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Abstract
In this article, small-area estimation with multivariate data that follow a monotonic

missing sample pattern is addressed. Random effects growth curve models with

covariates are formulated. A likelihood-based approach is proposed for estimation

of the unknown parameters. Moreover, the prediction of random effects and pre-

dicted small-area means are also discussed.

Keywords Multivariate linear model � Monotone sample � Repeated

measures data

1 Introduction

In survey analysis estimation of characteristics of interest for subpopulations (also

called domains or small areas) for which sample sizes are small is challenging. We

adopt an approach were the survey estimates are improved via covariate

information. To produce reliable estimates in surveys utilizing covariates for small

areas is known as the small-area estimation (SAE) problem (Pfeffermann 2002).

Rao (2003) has given a comprehensive overview of theory and methods of model-

based SAE. Most surveys are conducted continuously in time based on cross-
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sectional repeated measures data. There are also some works related to time series

and longitudinal surveys in small-area estimation, for example, one can refer to

Consortium (2004), Ferrante and Pacei (2004), Nissinen (2009), Singh and Sisodia

(2011) and Ngaruye et al. (2017). In Ngaruye et al. (2017), the authors have

proposed a multivariate linear model for repeated measures data in a SAE context.

The model is a combination of the classical growth curve model (Potthoff and Roy

1964) and a random effects model. This model accounts for longitudinal surveys,

i.e., units are sampled ones and then followed in time, grouped (blocked) response

units and time correlated random effects. It is common to obtain incomplete

repeated measures data in longitudinal surveys. In this article, we extend the above

mentioned model and let the model include a monotonic missing observation

structure. In particular, drop-outs from the survey can be handled, i.e., when it is

planned to follow units in time, but before the end-point some units disappear.

Missing data may be due to a number of limitations such as unexpected budget

constraints, but also it may happen that for various reasons units for which the

measurements were expected to be sampled over time disappeared from the survey.

The statistical analysis of data with missing values emerged early in the 1970s with

advancement of modern computer-based technology (Little and Rubin 1987). Since

then, several methods of analysis of missing data have been developed following the

missing data mechanism whether ignorable for inferences which includes missing

data at random and missing data completely at random or nonignorable missing

data. Many authors have dealt with the problem of missing data and we can refer to

Little and Rubin (1987), Carriere (1999), Srivastava (2002), Kim and Timm (2006)

and Longford (2006), for example. In particular, incomplete data in the classical

growth curve models and in random effects growth curve model have been

considered, for example, by Kleinbaum (1973), Woolson and Leeper (1980),

Srivastava (1985), Liski (1985), Liski and Nummi (1990), and Nummi (1997).

In Sect. 2, we present the formulation of a multivariate linear model for repeated

measures data. Thereafter this model is extended to handle missing data. A

‘‘canonical’’ form of the model is considered in Sect. 3. In Sect. 4, the estimation of

parameters and prediction of random effects and small-area means are derived.

Finally, in Sect. 5, we give a small simulation study to show the performance of the

proposed estimation procedure.

2 Multivariate linear model for repeated measures data

We will in this section consider the multivariate linear regression model for

repeated measurements with covariates at p timepoints suitable for discussing the

SAE problem, which was defined by Ngaruye et al. (2017), when data are complete.

It is supposed that the target population of size N, whose characteristic of interest

y is divided into m subpopulations called small areas of sizes Nd, d ¼ 1; . . .;m, and

the units in all small areas are grouped in k different categories. Furthermore, we

assume the mean growth of each unit in area d for each one of the k groups to be, for

example, a polynomial in time of degree q� 1 and also suppose that we have

covariate variables related to the characteristic of interest, whose values are
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available for all units in the population. Out of the whole population N and small

areas Nd, n and nd ‘‘units’’ are sampled according to some sampling scheme which,

however, technically in the present work is of no interest. The model at small-area

level for the sampled units is written:

Yd ¼ ABCd þ 1pc
0Xd þ udz

0
d þ Ed;

ud �N pð0;RuÞ; Ed �N p;nd ð0;Re; IndÞ;
ð1Þ

and when combining all disjoint m small areas and all n sampled units divided into

k non-overlapping group units yields

Y ¼ ABHC þ 1pc
0X þ UZþ E;

U�N p;mð0;Ru; ImÞ; p�m; E�N p;nð0;Re; InÞ;
ð2Þ

where Ru is an unknown arbitrary positive definite matrix and without loss of

generality Re ¼ r2
eIp which is assumed to be known. In practise r2

e is estimated

from the survey and only depends on how many units are sampled from the total

population N. In model (2), Y:p� n is the data matrix, A:p� q; q� p, is the within

individual design matrix indicating the time dependency within individuals, B:q� k

is unknown parameter matrix, C:mk � n with rankðCÞ þ p� n and p�m is the

between individuals design matrix accounting for group effects, c is an r-vector of

fixed regression coefficients representing the effects of auxiliary variables, X:r � n

is a known matrix taking the values of the covariates, the matrix U:p� m is a matrix

of random effect whose columns are assumed to be independently distributed as a

multivariate normal distribution with mean zero and a positive dispersion matrix Ru,

i.e., U�N p;mð0;Ru; ImÞ, Z : m� n is a design matrix for random effect and the

columns of the error matrix E are assumed to be independently distributed as p-

variate normal distribution with mean zero and and known covariance matrix Re,

i.e., E�Np;nð0;Re; InÞ. The matrix H ¼ ðIk : Ik. . .IkÞ : k � mk captures all k group

units by stacking as column blocks the m data matrices of model (1) together in a

new matrix and is included in the model for technical issues of estimation. More

details about model formulation and estimation of model parameters can be found in

Ngaruye et al. (2017).

3 Incomplete data

Consider model (2) and suppose that there are missing values in such a way that the

measurements taken at time t, (for t ¼ 1; . . .; p), on each unit are not all complete

and the number of observations for the different p timepoints are n1; . . .; np, with

n1 � n2 � � � � � np [ p. Such a pattern of missing observations follows a so-called

monotone sample.

Let the sample observations be composed of mutually disjoint h sets according to

the monotonic pattern of missing data, where the ith set, (i ¼ 1; . . .; h), is the sample

data matrix Yi : pi � ni, whose units in the sample have completed for the first

period i ¼ 1 and failed to complete for i ¼ 2; . . .; h periods with pi � p and
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Ph
i¼1 pi ¼ p. Such a data set is called an h-step monotone missing data pattern. For

technical simplicity, in this paper, we only study a three-step monotone missing

structure with complete sample data for a given number of timepoints and

incomplete sample data for the other timepoints. This means that we have a

complete data set n1 observations with p1 dimension and an incomplete data set n2

and n3 observations with p2 and p3 dimensions, where p1 þ p2 þ p3 ¼ p.

3.1 The model which handles missing data

In this article, we will only present details for a three-step monotonic pattern. We

assume that the model, defined in (2), holds together with a monotonic missing

structure. This extended model can be presented by three equations:

Yi ¼ AiBHCi þ 1pic
0Xi þ UiZi þ Ei; i ¼ 1; 2; 3; ð3Þ

where A0 ¼ ðA0
1 : A0

2 : A0
3Þ, Ai: pi � q, q\p,

P3
i¼1 pi ¼ p, H ¼ ðIk : Ik. . .IkÞ:

k � mk,

Ci ¼
Ci1 0

. .
.

0 Cim

0

B
B
@

1

C
C
A; Cid ¼

10nid1
0

. .
.

0 10nidk

0

B
B
@

1

C
C
A;

nidg equals the number of observations for the response Yi, dth small area and gth

group, Xi represents all covariates for the Yi response,

Zi ¼

z0i1 0

. .
.

