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Abstract
In this article, computation for the purpose of spatial visualization is presented in 
the context of understanding the variability in global environmental processes. Here, 
we generate synthetic but realistic global data sets and input them into computa-
tional algorithms that have a visualization capability; we call this a simulation–vis-
ualization system. Visualization is key here, because the algorithms which we are 
evaluating must respect the spatial structure of the input. We modify, augment, and 
integrate four existing component technologies: statistical conditional simulation, 
Discrete Global Grids (DGGs), Array Set Addressing, and a visualization platform 
for displaying our results on a globe. The internal representation of the data to be 
visualized is built around the need for efficient storage and computation as well as 
the need to move up and downresolutions in a mutually consistent way. In effect, we 
have constructed a Geographic Information System that is based on a DGG and has 
desirable data storage, computation, and visualization capabilities. We provide an 
example of how our simulation–visualization system may be used, by evaluating a 
computational algorithm called Spatial Statistical Data Fusion that was developed 
for use on big, remote-sensing data sets.
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1  Introduction

As satellite technologies for Earth observation have advanced over the past decades, 
the volume and complexity of geophysical data collected by space-based instru-
ments has grown, and so have the challenges of interrogating these data and draw-
ing quantitative conclusions from them. Large-scale computational algorithms that 
transform data through many stages, from raw bits to meaningful information, are 
required to realize an order-of-magnitude increase in scientific return. However, 
those algorithms necessarily incorporate modeling assumptions and computational 
approximations that may lead to artifacts that may in turn compromise scientific 
conclusions. Visualization plays a key role in understanding and quantifying geo-
physical artifacts. The geolocational aspects of remote-sensing data make them nat-
ural to visualize and interactively explore through maps.

The usual mechanism for evaluating computational algorithms is a simulation 
experiment (SE): simulated data with known properties are used to generate syn-
thetic input to the algorithm of interest, and the algorithm’s outputs are compared 
to the corresponding “true” values obtained from the simulated data. Implement-
ing SEs for algorithms that are designed to run on massive satellite data sets can be 
challenging for at least two reasons. First, many geophysical processes of interest 
vary continuously in space, requiring very-high-resolution simulations to realisti-
cally mimic them. Moreover, realism also requires that scientific knowledge of the 
underlying geophysics be brought to bear by enforcing some form of consistency 
between the simulated data and how we expect the true system to behave. This goal 
can be achieved, for example, by ensuring that the simulated data be consistent with 
the output of a coarse-resolution, geophysical process model. This means that the 
simulations must be consistent across scales, not only with respect to mean struc-
ture but also with respect to spatial covariance. Second, observed data collected by 
satellite remote-sensing instruments represent incomplete aggregates over different 
spatial supports, with measurement errors superimposed. The SE must recreate this 
by averaging the synthetic field over an instrument’s ground footprints, or sampling 
from the field if the footprints are smaller than the resolution of the simulated field. 
These operations must be performed in a way that recreates the spatial sampling and 
error characteristics of real satellite instruments.

Both these problems require that the simulated field exhibits reasonable spatial 
coherence and variability. One way to achieve this is through a fine-resolution 
spatial statistical model that respects the output of a coarse-resolution physical 
(deterministic) model. By this, we mean that the parameters of the statistical 
model are set in such a way that when the simulated field is aggregated up to the 
coarse resolution of the physical model, it is guaranteed to reproduce the output 
of the physical model. We call this constrained-parameter-fitting procedure cali-
bration, and we use conditional simulation (e.g., Cressie 1993, Ch. 3) to simu-
late from the calibrated model. Here, the computational algorithm which we use 
to illustrate our approach is Spatial Statistical Data Fusion (SSDF; Nguyen et al. 
2012), which ingests two or more massive, heterogeneous, remote-sensing data 
sets and produces an optimal estimates of the underlying field. Note that this is 
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different from the following validation exercise, where the computational algo-
rithm’s spatial output is compared to actual observations that are sparsely distrib-
uted in space at the resolution of the output. Crowell et al. (2019) have produced 
an attractive visualization tool for global flux inversion of carbon dioxide, for this 
type of problem.

The visualization challenge is to display the massive, fine-resolution conditional 
simulation and the equally massive output of SSDF, so that they can be compared. 
Both data sets are global and are expected to reproduce large-scale and small-scale 
spatial structures. The visualization system must be able to render these features 
without geometric distortion, and it must be capable of zooming in and out, so that 
features and possible artifacts can be explored at a variety of scales.

A number of systems and software tools for multi-resolution geographic visu-
alization already exist. Google Earth displays and allows for pyramid-based multi-
resolution zoom. However, it uses a cylindrical projection that causes distortions in 
both appearance and, crucially for us, in its representation of spatial relationships. 
The cylindrical projection creates a non-uniform tiling of Earth’s surface, with tiles 
becoming smaller near the poles. This distorts the spatial–statistical properties of 
fields whose units are “per unit area.” Ladstdter et al. (2010) has developed a system 
for exploring large climate data sets using interactive visualization and simple statis-
tical tools. This system uses a cylindrical projection and does not perform computa-
tions on the sphere. Other tools designed for global data sets (e.g., The Global Cli-
mate Change Viewer Alder et al. 2013; Climate Wikience Rodriges Zalipynis et al. 
2011) typically display data at resolutions that are too coarse for our purposes and 
use latitude–longitude grids whose tiles are again of unequal area. While they often 
possess simple computational tools, they do not typically include downscaling to the 
finer resolutions, where our interest lies.

