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Abstract
As the variety and quality of spatial data increase in recent times, the potential to 
analyze local characteristics based on spatial data is getting stronger. Previous spa-
tial analysis methods structuralize the spatial autocorrelation of data by the distances 
between data observation points and the contiguity of the data-observed regions. It is 
significant for the estimation of global characteristics of spatial data. However, these 
approaches are not suitable for identifying local differences from the data since they 
assume a smooth spatial autocorrelation structure. Generalized fused lasso, which 
can detect local differences in spatial data, has been proposed in machine learning 
studies. Its limitation is that the estimated parameters are biased toward zero; how-
ever, methods that overcome the limitation have also been proposed. Fused-MCP 
is one of those methods and is expected to be useful in spatial analyses. This study 
applies fused-MCP to spatial analyses. As an example of spatial analyses based on 
fused-MCP, this study analyzes the structure of geographical segmentation of the 
real estate market in central Tokyo. Fused-MCP is utilized to extract areas where the 
valuation standard is the same. The results reveal that the geographical segmenta-
tion displays hierarchal patterns. Specifically, the market is divided by municipali-
ties, railway lines and stations, and neighborhoods. The case study confirmed the 
applicability of fused-MCP to spatial analyses.
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1 Introduction

The recent development of information communication technologies and the pro-
gress of open data policies have increased the quality and variety of spatial data 
rich. Thus, the potential to analyze local characteristics based on spatial data is 
improving, and the methods for spatial analysis are in the spotlight.

Various methods have been proposed for spatial analysis; however, we limit 
the discussion to regression-based analyses. It is necessary to consider the spatial 
autocorrelation of data in the regression analyses. Therefore, three representative 
approaches—spatial regression models, spatial process models, and geographi-
cally weighted regression—have been developed. Spatial regression models 
(Anselin 1988), which include spatial error models, spatial lag models, and mov-
ing average models, aim to estimate common parameters of regression models in 
the target area from region-based independent and dependent variables, represent-
ing the structure of spatial autocorrelation by spatial weight matrices. The ele-
ments of a spatial weight matrix are set based on the proximity of regions, such as 
the contiguity of regions and the distance between regions. Spatial process mod-
els (Cressie 1991), which include ordinary kriging, universal kriging, and cokrig-
ing, aim to interpolate values at unobserved locations in the target area, repre-
senting the spatial autocorrelation structure based on the assumption of intrinsic 
stationarity or second-order stationarity and estimating the common parameters 
of regression models. Geographically weighted regression (Fotheringham et  al. 
2003) aims to estimate the heterogeneous parameters by locations, assuming that 
the location-based parameters are continuous in space. It is a weighted regression 
in which the weights are set by the functions of the distance between the location 
where parameters are estimated and the locations where data are observed.

The above-mentioned methods of spatial data analysis structuralize the spa-
tial autocorrelation of data by the distances between data observation points and 
the contiguity of data observed regions. The modeling of spatial autocorrelation 
structure is significant for the estimation of global characteristics of spatial data. 
However, these approaches are not suitable for finding the local areas where the 
parameters are discontinuously different from their neighborhood areas since 
these approaches assume a smooth spatial autocorrelation structure.

Fused lasso is proposed by Tibshirani et  al. (2005) as a method to detect 
change points in time-series data. It is based on the least absolute shrinkage and 
selection operator (lasso) (Tibshirani 1996). The lasso imposes l1 regulariza-
tion on an optimum parameter estimation problem, and it functions as a variable 
selection method. Fused lasso is an expansion of lasso; it penalizes the param-
eters themselves and the differences between consecutive parameters. Tibshirani 
and Taylor (2011) propose a generalized fused lasso, which expands the regu-
larization of differences between consecutive parameters to the regularization of 
differences between adjacent parameters; the expansion enables one to consider 
the adjacency of regions in spatial analyses to detect the borders where adjacent 
parameters are not the same. The generalized fused lasso is applied to spatial 
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analyses in Wang and Rodríguez (2014) and Inoue et al. (2018); it is confirmed to 
be a powerful method for detecting local differences.

However, Fan and Li (2001) point out that lasso estimators are biased, and several 
regularizations whose estimators are not biased have been proposed. One type of 
regularization is the adaptive lasso proposed by Zou (2006), which sets a different 
weight on each parameter in the l1 penalty. The setting of adaptive weights requires 
initial parameter estimators to allocate small weights on the penalties of non-zero 
parameters and the large weights on the penalties of zero-parameters. Another type 
of regularization is the concave penalty function; the smoothly clipped absolute 
deviation (SCAD) penalty proposed by Fan and Li (2001) and the minimax concave 
penalty (MCP) proposed by Zhang (2010). However, the minimization of noncon-
vex penalized function is computationally challenging. The solution’s uniqueness 
and the existence of local minimizers are not discussed for the SCAD penalties. 
Conversely, the MCP is defined to minimize the maximum concavity and is proven 
to have a unique path of the solution graph from the origin that all estimators are 
zero to an optimal fit, although there may be additional branches. Jing et al. (2018) 
expand the MCP to the fused-MCP, which penalizes the parameters themselves and 
the differences between adjacent parameters. Fused-MCP is expected to be useful in 
spatial analyses that aim to extract local differences.

Therefore, this study employs the fused-MCP in spatial analyses that aim to 
detect local differences in a target area. As an example of spatial analyses based on 
fused-MCP, this study introduces an analysis to identify the structure of geographi-
cal segmentation of an apartment rental market in central Tokyo and confirms the 
applicability of fused-MCP to the analysis.

