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Abstract
We investigate the estimation methods of the multivariate non-stationary errors-in-
variables models when there are non-stationary trend components and the measure-
ment errors or noise components. We compare the maximum likelihood (ML) esti-
mation and the separating information maximum likelihood (SIML) estimation. The 
latter was proposed by Kunitomo and Sato (Trend, seasonality and economic time 
series: the nonstationary errors-in-variables models. MIMS-RBP-SDS-3, MIMS, 
Meiji University. http://www.mims.meiji​.ac.jp/, 2017) and Kunitomo et  al. (Sepa-
rating information maximum likelihood method for high-frequency financial data. 
Springer, Berlin, 2018). We have found that the Gaussian likelihood function can 
have non-concave shape in some cases and the ML method does work only when the 
Gaussianity of non-stationary and stationary components holds with some restric-
tions such as the signal–noise variance ratio in the parameter space. The SIML esti-
mation has the asymptotic robust properties in more general situations. We explore 
the finite sample and asymptotic properties of the ML and SIML methods for the 
non-stationary errors-in variables models.
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1  Introduction

There has been a vast amount of published research on the use of statistical time 
series analysis of macro-economic time series. One important feature of mac-
roeconomic time series, which may be different from the standard time series 
analysis, is the fact that the observed time series is an apparent mixture of non-
stationary components and stationary components. The second feature is that the 
measurement errors in economic time series often play important roles because 
macro-economic data are usually constructed from various sources including 
sample surveys in major official statistics although their statistical analysis often 
ignores measurement errors. There is the third important issue that the sample 
size of macro-economic data is rather small and we have 120, say, time series 
observations for each series when we have quarterly data over 30 years. The quar-
terly GDP series, for instance, are published from 1994 data to present by the 
cabinet office of Japan. Since the sample size is small, it is important to use an 
appropriate statistical procedure to extract information on trend and noise (or 
measurement error) components in a systematic way from data. Some of these 
aspects have been discussed by Morgenstern (1950), Granger and Newbold 
(1977), and Nerlove et  al. (1995) for instance. See https​://www.esri.cao.go.jp/
index​-e.html for the official macro-economic (GDP) data published by Cabinet 
Office of Japanese Government.

Although economists often take the transformation of the non-stationary time 
series such as log-transformation and/or differencing by the Box–Jenkins method 
(Box and Jenkins 1970), the standard assumption on statistical procedures after 
joint transformation of multiple time series data may not be valid when we have 
measurement errors. In this regard, Kunitomo and Sato (2017, 2019) [or Kuni-
tomo et  al. (2018)] developed a new method called the separating information 
maximum likelihood (SIML) estimation for the multivariate non-stationary 
errors-in-variables models. Earlier and related literature on the non-stationary 
economic time series analysis are Engle and Granger (1987) and Johansen (1995), 
which dealt with multivariate non-stationary and stationary time series and devel-
oped the notion of co-integration without measurement errors. The problem of 
our interest is related to their work, but it has different aspects and our focus is on 
the non-stationarity and measurement error in the non-stationary errors-in-varia-
bles models. Also in econometric literature the issue of identification of paramet-
ric models and the issue of estimation when the true parameters are around the 
boundary points have been discussed by Rothenberg (1971) and Andrews (1999). 
These works are potentially related to our problem in the non-stationary errors-
in-variable models, which would be an interesting future topic.

In statistics literature, on the other hand, the state space modeling and filtering 
for non-stationary time series has been developed by Akaike (1989) and Kitagawa 
(2010) among other similar attempts and there have been applications in many 
fields in control engineering and statistical seismology already reported. Their 
method may look different from the framework of standard time series econo-
metrics at the first glance, but the underlying statistical problem is essentially 

https://www.esri.cao.go.jp/index-e.html
https://www.esri.cao.go.jp/index-e.html
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the same because of the non-stationarity of time series and measurement errors. 
Our study can be regarded as an investigation of statistical inference problem of 
state space modeling, which is related to an earlier work by Chang et al. (2008), 
for instance. The problem of the ML estimation in our setting may be related to 
Anderson and Takemura (1986) in a different context.

In the statistical multivariate analysis, there is also some literature on the errors-
in-variables models as Anderson (1984, 2003) and Fuller (1987), but they consid-
ered the multivariate cases of independent observations and the underlying situation 
is different from ours.

The main purpose of this paper is to compare the SIML estimation and the maxi-
mum likelihood (ML) estimation, which are two different methods to estimate the 
multivariate non-stationary errors-in-variables models when there are non-station-
ary trends and noise components. We investigate the finite and large sample proper-
ties of two estimation methods. An important finding is the fact that the Gaussian 
likelihood function may have non-concave shape in some case of the non-stationary 
errors-in-variables models although the ML method works well when the Gaussi-
anities of non-stationary and stationary components hold with some restriction on 
the parameter space and under the assumption that the measurement errors are not 
small. When the measurement error is small in a sense and/or there are co-integrated 
relations among trends with the rank being smaller than the dimension of obser-
vations, there could be a serious problem in the ML estimation under the assump-
tion of Gaussian distributions (see Sect. 3.1 on the details of this issue). The SIML 
method, on the other hand, gives an alternative way to overcome the underlying dif-
ficulty in a non-parametric way. It has the asymptotic robust properties under gen-
eral conditions of moments for consistency and for asymptotic normality.

In Sect. 2 we present a general formulation of the non-stationary errors-in-vari-
ables models and explain two estimation methods, that is the SIML and ML meth-
ods in non-stationary time series. We also give simple examples to illustrate the 
importance of measurement error problem in non-stationary time series models and 
explain some motivations of the present study. In Sect. 3, as a simple example we 
use one-dimensional case with the random walk plus noise model and then we dis-
cuss a common (non-stationary) factor case as the two-dimensions errors-in-varia-
bles model. In Sect. 4 we investigate the Gaussian likelihood function and its shape. 
We give the consistency result of the ML estimation under Gaussianity, which may 
be new although it is not surprising. We also discuss the asymptotic properties and 
simulation results on the SIML method. Then in Sect. 5, we shall discuss possible 
extensions of our analysis and give concluding remarks in Sect. 6. Some mathemati-
cal derivations will be given in the Appendix.