The HEALPix (Hierarchical Equal Area isoLatitude Pixelization) (Górski et al. 
2007) system represents data at multiple resolutions, with storage and computation 
on the sphere. However, it does not provide a visualization capability by itself, and it 
does not use hexagonal tessellations of the sphere, which are ideal for spatial statisti-
cal inference (Olea 1984). This article describes our approach to visualizing global 
data on multi-resolution grids.

Our simulation–visualization system is in effect a Geographic Information Sys-
tem (GIS) that combines four key technologies: (1) a multi-resolution, statisti-
cal process model, calibrated to the output from a coarse-resolution deterministic 
model; (2) the Discrete Global Grids (DGG) software package for tessellating the 
globe with a hierarchy of nested hexagonal grids to provide a system of multi-reso-
lution supports for prediction; (3) an enhanced indexing system for cells of spherical 
hexagonal grids and for mapping the cells onto a flat plane, so that the spatial–sta-
tistical process model can be used without geometric distortion; and (4) a visuali-
zation platform for multi-resolution, interactive visualization of the simulated field 
and the computational algorithm being evaluated. In Sect. 2, we describe these four 
technologies and how we adapted and integrated them for our purposes. Section 3 is 
a case study showing how we used our system to visualize (a) simulated fine-reso-
lution fields produced by conditional simulation, (b) synthetic instrument observa-
tions constructed from the simulated field, and c) the output from SSDF. Finally, in 



110	 Japanese Journal of Statistics and Data Science (2020) 3:107–128

1 3

Sect. 4, we offer some conclusions about the efficacy of our system and a discussion 
of future work.

2 � Algorithms and methods

We have combined four component technologies to create a simulation–visualization 
system for massive geophysical data sets. In this section, we describe these compo-
nents and how we have adapted them for our purposes. In Sect. 2.1, we briefly intro-
duce conditional simulation. In our context, it uses a dimension-reducing, multi-res-
olution spatial statistical model that enables optimal spatial prediction at a variety of 
spatial resolutions. Those predictions are identified with the hexagonal cells of the 
DGG, which have certain desirable properties (e.g., equal area) and are described in 
Sect. 2.2. To exploit DGG’s downscaling and image-processing features, two things 
are required: a method for flattening spherical grids onto two-dimensional planes, 
and an efficient indexing system for the grid cells. In Sect. 2.3, we describe the com-
putational algorithms used to satisfy these two requirements. Regarding the visu-
alization platform, our choice was Google Earth, which is a ubiquitous and intui-
tive interactive visualization environment for multi-scale georeferenced data sets. In 
Sect. 2.4.2, we describe how we leverage this platform for the exploration of spatial 
predictions at multiple scales.

2.1 � Conditional simulation

Atmospheric processes are defined at every location on the sphere, which is our 
mathematical abstraction of Earth’s surface. In practice, the surface of the sphere 
is discretized into a fine-resolution regular grid; we call a generic grid cell a Basic 
Areal Unit or BAU. Here, we let the BAUs be the hexagons of the DGG at the fin-
est resolution of interest (see Sect. 2.2) and identify each BAU by the latitude and 
longitude of its center. Let s denote the two-dimensional latitude–longitude center of 
a BAU. Then a generic spatial–statistical model for the geophysical variable of inter-
est, Y, at s is:

where s ranges over the sphere, �(s) is the large-scale trend, �(s) is smooth small-
scale variation, and �(s) represents the remaining micro-scale variation. The compo-
nents on the right-hand side of (1) are assumed to be statistically independent.

Suppose that the total number of BAUs over Earth’s surface is N; then, we can 
form N-dimensional vectors for each of the terms in Eq. (1) by simply stacking the 
terms corresponding to the N locations into column vectors. Thus, we can write the 
entire generic model (1) compactly as:

Cressie and Johannesson (2006, 2008) developed a flexible, nonstationary spa-
tial–statistical model they called the Spatial Random Effects model (SRE; see also 

(1)Y(s) = �(s) + �(s) + �(s),

(2)� = � + � + �.
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Shi and Cressie 2007), and we use that model here for � and � . Specifically, we 
assume that � describes the mean of � and that � and � are independent, zero-mean, 
multivariate Gaussian distributions, where � = �� , � is a low-dimensional vector of 
random effects, � is a known matrix of basis functions, and var(�) is diagonal.