0 z0im

0

B
B
@

1

C
C
A; zid ¼

1
ffiffiffiffiffiffi
nid

p 1nid ; i ¼ 1; 2; 3; d ¼ 1; 2; . . .;m;

ð4Þ

U1 ¼ ðIp1
: 0 : 0ÞU, U2 ¼ ð0 : Ip2

: 0ÞU, U3 ¼ ð0 : 0 : Ip3
ÞU, U�N p;m

�
0;Ru; Im

�
,

Ei �N pi;ni

�
0; Ipi ; r

2
i Ini

�
, fEig are mutually independent and Ei is independent of

Ui. In particular the construction of Zi helps to derive a number of mathematical

results including

CðZ0
iÞ � CðC0

iÞ; ZiZ
0
i ¼ Im; ð5Þ

where CðQÞ stands for the column vector space generated by the columns of the

matrix Q.
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3.2 A canonical version of the model

The model defined through (3) will be transmitted to a simpler model which will be

utilized when estimating the unknown parameters. A couple of definitions will be

necessary to introduce but first it is noted that because CðZ0
iÞ � CðC0

iÞ

ðCiC
0
iÞ
�1=2CiZ

0
iZiC

0
iðCiC

0
iÞ
�1=2; i ¼ 1; 2; 3;

are idempotent. It is supposed that we have so many observations that the inverses

exist. Therefore, there exists an orthogonal matrix Ci ¼ ðCi1 : Ci2Þ,
km� m; km� ðk � 1Þm, such that

ðCiC
0
iÞ
�1=2CiZ

0
iZiC

0
iðCiC

0
iÞ
�1=2 ¼ Ci

Im 0

0 0

� �

C0
i ¼ Ci1C

0
i1; i ¼ 1; 2; 3:

Moreover C0
i1Ci1 ¼ Im. Put

Kij ¼HðCiC
0
iÞ

1=2Cij; i ¼ 1; 2; 3; j ¼ 1; 2;

Rij ¼C0
iðCiC

0
iÞ
�1=2Cij; i ¼ 1; 2; 3; j ¼ 1; 2;

ð6Þ

and let Qo be any matrix of full rank spanning CðQÞ?, the orthogonal complement to

CðQÞ. The following transformations of Yi, i ¼ 1; 2; 3, are made

Vi0 ¼YiðC0
iÞ
o ¼ 1pic

0XiðC0
iÞ
o þ EiðC0

iÞ
o; i ¼ 1; 2; 3; ð7Þ

Vi1 ¼YiRi1 ¼ AiBKi1 þ 1pic
0XiRi1 þ ðUiZi þ EiÞRi1; i ¼ 1; 2; 3; ð8Þ

Vi2 ¼YiRi2 ¼ AiBKi2 þ 1pic
0XiRi2 þ EiRi2; i ¼ 1; 2; 3: ð9Þ

Before we analyze the transformations above, we need a few technical relations

concerning Zi, i ¼ 1; 2; 3. To some extent, the next lemma is our main contribution,

because without it, the mathematics would become very difficult to carry out. Note

that the result depends on the definition of Zi, i ¼ 1; 2; 3 given in (4).

Lemma 3.1 Let Zi, i ¼ 1; 2; 3, be as in (4), and let Rij , i ¼ 1; 2; 3 , j ¼ 1; 2 be

defined in (6). Then

(i) ZiRi1R
0
i1Z

0
i ¼ Im;

(ii) R0
i1Z

0
iZiRi1 ¼ Im;

(iii) R0
ijRij ¼ Im.

Proof Using (6), (5) and the definition of Ci1 it follows that

ZiRi1R
0
i1Z

0
i ¼ZiC

0
iðCiC

0
iÞ
�1=2Ci1C

0
i1ðCiC

0
iÞ
�1=2CiZ

0
i

¼ZiPCi
Z0
iZiPCi

Z0
i ¼ ZiZ

0
iZiZ

0
i ¼ Im;

where PCi
¼ CiðC0

iCiÞ�1C0
i is the unique orthogonal projection on CðCiÞ, and thus

statement (i) is established. Moreover, once again using (6) and the definition of Ci1
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R0
i1Z

0
iZiRi1 ¼Ci1ðCiC

0
iÞ
�1=2CiZ

0
iZiC

0
iðCiC

0
iÞ
�1=2Ci1

¼C0
i1Ci1C

0
i1Ci1 ¼ Im;

and statement (ii) is verified. Statement (iii) can be shown in a similar way. h

3.3 The likelihood

We start to define the covariance between two random matrices and the dispersion

matrix. Let X and Y be two random matrices. The covariance between X and Y is

defined by

C½X;Y	 ¼ E½vecXvec0Y	 � E½vecX	E½vec0Y	;

and the dispersion matrix D½X	 is defined by D½X	 ¼ covðX;XÞ, where vec is the

usual columnwise vectorization operator and vec0 is its transpose.