2 � Non‑stationary errors‑in‑variables models

2.1 � The basic formulation and estimation methods

Let yji be the i-th observation of the j-th time series at i for i = 1,… , n; j = 1,… , p . 
We set �i = (y1i,… , ypi)

� be a p × 1 vector and �n = (��
i
) (= (yij)) be an n × p matrix 
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of observations and denote �0 as the initial p × 1 vector. We consider the situation 
when the underlying non-stationary trends �i (= (xji)) (i = 1,… , n) are not neces-
sarily the same as the observed time series and let ��

i
= (v1i,… , vpi) be the vector of 

noise components, which are independent of �i . Then we use the additive state space 
decomposition form as [see Akaike (1989) and Kitagawa (2010)]

where �i (i = 1,… , n) are a sequence of non-stationary trend components satisfying

with L�i = �i−1, � = 1 − L, E(�(x)

i
) = �, E(�(x)

i
�

(x)�

i
) = �x , and �i (i = 1,⋯ , n) are a 

sequence of (mutually) independent noise components with E(�i) = �, E(�i��i) = �v.
We assume that �(x)

i
 and �i are the sequence of i.i.d. random variables with �v 

being non-negative definite and finite, and the random variables �(x)

i
 and �i are 

mutually independent.
We consider the situation when ��i and �i (i = 1,… , n) are mutually independent 

and each of the component vectors are independently, identically, and normally dis-
tributed as Np(�,�x) and Np(�,�v), respectively. We use an n × p matrix �n = (��

i
) 

and consider the distribution of np × 1 random vector (��
1
,… , ��

n
)� . Given the initial 

condition �0, we have

where ��
n
= (1,… , 1) and

Then, given the initial condition �0 , the conditional maximum likelihood (ML) esti-
mator can be defined as the solution of maximizing the conditional log-likelihood 
function except a constant as

where

To develop the method of the SIML estimation [see Kunitomo and Sato (2017)], we 
use the Kn-transformation from �n to �n (= (��

k
)) by

where

(1)�i = �i + �i (i = 1,… , n),

(2)��i = (1 − L)�i = �
(x)

i

(3)vec(�n) ∼ Nn×p(�n ⋅ �
�
0
, �n ⊗�v + �n�

�
n
⊗�x),

(4)�n =

⎛
⎜⎜⎜⎜⎝

1 0 ⋯ 0 0

1 1 0 ⋯ 0

1 1 1 ⋯ 0

1 ⋯ 1 1 0

1 ⋯ 1 1 1

⎞
⎟⎟⎟⎟⎠
n×n

.

L∗
n
= log |�n ⊗�v + �n�

�
n
⊗�x|−1∕2

−
1

2
[vec(�n − �̄0)

�]�[�n ⊗�v + �n�
�
n
⊗�x]

−1[vec(�n − �̄0)
�],

(5)�̄0 = �n ⋅ �
�
0
.

(6)�n = �n(�n − �̄0), �n = �n�
−1
n
,
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and

Using the spectral decomposition �−1
n
�

�−1
n

= �n�n�
�
n
 and �n is a diagonal matrix 

with the k-th element dk = 2[1 − cos(�(
2k−1

2n+1
))] (k = 1,… , n) . Then the conditional 

likelihood function given the initial condition is proportional to

where

We use the transformation on the non-stationary time series and use the random var-
iables �k (k = 1,… , n) , which follows Np(�,�x + a∗

kn
�v) and the coefficients a∗

kn
 is a 

dense sample of 4 sin2(x) in (0,�∕2).1
The ML estimation of unknown parameters is defined as the maximization of (9) 

with respect to �v and �x . Since the coefficients a∗
kn
(k = 1,… , n) , the ML estimator 

is a complicated function of data and its computation is not a trivial task as we shall 
see in Sects. 3 and 4.

From the representation (9), it may be natural to use �k�′k to estimate a∗
kn
�v +�x 

since it is the variance–covariance matrix of �k . We notice that a∗
kn
→ 0 as n → ∞ 

for a fixed k. When k is small, a∗
kn

 is small and we can expect that k = kn depending 
n is still small when n is large. However, (1∕mn)

∑mn

k=1
a∗
kn

 is not small if mn is near 
to n, which suggests the condition mn∕n → 0 as n → ∞ . The separating information 
maximum likelihood (SIML) estimator of �̂x is defined by

(7)�−1
n

=

⎛
⎜⎜⎜⎜⎝

1 0 ⋯ 0 0

−1 1 0 ⋯ 0

0 − 1 1 0 ⋯

0 0 − 1 1 0

0 0 0 − 1 1

⎞
⎟⎟⎟⎟⎠
n×n

,

(8)�n = (p
(n)

jk
), p

(n)

jk
=

√
2

n +
1

2

cos
[

2�

2n + 1

(
k −

1

2

)(
j −

1

2

)]
.

(9)Ln =

n∑
k=1

log |a∗
kn
�v +�x|−1∕2 − 1

2

n∑
k=1

��
k
[a∗

kn
�v +�x]

−1�k,

(10)a∗
kn
(= dk) = 4 sin2

[
�

2

(
2k − 1

2n + 1

)]
(k = 1,… , n).

(11)�̂x,SIML =
1

mn

mn∑
k=1

�k�
�
k
.

1  We have used a∗
kn
, which is slightly different a

k
 in Kunitomo et al. (2018) and the latter corresponds 

to a
kn

= na
∗
kn

 . They have investigated the SIML estimation when the length of observation interval 
decreases in a fixed period as the high-frequency asymptotics.
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This estimator of the variance–covariance of non-stationary trends is trying to use 
the information on trends in the frequency domain, which corresponds to using only 
the trend parts without measurement errors from the time series observations. The 
interpretation of (11) from the frequency domain of non-stationary time series will 
be discussed in a general setting [see (42) and (43) in Sect. 5].

From our construction of the SIML estimation the essential features of estima-
tion do not much depend on the presence of noise terms when the noise terms are 
stationary. This feature was the main reason for developing the SIML method by 
Kunitomo and Sato (2017) and Kunitomo et al. (2018).

Let the quadratic variation of observed vectors �i (i = 1,… , n) be

where �0 is the initial vector. If we denote �̂y = (1∕n)��y(1), we need the condition 
�̂x,SIML ≤ �̂y in the sense of positive semi-definiteness.

For the SIML estimation �̂x.SIML, the number of terms mn should be dependent 
on n. In the representation of (11) we need the order requirement that mn = O([n�]) 
and 0 < 𝛼 < 1 , which is the first property of the macro-SIML estimation. There is 
a trade-off between the bias and the variances of the SIML estimator for �x . Kuni-
tomo and Sato (2017) have shown that when mn → ∞ as n → +∞ for the consist-
ency we need the condition 0 < 𝛼 < 1.0 while for the asymptotic normality we need 
the condition 0 < 𝛼 < 0.8 under the assumption that the parameter matrices �x > 0 
and �v > 0 are fixed (see Theorem  4.3 in Sect.  4). As an example, we may take 
� = 0.79.

2.2 � Non‑stationary time series and measurement errors

In this subsection using a simple example when p = 1 we shall illustrate the reason 
why the presence of noise term in the non-stationary time series, even if it is small, 
forces us to change the standard thinking on time series analysis.  