To simulate the entire field � , we use y values defined on a coarse-scale grid 
that represent our scientific understanding of the geophysical processes of inter-
est. These might be output from a finite-element approximation to a physical 
model. For instance, in Sect. 3, we use the output of the Parameterized Chem-
istry and Transport Model (PCTM) for CO2 concentrations at the resolution of 
1 ◦ × 1.25◦ as our coarse-scale y-values; these “inform” the simulation on BAUs 
defined by the finer-resolution DGG resolution-8 hexagons (30 km in diameter). 
They also are used to estimate the parameters in � , var(�) , and var(�).

Let the number of coarse-scale grid cells be M, and let �̃ be the associated 
M-dimensional vector of y-values. We consider the coarse-scale process to be an 
integrated version of the underlying geophysical processes, namely:

where � is the M × N incidence matrix that describes the relationship between the 
BAUs and the coarse-scale grid. The matrix � is determined by the assignment of 
each BAU to a unique coarse-scale grid cell.

Models for � , � , and � result in models for �̃ ≡ �� , �̃ ≡ �� , and �̃ ≡ �� . 
Consequently, we can “calibrate” choices for � , � , and � based on the empirical 
mean and empirical covariance of �.

Naturally, we would like the simulated values at BAUs to be “consistent” with 
the physical-model output. At the very least, we require that, when the simulated 
field from the BAU scale is aggregated up to the coarse scale of the geophysical 
model, the simulated field reproduces the model output. To achieve this, instead 
of simulating � from its joint distribution obtained from (2), we simulate from 
the conditional distribution of � , conditional on the physical-model output. That 
is, we generate an N-dimensional vector � from the conditional distribution � 
given �� = �̃ . In obvious notation:

where � ≡ var(�) , and note that the parameters in (3) are estimated form the data 
on the coarse-scale grid. This allows us to simulate finer-resolution y values consist-
ent with the coarse-resolution output. Note that the conditional simulation defined 
by (3) requires computation of (����)−1 , the inverse of an M ×M matrix. We take 
advantage of the variance–covariance structure resulting from the Spatial Random 
Effects model and use the Sherman–Morrision–Woodbury formula (e.g., Cressie 
and Johannesson 2006, 2008) to obtain the inverted matrix, (����)−1 with computa-
tional complexity of only O(M).

�̃ = ��,

(3)
�|�� = �̃

∼ Gau(� + ��
�
(
���

�
)−1

(�̃ − ��),� − ��
�
(
���

�
)−1

��),
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2.2 � Discrete global grids

Discrete Global Grids (DGGs; Sahr et al. 2003) provide an approach to uniformly 
tiling the sphere with equal-area hexagonal cells at multiple resolutions. Regular 
polygonal cells are defined on the faces of a regular polyhedron, and these cells are 
then projected to the sphere using an appropriately designed inverse equal-area pro-
jection. Since a base polyhedron has the same topology as the sphere, the topologi-
cal singularities associated with whole-Earth cylindrical projections are avoided.

The ISEA4H (Icosahedral Snyder Equal Area aperture 4 Hexagonal) DGG was 
chosen for this study (Sahr et al. 2003). This DGG is constructed by tiling an icosa-
hedron with cells that are primarily regular hexagons. The icosahedral quadrants are 
shown from four views around the globe in Fig. 1.

Fig. 1   The ISEA Icosahedron wrapped onto the globe. In this figure, quadrants are featured; a quadrant is 
a diamond made up of two triangular faces
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Hexagonal grid cells have numerous advantages over the traditional square 
grid cells. Hexagons are the most compact regular polygons that tile the plane, 
and hexagonal cells exhibit unambiguous uniform adjacency. Rasters of hexago-
nal pixels are 13.4% more efficient at sampling circularly band-limited signals 
(Petersen and Middleton 1962). For kriging (e.g., Cressie 1993), hexagons have 
lowest average standard error, lowest maximum standard error, and maximum 
screen effect (Olea 1984). The article (Sahr 2011) provides a survey of additional 
advantages of hexagonal grids. It should be noted that it is impossible to tile a 
polyhedron completely with hexagons; in the case of the icosahedron, the 12 cells 
centered on the vertices of the icosahedron are pentagons with exactly 5/6 the 
area of the hexagonal cells.

In the ISEA4H DGG, multiple grid resolutions are constructed by introducing, 
at each resolution, cells that are 1/4 the size of the cells at the next coarsest reso-
lution. The icosahedral version of the Snyder equal area polyhedral projection 
(Snyder 1992) is used to inversely project the cells from the icosahedral faces to 
the sphere, preserving equal area at the cost of distorting the shapes of the hexag-
onal cells. The DGG software provides us with grids at increasingly fine levels of 
resolution, ranging from 12 7674-km cells at the root of this hierarchy; to 40,962 
120-km cells at resolution 6; to 655,362 30-km cells at resolution 8 (the resolu-
tion of our BAUs); and to more than 671 million 1-km cells at resolution 13. For 
example, resolutions 3, 4, and 5 are shown in Fig. 2.