The transformation which has taken place in the previous section is one-to-one.

Based on fVijg, i ¼ 1; 2; 3, j ¼ 0; 1; 2, we will set up the likelihood for all

observations. However, first, we present the marginal densities (likelihood function)

for fVijg, which of course are normally distributed. Thus, to determine the

distributions, it is enough to present means and dispersion matrices:

E½Vi0	 ¼ 1pic
0XiðC0

iÞ
o; D½Vi0	 ¼ r2

i ðC0
iÞ
o0 ðC0

iÞ
o 
 Ipi ; ð10Þ

E½Vi1	 ¼ AiBKi1 þ 1pic
0XiRi1; D½Vi1	 ¼ Im 
 ðRu

ii þ r2
i IpiÞ; ð11Þ

E½Vi2	 ¼ AiBKi2 þ 1pic
0XiRi2; D½Vi2	 ¼ r2

i Impi ; ð12Þ

for i ¼ 1; 2; 3. The matrix Ru
ii stands for the covariance matrix between rows of the

ith data matrix Yi; i ¼ 1; 2; 3. Concerning the simultaneous distribution of fVijg,

i ¼ 1; 2; 3, j ¼ 0; 1; 2, Vi0 and Vi2, i ¼ 1; 2; 3; they are independently distributed and

these variables are also independent of fVi1g. However, the elements in fVi1g are

not independently distributed. We have to pay attention to the likelihood of these

variables and fvecVi1g, i ¼ 1; 2; 3, will be considered.

Let LðV;HÞ denote the likelihood function for the random variable V with

parameter H. We are going to discuss

LðvecV31; vecV21; vecV11; �Þ
¼ LðvecV31jvecV21; vecV11; �ÞLðvecV21jvecV11; �ÞLðvecV11; �Þ;

ð13Þ

where in (13), � indicates that no parameters have been specified.

The next result, which is obtained by straightforward calculations, will be used in

the forthcoming presentation:
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D

vecV11

vecV21

vecV31

2

6
4

3

7
5 ¼

�
R0
i1Z

0
iZjRj1 
 Ru

ij

�

i¼1;2;3;j¼1;2;3
þ

r2
1Imp1

0 0

0 r2
2Imp2

0

0 0 r2
3Imp3

0

B
@

1

C
A;

ð14Þ

where
�
�
�
i¼1;2;3;j¼1;2;3

denotes a block partitioned matrix.

From the factorization of the likelihood in (13), it follows that we have to

investigate

LðvecV31jvecV21; vecV11; �Þ:

Thus, we are interested in the conditional expectation and the conditional disper-

sion. The conditional mean equals

E½vecV31jvecV11; vecV21	
¼ E½vecV31	 þ ðC½V31;V11	;C½V31;V21	ÞD½ðvec0V11; vec0V21Þ0	�1

� ððvec0V11; vec0V21Þ0 � ðE½vec0V11	;E½vec0V21	Þ0Þ;

where the expectations for vecVi1, i ¼ 1; 2; 3 can be obtained from (11). Moreover,

the conditional dispersion is given by

D½vecV31jvecV11; vecV21	 ¼ D½V31	
� ðC½V31;V11	;C½V31;V21	ÞD½ðvec0V11; vec0V21Þ0	�1ðC½V31;V11	;C½V31;V21	Þ0:

The next lemma fills in the details of this relation and the conditional mean, and

indeed shows that relative complicated expressions can be dramatically simplified

using Lemma 3.1.