In traditional econometric analysis of time series, the non-stationarity of eco-
nomic times series has been often discussed, but there were not many discussions on 
the role of measurement errors [see Engle and Granger (1987) and Johansen (1995) 
for instance]. The standard arguments for the integrated processes have been to use 
the Brownian functionals to describe the behaviors of integrated processes when the 
sample size is large. As a typical example,2 we generate a set of mutually independ-
ent variables w(x)

i
(i = 1,… , n),which follows 

√
12(U(0, 1) − 0.5) and U(0,  1) fol-

lows the uniform distribution. Then we generate xi and yi satisfying xi = xi−1 + w
(x)

i
, 

and yi = xi + vi (i = 1,… , n) by adding the measurement errors vi , which are 
independent N(0,  1) random variables. By replicating 1000 times, the empirical 

(12)��y(1) =

n∑
i=1

(�i − �i−1)(�i − �i−1)
�,

2  We have followed a suggestion from a referee of JJSD on this example, which corresponds to the sim-
ple case in Sect. 3.1.
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distribution of [
∑n

i=1
yi]∕[�x

√
n3] (we have set �2

x
= E(w

(x)2

i
) = 1 and x0 = 0 ) can be 

approximated by the weak convergence to the Brownian functional

where B(s) is the Brownian motion on [0, 1] and it follows N(0, 1 / 3). Figure 1 illus-
trates the fact that this approximation is reasonable even when n = 30 . (The red curve 

(13)X(1) = ∫
1

0

B(s) ds,

Normal−Approximation
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Fig. 1   Normal approximation ( n = 30)
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Fig. 2   (a) (Left) Estimated variance ( n = 80, c = 2 ), (b) (right) estimated variance ( n = 80, c = 1∕2)
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shows N(0, 1 / 3).) However, as illustrated in Chapters 9 and 10 of Hayashi (2000), 
to make statistical inference on the unit roots and possible co-integrated vectors for 
instance, we need an estimate of the variance and covariances of innovation terms 
of integrated processes such as �2

x
 , which are generally unknown. There should be a 

careful analysis on the role of innovations, but the easiest way to estimate the vari-
ance of innovation term of the integrated processes and to use the normalized sum of 
squared differences of observed time series as 𝜎̂2

y
(= (1∕n)

∑n

i=2
(yi − yi−1)

2) although 
there can be more sophisticated methods such as the maximum likelihood method 
in more general situations. As a simple illustration, we generate a set of observa-
tions yi (i = 1,… , n) by adding the measurement errors vi which are independent 
N(0, 0.5) random variables to the I(1) process xi , and thus yi = xi + vi (i = 1,… , n) . 
Figure 2a (case 2-1) illustrates the estimated variance of innovation w(x)

i
(= xi − xi−1) 

by this method, where the true parameter value (as red line) is 1. Although the vari-
ance of innovation of the integrated process is twice of the variance of measure-
ment errors and the measurement errors is small in a sense, the standard estimated 
value has a significant bias and it is distributed around 2 when n = 80 . This case 
corresponds to c = 2 = �2

x
∕�2

v
 . We also give Figs. 2b, 3a, b for case 2-2 ( c = 1∕2 ), 

case 2-3 ( c = 8 ) and case 2-4 ( c = 1∕8 ) for a comparison. Case 2-1 and case 2-3 
correspond to the small noise cases while case 2-2 and case 2-4 correspond to the 
large noise cases. In latter cases the bias of the estimated variance �2

x
 becomes large 

as we can expect.
The point here is the fact that even when we have small (Gaussian) noise we 

may have misleading estimation on the variance of system variables. These exam-
ples may illustrate the importance of our analysis of measurement errors in non-
stationary time series. We usually do not have much information on the magni-
tude of c, which is the ratio of the signal variance over the noise variance, and the 
distribution of measurement errors in advance when we observe non-stationary 
data. Hence it is important to use the statistical method which does not depend on 
the value of c and the distribution of noise for practical purpose.
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3 � Simple cases

3.1 � An illustrative example

To see the main problem of our interest in a clear way, we consider the simplest case 
when p = 1 . Let yi be the ith observation of time series for i = 1,… , n and �n = (yi) 
be an n × 1 vector of observations ( y0 is the initial observation). We consider the 
situation when the underlying non-stationary trends xi ( i = 1,… , n ) satisfies

where w(x)

i
 are the independent random variables followed by N(0, �2

x
) and x0 is the 

initial variable. Let vi (measurement error) be the sequence of i.i.d. random vari-
ables followed by N(0, �2

v
) , which are independent of xi (i = 1,… , n) . For the addi-

tive model

the log-likelihood function is proportional to

where

Using the variance ratio c = �2
x
∕�2

v
(≥ 0),3 we rewrite −(1∕2)Ln as

Since zk ∼ N(0, a∗
kn
�2
v
+ �2

x
) (k = 1,… , n) , the maximum likelihood estimator of �2

v
 

can be represented as

and the concentrated (normalized) log-likelihood function in this simple case is pro-
portional to −(1∕2) times

(14)xi = xi−1 + w
(x)

i
,

(15)yi = xi + vi (i = 1,… , n),

(16)Ln =

n∑
k=1

log |a∗
kn
�2
v
+ �2

x
|−1∕2 − 1

2

n∑
k=1

z2
k

a∗
kn
�2
v
+ �2

x

,

(17)a∗
kn
= 4 sin2

[
�

2

(
2k − 1

2n + 1

)]
(k = 1,… , n).

(18)L1n =

n∑
k=1

[log �2
v
+ log(a∗

kn
+ c)] +

1

�2
v

n∑
k=1

z2
k

a∗
kn
+ c

.

(19)𝜎̂2
v.ML

=
1

n

n∑
k=1

z2
k

a∗
kn
+ c

(20)L1n(c) = log

[
1

n

n∑
k=1

z2
k

a∗
kn
+ c

]
+

1

n

n∑
k=1

log[a∗
kn
+ c] + 1.

3  The present notation c corresponds to c−1∕2 in Akaike (1989).
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Then it may not be straight-forward to obtain the maximum likelihood estimator of 
c because the likelihood function may not be a simple function and the likelihood 
equation �L1n(c)

�c
= 0 is a polynomial function of order 2n − 3 , and as consequence 

there are local maximum points with any finite sample data.
As a typical situation we draw the likelihood function with respect to the parame-

ter c and the result of a small simulation in Fig. 4a when the true values are �2
v
= 0.4 

and �2
x
= 0.2 (case  3-1). We also show the likelihood function and the result 

of case when the true values are �2
v
= 0.1 and �2

x
= 0.8 (case  3-2) as Fig.  4b. To 

make a comparison, we give case 3-3 ( �2
v
= 0.2, �2

x
= 0.4 ) as Fig. 5a and case 3-4 

( �2
v
= 0.8, �2

x
= 0.1 as Fig. 5b. The shape of the likelihood function is reasonable in 

case 3.1 and case 3.4 while it is not so in case 3.2 and case 3.3. In the latter cases, 
the likelihood function is rather flat around the maximum point, which means that it 
does not have much information in a sense.