There are two primary ways in which cells on a DGG are indexed. Cells are 
either given a unique ID, or they are referred to by their icosahedral quadrant (the 
diamond made up of two triangular faces), numbered 1–10, and a two-dimen-
sional coordinate on that quadrant, q2di (see Fig. 4; quadrants 0 and 11 contain 
the north and south icosahedral poles, respectively). Both the unique ID and the 
q2di indexing methods allow any cell on the globe to be referenced, but neither 
method gives guaranteed information about a cell’s neighbors nor points to an 
elegant way to store the data in memory while maintaining locality of reference. 
In the next section, we shall describe a method for storing and indexing the grid 
that maintains these properties.

Fig. 2   The ISEA4H DGG across multiple resolutions. Notice that the 12 blue cells at the intersections of 
the icosahedral edges are pentagonal and at the same locations across resolutions
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2.3 � Efficient storage and multi‑resolution image processing on global grids

The DGG (Discrete Global Grid) provides a multi-resolution global grid that cov-
ers a sphere with equal-area hexagons, modulo 12 pentagons. However, indexing 
these grid cells in a way that allows efficient storage, computation, and locality of 
reference is not simple. In this section, we consider the unfolding of the icosahe-
dron, flattening the grid onto the plane, indexing and storing the grid in computer 
memory, padding the planar representation of the grid to allow for efficient com-
putation, and, finally, pyramiding and multi-resolution issues.

2.3.1 � Unfolding and flattening

After unfolding the icosahedron shown in Fig. 1, the next step is to flatten the 
global grid onto a two-dimensional plane that can be easily manipulated and 
stored; see Fig. 3 and Carr et al. (1997). A key goal in flattening is to achieve 
an arrangement of grid cells in computer memory that maintains the locality of 
reference. After removing the topographic content, Fig. 4 shows the underlying 

Fig. 3   A flattened ISEA4H icosahedron, with a coarse-scaled global topographic map superimposed

Fig. 4   The flattened icosahedron as it maps onto hexagonal graph paper. The intersection points of the 
icosahedral quadrants are shown inside the blue hexagons next to the numbered circles (colour figure 
online)
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hexagons and how the icosahedron is projected onto a sheet of hexagonal graph 
paper.

It is then necessary to choose an indexing scheme that allows efficient stor-
age and addressing in the flattened grid as well as a method for dealing with the 
undefined regions, or gores, shown as large gray triangles in Fig. 3.

2.3.2 � Indexing

Array Set Addressing (ASA; Rummelt and Wilson 2011) provides a simple 
coordinate system with an efficient storage template for planar hexagonal grids. 
ASA hexagonal grids are divided into two arrays, one for the even rows and one 
for the odd rows (see Fig. 5).

The ASA coordinate for any hexagonal cell is indexed by the triple (a, r, c), 
where a ∈ {0, 1} specifies which of the two arrays, and the two elements in (r, c) 
specify the row and column number, respectively. Critically, using ASA index-
ing in our system is what allows the quick computation of neighbors that would 
otherwise be impossible in a standard DGG (see Fig. 6).

The ASA coordinate system also allows fast computation of distances, vec-
tors, and routing on a hexagonal grid. Convolution can be performed using opti-
mized matrix operations on the arrays in memory, allowing fast downsampling, 
filtering, sampling, and other image-processing operations.

ASA Indexing on the Hexagonal Plane

(0,0,0) (0,0,1) (0,0,3)(0,0,2)

(0,1,0) (0,1,1) (0,1,3)(0,1,2)

(1,0,0) (1,0,1) (1,0,3)(1,0,2)

(1,1,0) (1,1,1) (1,1,3)(1,1,2)

Even Row Matrix

Odd Row Matrix

Array Based Storage for Computation

(0,0,0) (0,0,1) (0,0,3)(0,0,2)

(1,0,0) (1,0,1) (1,0,3)(1,0,2)

(0,1,0) (0,1,1) (0,1,3)(0,1,2)

(1,1,0) (1,1,1) (1,1,3)(1,1,2)

Even Row
a = 0, r =0

Odd Row
a = 1, r = 0

Even Row
a = 0, r = 1

Odd Row
a = 1, r = 1

c = 0 c = 1 c = 2 c = 3

Fig. 5   Hexagonal grid separated into two arrays and addressed using Array Set Addressing (ASA)

Fig. 6   Formulas for Array Set 
Addressing (ASA) neighbors

ASA Indexed Neighbor Computation

(1-a,
r-(1-a),
c-(1-a))

(1-a,
r-(1-a),
c+a))

(a,r,c-1) (a,r,c) (a,r,c+1)

(1-a,
r+a),

c-(1-a))

(1-a,
r+a),
c+a))
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2.3.3 � Padding and NaN poisoning

The flattened DGG does not completely fill a plane with hexagonal cells. There are 
gores, or empty locations, in the planar representation of the globe, as well as pad-
ding at the edges of the planar image (see Fig. 3). To compute efficiently on this 
plane, with the topology of the sphere, we pad the gores and edges with the values 
that would be neighbors to those cells on the folded icosahedron. Unfortunately, it 
is impossible to pad the entire gore in a consistent way as the mapping breaks down 
across the centerline of the gore at each pentagonal cell. To detect and deal with 
computations that involve undefined cells, we pad the centerline of each gore with 
“NaN” (or Not a Number). The result of this strategy assures that, when computing 
on the flattened plane, the NaN result will “poison” any computations that include 
the centerline of a gore. To understand how padding relates to computation on the 

Fig. 7   A demonstration showing the application of a matched filter within a region of valid data, across a 
padded region, and into “NaN-poisoned” cells
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sphere, we show an example of a spatially compact filter (see Fig. 7a) that might be 
applied to the global data set.