2  Variable selection and parameter estimation with penalty 
functions

Suppose a linear regression model in which an n×1 dependent variable vector y 
depends on p explanatory variables of n×1 vectors xj (j = 1, …, p), and βj is a coef-
ficient for explanatory variable xj, then

where n is the number of observations, �1 ≡ (
�1,… , �p

)
 , �1 ≡ (

�1,… , �p
)T , and 

ε ⁓ N(0, σ2In).
However, there are P (> p) candidates for explanatory variables xk (k = p + 1, …, 

P) that does not correlate with y. If there is no prior information on which regressors 
should be used in the model of Eq. (1), then the model is

where �2 ≡ (
�p+1,… , �P

)
 , �� ≡ (

�p+1,… , �P
)T

= � , � ≡ (
�1,�2

)
 , and 

� ≡ (
�T
1
, �T

2

)T.
This model presents a variable selection problem of finding out p explanatory var-

iables with non-zero coefficients from P candidates. When the number of variables 

(1)� = �1�1 + �,

(2)� = �1�1 + �2�2 + � = �� + �,
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P is small, it is possible to find a good set of explanatory variables based on the cri-
teria, such as AIC (Akaike’s Information Criterion) (Akaike 1973) and BIC (Bayes-
ian Information Criterion) (Schwarz 1978). However, when the number of candidate 
explanatory variables, P, is large, the number of combinations of variables becomes 
enormous. Thus, the variable selection is not computationally feasible. Hence, to 
avoid the situation, the optimization methods with the regularization by continuous 
penalty functions are utilized. This section introduces lasso and its derivative, MCP.

2.1  Lasso and fused Lasso

2.1.1  Lasso

The lasso introduces l1 regularization to the model (Tibshirani 1996). Here, we esti-
mate the linear regression model of Eq. (2) by the lasso. Let ‖ · ‖2 denote the Euclid-
ean norm (l2-norm) and ‖ · ‖1 denote the l1-norm. Then, the parameter estimation by 
lasso is formulated as

where t is the positive lasso regularization parameter. The lasso promotes the spar-
sity of the model; it estimates that the parameters where the less substantial explan-
atory variables are zero. The solution of a constrained optimization problem of 
Eq. (3) selects the substantial explanatory variables from among many candidates. 
Equation (3) is equivalent to

where λ is a Lagrange multiplier that corresponds to t. When λ is large (and t is 
small), many parameters are estimated as zero.

2.1.2  Fused lasso

Tibshirani et al. (2005) expand the lasso to a fused lasso. It is a method to investigate 
the presence or absence of a difference between consecutive parameters by imposing 
a new regularization on the differences between consecutive parameters. Tibshirani 
and Taylor (2011) propose a generalized fused lasso and a path algorithm to esti-
mate parameters. Sparse fused lasso is a type of generalized fused lasso that has the 
fused lasso penalty, the l1-norm on the difference between adjacent coefficients, and 
the l1-norm of the coefficients themselves. It is formulated as

where C is the set of pairs of parameters that are defined to have an adjacency. 
The l1-norm on the difference among adjacent parameters tends to estimate com-
mon parameters. Tibshirani and Taylor (2011) state that the sparse fused lasso gives 

(3)�̂ = argmin
�

‖� − ��‖2
2
subject to 𝜆‖�‖1 ≤ t,

(4)�̂ = argmin
�

1

2
‖� − ��‖2

2
+ 𝜆‖�‖1,

(5)�̂ = argmin
�

1

2
‖� − ��‖2

2
+ 𝜆1‖�‖1 + 𝜆2

�
(m,n)∈C

��𝛽m − 𝛽n
��,
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an unbiased estimate of the number of nonzero fused groups. Hereafter, the sparse 
fused lasso of Eq. (5) is denoted as fused lasso in this study.

Since the fused lasso has flexibility in setting the adjacency of parameters, it is 
easily applicable to spatial analyses by setting adjacency based on location. Tibshi-
rani and Taylor (2011) show an example of applying fused lasso to spatial analy-
ses. A linear regression model with a parameter of the constant term for each US 
state is estimated from the flu case data. Inoue et al. (2018) apply the fused lasso to 
an estimation of the linear regression model that represents real estate valuation to 
analyze the geographical segmentation of the real estate market. In addition to the 
linear regression models, the fused lasso is utilized in many types of models. Wang 
and Rodríguez (2014) utilize the fused lasso in a Poisson regression model with-
out covariates to identify the spatial clusters of point events, and Choi et al. (2018) 
propose to utilize the fused lasso in a Poisson regression model with covariates 
and an estimation algorithm based on the Majorize–Minimization algorithm (MM 
algorithm) (Hunter and Li 2005). Parker et al. (2016) utilize it to estimate the spa-
tial covariance function that is not spatially stationary. Sun et al. (2016) introduce 
a method to estimate spatial and temporal quantile function with a fused adaptive 
lasso by penalizing the difference between neighboring quantiles.

2.2  MCP and fused‑MCP

As described above, the lasso-based variable selection has already been utilized in 
spatial analyses that aim to detect local differences and indicate its applicability. 
However, Fan and Li (2001) point out that the estimators by lasso are biased. There-
fore, several penalty functions that not only have an ability in variable selection but 
also can estimate unbiased parameters have been proposed.

This section introduces one of the penalty functions, MCP (Zhang 2010), and its 
expansion, the fused-MCP (Jing et al. 2018).

2.2.1  MCP

Zhang (2010) proposes the MCP and a penalized linear unbiased selection (PLUS) 
algorithm that estimates parameters in the minimization of the loss function with 
MCPs. The MCP is defined as

with regularization hyperparameters γ > 0 and λ > 0. The MCP is obtained to mini-
mize the maximum concavity defined by

which is subject to

(6)�(t;�, �) = �

t

∫
0

(
1 −

x

��

)

+

dx,

(7)𝜅(𝜌) ≡ 𝜅(𝜌;𝜆, 𝛾) ≡ sup
0<t1<t2

{
�̇�
(
t1;𝜆, 𝛾

)
− �̇�

(
t2;𝜆, 𝛾

)}/(
t2 − t1

)
,
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and

where �̇�(t;𝜆, 𝛾) = d𝜌(t;𝜆,𝛾)

dt
 . Equation  (8) presents the condition that an MCP is not 

effective if t exceeds a threshold of γλ, and this leads to estimate unbiased param-
eters when t ≥ γλ. Equation  (9) presents the condition that an MCP imposes the 
same penalty to the l1 regularization term of �‖t‖1 ; thus, the MCP works as a vari-
able selection method.