Lemma 3.2 Let Vi1, i ¼ 1; 2; 3, be defined in (8). Then

(i) D½V31	 ¼ Im 
 ðRu
33 þ r2

3Ip3
Þ;

(ii) C½V31;V11	 ¼ R0
31Z

0
3Z1R11 
 Ru

31;

(iii) C½V31;V21	 ¼ R0
31Z

0
3Z2R21 
 Ru

32;

(iv)

D
vecV11

vecV21

	 


¼
Im 
 ðRu

11 þ r2
1Ip1

Þ R0
11Z

0
1Z2R21 
 Ru

12

R0
21Z

0
2Z1R11 
 Ru

21 Im 
 ðRu
22 þ r2

2Ip2
Þ

 !

;

(v)
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D
vecV11

vecV21

	 
�1

¼ Q�1
11 0

0 0

 !

þ �Q�1
11 Q12

Im

 !

ðQ22 � Q21Q
�1
11 Q12Þ

�1
�
� Q21Q

�1
11 ImÞ;

where

Q�1
11 ¼ Im 
 ðRu

11 þ r2
1Ip1

Þ�1;

Q�1
11 Q12 ¼ R0

11Z
0
1Z2R21 
 ðRu

11 þ r2
1Ip1

Þ�1Ru
12;

Q22 � Q21Q
�1
11 Q12 ¼ Im 
 ðRu

22 þ r2
2Ip2

� Ru
21ðRu

11 þ r2
1Ip1

Þ�1Ru
12Þ;

(vi)

ðC½V31;V11	;C½V31;V21	ÞD½ðvec0V11; vec0V21Þ0	�1ðC½V31;V11	;C½V31;V21	Þ0

¼ Im 
 ðRu
31ðRu

11 þ r2
1ImÞ

�1Ru
13 þW32W

�1
22 W23Þ;

where

W32 ¼ W0
23 ¼ Ru

32 � Ru
31ðRu

11 þ r2
1Ip1

Þ�1Ru
12; ð15Þ

W22 ¼ Ru
22 þ r2

2Ip2
� Ru

21ðRu
11 þ r2

1Ip1
Þ�1Ru

12: ð16Þ

Proof Statements (i), (ii), (iii), and (iv) follow directly from (14). In (v), the inverse

of a partitioned matrix is utilized and (vi) is obtained by straightforward matrix

manipulations and application of Lemma 3.1. h

Put

B1 ¼ Ru
31ðRu

11 þ r2
1Ip1

Þ�1; ð17Þ

B2 ¼ Ru
32W

�1
22 ; ð18Þ

W33 ¼ Ru
33 � Ru

31ðRu
11 þ r2

1Ip1
Þ�1Ru

13; ð19Þ

where W22 is given in (16) and then the next theorem is directly established using

Lemma 3.2.

Theorem 3.1 Let Vi1, i ¼ 1; 2; 3, be defined in (8) and Wij, i; j ¼ 2; 3, be defined in

Lemma 3.2 and (19). Moreover, let B1 and B2 be given by (17) and (18),

respectively. Then vecV31jvecV11; vecV21 �Np3mðM31;D31Þ, where
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M31 ¼E½vecV31jvecV11; vecV21	 ¼ E½vecV31	
þ ðR0

31Z
0
3Z1R11 
 B1ðIm þ Ru

12W
�1
22 R

u
21ðRu

11 þ r2
1Ip1

Þ�1ÞÞvecðV11 � E½V11	Þ
� ðR0

31Z
0
3Z2R21 
 B1R

u
12ÞvecðV21 � E½V21	Þ

þ ðR0
31Z

0
3Z2R21 
 B2ÞvecðV21 � E½V21	Þ

� ðR0
31Z

0
3Z1R11 
 B2R

u
21ðRu

11 þ r2
1Ip1

Þ�1ÞvecðV11 � E½V11	Þ;

and

D31 ¼ D½vecV31jvecV11; vecV21	 ¼ Im 
W3�2;

where

W3�2 ¼ W33 �W32W
�1
22 W23: ð20Þ

The result of the theorem shows that vecV31 given vecV11 and vecV21, and if

E½vecV11	, E½vecV21	, Ru
21, R

u
11 and W22 do not depend on unknown parameters, the

model with unknown mean parameters B1 and B2 and unknown dispersion W3�2 is

the same as a vectorized MANOVA model (e.g., see Srivastava, 2002, for

information about MANOVA).