If this filter is applied in the valid region of an unfolded DGG (see Fig. 7b), it is 
easy to find cells that are contained in the filter. As the filter approaches the gore, its 
neighbors pass to the other side in a way that requires a special-case computation 
(see Fig. 7c). However, with padding, the filter can be processed without a special 
case (see Fig. 7d). As the filter moves closer to the edge of the gore, it encounters 
a NaN-poisoned cell (Fig. 7e) and produces a NaN result at the center of the filter. 
In general, there are fewer NaN results with padding than without padding. More 
details on NaN poisoning and the padding of a representative gore are shown in 
Fig. 8.

In Fig. 9, we show the sequence of unfolding, flattening, and padding a globally 
gridded data set of CO2 in ppm. The DGG is first mapped onto the plane by unfold-
ing the ISEA icosahedron.

Then, cells in the triangular gores are filled in by computing their positions in 
the folded icosahedron. The red lines show NaN-poisoned cells. Any computation 
that encounters a NaN-poisoned cell returns a value of NaN and can be computed 
differently and more slowly by performing convolution a temporary hexagonal array 
centered on the filter rather than using FFT on the larger array.

This allows us to compute quickly with locality of reference on the vast 
majority of the sphere via the efficient storage and indexing method described 

ED
E F FI JHG
J K GM KLD

I M L HP NON

R R
P OQQ

BA AC
B
C

Fig. 8   The blue cell and the three red cells along the centerline of the gore are NaN-poisoned. The gray 
cells in the gore are filled with the values of the valid green cells that they overlap with after folding 
according to the lettered scheme. Notice how A, B, and C map across to the other side of the fold (colour 
figure online)

Fig. 9   An example of unfolding, flattening, and padding a DGG
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above. The 12 regions on the sphere where special-case processing is required 
can often be ignored and computed only when needed. Hence, unfolding, flatten-
ing, ASA indexing, and NaN poisoning provides a way to move data located on 
a DGG into arrays in memory that can be operated on efficiently using standard 
image-processing techniques, with only small modifications.

2.3.4 � Multi‑resolution DGGs, pyramids, and downsampling

As mentioned above, DGGs are inherently multi-resolutional with a defined 
relationship between levels. In the case of the ISEA4H grid that we are using, 
each cell at a given resolution maps to four cells at the next-finer resolution (see 
Fig. 2). Due to the nature of hexagonal tiling, cells at the next-finer resolution 
are not fully nested. Each cell covers one finer cell and half of that cell’s six 
neighbors, as shown in Fig. 10.

In order to build a multi-resolutional pyramid, we begin with the data in reso-
lution n and apply the downsampling kernel shown in Fig. 11.

This kernel is applied on the global grid in the ASA addressing space 
(unfolded, flattened, padded, and NaN-poisoned) using fast FFT-based convolu-
tion. Once processed, the resulting ASA array is decimated to leave only val-
ues in cells at resolution-(n − 1) . Next, the resolution (n − 1) array is processed 
to recompute any NaN-poisoned values near the 12 pentagons. This process is 
repeated until the desired resolution of the data is reached.

The hexagonal structure of the DGG for tessellating the surface of the sphere 
has many attractive properties, as we have presented in this chapter. While the 
lack of complete nesting described above is one that is less than desirable, we 
deal with it through proportional disaggregation (Fig. 11), which in survey-sam-
pling terminology, it is referred to as “raking.” It is an algorithmic approach to 
a change-of-support problem that has a (Bayesian) statistical justification; see 
Wikle and Berliner (2005).

Fig. 10   Relationship between 
levels in a multi-resolution DGG

Resolution n+1 Resolution n Resolution n-1

Fig. 11   Downsampling kernel 
that defines data at the next 
coarsest resolution

1/8 1/8

1/8 1/4 1/8

1/8 1/8



119

1 3

Japanese Journal of Statistics and Data Science (2020) 3:107–128	

2.4 � Integrating component technologies

Our end-to-end simulation–visualization system is implemented with a python 
toolkit called DDGrid.py. This toolkit wraps the DGGRID software (Sahr 2011) and 
implements the data structures and algorithms required to store, manipulate, and vis-
ualize simulated fields. This allows us to extract (synthetic) instrument observations, 
and later to visualize the output of the computational algorithm being evaluated. 
DDGrid.py leverages the existing optimized image-processing tools from Numpy 
and SciPy (Peterson 2007) for building multi-resolutional pyramids. It is also used 
for computing simulated observations by averaging the BAU-level hexagons that 
coincide with the ground footprints of remote-sensing instruments. Figure 12 is a 
data-flow diagram showing the main components of this system.