Case 3-1 and case 3-4 are the standard ones and we can expect that the ML esti-
mation under the Gaussian assumption gives a reasonable result. However, case 3-2 
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and case 3.3 illustrate some problem on the ML estimation. The likelihood function 
looks flat over a wide range of the parameter space of c and it causes some com-
putation difficulty to find its maximum. We could interpret the reason why Akaike 
(1989) suggested that we should impose the restriction 0 < c ≤ cu for a pre-specified 
cu in our setting because of the usefulness of the resulting statistical models of time 
series filtering. Kitagawa (2010) has developed DECOMP program,4 which has a 
similar restriction on the parameter space. We sometimes obtain the estimated value 
quite near 1.0 for c when we analyze macro-economic data such as real (quarterly) 
GDP in Japan.

One of interesting aspects of the present problem is the fact the ML method does 
not necessarily give a satisfactory solution meaning a numerically stable solution 
and it is the case when p = 1, �2

v
= 0.1 and �2

x
= 0.8 . Since the likelihood function 

is near flat over a wide range of the parameter space, it is often difficult to find the 
maximum in a stable way. In fact, given the finite sample, there is a positive prob-
ability of zero when the true value of �2

v
 is small, but not zero. This can be easily 

shown because the normalized second-order derivative of the log-likelihood func-
tion can be approximated as some negative number when � (= 1∕c) → 0 and the 
zero point is a local maximum. As an illustration, we give the histogram of the ML 
estimation with the restriction 0 < c ≤ 50 for the second case as Fig. 6 with 500 rep-
lications. There is a difficulty to find the global maximum of likelihood function and 
there is some probability at the boundary point of c = 50.
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Fig. 6   Histogram of ML ( n = 100, c = 8)

4  It is available freely at http://ssnt.ism.ac.jp/inets​/inets​_eng.html (Institute of Statistical Mathematics, 
Tokyo).

http://ssnt.ism.ac.jp/inets/inets_eng.html
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On the other hand, it is certainly possible to approximate the log-likelihood func-
tion (16) as

We set the requirement on mn∕n = o(1) because a∗
kn
= o(1) when k = 1,… ,mn and 

mn, n → ∞ . Then the SIML estimator �2
x
 (we call the macro-SIML method) can be 

given by

Since the information on the trend term is separated from the noise term, we expect 
that the resulting macro-SIML estimation has a robust property.

We note that the macro-SIML estimation of �2
v
 is not the same as the original 

(finance) SIML method developed by Kunitomo et al. (2018) because a∗
kn
= O(1) for 

k = n − mn + 1,… , n . One way to estimate �2
v
 is to use the fact that

It is clear that a∗
kn
⟶ 0 when kn∕n → 0 (n → ∞) and a∗

kn
→ 4 (kn∕n → 1, n → ∞) . 

Then a possible SIML estimator �2
v
 can be given by

with the restriction of non-negativity.
For the estimation problem of high-frequency financial data, Kunitomo et  al. 

(2018) have suggested to use 𝜎̂2
v.SIML

=
1

ln

∑n

k=n−ln
a−1
kn
z2
k
, where akn = na∗

kn
 and 

ln = o(n) for the high-frequency asymptotics. However, in the present case of Macro-
SIML with a∗

kn
 it is straight-forward to show that a∗

n−l+1,n
→ 4 as n → ∞ for fixed l, 

the macro-SIML estimator is given by

with the restriction of non-negativity.

3.2 � A non‑stationary common trend case

The difficulty in the ML estimation becomes more serious in the multivariate non-
stationary errors-in-variables models. We illustrate the problem of multivariate 

(21)LSI
n
=

mn∑
k=1

log |a∗
kn
�2
v
+ �2

x
|−1∕2 − 1

2

mn∑
k=1

z2
k

a∗
kn
�2
v
+ �2

x

.

(22)𝜎̂2
x.SIML

=
1

mn

mn∑
k=1

z2
k
,

(23)E

[
1

n

n∑
k=1

z2
k

]
= �2

x
+

(
1

n

n∑
k=1

a∗
kn

)
�2
v
⟶ �2

x
+ 2�2

v
(n → ∞).

(24)𝜎̂2
v.SIML

(1) =
1

2

[
1

n

n∑
k=1

z2
k
− 𝜎̂2

x.SIML

]
,

(25)𝜎̂2
v.SIML

(2) =
1

ln

n∑
k=n−ln+1

a∗−1
kn

z2
k
−

1

4
𝜎̂2
x.SIML
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aspects in a simple, but important formulation. It can be regarded as a simple exten-
sion of the so-called reduced rank regression.

Let �i be the ith observation of p-dimensional time series ( i = 1,… , n ), 
�i = �i + �i and �n = (��

i
) be an n × p (p > 1) matrix of observation. We assume that 

the vectors �i satisfy

and �(x)

i
= ��∗

i
 , � is a (non-zero) p × 1 vector, �∗

i
 is a sequence of i.i.d. (one-dimen-

sional) random variables5 following N(0, �2
�
) and �i are i.i.d. (p-dimensional) ran-

dom variables following Np(�,�v) with the variance–covariance (non-singular) 
matrix �v . We set � = ��� and � = a∗

kn
�v , and then apply the matrix formulas such 

that for a positive definite � and non-zero vector �

and

for �x = ���.
The likelihood function Ln is proportional to (−1∕2) times

where we denote

We need a normalization for vector � and one possibility is to take �� = (1,−��
2
) , 

but there can be other possibility.

(26)�i = �i−1 + �
(x)

i
,

(27)|� + ���| = |�|[1 + ���−1�]

(28)[� + ���]−1 = �−1 − �−1�[1 + ���−1�]−1���−1

L1n =

n∑
k=1

[
log |a∗

kn
�v| + log(1 + a∗−1

kn
���−1

v
�)

+ a∗−1
kn

��
k
�−1

v
�k −

a∗−1
kn

(��
k
�−1

v
�)2

a∗
kn
+ ���−1

v
�

]

=

n∑
k=1

log |a∗
kn
�v| +

n∑
k=1

a∗−1
kn

��
k
�−1

v
�k

+

n∑
k=1

[
log(1 + a∗−1

kn
c) −

a∗−1
kn

(��
k
�−1

v
�)2

a∗
kn
+ c

]
,

(29)c = �2
�
���−1

v
�.