The parameter estimation of the model in Eq.  (2) by regularization using the 
MCP is

Equation  (10) is a non-convex optimization since the MCP is a concave function. 
However, since the minimum concavity of Eq. (7) is minimized to �(�) = 1∕� , the 
MCP provides sparse convexity to the broadest range.

A larger γ value leads to less unbiasedness and more concavity, and the MCP is 
equal to the l1 penalty at γ = ∞ and is similar to the l0 penalty as γ → 0+. Zhang 
(2010) proves that the MCP has selection consistency at the universal penalty 
level �univ ≡ �

√
(2∕n) log p.

2.2.2  Fused‑MCP

Jing et  al. (2018) propose a fused-MCP, which penalizes both the parameters 
themselves and their adjacent difference by the MCP. This study focuses on the 
recovery of 1D and 2D-grid signal with noise and proposes models for each data 
type, as well as an algorithm to estimate the parameters.

The model for denoising 1D signal is

where y is an n × 1 vector of observed signal, θ is an n × 1 vector of true signal, and 
ε is an n × 1 vector of noise. Thus, the recovery of the signal, which is the estima-
tion of θ, is defined as

If λ1 = 0, Eq.  (12) is transformable to the minimization problem that is the 
same as that of the regularization of parameters themselves by the MCP. Thus, 
the PLUS algorithm can be applied to estimate the parameters. However, if λ1 
> 0, it is not possible to apply the PLUS algorithm. Jing et  al. (2018) propose 

(8)�̇�(t;𝜆, 𝛾) = 0 ∀t ≥ 𝛾𝜆,

(9)�̇�(0 + ;𝜆, 𝛾) = 𝜆,

(10)�̂ = argmin
�

1

2
‖� − ��‖2

2
+

P�
i=1

𝜌
���𝛽i��;𝜆, 𝛾

�
.

(11)� = � + �,

(12)�̂ = augmin
�

1

2
‖� − �‖2

2
+

n�
i=1

𝜌
���𝜃i��;𝜆1, 𝛾1

�
+

n�
i=2

𝜌
���𝜃i − 𝜃i−1

��;𝜆2, 𝛾2
�
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to solve the nonconvex optimization problem by the MM algorithm (Hunter and 
Lange 2004; Hunter and Li 2005)

The MM algorithm is an iterative procedure that consists of majorization and 
minimization. Consider the problem that minimizes the concave function f (θ). At 
the m step, the current value of θ, θ(m), is given. Then, find a surrogate function g 
(θ|θ(m)) that is a convex function and majorizes f (θ):

Then, minimize the surrogate function g (θ|θ(m)) to find θ(m+1). Since the fol-
lowing relationship,

holds, the estimator approaches the local minima. If a surrogate function is set 
appropriately, the MM algorithm works efficiently. Jing et al. (2018) proposes a sur-
rogate function of the MCP ρ (t; λ) that is a quadratic function with the minimum 
value at t = 0,

The model for denoising the 2D-grid signal used in Jing et al. (2018) is

where Y is an n × m matrix of an observed 2D-grid type signal (such as an image 
with noise), Θ is the n × m matrix of true signal to estimate the recovered image, 
and ε is the n × m matrix of disturbances at every pixel. Thus, the signal recovery 
based on MCP is written as

where ‖·‖F denotes the Frobenius norm. The model does not penalize parameters but 
their adjacent difference. The PLUS algorithm is also not applicable to this model; 
hence, the solution using the MM algorithm is proposed.

2.3  Estimation of a linear regression model by fused‑MCP

This study applies the fused-MCP to the estimation of a linear regression model. 
The parameter estimation is formulated as

(13)
g
(
�|�(m)) ≥ f (�) ∀�

g
(
�(m)|�(m)) = f

(
�(m)

)
.

(14)f
(
�(m+1)

) ≤ g
(
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(
�(m)|�(m)) = f

(
�(m)

)
,

(15)g�
(
t|t(m)) = �

(
t(m)

)
+

(
t2 − t(m)

2
)
��
(||t(m)||

)

2
(||t(m)|| + �
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(16)� = � + �,

(17)

�̂� = augmin
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2
‖� −�‖2

F
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This study implemented the estimation by the MM algorithm using the surrogate 
function of Eq. (15), following Jing et al. (2018).

3  Case study: identification of geographical segmentation 
of the apartment rental market in central Tokyo

As an example of the identification of local differences, this study introduces an 
analysis of geographical segmentation of the real estate market; it aims to detect the 
areas where the pricing is different from their neighbors.

The real estate market is segmented by many aspects, including consumer types, 
property types, and environmental factors. It also forms submarkets in which the 
valuation bases differ from those in others. It is well-known that location plays a 
major role in the submarket formation. For example, people who value the acces-
sibility to services of urban life prefer to live in city centers, and people who value 
commodious property and proximity to the natural environment prefer to live in the 
suburbs. The difference in consumer types between the city center and the suburbs 
affects property supply and valuation in both submarkets. Families who care about 
the education of their children choose school districts and municipalities where the 
level of education service is high. However, couples without a child do not consider 
educational service for their residential selection.

In this manner, not only the living environment but also the types of consum-
ers and supplied residential properties are related to location. As a result, the real 
estate market is segmented geographically such that the value of attributes of real 
estate properties is different for each area. The valuation of attributes of real estate 
properties differs by neighborhoods, school districts, municipalities, and city center 
or suburbs. Therefore, the geographical segmentation in the real estate market has a 
hierarchical structure.

