kernel Hilbert space to develop 
an uniform approximate balance for covariate functions.

3.5 � Mass imputation approach

The third type is mass imputation, where the imputed values are created for the 
whole elements in the probability sample. In the usual imputation for missing data 
analysis, the respondents in the sample provide a training dataset for developing an 
imputation model. In the mass imputation, an independent big data sample is used 
as a training dataset, and imputation is applied to all units in the probability sample. 
While the mass imputation idea for incorporating information from big data is very 
natural, the literature on mass imputation itself is very sparse.

In a parametric approach, let m(X;�) be the posited model for m(X), where 
� ∈ Rp is the unknown parameter. Under Assumption 1, �̂  can be obtained by fitting 
the model to sample B. We assume that �̂  is the unique solution to:

for some p-dimensional vector h(xi;�) . Thus, we use the observations in sample B to 
obtain �̂  and use it to construct ŷi = m(xi;�̂) for all i ∈ A.

Under some regularity conditions, the mass imputation estimator

(18)�̂cal =
1

N

N∑
i=1

�B,iIB,iyi.

Û(�) =
∑
i∈B

{
yi − m(xi;�)

}
h(xi;�) = 0
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satisfies: �̂I = �̂I(�0) + oP(n
−1∕2

B
) , where

where �0 is the true value of � and ṁ(x;𝛽) = 𝜕m(x;𝛽)∕𝜕𝛽.
Also:

and

where ei = yi − m(xi;�0) . The justification for �̂I relies on a correct specification of 
m(X;�) and the consistency of �̂  . If m(X;�) is mis-specified or �̂  is inconsistent, 
�̂I can be biased. For variance estimation, either linearization method or bootstrap 
method can be used. See Kim et al. (2018) for more details.

3.6 � Doubly robust estimation

To improve the robustness against model mis-specification, one can consider com-
bining the weighting and imputation approaches (Kim and Wang 2018). The doubly 
robust estimator employs both the propensity score and the outcome models, which is 
given by:

The estimator �̂dr is doubly robust in the sense that it is consistent if either the 
propensity score model or the outcome model is correctly specified, not neces-
sarily both. Moreover, it is locally efficient if both models are correctly specified 
(Bang and Robins 2005; Cao et  al. 2009). Let �̂HT = N−1

∑
i∈A dA,iyi be the Hor-

vitz–Thompson estimator that could be used if yi were observed in sample A. We 
express �̂dr − �̂HT = −

∑
i∈A dA,iêi +

∑
i∈B{�B(xi;�̂)}

−1êi , where êi = yi − ŷi . To 
show the double robustness of �̂dr , we consider two scenarios. In the first scenario, if 
�B(X;�) is correctly specified, then:

�̂I = �̂I(�̂) = N−1
∑
i∈A

dA,im(xi;�̂)

�𝜇I(𝛽) =N
−1

∑
i∈A

dA,im(xi;𝛽) + n−1
B

∑
i∈B

{
yi − m(xi;𝛽)

}
h(xi;𝛽)

Tc∗,

c∗ =

{
n−1
B

∑
i∈B

ṁ(xi;𝛽0)h
T(xi;𝛽0)

}−1{
N−1

N∑
i=1

ṁ(xi;𝛽0)

}
,

E{�̂I(�0) − �y} = 0,

var
{
�̂I(�0) − �y

}
= var

{
N−1

∑
i∈A

dA,im(xi;�0) − N−1
∑
i∈U

m(xi;�0)

}

+ E

[
n−2
B

∑
i∈B

E
(
e2
i
∣ xi

){
h(xi;�0)

Tc∗
}2

]
,

(19)�̂dr = �̂dr(�̂, �̂) = N−1

N∑
i=1

[
IB,i

�B(xi;�̂)
{yi − m(xi;�̂)} + IA,idA,im(xi;�̂)

]
.
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which is design-unbiased of zero. In the second scenario, if m(X;�) is correctly spec-
ified, then E(̂ei) ≅ 0 . In both cases, �̂dr − �̂HT is unbiased of zero and, therefore, �̂dr 
is unbiased of �y.

If either �B(XT�) or m(XT�) is correctly specified:

as n → ∞ , where V = limn→∞(V1 + V2) ∶

To estimate V1 , we can use the design-based variance estimator applied to m(XT
i
�̂) 

as:

To estimate V2, we further express V2 as:

Let �2(XT
i
�∗) = E

[{
Yi − m(XT

i
�∗)

}2
]
 , and let �̂2(Xi) be a consistent estimator of 

�2(XT
i
�∗) . We can then estimate V2 by:

By the law of large numbers, V̂2 is consistent for V2 regardless of whether one of 
�B,i(X

T
i
�) or �B,i(XT

i
�) is mis-specified, and therefore, it is doubly robust.