5  The notation �∗
i
 is different from �

i
 and �∗

i
= ��

i
(i = 2,… , n) in Kunitomo and Sato (2017).
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Remark 3.1  When p = 2, we take �� = (1,−�2) . and ��� = 0 with a normalization. 
Then we can interpret ���i = ���i (= ui) (the rank of � is 1) as the structural equa-
tion in time series econometrics. It is because �i is an I(1) vector and while ���i = ui 
is an I(0) variable, where d in I(d) ( d = 0, 1 ) is the integration order of time series.

As an intuitive way to simplify the present problem of statistical relationship 
among non-stationary variables and to obtain the solution is to use the moment con-
dition that

and

In the present case, the rank of matrix �x is one while the matrix �v has a full rank. 
When p = 2 in particular, we can find a vector � uniquely such that �x� = 0 with a 
normalization (see Sect. 5.2 for more general cases).

To estimate the structural equation vector � , then, it may be natural to consider 
the characteristic equation

and

or

where �n = (��
k
) = �n�

−1
n
(�n − �n�̄

�
0
) as (6), � is the (scalar) eigenvalue, and �̂x.SIML 

and �̂v.SIML are the SIML estimators of �x and �v , respectively. We require the 
condition that these estimators of variance–covariance matrices are non-negative 
definite.

Since the rank of �x is degenerated and it is one in the present case, it may be 
natural to use the smaller eigenvalue, say, �1 . Then the resulting characteristic vec-
tor �̂SIML, is called the SIML estimator of � because of (30). Since the estimated 
variance–covariance matrix of �v should be positive definite, we may have instabil-
ity in some cases if we use (32) or (33) without any restriction as the non-negative 
definiteness.

E[�k�
�
k
] = �x + o(1) for k = 1,… ,mn

E[a∗−1
kn

�k�
�
k
] = �v +

1

4
�x + o(1) for k = n + 1 − mn,… , n.

(30)[�̂x.SIML − 𝜆�̂v.SIML]�̂SIML = �,

(31)𝛴̂x.SIML =
1

mn

mn∑
k=1

�k�
�
k
,

(32)𝛴̂v.SIML(1) =
1

2

[
1

n

n∑
k=1

�k�
�
k
− 𝛴̂x.SIML

]
,

(33)𝛴̂v.SIML(2) =
1

ln

n∑
k=n+1−ln

a∗−1
kn

�k�
�
k
−

1

4
𝛴̂x.SIML,
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A simplified (consistent) estimation may be given by

that is,

We can solve as

where �̂22x.SIML and �̂21x.SIML are the (2, 2)-element and (2, 1)-element of �̂x.SIML , 
respectively. ( �̂22x.SIML is positive with probability one.)

It is the least squares method for the transformed variables �k (k = 1,… ,m) and 
hence we call the separating information least squares (SILS) estimator.

Remark 3.2  We note that there were extensive discussions on alternative estimation 
methods including the similar form as the SIML and the SISL estimators for the 
errors-in-variables models and the single structural equation econometric models for 
independent observations. Some improvements on the finite sample properties may 
be possible. See Anderson (1984), Anderson et al. (1986), and Fuller (1987).

4 � Gaussian likelihood function and estimation methods

It may be natural to apply the general parametric principle of the maximum likeli-
hood (ML) method. One of interesting aspects of the present problem is the fact the 
ML method does not necessarily give a satisfactory solution.

(34)�̂x.SIML × �̂SIL = �,

(35)�̂x.SIML ×

[
1

−�̂2.SIL

]
= �.

(36)�̂2.SIL = �̂
−1

22x.SIML
�̂21x.SIML,

Fig. 7   Likelihood function of � 
( n = 1000)
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As a two-dimensions example, we use the example in Sect. 3.2 and set the true 
parameter values as �2

�
= 0.4, � = 1.0 and

Then we generate a set of simulated observations and we have drawn the Gauss-
ian likelihood functions of � in Figs. 7 and 8 when n = 1000, given the true values 
for other parameters. It is possible to attain the maximum point of the likelihood 

�v =

(
0.45 0.23

0.23 0.4

)
, �x = �2

�
���, � =

(
1

−�

)
.

Fig. 8   Likelihood function of � 
( n = 1000)
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Fig. 9   Wrong likelihood function of � ( n = 1000)
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function locally as shown in Fig. 7. Figure 8 is the same figure and suggests that 
there is a global maximization problem because we need the right starting point for 
the maximization. We have investigated the likelihood function in different cases 
and found that the likelihood function could have some non-concave forms in some 
cases as illustrated by Fig.  8. We found that the Gaussian likelihood function is 
nearly flat with respect to the correlation coefficient parameter and the maximization 
may be difficult with respect to correlation of the noise terms. These are some of 
important consequences in the non-stationary errors-in-variables models. 

It is important to see what happens if the Gaussian assumption is not true and 
as an illustration we have drawn one wrong likelihood function in Fig. 9 on this 
problem. We generated the random variables followed by the uniform distribution 
on [−2,+2] (i.e., �(x)

i
= (w

(x)

ji
) ), the distribution of �i is normal and the correlation 

coefficient � is 0.3. As Fig. 9 ( � , which is the correlation coefficient among meas-
urement errors �i ) suggests, the ML estimation of the variance-covariance matrix 
of trend components crucially depends on the assumption of Gaussianity as we 
had expected. Hence we have a risk to use the ML computation to investigate the 
relationships among hidden trend variables unless we have the strong support for 
the Gaussianity of data.

Now we investigate the asymptotic properties of (−1)× the log-likelihood 
function and the estimation methods (the ML and SIML estimators) when 
�x = ��� (� ≠ �) (i.e., the rank of �x is 1) and p ≥ 2 . We normalize the Gaussian 
log-likelihood function by −(1∕n) and rewrite

where �v(�0) and �(�0) are �v and �, respectively, evaluated at the true parameter 
values.

We prepare the next lemma.

(37)

L∗
1n

=
1

n

n∑
k=1

|a∗
kn
�v|

+
1

n

n∑
k=1

log(1 + a∗−1
kn

c)

+
1

n

n∑
k=1

a∗−1
kn

��

[
�−1

v

(
�v −

1

a∗
kn
+ c

���
)
�−1

v
(�k�

�
k

−(a∗
kn
�v(�0) + �(�0)�(�0)

�))
]

+
1

n

n∑
k=1

a∗−1
kn

��

[
�−1

v

(
�v −

1

a∗
kn
+ c

���
)
�−1

v
(a∗

kn
�v(�0) + �(�0)�(�0)

�)

]

=
1

n

n∑
k=1

|a∗
kn
�v| + 1

n

n∑
k=1

log(1 + a∗−1
kn

c) + L∗
12n

+ L∗
13n

(say),
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Lemma 4.1  Let a p × p random vector �k follows Np(�,�) . Then for any p × p matri-
ces �k,

Using this lemma, it is straight-forward to see that as n ⟶ ∞ the third term con-
verges to

Then we can establish the next result on the ML estimation by evaluating the 
remaining terms of L∗

1n
 as in the Appendix. Although we expect that the ML estima-

tion under the Gaussian assumption has good asymptotic properties, we could not 
find any proof in the present setting and we have given it in the Appendix.