3.1  Previous studies on geographical segmentation of the real estate market

The geographical segmentation of the real estate market has attracted much research 
interest, and several approaches have been attempted to understand its structure.

One approach is the classification of the market based on the attributes of real 
estate properties. Bourassa et  al. (1999), Wu and Sharma (2012), and Keskin and 
Watkins (2017) classify the real estate properties based on the principal component 
analysis of their attributes and analyze the relationship between the classified results 
and the locational characteristics.

Other approaches are based on the hedonic analysis derived from Rosen (1974). 
Kestens et  al. (2006) utilized geographically weighted regression to estimate the 
location-dependent parameters of the real estate price model and discuss the spatial 

(18)

�̂ = augmin
�
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2
‖� − ��‖2
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+

P�
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+
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distribution of estimated parameters. However, most hedonic-based studies, such 
as Watkins (2001), Bourassa et al. (2003), Goodman and Thibodeau (1998, 2003, 
2007), and Islam and Asami (2011), preset several types of geographical division 
units, estimated parameters for each unit in the settings of different geographical 
divisions, and selected the model that best fit the data to identify the structure of 
geographical segmentation. Their analyses are limited to the preset division struc-
tures, such as school districts, postal districts, and census tracts; they cannot identify 
the segmentation that is partially different from the preset division, and they do not 
consider the hierarchal division structure of real estate market.

Kuroda et al. (2014), also based on the hedonic analysis, proposed to estimate the 
real estate price model and searched the division of submarkets by connecting the 
adjacent preset geographical units simultaneously by the simulated annealing. It is 
possible to find the division structure that is not fixed to the preset division. How-
ever, there are several limitations. The number of submarkets has to be given when 
executing the simulated annealing. Thus, if the number of geographical units for the 
preset division is large and there are many choices for the number of submarkets, it 
is quite difficult to find the best model that fits the data. Moreover, it is not possible 
to find the hierarchical division structure.

Thus, to overcome the limitation of previous researches, Inoue et  al. (2018) 
applied the fused lasso for the estimation of a real estate price model. Similar to 
Kuroda et  al. (2014), the structure of the geographical market segmentation is 
searched by connecting adjacent spatial units of the preset division. The difference is 
that it can analyze real estate price models with multiple levels of division structure 
and estimate parameters and division structure simultaneously by solving the opti-
mization without relying on a randomized algorithm. A real estate price model with 
many regional explanatory variables that depend on different spatial resolutions is 
constructed, and areas where the valuation standard is the same are extracted by the 
implementation of the fused lasso. The proposed method was applied to rent data 
of apartments in the Tokyo metropolitan area, and the result reveals that the valua-
tion standard is different from most of the municipalities. However, there are sets of 
municipalities where the valuation for the attributes of apartments are the same. The 
results also detect the neighborhood-level local disparity in the valuation; it, then, 
confirms that there is a hierarchical structure in the apartment rental market in the 
target area. However, Inoue et al. (2018) did not consider the lack of unbiasedness in 
the lasso estimation.

This study utilizes the fused-MCP for the estimation of the apartment rent model 
used in Inoue et al. (2018), although the target area is reduced due to the limitation 
in the computation power to solve the optimization problem with MCP.
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Fig. 1  Spatial units
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3.2  Data and model of apartment rent

This study utilized apartment rent data from 2015 to 2016 collected by At Home 
Co., Ltd. The target area was central Tokyo, which consists of five municipalities 
(wards, “ku” in Japanese): Chiyoda, Chuo, Minato, Shinjuku, and Shibuya (Fig. 1a).

High-rise condominiums whose number of floors exceeded 15 were excluded as 
their rents have a different pricing structure from the pricing of other apartments. 
If the rent data of apartments in the same building occupy the majority of data in 
the neighborhood, the estimated results of valuation in that neighborhood would 
be affected by the building. Thus, to avoid such issues, an apartment was randomly 
selected on the same floor in the same building each year. Consequently, the total 
number of records was 50,355. Figure 2 shows the spatial distribution of the apart-
ment rent data.

The apartment rent model in this case study used the natural logarithm of monthly 
rent per square meter as the dependent variable. Five attributes of apartments, apart-
ment age, area of property, walking time to the nearest station, floor number, and 
number of rooms were the explanatory variables to estimate the municipality-level 
parameters; in total, 25 parameters were set. The summary of attributes of apart-
ments is shown in Table 1.

Three different levels of location factors that might affect the apartment rental 
market were considered: railway lines, the nearest railway stations, and neighbor-
hoods (“cho” and “chome” in Japanese) (Fig. 1b). Dummy variables in this model 

Fig. 2  Spatial distribution of apartment rent data
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represented these location factors. The detailed descriptions and the numbers of 
dummy variables are shown in Table  2. Note that a station and a neighborhood 
whose average rent per square meter were the medians were selected as the refer-
ence, and dummy variables were not set for that station and neighborhood.

The following is the explanation of the hedonic apartment rent model settings 
in this study. Let yi(in m) denote a dependent variable that is the natural logarithm 
of rent of apartment i located in municipality m. Furthermore, β0 denotes the 
intercept of the regression; βjm denotes the municipality-level regression coeffi-
cient of the j-th explanatory variables xijm of apartment i in municipality m; M, L, 
S, and N denote sets of municipalities, railway lines, railway stations, and neigh-
borhoods, respectively; xil

Line, xis
Stn, and xin

Nbrhd denote the dummy variables for rail-
way line l that stops at the nearest station, the nearest railway station s, and the 
neighborhood n of apartment i, respectively; and βl

Line, βs
Stn, and βn

Nbrhd denote the 
parameters of railway line l, railway station s, and neighborhood n, respectively. 
Then, the apartment rent model was

where εi ⁓ N(0, σ2). The total number of parameters was 651.
The following explanations are the settings of the regularization term. This 

study penalized all the parameters and the differences of municipality-level 
parameters between adjacent municipalities and between parameters of dummy 
variables of adjacent neighborhoods. However, the differences between param-
eters of connected railway lines and adjacent railway stations were not penalized 
since the parameters of railway line dummies and station dummies in this model 
were expected to represent the evaluation of accessibility as well as the environ-
mental factors surrounding the station. It is natural to consider that the param-
eters of connected railway lines and parameters of neighbor railway stations are 
not necessarily the same.