E
(
�̂dr − �̂HT ∣ FN

)
≅ −

∑
i∈A

dA,iêi +
∑
i∈U

êi,

n1∕2
{
�̂dr(�̂, �̂) − �

}
→ N(0,V),

V1 =E

�
n

N2

N�
i=1

N�
j=1

(�A,ij − �A,i�A,j)
m(xT

i
�∗)

�A,i

m(xT
j
�∗)

�A,j

�
,

V2 =
n

N2

N�
i=1

E

⎡⎢⎢⎣

�
IB,i

�B,i(x
T
i
�∗)

− 1

�2�
yi − m(xT

i
�∗)

�2
⎤⎥⎥⎦
.

(20)V̂1 =
n

N2

∑
i∈A

∑
j∈A

(�A,ij − �A,i�A,j)

�A,ij

m(XT
i
�̂)

�A,i

m(XT
j
�̂)

�A,j
.

(21)

V2 =
n

N2

N∑
i=1

E

[{
IB,i

�B,i(X
T
i
�∗)2

−
2IB,i

�B,i(X
T
i
�∗)

}{
Yi − m(XT

i
�∗)

}2
+
{
Yi − m(XT

i
�∗)

}2

]
.

(22)

V̂2 =
n

N2

N∑
i=1

[{
IB,i

�B(X
T
i
�̂)2

−
2IB,i

�B(X
T
i
�̂)

}{
Yi − m(XT

i
�̂)
}2

+ IA,idA,i�̂
2(Xi)

]
.
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4 � Combining probability and big data

4.1 � Big data sample

To meet the new challenges in the probability sampling, statistical offices face the 
increasing pressure to utilize convenient but often uncontrolled big data sources, 
such as satellite information (McRoberts et al. 2010), mobile sensor data (Palmer 
et  al. 2013), and web survey panels (Tourangeau et  al. 2013). Couper (2013), 
Citro (2014), Tam and Clarke (2015), and Pfeffermann et  al. (2015) articulated 
the promise of harnessing big data for official and survey statistics, but also raised 
many issues regarding big data sources. While such data sources provide timely 
data for a large number of variables and population elements, they are non-proba-
bility samples and often fail to represent the target population of interest because 
of inherent selection biases. Tam and Kim (2018) also covered some ethical chal-
lenges of big data for official statisticians and discuss some preliminary methods 
of correcting for selection bias in big data.

Combining information from several sources to improve estimates for popu-
lation parameters is an important practical problem in survey sampling. In the 
past decade, more and more auxiliary information became available, including 
large administrative record datasets and remote-sensing data derived from satel-
lite images. How to combine such information with survey data to provide better 
estimates for population parameters is a new challenge that survey statisticians 
face today. Tam and Clarke (2015) presented an overview of some initiatives of 
big data applications in official statistics of the Australian Bureau of Statistics. 
Such big data are becoming increasingly popular, and they come from a variety of 
sources such as remote-sensing data, administrative data such as tax data, so on.

Suppose that there are two data sources, one from a probability sample, 
referred to as sample A, and the other from a big data source, referred to as sam-
ple B. Table 4 illustrates the observed data structure.

Table 4   Data structure for data 
integration with big data

Sample A is a probability sample, Sample B is a big data sample, 
which may not be representative of the population, and d is the 
design weight

d X Y

Scenario 1
 Sample A ✓ ✓ ✓

 Sample B ✓

Scenario 2
 Sample A ✓ ✓

 Sample B ✓ ✓
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4.2 � Scenario 1: leverage auxiliary information in big data to improve efficiency

In Scenario 1, the probability sample contains Y observations. Therefore, �y is iden-
tifiable and can be estimated by the commonly-used estimator solely from sample A, 
denoted by �̂A . We can leverage the X information in the big data sample to improve 
the sample A estimator. We consider the case where additionally the membership to 
the big data can be determined throughout the probability sample. The key insight 
is that the subsample of units in sample A with the big data membership consti-
tutes a second-phase sample from the big data sample, which acts as a new popu-
lation. We calibrate the information in the second-phase sample to be the same as 
the new acting population. The calibration process in turn improves the accuracy 
of the mass imputation estimator without specifying any model assumptions. Let 
h = (IB, 1 − IB, IBX).