Theorem 4.2  For p ≥ 2 and the rank of �x being 1, we set �x = ��� in (1) and (2). 
Assume that �i (i = 1,… , n) are the sequence of i.i.d. random vectors and �v is a 
positive definite matrix. Then under the assumption of Gaussian distributions of �i 
and �(x)

i
 , the maximum likelihood estimator of � and �v are consistent as n ⟶ ∞.

Remark 4.1  It should be noted that in time series econometrics it has been known 
that coefficient parameter vector � can be estimated using the standard regression 
method if the observed variables are co-integrated. Johansen (1995) had developed 
the ML method without any noise term and investigated the estimation and infer-
ence of the co-integrating vectors.

We should mention to the fact that the SIML estimator does have not only con-
sistency as well as the asymptotic normality under the standard regularity conditions 
such as the 4-th order moments without the Gaussian assumption.

Theorem  4.3  (Kunitomo and Sato 2017) For p ≥ 1 Assume the non-stationary 
errors-in-variables model given by (1) and (2) with E[v4

ji
] < +∞ and E[w(x)4

ji
] < +∞ 

for �(x)

i
= (w

(x)

ji
) ( j = 1,… , p;i = 1,… , n ). We set mn = [n𝛼] (0 < 𝛼 < 1) . Then, the 

SIML estimator of �x is consistent for 0 < 𝛼 < 1.0 and asymptotically normal for 
0 < 𝛼 < 0.8 as mn ⟶ ∞ ( n ⟶ ∞).

We omit the proof because it is parallel to the one given in Chapter 5 of Kuni-
tomo et al. (2018) and the detail is given in Kunitomo and Sato (2017).

There has not been any finite sample result on the estimation methods for the 
non-stationary time series models with errors-in-variables. Since there are many 
situations with macro-economic variables that we observe the non-stationarity and 
measurement errors, it is worthwhile to investigate the related issues using simula-
tions. As we have seen in Sect. 3 the ML estimator has finite sample instability and 
we only report the finite sample properties of the SIML estimation in this section.

We have set �2
�
= 1, �2

v
= 0.5, 2 or 4, �2 = 1.5 , where we summarize our setting 

of simulations as

(38)E[(tr(�k�k�
�
k
))2] = [tr(�k�)]2 + 2tr(�k��k�).

(39)L∗
12n

p
⟶0.
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(The parametrization is slightly different from Figs. 7, 8, 9.) We took the cases when 
n = 80 or 400 and mn = [n�] with � = 0.6 or 0.7, and the number of Monte Carlo 
repetition is 1500 in each case. From our simulations we summarize mail results 
as Table 1. In Table 1 the number inside the parentheses is the standard deviation 
of estimators calculated by our simulations. We found that the SIML estimator of 
trend variance–covariance estimates �x.ij (i, j = 1, 2) have reasonable finite sample 
properties. We also give the SIML estimator of noise variance–covariance estimates 
�v.ij (i, j = 1, 2) , which is based on (22) are reasonable. The SILS estimate of �2 is 
biased a little in comparison with the SIML estimates, but the former has smaller 
sample variance than the latter.

�x =

(
�x,11 �x,12

�x,12 �x,22

)
= �2

�

(
�2
1

)(
�2, 1

)
,

�v =

(
�v,11 �v,12

�v,12 �v,22

)
.

Table 1   Finite sample properties of SIML

�2

v
� n �

x,11 �
x,12 �

x,22 �
v,11(1) �

v,12(1) �
v,22(1) �2.SIL �2.SIML

0.5 0.6 80 2.263 1.475 1.038 0.495 0.010 0.499 1.420 1.528
(0.904) (0.602) (0.415) (0.445) (0.305) (0.318) (0.114) (0.178)

400 2.239 1.484 1.006 0.512 0.009 0.501 1.475 1.502
(0.542) (0.362) (0.244) (0.283) (0.185) (0.186) (0.038) (0.038)

0.7 80 2.294 1.454 1.086 0.521 0.030 0.496 1.339 1.554
(0.706) (0.469) (0.337) (0.386) (0.250) (0.251) (0.131) (0.269)

400 2.296 1.499 1.044 0.498 0.007 0.494 1.436 1.502
(0.393) (0.263) (0.182) (0.214) (0.137) (0.136) (0.047) (0.054)

2 0.6 80 2.378 1.438 1.163 1.992 0.006 1.922 1.233 1.630
(0.948) (0.617) (0.455) (1.020) (0.699) (0.852) (0.231) (0.810)

400 2.318 1.500 1.060 1.981 0.006 1.991 1.415 1.504
(0.534) (0.352) (0.245) (0.615) (0.411) (0.535) (0.077) (0.082)

0.7 80 2.629 1.452 1.438 1.943 0.032 1.944 1.017 1.701
(0.833) (0.543) (0.471) (0.816) (0.570) (0.709) (0.230) (0.901)

400 2.410 1.479 1.166 1.975 0.007 1.946 1.267 1.514
(0.534) (0.440) (0.287) (0.465) (0.309) (0.407) (0.093) (0.123)

4 0.6 80 2.639 1.469 1.384 3.927 − 0.010 3.990 1.072 1.702
(1.040) (0.669) (0.547) (1.837) (1.214) (1.670) (0.296) (1.042)

400 2.377 1.503 1.127 3.933 − 0.008 3.965 1.334 1.514
(0.558) (0.368) (0.267) (1.099) (0.727) (1.025) (0.105) (0.132)

0.7 80 3.118 1.457 1.885 3.777 0.065 3.874 0.787 1.846
(1.005) (0.636) (0.630) (1.427) (0.963) (1.311) (0.274) (1.452)

400 2.601 1.483 1.357 3.937 0.010 3.908 1.095 1.519
(0.451) (0.298) (0.249) (0.806) (0.550) (0.727) (0.119) (0.197)
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We have done many simulations, but the results are similar with Table 1 in the pre-
sent formulation. There are several general findings, which are summarized as follows. 
First, on the effects of sample sizes the performance of the estimators of the SIML 
estimation, it becomes better as the sample size increases as we had expected. Second, 
when the variances of noises are small, both the SIL estimator and the SIML estima-
tor give reasonable estimates on the coefficient parameter, the former is slightly biased 
toward zero while the latter has some correction of bias. The variability of the SIML 
estimate in terms of simulation variance is slightly larger than that of the SIL estimate. 
Third, when the variances of noises are not small, the SILS estimator has a significant 
bias.