The adjacency of municipalities was set if two municipalities shared borders. 
The adjacency of neighborhoods was set if two neighborhoods shared borders 
and belonged to the same municipalities and the same system of railway stations. 
Note that whether a certain neighborhood belongs to a certain system of railway 

(19)

yi (in m) = �0 +
∑
m∈M

∑
j∈pm

�jmxijm +
∑
l∈L

�Line
l

xLine
il

+
∑
s∈S

�Stn
s

xStn
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+
∑
n∈N

�Nbrhd
n

xNbrhd
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+ �i,

Table 1  Summary of variables

Variable name Mean Standard deviation Maximum Minimum

Monthly rent per square meter (JPY) 3854.88 743.46 6998.51 1314.29
Apartment age (year) 20.75 13.02 66.17 0.00
Area of property  (m2) 37.20 24.22 440.00 10.00
Walking time to the nearest station (min) 5.39 3.04 41.00 1.00
Floor number 4.75 3.05 15.00 1.00
Number of rooms 1.25 0.55 7.00 1.00
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stations was decided based on the highest frequency of appearances in the nearest 
station attribute of the apartment data in the neighborhood. Since the apartments 
tend to be allocated to the major stations in their neighborhood, the shapes of sys-
tems of stations are different from those of Voronoi polygons whose generators 
are the stations. This setting constructs a hierarchical structure in the dummy var-
iable settings and enables the analysis of the hierarchical structure of the apart-
ment rental market from municipality to neighborhood levels. The numbers of 
pairs of adjacency municipalities and neighborhoods are shown in Table 3.

Let y denote the vector of dependent variables. Furthermore, X denotes the 
matrix of explanatory variables; P denotes the set of all parameters; bs denotes the 
estimator of βs; Pm denotes the set of types of municipality-level parameters; Nm and 
Nn denote sets of pairs of adjacent municipalities and neighborhoods, respectively; 
λ1, λ2, γ1, and γ2 are the hyper-parameters. Equations (20) and (21) represent the esti-
mation of parameters by the fused lasso and the fused-MCP, respectively.

The numeric explanatory variables in Eqs. (20) and (21) were scaled to have zero 
mean and unit variance. It is intended to adjust the scale of parameters; if the scale 
of parameters is different (the effect of penalties is different for the parameters), then 
it would lead to biased estimators.

When estimating parameters, many hyperparameter settings were tested. We 
selected the estimation results with the minimum AIC value, assuming that the dis-
turbances of the apartment rent model of Eq. (19) were independently, identically, 
and normally distributed. Since the number of apartments in the dataset (50,355), 
were far larger than the number of parameters in the model (651), the parameter 
estimation by Eqs.  (20) and (21) would be almost equivalent to the estimation by 

(20)

�̂ = argmin
�

⎡
⎢⎢⎣
1

2
‖� − ��‖2

2
+ 𝜆1‖�‖1 + 𝜆2

�
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�
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���𝛽
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j
− 𝛽

mb

j

��� + 𝜆2

�
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���𝛽
N
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− 𝛽N

nq

���
⎤
⎥⎥⎦
,
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.

Table 3  Numbers of pairs of 
adjacent spatial units

a Five types of municipality-level explanatory variables are used in 
the model. Therefore, the number of regularization terms is 35 in 
total

Spatial units Number of pairs

Municipalitya 7
Neighborhood 594
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maximizing the following penalized likelihood function for certain hyperparam-
eters: μ1, μ2, η1, and η2,

where l is the log-likelihood function. Then, the model selection by AIC would be 
fair, although the parameters are biased toward zero, especially in the estimation by 
the fused lasso.

3.3  Estimation results by two methods and comparison

This section introduces the estimation results by the fused lasso and the 
fused-MCP.

(22)
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Table 4  Summary of estimated parameters by fused lasso when λ1 = 0.023 and λ2 = 0.23

Variable name Number of parameters

Setting Nonzero Common Unique Zero

Constant term 1 1 0 1 0
Apartment age (year) 5 5 0 5 0
Area of property  (m2) 5 5 0 5 0
Walking time to the nearest station (min) 5 5 0 5 0
Floor number 5 5 0 5 0
Number of rooms 5 5 0 5 0
Dummy variable of railway lines 28 18 18 10
Dummy variable of nearest railway stations 106 82 82 24
Dummy variable of neighborhoods 491 348 5 343 143
Total 651 474 5 469 177
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3.3.1  Estimation by fused lasso

In the estimation by the fused lasso, three settings of λ2/λ1 = 0.1, 1, and 10 were 
tested. The calculation was done by the R package ‘genlasso’ that outputs a solu-
tion path for each setting. When λ1 = 0.023 and λ2 = 0.23 (λ2/λ1 = 10), the model 
with 469 unique parameters out of 651 initially set parameters was adopted. 
Table 4 summarizes the numbers of parameters, and Table 5 shows the estimated 
values of municipality-level parameters. In this estimation, no municipality-level 
coefficients were estimated to be the same to the adjacent municipalities. Note 
that the estimated parameters of apartment age in Chiyoda and Shibuya were the 
same, but they are not contiguous. For reference, the adjusted coefficient of deter-
mination was 0.583 and the AIC was − 64647, although it underestimated the 
model since the estimated parameters were biased toward zero.

3.3.2  Estimation by fused‑MCP

The estimation of parameters by the fused-MCP was achieved by solving Eq. (21) 
by the MM algorithm, thereby, setting the estimated parameters of fused lasso as 
initial values.