2.4.1 � Object‑oriented Python and C Toolkit

The DGGrid.py toolkit follows the principle of object-oriented design. The 
DGG is instantiated in objects that represent the entire grid as well as individ-
ual hexagons. This object-oriented structure allows us to support many features, 
like plug-in models for instrument footprints, different data types, and different 
visualization styles and evaluation functions. The toolkit integrates the global 
grid structure produced by DGGRID with the unfolded, flattened, padded, NaN-
poisoned, and ASA addressable representations. The objects in DGGrid.py map 
to the topology and cells of the DGG, and each object is capable of produc-
ing KML (Keyhole Markup Language) to visualize itself. This allows us to sub-
set the grid into any grouping that we like. We can also use the boundaries of 

Coarse-resolution 
Physical Model 

Output

Visualization in 
Google Earth

DGGrid.py Toolkit DGGRID 
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Fig. 12   The simulation–visualization system diagram. The Evaluation algorithm calculates and displays 
a fidelity metric for each hexagonal cell at the resolution of the visualization
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any grid cell to create finer-resolution cells that make up the original grid cell. 
Together, these features allow the production of easy-to-visualize, multi-resolu-
tional grids.

In addition to the object-oriented representation of the DGG, the toolkit 
implements utilities for extracting instrument footprints for simulation experi-
ments. Our application requires aggregating hexagonal cells (BAUs) over 
regions commensurate with the ground footprint of a remote-sensing instrument 
(see the discussion of the OCO-2 and AIRS footprints in Sect. 3). For our pro-
totype system, we have implemented two types of footprint extraction: nearest 
DGG cell and average of cells within a given radius. For each footprint loca-
tion and radius, we use ASA to compute neighborhoods of DGG cells associated 
with footprints and to extract corresponding averages. In the case of footprints 
smaller than the DGG cell, we extract the value of the nearest-neighbor DGG 
cell. The resulting synthetic instrument observations are stored and made avail-
able for algorithm testing. Footprint plug-ins will allow us to specify satellite-
footprint shapes, response curves, and measurement-error behavior to simulate 
how the actual instruments measure Earth and its atmosphere.

The DGGrid.py toolkit is designed to support the automated execution of 
simulation experiments. A single entry point allows the sets of parameters to be 
defined and systematically processed. Hence, testing and visualization can be 
carried out for different parameters, specified either for the conditional simula-
tion or for the data-processing of observations.

2.4.2 � Google Earth

Visualizing global data that have been computed on the sphere requires a globe 
upon which the rendering takes place. Although there are other “digital globe” 
displays, Google Earth offers a virtual-globe platform that is ubiquitous, acces-
sible, and free. It also supports the visualization of global data as the user spins 
the globe and zooms in and out.

We use KML, which is the file format used to create Google Earth visualiza-
tions, to represent the hexagonal cells of a set of DGGs directly, as a list of coor-
dinates that define the boundaries of the hexagonal cells. We then shade those 
cells’ interiors using a color palette to display the magnitudes of data associated 
with them. Representing each grid cell as a polygon in KML has the advantage 
of accurately displaying grid-cell boundaries at any scale, but it does not allow 
for the use of built-in multi-resolution pyramids for quick computation, display, 
and memory management. We deal with this by rendering small regions at finer 
resolutions (smaller polygons) and global data at coarser resolutions (larger pol-
ygons). The multi-resolutional nature of DGG allows us to easily group finer 
polygons and average them to create coarser polygons. We are also investigat-
ing how to render image pyramids for browsing and then how to transition to 
polygons when zooming in. Ideally, we would like to use pyramided arrays of 
hexagons, but this has been left for future research.
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2.4.3 � Integrating results into a GIS

Dealing with hexagonal-gridded data presents a problem of how to store data on 
hexagonal grids and how to move data in other formats into the hexagonally gridded 
environment. Typically, the original co-ordinate system on the surface of the sphere 
is based on latitude (from − 90◦ to + 90◦ ) and longitude (from − 180◦ to + 180◦ ). We 
have discussed in this chapter the computational procedure (Array Set Addressing, 
or ASA) we use for finding the cell, in the hexagonal DGG at any given resolution, 
that contains a given latitude–longitude location on the sphere. Most importantly, 
ASA allows the fast specification of neighboring cells, as well. The resulting ASA 
array in memory can be stored in a NetCDF container as two standard rectangular 
arrays, an even row image and an odd row image, along with the additional meta-
data needed to reconstruct the DGG in memory. Our hexagonally gridded output is 
geographic, but current GISs are not built to handle it efficiently. An open area of 
Geographic Information Science is to remedy this, and we believe that our article 
represents a beginning.

In the next section, we describe how we can use our approach to assess the per-
formance of the Spatial Statistical Data Fusion (SSDF) algorithm. We shall eventu-
ally incorporate the ability to compute and display quantitative performance metrics 
from inside DDGrid.py, but, here, we focus on what can be learned by visually com-
paring the synthetic (i.e., simulated) input and the SSDF-algorithm output.