To summarize our simulations, the finite sample performance of the SIML estima-
tion gives reasonable performances as the asymptotic theory has suggested as in the 
previous sections.

5 � Extensions

There can be several extensions of the problem we have been investigating. We discuss 
three of them rather briefly.

5.1 � On autocorrelations of trend term

The main statistical problem of the time series decomposition models in Kunitomo 
and Sato (2017) was the estimation of non-stationary trend components and seasonal 
components. The results do not much depend on the specification of trend components 
with measurement errors. When there are autocorrelations in the trend terms in (2), the 
analysis of frequency domain on the underlying errors-in-variables models may give a 
new insight on the issue.

When the vector sequence of random vectors �(x)

i
(i = 2,… , n) in (2) follows the 

stationary stochastic process, we write

where �(x)

0
= �p , �

(x)

j
(j ≥ 1) are absolutely convergent coefficient matrices and 

�
(x)

j
(j ≥ 1) are the sequence of i.i.d. vectors with E[�(x)

j
] = � and E[�(x)

j
�
(x)�

j
] = �x . 

(We use ‖�(x)

j
‖ = maxk,l=1,…,p �c(x)j

(k, l)� for c(x)
j
(k, l) is the (k, l)-th element of �j and ∑∞

j=0
‖�j‖ < +∞.)

Then we can represent the spectral density p × p matrix of ��i as

(40)�
(x)

i
=

∞∑
j=0

�
(x)

j
�
(x)

i−j
,

(41)f�x(�) =
1

�

(
∞∑
j=0

�
(x)

j
e2i�j

)
�x

(
∞∑
j=0

�
(x)�

j
e−2i�j

) (
−
�

2
≤ � ≤ �

2

)
,
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where i2 = −1 , � is the frequency, and �x is the variance–covariance matrix of �(x)
j

 
(see Chapter 7 of Anderson (1971) for instance).

Then the p × p spectral density matrix of the transformed vector process 
��i (= �i − �i−1) can be also represented as

Since the transformed random vectors zk (k = 1,… , n) correspond to the Fourier 
transformed vectors of ��i (i = 1,… , n) except the initial condition �0, it is pos-
sible to estimate the spectral density matrix f�x(�) at the zero-frequency from the 
sequence of observations of �k (k = 1,… , n) and we write

We denote the components of �x = (�x.ij) (i, j = 1, 2) and we have the same form of 
SIML estimate in (11) except the fact that the estimated parameter is �x instead of 
�x . Then the asymptotic results stated in Theorem 4.3 hold when we have (1), (2), 
and (40) with mild regularity conditions using straight-forward, but lengthy argu-
ments. It is because the SIML estimation can be regarded a kernel estimation of the 
spectral density matrix at zero frequency.

5.2 � Reduced rank condition

For the multivariate non-stationary (economic) time series, there are possibilities of 
co-integration in trends. In our framework, it may be interesting to consider the gen-
eral case of reduced rank cases when

where we can represent �x = ��� and � is a p × qx matrix (its rank is qx).
Then the example in Sect.  3.2 corresponds to the case when qx = 1 < p and 

p ≥ 2.

In the more general cases, however, there is a parametrization problem for 
the p × p matrix �x, whose rank is qx (1 ≤ qx < p, p ≥ 2) . Then we can take 
a p × rx ( rx = p − qx ) matrix � such that ��� = � and a normalization such 
as ���−1

v
� = (diag cii) for instance. The algebra of Sect.  3.2 can be extended 

by using the matrix formulae such that for a positive definite matrix � , a p × qx 
matrix � (the rank is qx ) and a p × rx matrix � (the rank is rx ), we have �x = ��� , 
|� + ���| = |�||�qx + ���−1�| and

Hence we can use the characteristic vectors with the rx smaller characteristic roots of 
the equation [which is similar to (30)].

The special case when qx = p − 1 has attracted special attention among 
econometricians or economists because there exists a unique vector � such that 
�x� = � with a normalization. It has been called the single structural equation in 

(42)f�y(�) = f�x(�) +
1

�
(1 − e2i�)�v(1 − e−2i�).

(43)�x = �f�x(0) = �f�y(0).

(44)rank[�x] = qx, 1 ≤ qx < p,

(45)[� + ���]−1 = �−1 − �−1�[�qx + ���−1�]−1���−1.
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traditional econometrics or the co-integrated relation in time series econometrics 
and we can extend the developments of Sect. 3.2. When p > 2 and 0 < qx < p − 1 , 
there are rx (= p − qx) co-integrated vectors satisfying ��� = � and then there is 
an identification problem on the vectors consisting of �.

Remark 5.1  The problem of reduced rank condition was a central issue in Anderson 
(1984) for the case of independent observations in statistical multivariate analysis. 
For the non-stationary time series without measurement-errors, Engle and Granger 
(1987), and Johansen (1995) have developed the statistical inference and they called 
the resulting equations from the non-stationary multiple time series as co-integrated 
relations. It is possible to develop the testing procedure of the rank condition for hid-
den non-stationary components.

5.3 � Higher order integrated processes

In some cases the second-order (or higher order) differencing may be often appro-
priate for modelling economic time series. Although the likelihood function can 
be complicated in general, we can develop the SIML estimation when p ≥ 1 and 
d = 2, where

E[�
(x)

i
] = �, and E[�(x)

i
�
(x)�

i
] = �x.

We use the �n-transformation that from the observation matrix �n to 
�(2)
n

(= (�
(2)�

k
)) by

Then the separating information maximum likelihood (SIML) estimator of �̂x in this 
case can be defined by

We prepare the next lemma.

Lemma 5.1  Let

Then for i, i� = 1,… ,mn , we have

(46)�d�i = �
(x)

i
,

(47)�(2)
n

=
(
�
(2)�

k

)
= �n

(
�n − �̄0

)
, �n = �n�

−2
n
.

(48)
�̂x,SIML =

1

mn

mn∑
k=1

�
(2)

k
�
(2)�

k
.

(49)�n = (b
(2)

ij
) = �n�

−2
n
.

(50)
n∑
j=1

b
(2)

ij
b
(2)

i�,j
= �(i, i�)

[
2 sin

(
�

2

2i − 1

2n + 1

)]4
+ O

(
1

n

)
.



95

1 3

Japanese Journal of Statistics and Data Science (2020) 3:73–101	

Using the above lemma, it is straight-forward to obtain the next result for the case 
of d ≥ 1 . We omit the proof because it is essentially the same to the case when d = 1 
except Lemma 5.1. It is clear that the result holds for a positive integer d.