The model has four hyperparameters: λ1, λ2, γ1, and γ2; λ1 and λ2 mainly act as the 
weights on the penalties, and their relative size effects the balance between the pen-
alties on parameters and the penalties on the difference of adjacent parameters. Fur-
thermore, γ1 and γ2 mainly act as the shape of the MCP. Since there are no positive 
reasons for using the penalty functions with different shapes for the parameters and 
the differences of adjacent parameters, this study fixed γ1 and γ2 to the same value γ. 
Then, it took the following two-step procedure to decide the hyperparameters. At the 
first step, by fixing λ1 and λ2 to the same values λ, the balance between λ and γ was 
searched by the grid search. At the second step, by fixing γ, the balance between λ1 
and λ2 was tested.

Table 6 shows the results of the grid search of the hyperparameters λ and γ that 
minimize the AIC. After the broad grid search with the search range of λ from 0.1 
to 100 and γ from 0.0001 to 0.1 was tested (Table 6a), the narrow grid search with 
the search range of λ from 1 to 10 at the interval of 1 and γ from 0.001 to 0.01 at the 
interval of 0.001 was executed (Table 6b). Consequently, the AIC was minimized 
when λ (= λ1 = λ2) = 2 and γ (= γ1 = γ2) = 0.007.

Table  7 shows the results of the grid search of the hyperparameters λ1 and λ2 
by fixing γ1 = γ2 = 0.007. Both hyperparameters were tested from 1.0 to 3.0 at the 
interval of 0.5, and it was confirmed that the hyperparameter setting of λ1 = λ2 = 
2.0 minimized the AIC. For reference, the adjusted coefficient of determination was 
0.585. Hereafter, the estimated results in this setting are introduced.

Tables 8 and 9 show the summary of the estimated parameters and the estimation 
results of municipality-level parameters, respectively. The estimated parameters for 
dummy variables are shown in Figs. 3, 4 and 5. Figure 3 indicates the estimation 
results of railway related dummy variables (railway lines and stations), and Figs. 4 
and 5 indicate the estimation results of neighborhood dummy variables.
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3.3.3  Comparison of estimations by the fused lasso and the fused‑MCP

It is confirmed that the estimation by the fused-MCP with the adjusted coefficient 
of determination of 0.585 fit the data better than that by the fused lasso with the 
adjusted coefficient of determination of 0.583, although the total number of unique 
parameters (Table 8) is smaller than the estimation by fused lasso (Table 4).

Comparing the estimated results of municipality-level parameters by the fused 
lasso (Table 5) and the fused-MCP (Table 9), it is confirmed that no parameters 
coincided with those of adjacent municipalities in the estimation by the fused 
lasso. However, parameters of three explanatory variables coincided in the esti-
mation by the fused-MCP; the parameters for apartment age and walking time to 
the nearest station in Chiyoda and Chuo wards were estimated to be the same. 
Likewise, the parameters for the area of the property in Shinjuku and Shibuya 
wards were estimated to be the same. The results indicated that the same sub-
markets might be established across the borders of the municipalities.

It is worth mentioning that most of the absolute values of the estimators by 
the fused-MCP are larger than those by the fused lasso, especially when the 
absolute values of estimators are large. This result was caused by the charac-
teristics of the MCP, which had no gradient when parameter values were larger 
than λγ, 0.014 in this estimation. It is expected that the estimated results that 
exceed this value (parameters of apartment ages, area of the property, and floor 
number) were unbiased. However, some results for parameters of walking time 
to the nearest station and the number of rooms did not exceed λγ; thus, the esti-
mated parameters might be biased toward zero.

Figure  4 presents the differences in the estimation results of neighborhood 
dummy variables by fused-MCP and fused lasso. It is evident that the number 
of non-zero parameters by fused-MCP is smaller than that by fused lasso. The 
estimation result by fused-MCP reveals the neighborhoods where apartment 
rents are distinguishable from their neighbors. The number of parameters that 
are common to the adjacent neighborhoods by fused-MCP is larger than that by 
fused lasso; the estimation by fused-MCP clearly indicates the structure of mar-
ket segmentation by detecting the areas where the valuation of apartments is the 
same. The absolute values of estimated non-zero parameters tend to be larger by 
fused-MCP than those by fused lasso; this result corresponds to the discussion 
and results of Jing et al.’s (2018) simulation study.

From the comparison of estimated results by the two methods, the estimation 
by the fused-MCP has higher interpretability with smaller biases. It enables the 
selection of areas with local differences strictly by the regularization of param-
eters and the differences of adjacent parameters by the MCP.

3.3.4  Comparison of results by SCAD with fused conditions

This section briefly introduces SCAD (Fan and Li 2001), one of the other regulari-
zation methods that can output the non-biased estimates, applies it to the analysis of 
the apartment rent dataset, and compares the estimation result with the fused-MCP.

The gradient of penalty function of SCAD, p(|β|), is defined by
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When the parameter is zero, the gradient is λ, which is the same as that of the l1 
penalty with the weight parameter λ. When the absolute value of the parameter is 
larger than aλ, the gradient is zero; this means that no penalty is imposed when the 
parameter is large. This characteristic of the penalty function leads to the unbiased 
estimation for parameters that are not close to zero.

Although the SCAD is not applied to the fused conditions to the best of the 
author’s knowledge, this section applies it to the apartment rent analysis. The esti-
mation by SCAD is based on the MM algorithm by Hunter and Li (2005), which we 
utilize for the fused-MCP estimation. This study sets the hyperparameter a to 3.7 
according to the discussion by Fan and Li (2001). Equation (25) represents the esti-
mation of parameters by the SCAD,

(24)

p�(|𝛽|;𝜆, a) = 𝜆

{
I(|𝛽| ≤ 𝜆) +

(a𝜆 − |𝛽|)+
(a − 1)𝜆

I(|𝛽| > 𝜆)

}
for some a > 2 and |𝛽| > 0.