Following Yang and Ding (2018), we can consider a class of estimators satisfying:

in distribution, as nA → ∞ , where ĥA = N−1
∑

i∈A dA,ihi and ĥB = N−1
∑

i∈B hi . Heu-
ristically, if (23) holds exactly rather than asymptotically, by the multivariate normal 
theory, we have the following conditional distribution:

Let V̂yy,A, Γ̂ and V̂  be consistent estimators for Vyy,A, Γ , and V. We set n1∕2
A

(�̂A − �y) to 
equal its estimated conditional mean n1∕2

A
Γ̂TV̂−1(ĥA − ĥB) , leading to an estimating 

equation for �y:

Solving this equation for �y , we obtain the estimator:

Under certain regularity conditions, if (23) holds, then �̂  is consistent for �y , and:

in distribution, as nA → ∞ . Given a nonzero Γ , the asymptotic variance, 
Vyy,A − ΓTV−1Γ, is smaller than the asymptotic variance of �̂A , Vyy,A.

The asymptotic variance of �̂  can be estimated by:

Kim and Tam (2018) also explored similar ideas. They develop a calibration weight-
ing method to incorporate the big data auxiliary information and apply the method 
to the official statistics in Australian Bureau of Statistics. In this application, the big 

(23)n
1∕2

A

(
�̂A − �y

ĥA − ĥB

)
→ N

{
0,

(
Vyy,A ΓT

Γ V

)}
,

n
1∕2

A
(�̂A − �y)

||||n
1∕2

A
(ĥA − ĥB) ∼ N

{
n
1∕2

A
ΓTV−1(ĥA − ĥB),Vyy,A − ΓTV−1Γ

}
.

n
1∕2

A
(�̂A − �y) = n

1∕2

A
Γ̂TV̂−1(ĥA − ĥB).

(24)�̂ = �̂A − Γ̂TV̂−1(ĥA − ĥB)..

(25)n
1∕2

A
(�̂ − �y) → N(0,Vyy,A − ΓTV−1Γ),

(26)V̂ =
(
V̂yy,A − Γ̂TV̂−1Γ̂

)
∕nA.
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data is the Australian Agricultural Census with 85% response rate and the probabil-
ity sample is the Rural Environment and Agricultural Commodities Survey used for 
calibration. In this application, the measurement from Census data is the auxiliary 
variable used for calibration.

4.3 � Scenario 2: leverage probability sampling designs to correct for selection 
bias

In Scenario 2, we have a similar setup as in Sect. 3. Depending on the roles in statis-
tical inference, there are two types of big data: one with large sample sizes (large n) 
and the other with rich covariates (large p). We review methods for the two types of 
big data.

4.3.1 � Robust mass imputation estimation

In the first type, the non-probability sample can be large in sample size. How to lev-
erage the rich information in the big data to improve the finite population inference 
is an important research. We review robust mass imputation methods.

When the sample size of the big data is large, mass imputation is more desirable. 
In mass imputation, we can train a predictive model from the big data and impute 
the missing yi in sample A. Instead of a parametric approach, we can also consider 
non-parametric approaches. To find suitable imputed values, we consider nearest-
neighbor imputation; that is, find the closest matching unit from sample B based on 
the X values and use the corresponding Y value from this unit as the imputed value.

Using sample B (big data) as a training data, find the nearest neighbor of each 
unit i ∈ A using a distance measure d(xi, xj) . Let i(1) be the index of its nearest 
neighbor, which satisfies:

The nearest-neighbor imputation estimator of � is:

Yang and Kim (2018) showed that under some regularity conditions, �̂nni has the 
same asymptotic distribution as �̂HT = N−1

∑
i∈A dA,iyi . Therefore, the variance of 

�̂nni is the same as the variance of �̂HT. This implies that the standard point estimator 
can be applied to the imputed data{(xi, yi(1)) ∶ i ∈ A} as if the yi(1) s were observed 
values. Let �A,ij be the joint inclusion probability for units i and j. They showed that 
the direct variable estimator based on the imputed data:

is consistent for Vnni.

d(xi(1), xi) ≤ d(xj, xi),∀j ∈ B.

�̂nni = N−1
∑
i∈A

dA,iyi(1).

V̂nni =
nA

N2

∑
i∈A

∑
j∈A

(�A,ij − �A,i�A,j)

�A,ij

yi(1)

�A,i

yj(1)

�A,j
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Yang and Kim (2018) also considered two strategies for improving the nearest-
neighbor imputation estimator, one using K-nearest-neighbor imputation (Mack and 
Rosenblatt 1979) and the other using generalized additive models (Wood 2006). In 
K-nearest-neighbor imputation, instead of using one nearest neighbor, they identify 
multiple nearest neighbors in the big data sample and use the average response as the 
imputed value. This method is popular in the international forest inventory commu-
nity for combining ground-based observations with imagines from remote sensors 
(McRoberts et al. 2010). In the second strategy, they investigated modern techniques 
of prediction for mass imputation with flexible models. They used generalized addi-
tive models (Wood 2006) to learn the relationship of the outcome and covariates 
from the big data and create predictions for the probability samples. We note that 
this strategy can apply to a wider class of semi- and non-parametric estimators such 
as single index models, Lasso estimators (Belloni et al. 2015), and machine learning 
methods such as random forests (Breiman 2001).