Moreover, it follows from (13) that

LðvecV21jvecV11; �Þ

is needed. However, the calculations are the same as above and we only present the

final result.

Theorem 3.2 Let Vi1, i ¼ 1; 2, be defined in (8) and W22 in Lemma 3.2. Put

B0 ¼ Ru
21ðRu

11 þ r2
1Ip1

Þ�1: ð21Þ

Then vecV21jvecV11 �Np2mðM21; Im 
W22Þ, where

M21 ¼E½vecV21jvecV11	 ¼ E½vecV21	
þ ðR0

21Z
0
2Z1R11 
 B0ÞvecðV11 � E½V11	Þ:

Hence, it has been established that vecV21jvecV11 is a vectorized MANOVA

model.

Theorem 3.3 The likelihood for fVijg, i ¼ 1; 2; 3, j ¼ 0; 1; 2, given in (7), (8) and

(9) equals
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LðfVijg; i ¼ 1; 2; 3; j ¼ 0; 1; 2; c;B;RuÞ ¼
Y3

i¼1

LðfVi0g; i ¼ 1; 2; 3; cÞ

�
Y3

i¼1

LðfVi2g; i ¼ 1; 2; 3; c;BÞ

� LðV11; c;B;R
u
11Þ � LðV21jV11; c;B;B0;W22Þ

� LðvecV31jvecV11; vecV21; c;B;B0;B1;B2;W22;W3�2Þ;

where all parameters mentioned in the likelihoods have been defined earlier in Sect.

3.

4 Estimation of parameters and prediction of small-area means

For the monotone missing value problem, treated in the previous sections, it was

shown that it is possible to present a model which seems to be easy to utilize. The

remaining part of the report consists of a relatively straightforward approach for

predicting the small areas which is of concern in this article.

4.1 Estimation

To estimate the parameters, a restricted likelihood approach is proposed. For the

likelihood given in Theorem 3.3, we start to estimate B and c by maximizing

Y3

i¼1

L fVi0g; i ¼ 1; 2; 3; cð Þ
Y3

i¼1

L fVi2g; i ¼ 1; 2; 3; c;Bð Þ:

From this part of the likelihood, generally, we cannot estimate B and c, only specific

linear combinations are estimable. However, B and c can be expressed as a linear

function of new unknown parameters, say H, which can be estimated together with

Ru
11 from LðV11;bcðHÞ; bBðHÞ;Ru

11Þ, which is a likelihood from a MANOVA model.

Furthermore, inserting these estimators in

L V21jV11;bcð bHÞ; bBð bHÞ; bRu
11;B0;W22

� �

and thereafter maximizing the likelihoods with respect to the remaining unknown

parameters produces estimators for Ru
12 (using B0 in Eq. (21)) and Ru

22 (using W22 in

(16)). Inserting all the obtained estimators in

L vecV31jvecV11; vecV21;bcð bHÞ; bBð bHÞ; bRu
11;
bB0;B1;B2; bW22;W3�2

� �
;

and then maximizing the likelihood with respect to B1, B2 and W3�2 yields esti-

mators for Ru
31, Ru

32 and Ru
33 (using (17), (18), (19) with (15), (16) and (20)).
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4.2 Prediction

To perform predictions of small-area means we first have to predict U1, U2 and U3

in the model given by (3). Put

y ¼
vecY1

vecY2

vecY3

0

B
@

1

C
A and v ¼

vecU1

vecU2

vecU3

0

B
@

1

C
A:

Following Henderson’s prediction approach to linear mixed model (Henderson

1975), the prediction of v can be derived in two stages, where in the first stage Ru is

supposed to be known. Thus, the idea is to maximize the joint density of

f ðy; vÞ ¼ f ðy j vÞf ðvÞ

¼ cexp � 1

2
tr
n�

y� l
�0
R�1

�
y� l

�
þ v0X�1v

o� �

;
ð22Þ

with respect to vecB, c, which are included in l, and v, which is also included in l

but also appear in the term v0X�1v. Moreover, in (22), c is a known constant and X
is given by

X ¼
I 
 Ru

11 I 
 Ru
12 I 
 Ru

13

I 
 Ru
21 I 
 Ru

22 I 
 Ru
23

I 
 Ru
31 I 
 Ru

32 I 
 Ru
33

0

B
@

1

C
A:

The vector l and the matrix R are the expectation and dispersion of y j v and are

respectively given by

E½y j v	 ¼ l ¼ H1vecBþH2cþH3v;

where

H1 ¼
C0

1H
0 
 A1

C0
2H

0 
 A2

C0
3H

0 
 A3

0

B
@

1

C
A; H2 ¼

X0
1 
 1p1

X0
2 
 1p2

X0
3 
 1p3

0

B
@

1

C
A; H3 ¼

Z0
1 
 Im

Z0
2 
 Im

Z0
3 
 Im

0

B
@

1

C
A;

and

D½y j v	 ¼ R ¼
r2

1Ip1n1
0 0

0 r2
2Ip2n2

0

0 0 r2
2Ip3n3

0

B
@

1

C
A:

Supposing Ru is known, and then using (22) together with standard results from

linear models theory we find estimators of the unknown parameters and of v as a

function of Ru and thereafter replacement of Ru by its estimator, which is obtained

as described in Sect. 4.1, yields an estimator bv.
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The prediction of small-area means is performed in the sense that estimating the

small-area means is equivalent to predicting small-area means of non-sampled

values, given the sample data and auxiliary data. To this end, for the dth area and

gth group units, we consider the means for sample observations of the data matrices

Y1;Y2 and Y3 and predict the means of non-sampled values. Use the superscripts

s and r to indicate the corresponding partitions for observed sample data and non-

observed sample data in the target population, Y
ðsÞ
id and Y

ðrÞ
id , respectively. Similarly,

we denote by X
ðrÞ
id : r � ðNd � nidÞ, CðrÞ

id : mk � ðNd � nidÞ and z
ðrÞ
id : ðNd � nidÞ � 1

the corresponding matrix of covariates, design matrix and design vector for non-

sampled units in the population, respectively. Then, the prediction of small-area

means at each timepoint and for different group units is presented in the next

proposition

Proposition 4.1 Consider repeated measures data with missing values on the

variable of interest for three-steps monotone sample data described by the models in

(3).

(i) The target small-area means at each timepoint are elements of the vectors

bld ¼
1

Nd

�
bl
ðsÞ
d þ blðrÞ

d

�
; d ¼ 1; . . .;m;

where

bl
ðsÞ
d ¼

Y
ðsÞ
1d 1n1d

Y
ðsÞ
2d 1n2d

Y
ðsÞ
3d 1n3d

0

B
B
@

1

C
C
A;

and

bl
ðrÞ
d ¼

�
A1
bBC

ðrÞ
1d þ 1p1

bc0X
ðrÞ
1d þ bu1dz

ðrÞ0
1d

�
1Nd�n1d

�
A2
bBC

ðrÞ
2d þ 1p2

bc0X
ðrÞ
2d þ bu2dz

ðrÞ0
2d

�
1Nd�n2d

�
A3
bBC

ðrÞ
3d þ 1p3

bc0X
ðrÞ
3d þ bu3dz

ðrÞ0
3d

�
1Nd�n1d

0

B
B
B
B
@

1

C
C
C
C
A
; d ¼ 1; . . .;m:

(ii) The small-area means at each timepoint for each group units for complete

and incomplete data sets are given by

bldg ¼
1

Ndg

�
bl
ðsÞ
dg þ blðrÞ

dg

�
; d ¼ 1; . . .;m; g ¼ 1; . . .; k;

where
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bl
ðsÞ
dg ¼

Y
ðsÞ
1d 1n1dg

Y
ðsÞ
2d 1n2dg

Y
ðsÞ
3d 1n3dg

0

B
B
@

1

C
C
A;

and

bl
ðrÞ
dg ¼

�
A1
bBC

ðrÞ
1dg þ 1p1

bc0X
ðrÞ
1dg þ bu1dz

ðrÞ0
1dg

�
1Ndg�n1dg

�
A2
bBC

ðrÞ
2dg þ 1p2

bc0X
ðrÞ
2dg þ bu2dz

ðrÞ0
2dg

�
1Ndg�n2dg

�
A3
bBC

ðrÞ
3dg þ 1p3

bc0X
ðrÞ
3dg þ bu3dz

ðrÞ0
3dg

�
1Ndg�n3dg

0

B
B
B
B
@

1

C
C
C
C
A
;

d ¼ 1; . . .;m; g ¼ 1; . . .; k:

Note that the predicted vector buid is the dth column of the predicted matrix

bU i; i ¼ 1; 2; 3 and bbg is the column of the estimated parameter matrix bB for the

corresponding group g.

A direct application of Proposition 4.1 is to find the target small-area means for

each group across all timepoints obtained as a linear combination of bldg depending

on the type of the characteristics of interest.

5 Simulation study

In this section we give a small simulation study to show the performance of the

estimation of the covariance matrix Ru. Assume we have m ¼ 10, 25, 50, 100 and

200 small areas, and k ¼ 2 groups. Furthermore, let p ¼ 6 with p1 ¼ 3, p2 ¼ 2,

p3 ¼ 1 timepoints and q ¼ 2 with

A1 ¼
1 1

1 2

1 3

0

B
@

1

C
A; A2 ¼

1 4

1 5

� �

and A3 ¼ 1 6ð Þ:

For simplicity, assume we have equal number of observations nidg, i ¼ 1; 2; 3, for

each small area d ¼ 1; . . .;m and group g ¼ 1; 2, with n1dg [ n2dg [ n3dg, i.e., we

have equal numbers of drop-outs in each small area and each group. For example, if

n1dg ¼ 5; n2dg ¼ 4 and n3dg ¼ 3, we have one drop out in each small area and each

group for every time period i ¼ 1; 2; 3, see Fig. 1 for the incomplete monotone

missing data pattern. In addition, in the simulations, let r2
i ¼ 0:01, i ¼ 1; 2; 3

B ¼
1 2

3 4

� �

; c ¼
1

2

3

0

B
@

1

C
A; and Ru ¼ Ip:
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As result we compare the Frobenius norm of the difference between the

estimated covariance matrix bRu and the true value Ru ¼ Ip, that is

jjbRu � RujjF ¼ vec0 bRu � Ru
� �

vec bRu � Ru
� �

;

for different number of small areas m and different sample sizes nidg. In Table 1, we

can see, that in general we get a better estimate of the covariance matrix Ru for

larger number of small areas and larger sample sizes.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)

and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Y1 : p1 × n1

Y2 : p2 × n2

Y3 : p3 × n3

Fig. 1 Incomplete monotone missing data with p1 ¼ 3; p2 ¼ 2; p3 ¼ 1, ni ¼ nidgmk for i ¼ 1; 2; 3 where

m ¼ 10; 25; 50; 100; 200 small areas and k ¼ 2 groups

Table 1 Frobenius norm of the

difference between the

estimated covariance matrix bRu

and the true value Ru ¼ Ip, for

different small areas m ¼
10; 25; 50; 100; 200 and sample

sizes nidg, i ¼ 1; 2; 3

ðn1dg; n2dg; n3dgÞ

(5, 4, 3) (10, 8, 6) (15, 12, 9) (20, 16, 12)

m

10 3.1049 1.8876 2.3996 2.4483

25 1.6675 0.5777 0.8387 1.2186

50 1.7587 0.9844 0.7350 0.7572

100 0.5590 0.3358 0.4639 0.3498

200 0.2107 0.1729 0.0895 0.1531
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