Table 7  AIC values in grid 
search by fused− MCP when γ1 
= γ2 = 0.007

λ2

1.0 1.5 2.0 2.5 3.0

λ1 1.0 − 64,850 − 64,892 − 64,915 − 64,906 − 64,901
1.5 − 64,898 − 64,915 − 64,932 − 64,927 − 64,917
2.0 − 64,914 − 64,928 − 64,935 − 64,923 − 64,915
2.5 − 64,911 − 64,922 − 64,919 − 64,924 − 64,921
3.0 − 64,897 − 64,900 − 64,902 − 64,911 − 64,904

Table 8  Summary of estimated parameters by fused-MCP

Variable name Number of parameters

Set Non-zero Common Unique Zero

Constant term 1 1 0 1 0
Apartment age (year) 5 5 1 4 0
Area of property  (m2) 5 5 1 4 0
Walking time to the nearest station (min) 5 5 1 4 0
Floor number 5 5 0 5 0
Number of rooms 5 5 0 5 0
Dummy variable of railway lines 28 14 14 14
Dummy variable of nearest railway stations 106 69 69 37
Dummy variable of neighborhoods 491 242 25 210 249
Total 651 351 28 316 300
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Fig. 3  Estimated parameters of railway related dummy variables by fused-MCP
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and the hyperparameter λ is decided by AIC, as is similar to the estimation of fused-
MCP and fused lasso.

Similar to the fused lasso, the model has two hyperparameters, λ1 and λ2, and 
their relative size effects the balance between the penalties on parameters and the 
penalties on the difference of adjacent parameters. The balance between λ1 and λ2 
was tested to decide the hyperparameters.

Table 10 presents the results of the grid search of the hyperparameters λ1 and 
λ2. The hyperparameter λ1 was tested from 0.05 to 0.4 by the power of two, and 
λ2 was tested from 0.0005 to 0.004 by the power of two, and it was confirmed that 
the hyperparameter setting of λ1 = 0.1 and λ2 = 0.001 minimized the AIC. For 
reference, the adjusted coefficient of determination was 0.587. Hereafter, the esti-
mated results in this setting are introduced.

Tables 11 and 12 show the summary of the estimated parameters and the esti-
mation results of municipality-level parameters by SCAD, respectively. The esti-
mated parameters for the dummy variables are shown in Fig. 6. Figure 6 indicates 
the estimation results of the neighborhood dummy variables by SCAD.  

(25)

�̂ = argmin
�

⎡
⎢⎢⎣
1

2
‖� − ��‖2

2
+
�
i∈P

p
���𝛽i��;𝜆1

�
+

�
(ma,mb)∈Nm

�
j∈Pm

p
����𝛽

ma

j
− 𝛽

mb

j

���;𝜆2
�

+
�

(np,nq)∈Nn

p
����𝛽

N
np
− 𝛽N

nq

���;𝜆2
�⎤⎥⎥⎦

,

Fig. 3  (continued)
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Fig. 4  Estimated parameters of neighborhood dummy variables by fused-MCP and fused lasso
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Fig. 5  Estimated parameters of neighborhood dummy variables by fused-MCP

Table 10  AIC values in grid search by SCAD with fused conditions

λ2

0.0005 0.001 0.002 0.004

λ1 0.05 − 64,425.903 − 64,414.886 − 64,404.557 − 64,376.870
0.1 − 64,631.448 − 64,633.822 − 64,633.815 − 64,606.606
0.2 − 64,633.290 − 64,625.121 − 64,629.256 − 64,607.433
0.4 − 64,613.379 − 64,618.199 − 64,615.244 − 64,589.037
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The result by the SCAD with fused conditions shows that none of adjacent 
parameters are estimated to be the same. The AIC by the SCAD is not improved 
from that by fused lasso in this estimation.

The apartment rent model in this study has many parameters and pairs of adja-
cency parameters that penalties are imposed on, and the minimization problem 
with non-convex penalties must have many local minima. Since the prevention 
of the problem caused by the non-convexity of the penalty function is not consid-
ered when proposing the SCAD, the possibility that the estimated result by the 
SCAD is one of local minima that is larger than the case by the fused-MCP. The 
difference in the estimated results by these two regularization methods may be 
what can output the non-biased estimates.

3.4  Discussions on results by fused‑MCP

This section focuses on the parameters of location-related dummy variables by the 
fused-MCP estimation and discusses the revealed local differences in the apartment 
rental market in central Tokyo.

Figure 3a shows the sum of the parameters of the station and railway lines that 
operate at the station; it presents the evaluation of accessibility and the neighbor-
hood environment of the stations. It is observed that the stations located near the 
border of Chiyoda and Chuo and in the northern area of Minato are evaluated as 
high. The former stations are located close to the major central business districts 
(CBD) of Marunouchi and Ginza, and the latter stations are located close to the 
other CBD of Akasaka and the urban residential area of Aoyama. However, the sta-
tions in the eastern half of Chuo and the northern area of Shinjuku are evaluated as 
low. The former is an area populated with small buildings and is located in an envi-
ronment not conducive to live in. The latter is the area densely populated with small 
detached houses and is located near the Kanda river that used to overflow often; it is 

Table 11  Summary of estimated parameters by SCAD with fused conditions when λ1 = 0.1 and λ2 = 
0.001

Variable name Number of parameters

Setting Nonzero Common Unique Zero

Constant term 1 1 0 1 0
Apartment age (years) 5 5 0 5 0
Area of property  (m2) 5 5 0 5 0
Walking time to the nearest station (min) 5 5 0 5 0
Floor number 5 5 0 5 0
Number of rooms 5 5 0 5 10
Dummy variable of railway lines 28 18 18 24
Dummy variable of nearest railway stations 106 82 82 146
Dummy variable of neighborhoods 491 345 0 345 0
Total 650 470 0 470 180
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far from the CBD and has a less conducive environment to live in within the target 
area. It seems that the estimated results demonstrated in Fig. 3a is quite reasonable.