3 � Evaluating SSDF global estimates of CO
2

This section describes the specific implementation of our simulation–visualization 
system for evaluating the SSDF algorithm. SSDF produces optimal estimates of 
geophysical fields from two or more massive, heterogeneous, remote-sensing data 
sets. The methodology is similar to kriging and allows for input observations with 
different sampling characteristics and spatial supports. SSDF models, and subse-
quently leverages, spatial correlation in the data to produce optimal (minimum mean 
squared prediction error, unbiased) estimates of the underlying true fields; impor-
tantly, it also produces uncertainty measures (root-mean-squared prediction errors) 
of these estimates.

Here, we study the performance of the SSDF algorithm as it will be applied to 
data from two NASA instruments that measure carbon dioxide ( CO2 ) in the atmos-
phere: the Atmospheric Infrared Sounder (AIRS) and the Orbiting Carbon Obser-
vatory-2 (OCO-2). The AIRS instrument has been in orbit since mid-2002, and it 
observes mid-tropospheric CO2 concentrations on circular footprints that are 90 km 
in diameter and are contiguous (Aumann et al. 2003). The OCO-2 instrument was 
launched in July 2014, and it observes total column CO2 concentrations on contig-
uous trapezoidal footprints roughly 2 km in diameter (Eldering et  al. 2012). Both 
instruments fly on satellites that are in polar orbit, observing the swaths of Earth 
along their respective tracks from pole to pole. The AIRS field of view across-track 
is about 1500 km, so its swaths are wide and the entire world is seen once every 
3  days. The OCO-2 field of view across-track is only about 10  km, so its swaths 
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are very narrow; the OCO-2 instrument never observes the whole world due to its 
narrow swath, but it repeats the same 233 globally distributed orbital paths every 
16  days. Both instruments’ data are subject to high degrees of “missingness”, 
because neither can observe CO2 in the presence of clouds.

To evaluate the performance of SSDF, we performed a simulation experiment 
using DDGrid.py. First, we generated a synthetic CO2 field at fine spatial resolution 
using conditional-simulation technology (Sect. 2.1). The simulation was performed 
at DGG resolution-8 in which the BAU hexagons are 30 km in diameter.

The conditional simulation is calibrated to a coarser-simulated atmospheric CO2 
field, using the output of PCTM (Kawa et al. 2004) driven by analyzed meteorologi-
cal fields from NASA’s Goddard Earth Observation System, version 4 (GEOS-4). 
In that model, the prescribed net surface fluxes of CO2 were taken from the Carn-
egie Ames Stanford Approach (CASA; Randerson et al. 1997) model for biospheric 
fluxes, from Takahashi et  al. (2002) for the monthly mean climatology for air-sea 
CO2 exchange, from Erickson et  al. (2008) for anthropogenic CO2 emissions, and 

Fig. 13   Coarse-resolution 
PCTM output and finer-reso-
lution conditionally simulated 
CO2 values (in ppm)
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from the Global Fire Emission Database version 2 (GFED2; van der Werf et  al. 
2006) for wildfire and biomass-burning emissions. This model is herein referred to 
as PCTM for simplicity. The model has a horizontal resolution of 1 ◦ × 1.25◦ with 25 
vertical levels in the atmosphere. In the analysis presented here, we use the simu-
lated fields from level 8 (approximately 5-km elevation, meant to represent the mid-
troposphere) at 1800 GMT on April 15, 2006.

Figure 13a shows the coarse-resolution PCTM model output for the mid-tropo-
sphere; the region in the northeast of North America is featured. The PCTM reso-
lution is approximately DGG-resolution-6 near the equator. This coarse resolution 
shows up as blockiness in Fig. 13a. Figure 13b is a global visualization of our condi-
tional simulation at the finer resolutions. Although the data were produced at DGG 
resolution-8 (cells are 30 km in diameter), we have displayed the simulation output 
at the coarser DGG resolution-6 (cells are 120 km in diameter), to speed up display.

Here, we leveraged an important feature of our system. If we conditionally simu-
lated at resolution-8 and aggregated to resolution-7 or to resolution-6, etc., we would 
obtain a process whose statistical properties would be the same as those from direct 
conditional simulation at the respective resolutions. The visualizations in Fig. 13a, b 
show nearly identical features, as they should have given the constraint that the con-
ditionally simulated field at all resolutions must aggregate to reproduce the values 
on the PCTM grid.

In the second step, we sampled the conditionally simulated field to create syn-
thetic observations analogous to what AIRS and OCO-2 would “see.” We started 
with the centers of actual AIRS and OCO-2 footprints. For AIRS, we used the loca-
tions of non-missing footprints for a representative 3-day period. To create synthetic 
AIRS observations, we averaged simulated values for all 30-km hexagons (DGG 
resolution-8) with centers falling within a 45-km radius of the actual center of the 
AIRS footprint. In the case of OCO-2, whose footprint is smaller than the resolu-
tion-8 hexagon, we took the value of the simulated data for the hexagon with center 
nearest to the center of the OCO-2 footprint. We used three representative days of 
simulated orbit tracks provided to us by the OCO-2 team at NASA’s Jet Propulsion 
Laboratory.