Theorem  5.2  Assume p ≥ 1, d = 2 and mn∕n ⟶ 0 as n ⟶ ∞ , where 
mn = [n𝛼] (0 < 𝛼 < 1) . Under the assumption of existence of fourth order moments, 
the SIML estimator of �x is consistent with 0 < 𝛼 < 1 and asymptotically normal 
with 0 < 𝛼 < 0.8 as n ⟶ ∞.

It should be important to note that the diagonal elements a∗
kn
(k = 1,… , n) should 

be modified to

in the present case and we need the corresponding bias correction for estimating the 
variance–covariance matrix �v.

Remark 5.2  Akaike (1989) and Kitagawa (2010) have proposed to use the ML esti-
mation with some restriction for the filtering problem of the same models when 
d ≥ 1 . The SIML estimation would be a useful tool for the state space modeling of 
non-stationary multivariate time series because it does not have any computational 
problem without any restriction and it has an asymptotic robustness. The SIML 
method may give reasonable estimates not only for the coefficients parameters, but 
also the variance-covariance matrices even if we do not know d = 1, 2 by taking mn 
appropriately.

6 � Concluding remarks

In this study, we introduced the non-stationary errors-in-variables models. We 
first illustrated the reason why the presence of noise term in the non-stationary 
time series, even if it was small, forces to change the standard way of thinking 
in time series analysis. Then, we discussed the finite sample and large sample 
properties of the ML and SIML estimation methods for the non-stationary errors-
in-variables models when there are non-stationary trends and noise components 
(or the measurement errors). We have found that the Gaussian likelihood function 
shows non-concave shape in some cases and the ML method does work when 
the Gaussianities of non-stationary and stationary components hold with some 
restriction such as the signal–noise variance ratio in the parameter space. The 
SIML estimation has the asymptotic robust properties under general conditions 
of existence of fourth-order moments for consistency and asymptotic normality. 
We have investigated the conditions for the asymptotic properties of the ML and 
SIML estimations as well as some simulations. The SIML method gives reason-
able estimates for the coefficients parameters when the random variables do not 
necessarily follow the Gaussian distribution and we do not have much knowledge 

(51)a
(2)

kn
=
[
2 sin

�

2n + 1

(
k −

1

2

)]4
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on the value of variance ratio c by taking mn appropriately. Since we usually do 
not have information on the magnitude of the signal–noise variance ratio and the 
precise distribution of noises in advance when we observe non-stationary data, it 
is important to use the statistical method which does not depend on these condi-
tions for practical purpose.

There are several possible extensions and some discussions are given in 
Sects.  3 and 5. It may be interesting to see if the results reported in this paper 
would be valid when there are non-stationary seasonal components. There can 
be many applications of the methods we have discussed because many econo-
mists are interested in macro-economic data and their relations using seasonally 
adjusted data. Another issue may be that some econometricians have relied on the 
large sample asymptotic theory and used the approximations based on Brownian 
motions, which are the limits of random walks. Although there are some proce-
dures based on Quadratic Variation [see (12)] of the observed data to estimate 
the variance–covariances of innovations and the long-run variance–covariances, 
there is a fundamental problem as illustrated by examples in Sect. 2.2.

If we ignore the presence of noise components and/or measurement compo-
nents, there could be serious problems. For instance, the actual sample size of 
macro-economic data is usually not large and often we have measurement errors. 
In such situations we should be careful to use such asymptotic theory and we 
need to investigate the finite sample properties of alternative estimation methods 
and their improvements. The precise consequences of these effects are currently 
under investigation and some progress on the filtering and smoothing problem of 
noisy non-stationary multivariate time series has been reported in Kunitomo and 
Sato (2019).
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Appendix: Mathematical derivations

In this appendix, we give some details of the derivations omitted in the previous 
sections.

Proof of Lemma 4.1  When we have �k = (zik) ∼ Np(�,�), we can use the relation

(A.52)E[zikzjkzi�kzj�k] = qijqi�j� + qii�qjj� + qij�qi�j,

http://creativecommons.org/licenses/by/4.0/


97

1 3

Japanese Journal of Statistics and Data Science (2020) 3:73–101	

where � = (qij) . Then it is straight-forward to obtain the results. 	�  ◻

Proof of Theorem 4.2  Using Lemma 4.1, it is possible to obtain the variance of L∗
12n

, 
which converges to 0 as n ⟶ ∞ . We set

and

Then

If � = �0, then we have

Also we find

�k = a∗−1
kn

�−1
v

[
�v −

1

a∗
kn
+ c

���
]
�−1

v

�0 = a∗
kn
�v(�0) + �(�0)�(�0)

�.

tr[�k�0] = tr

(
a∗−1
kn

�−1
v

[
�v −

1

a∗
kn
+ c

���
]
�−1

v
[a∗

kn
�v(�0) + �(�0)�(�0)

�]

)
.

tr(�k�0) = tr(�p) = p.

(A.53)

=E
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tr�k(���
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k
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=E
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�
k
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=
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If � = �0, then it is 2pn.
Next, we investigate the first term and last term of L∗

1n
 in detail. After simple alge-

bra, L∗
13n

 can be re-expressed as

because c = ���−1
v
�.

The last term is non-negative because of the Cauchy–Schwarz’s inequality and 
its minimum occurs at � = �(�0) because �v is positive definite. Then we need to 
evaluate the sum of each term in L∗

1n
, which are of the same order, as

and

Using the inversion formula and its determinant in (27) and (28), the sum of above 
two terms can be written as

Using Lemma  3.2.2 of Anderson (2003), the minimum of each terms occurs at 
a∗
kn
�v + ��� = a∗

kn
�v(�0) + ��� , that is, �v = �v(�0) under the assumption of 

L∗
13n

=tr�−1
v
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1

n
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positive definiteness. Hence the global minimum of the (minus) log-likelihood func-
tion occurs iff � = �(�0) and �v = �v(�0).

The rest of our arguments for the consistency follow from the general arguments 
for the extremum estimation [see Theorem 4.1.1 of Amemiya (1985), for instance] 
and we have the desired result. 	�  ◻

Proof of Lemma 5.1  We set

and

for j, k = 1,… , n.
Then using direct evaluations

Also for k ≠ k′ we find that

(A.56)�kj =
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2n + 1

(
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1

2

)(
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2

)
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2

)
,

(A.57)b
(2)

kj
=

1√
2n + 1
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1 − ei2�k
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1 + e−i�k
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+ 2n(1 − ei�k )2(1 − e−i�k )2

=(1 − ei�k )3 + (1 − e−i�k )3 + 2n
(
ei

�k

2 1 − e−i
�k

2

)4

=2n

[
4 sin2
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+ o(1).
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= (I) + (II) + (III) + (IV) (say).
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Then after some algebra, we have

Hence, we finally find that

and then it is proportional to

when k∕n ⟶ 0 as n → ∞ . 	�  ◻
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