Figure 3b indicates the estimated parameters of railway line dummy variables. It 
features the extraction of railway lines in the target area and enables the analysis of 
whether railway lines might affect the popularity in the apartment market. The rail-
way lines that run through the CBD area of Chiyoda and Chuo and the northern part 
of Minato, Ginza, and Chiyoda subway lines are evaluated as high, and Seibu Shin-
juku line, which runs the northern part of Shinjuku, and Yurikamome line, which 
runs harbor districts, are evaluated as low. Figure 4c is the estimated parameters of 
railway station dummy variables. Since this is the rest of the evaluation of railway 
stations without the evaluation of railway lines, it is hard to interpret.

Figure 4 indicates the estimated parameters of neighborhood dummy variables. 
A neighborhood is the minimum spatial unit in the analysis. The broad gray lines 
are the borders of the system of railway stations, and the neighborhood parameter 
represents the local differences in each system. Almost half of the parameters are 
estimated to be zero, and local differences are judged to be non-existent (Table 8). 
The analysis succeeds in selecting neighborhoods with substantial parameters from 
many among the candidates and reveals that apartment rents are locally homogene-
ous in most areas. However, many non-zero parameters are estimated, especially in 
Minato and Shibuya, the southwestern region of the target area. The results confirm 
that neighborhood-level local geographical segmentation occurs in these areas. It is 
confirmed that the fused-MCP can extract the local differences.

The shaded areas in the figure indicate the neighborhoods that have the same 
parameter values to the adjacent neighborhoods. By the regularization of the 

Fig. 6  Estimated parameters of neighborhood dummy variables by SCAD with fused conditions
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difference of parameters of adjacent neighborhoods, the combinations of neighbor-
hoods where the valuation is the same is extracted by the fused-MCP estimation. It 
is also confirmed that the fused-MCP is capable of extracting areas with local dif-
ferences without relying excessively on the preset spatial divisions by combining 
adjacent spatial units.

Figure 5 is the enlarged view of Fig. 4. Figure 5a shows the area around Azabu-
juban station in Minato. It consists of 14 neighborhoods. Five neighborhoods in the 
northwestern part have the same positive value; five neighborhoods, mainly in the 
middle, do not have non-zero parameters; and the rest of the four neighborhoods 
have different negative values. The large redevelopment site of Roppingi Hills, 
where offices, shopping mall, hotels, and high-rise residential towers were provided, 
was northwest of the system of stations; the redevelopment has correspondingly 
affected neighboring apartment rents along the path from the station. Figure  5b 
shows the area around Shibuya station in Shibuya. It consists of 15 neighborhoods. 
Four neighborhoods on the north side of station form a group with positive param-
eter values, and three and two neighborhoods on the south side form two groups 
with negative parameter values. This figure visualizes the fact that the rental apart-
ment market near Shibuya station is divided by north and south. The neighborhood 
with the highest parameter values of neighborhood dummy in this area is located 
the northwest of the station. It is the famous residential area of Shoto. These results 
confirmed that the local differences of apartment rent are clearly extracted in this 
analysis.

3.5  Summary

As mentioned above, the case study extracted local differences in the apartment 
market in central Tokyo. Although many local parameters were set in the model, 
the regularization of the parameters enables the detection of local areas where the 
pricing is different. Moreover, although the spatial division for the analysis is preset, 
the regularization of the differences of adjacent parameters enables the extraction of 
areas where the pricing is the same. In this case study, the model with hierarchical 
spatial divisions of municipalities, system of railway stations, and neighborhoods is 
estimated. The fused-MCP based analysis can set the model with flexibility. Thus, it 
is expected to be useful in other types of spatial analyses.

4  Conclusion

This study focused on the applicability of fused-MCP to the spatial analyses that 
detect local differences from spatial data. After introducing the variable selection 
methods (lasso and MCP), this study presented a case study to identify the geo-
graphical segmentation of the apartment rental market in central Tokyo.

In the case study, the rent model with many regional parameters to represent the 
difference in price formation by the municipality, the system of railway stations, and 



212 Japanese Journal of Statistics and Data Science (2020) 3:183–214

1 3

the neighborhood is constructed. Parameter estimation was performed by the fused-
MCP to extract substantial parameters and to search for common parameters in adja-
cent regions. It detected the hierarchical structure of the apartment rental market 
in which pricing is different by several levels of spatial divisions. The case study 
confirmed the applicability of the fused-MCP to spatial analysis that aims to search 
local differences.

There are several challenges to be solved to utilize fused-MCP. The most impor-
tant problem is the absence of an efficient estimation algorithm. The PLUS algo-
rithm can output a solution path of the MCP. However, it does not apply to the 
fused-MCP. This case study utilized the MM algorithm, but it only outputs a solu-
tion for each hyperparameter setting. Since the model used in the case study had 
four hyperparameters, it was impossible to set the optimum values. Another chal-
lenge is the criterion of model selection. This case study utilized AIC under the 
assumption that disturbances are independently and identically normally distributed, 
considering that the number of observations is much larger than that of parameters. 
However, it would be inappropriate when the number of observations is small. Infor-
mation criterion, such as EBIC (Chen and Chen 2008), should be tested. From the 
perspective of a spatial analyst, it would be better if the more flexible setting for the 
adjacent parameters is applied. If the spatial units are not contiguous but are located 
nearby, the parameters might be equal. The question of how to set the adjacency of 
parameters is difficult to answer.

Despite the challenges, sparse modeling, which includes lasso and MCP, is a 
promising analysis method for spatial data. As is introduced earlier, the fused-lasso 
is being utilized in spatial analysis, especially in the analyses to detect spatial clus-
ters of data on point events that focus on local differences. Sparse modeling is also 
useful in the regression analysis that focuses on local differences; however, few stud-
ies have utilized it in spatial analysis. We hope that this study would be helpful in 
the introduction of the methods.
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