Figure 14a shows the simulated field at DGG resolution-8 for a wedge of Earth, 
with an inset that zooms in on eastern New England and Quebec, in order that the 
30-km hexagons are clearly visible. Synthetic observations for AIRS and OCO-2 are 
shown in Fig. 14b. The main image shows the locations and values of AIRS obser-
vations for a subset of Earth’s surface, color-coded according to their simulated val-
ues. From the inset, we get a better view of eastern New England and Quebec—the 
circles show the locations and sizes of the AIRS observations. The thin, almost ver-
tical, strip represents the OCO-2 orbit track, although there is a representation issue 
here, because the strip is made up of 2-km-diameter regions with values taken from 
the nearest 30-km hexagon. The size mismatch between AIRS and OCO-2 footprints 
would render the OCO-2 footprints invisible if we did not use the zoom in Fig. 14b. 
The OCO-2 footprints are also color-coded according to their simulated values.

Finally, we apply SSDF to estimate a BAU-contiguous field of CO2 concentra-
tions obtained from both synthetic AIRS and synthetic OCO-2 observations, where 
SSDF uses optimal spatial weights (Nguyen et al. 2012). Our estimates are produced 
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on BAUs at 30-km spatial resolution (DGG resolution-8). Figure 15d, f shows the 
fused estimates and corresponding standard errors at resolution-8 for the same 
wedge of Earth as in Fig. 14a, and with high-resolution insets. Figure 15c, e shows 
the corresponding global views produced by aggregating the resolution-8 SSDF 
results up to resolution-6. Figure 15a, b is duplicates of Figs. 13b and 14a for easy 
comparison.

Exploratory evaluation of SSDF might include visually comparing Fig. 15d to a 
and comparing Fig. 15c to b. The former is a regional comparison at a finer resolu-
tion, and the latter is a global comparison at a coarser resolution. Both compari-
sons should be considered in light of the standard-error maps that correspond to the 
spatial-statistically fused estimates. These are shown in Fig. 15f and e, respectively.

One can make a number of observations about SSDF based on these visualiza-
tions. At the global scale, the SSDF estimates of CO2 in Fig. 15c give a smoother 
impression than the simulated CO2 process given in Fig. 15b. The standard errors in 
Fig. 15e show features that do not appear to correspond to features in the estimates 

Fig. 14   Conditionally simulated 
CO2 and the synthetic AIRS and 
OCO-2 observations during a 
3-day period
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themselves, but they do have some similarities to the simulated output in Fig. 15b. 
Recall that the input to SSDF is made up of sparse synthetic footprints like those 
shown in Fig. 14b. This accounts for the smoothing in the fused estimates, and it 
also influences geographic patterns in the standard errors. At the finer spatial scale 
(Fig. 15d), the smoothing is even more pronounced, and it is accompanied by similar 

Fig. 15   Spatial–Statistical Data Fusion (SSDF) from (synthetic) observations obtained from the AIRS 
and OCO-2 instruments
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smoothing in the standard-error map (Fig. 15f). This is in sharp contrast to the spa-
tial heterogeneity of the resolution-8 simulated field in Fig. 15a and is due to the 
sparsity of the synthetic observations in the region of the inset. Our simulation–visu-
alization experiments illustrate that SSDF estimates are likely to be more useful on 
global scales than on regional ones if the instrument data are geographically sparse. 
This is not surprising, and it could have been anticipated with some knowledge of 
how SSDF works (i.e., it is akin to kriging), but this visualization tool makes it pos-
sible to understand how problematic this is for specific regions of interest.

4 � Conclusion

We have built an initial version of a simulation, analysis, and visualization system, 
along the lines of a GIS, which ties the computation and visualization environ-
ment to the representation of the underlying data in nested, discrete global grids. In 
our implementation, the underlying fine-resolution data are produced using a spa-
tial–statistical conditional-simulation methodology. The methodology constrains the 
simulation output to reproduce features of a physical model that was constructed 
from scientific knowledge about the structure of the true physical process.

We have developed a python toolkit to implement instrument-like sampling of 
the simulated field, manage interfaces between component technologies, and aug-
ment them where necessary. We have demonstrated how our system can be used 
to visualize and better understand the behavior of a global data processing algo-
rithm, SSDF, over different spatial scales. This is possible, because the simulated 
field obeys hierarchical aggregation consistency, so that coarse-resolution fields can 
be derived in a statistically controlled way from fine-resolution fields. This should 
be mirrored by the upscale-pyramiding capability within our visualization platform. 
Further research would enable a downsample-pyramiding capability that would gen-
erate fine-resolution simulated fields for limited regions and display them in near-
real time. This infrastructure was implemented for the SSDF algorithm, but other 
computational algorithms whose performance depends on fine-resolution spatial 
structure can also be evaluated.
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