4.3.2 � Variable selection in the presence of a large number of covariates

In the second type, when there are a large number of variables, there is a large litera-
ture on variable selection methods for prediction, but little work on variable selec-
tion for data integration that can successfully recognize the strengths and the limita-
tions of each data source and utilize all information captured for finite population 
inference.

In practice, subject matter experts recommend a rich set of potentially useful var-
iables but typically will not identify the set of variables to adjust for. In the presence 
of a large number of auxiliary variables, variable selection is important, because 
existing methods may become unstable or even infeasible, and irrelevant auxiliary 
variables can introduce a large variability in estimation. Gao and Carroll (2017) pro-
posed a pseudo-likelihood approach for combining multiple non-survey data with 
high dimensionality; this approach requires all likelihoods be correctly specified 
and therefore is sensitive to model mis-specification. Chen et al. (2018) proposed a 
model-based calibration approach using LASSO; this approach relies on a correctly 
specified outcome model.

Yang et  al. (2019) proposed a doubly robust variable selection and estimation 
strategy. In the first step, it selects a set of variables that are important predictors of 
either the sampling score or the outcome model using penalized estimating equa-
tions. In the second step, it re-estimates the nuisance parameter (�, �) based on the 
joint set of covariates selected from the first step and considers a doubly robust esti-
mator of � , �̂dr(�̂, �̂) in (19), where the estimating functions are:

Importantly, the two-step estimator allows model mis-specification of either the 
sampling score or the outcome model. In the existing high-dimensional causal 
inference literature, the doubly robust estimators have been shown to be robust to 

(27)J(�, �) =

�
J1(�, �)
J2(�, �)

�
=
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�
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selection errors using penalization (Farrell 2015) or approximation errors using 
machine learning (Chernozhukov et al. 2018). However, this double robustness fea-
ture requires both nuisance models to be correctly specified. Using (27) relaxes this 
requirement by allowing one of the nuisance models to be mis-specified. This also 
enables one to construct a simple and consistent variance estimator (20)+(22) allow-
ing for doubly robust inferences.

5 � Concluding remarks

Data integration is an emerging area of research with many potential research topics. 
We have reviewed statistical techniques and applications for data integration in sur-
vey sampling context. Probability sampling remains as the gold standard to obtain 
a representative sample, but the measurement of the study variable can be obtained 
from an independent non-probability sample or big data. In this case, assumptions 
about the sampling model or the outcome model are required. Most data integration 
methods are based on the unverifiable assumption that the sampling mechanism for 
the non-probability sample (or big data) is non-informative (corresponding to the 
missingness at random in the missing data literature).

If the sampling mechanism is informative, imputation techniques can be devel-
oped under the strong model assumptions for the sampling mechanism (e.g., Riddles 
et al. 2016; Morikawa and Kim 2018). Like the non-informative sampling case, the 
informative sampling assumption is unverifiable. In such settings, sensitivity analy-
sis is recommended to assess the robustness of the study conclusions to unverifi-
able assumptions. This recommendation echoes Recommendation 15 of the National 
Research Council (NRC) report entitled “The Prevention and Treatment of Missing 
Data in Clinical Trials” (National Research Council 2010). Chapter 5 of the NRC 
Report describes “global” sensitivity analysis procedures that rigorously evaluate 
the robustness of study findings to untestable assumptions about how missingness 
might be related to the unobserved outcome.

When the training dataset has a hierarchical structure, multi-level or hierarchi-
cal models can be used to develop mass imputation. This is closely related to unit-
level small area estimation in survey sampling (Rao and Molina 2015). The small 
area estimation is particularly promising when we apply data integration using big 
data. That is, when we use big data as a training sample for prediction, the multi-
level model can be used to reflect the possible correlation structure among observa-
tions. The parameter estimates for the multi-level model computed from the big data 
can be used for predicting unobserved study variables in the survey sample if the 
same multi-level model can be made. Further research in this direction, including 
the mean-squared error estimation for this small area estimation, will be a topic of 
future research.

Finally, the uncertainty due to errors in record linkage and statistical matching 
is also an important problem. The matched sample using record linkage techniques 
(Fellegi and Sunter 1969) is subject to linkage errors. Zhang and Chambers (2019) 
cover several research topics in the statistical analysis of combined or fused data.
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