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ABSTRACT

CubeSats have become versatile platforms for various space missions (e.g., on-orbit

servicing and debris removal) owing to their low cost and flexibility. Many space tasks

involve proximity operations that require precise guidance, navigation, and control (GNC)

algorithms. Vision-based navigation is attracting interest for such operations. However,

extreme lighting conditions in space challenge optical techniques. The on-ground validation

of such navigation systems for orbital GNC becomes crucial to ensure their reliability

during space operations. These systems undergo rigorous testing within their anticipated

operational parameters, including the exploration of potential edge cases. The ability

of GNC algorithms to function effectively under extreme space conditions that exceed

anticipated scenarios is crucial, particularly in space missions where the scope of errors is

negligible. This paper presents the ground validation of a GNC algorithm designed for

autonomous satellite rendezvous by leveraging hardware-in-the-loop experiments. This

study focuses on two key areas. First, the rationale underlying the augmentation of

the robot workspace (six-degree-of-freedom UR10e robot + linear rail) is investigated

to emulate relatively longer trajectories with complete position and orientation states.

Second, the control algorithm is assessed in response to uncertain pose observations from a

vision-based navigation system. The results indicate increased control costs with uncertain

navigation and exemplify the importance of on-ground testing for system validation

before launch, particularly in extreme cases that are typically difficult to assess using

software-based testing.
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1 Introduction

The increasing number of government and commercial

space missions to near-Earth orbits, particularly the low-

Earth orbit (LEO), medium-Earth orbit (MEO), and

geostationary orbit (GEO), has resulted in a push towards

an increase in the autonomy of satellites. Proximity

operations, including rendezvous and docking/berthing,

are crucial in carrying out various tasks such as

on-orbit servicing (OOS) to restore or enhance the

functionality of operational satellites, extend the mission

life span through refueling, capturing, and de-orbiting

defunct satellites, and capturing space debris. Numerous

rendezvous operations have been successfully facilitated

in the past, beginning with the Gemini space program,

followed by the Apollo program, the assembly of the Mir

and International Space Station, and several subsequent

others [1]. Several past and present rendezvous and

docking processes were supervised by humans on board

[2, 3]. These rendezvous operations involving humans on
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board are expensive and risky, making them inconceivable

for large-scale operations, particularly considering the

number of satellites launched in the current era and

the large amount of space debris that poses threats

to operating satellites. In contrast, CubeSats are the

most suitable option for such large-scale operations

owing to their limited cost and ease of manufacture and

launch. The recent success of Mission Extension Vehicle

(MEV) 1 and 2 for autonomous docking demonstrates

the advancement in autonomous operations. Recently,

researchers have explored innovative approaches for

autonomous navigation in proximity operations, including

sensor fusion with a laser range finder and monocular

camera [4], the custom integrated XACT-50 guidance,

navigation, and control (GNC) system by Blue Canyon

Technologies [5], a combination of radar and LiDAR

technologies [6], and a dual-inertial state filter that

processes GPS, intersatellite link range, and optical sensor

measurements [7].

A rendezvous and docking procedure involves a

significantly close approach and potential coupling of

two objects in space, specifically an active satellite (also

referred to as the “chaser”) and a “target” satellite [1, 8].

In a wider context, the targets include satellites that

are not ideally designed for rendezvous and docking

operations, are partly or entirely non-functional, or are

debris objects. Consequently, the target is considered

to be “passive”. Here, only the chaser satellite can

execute the required controlled orbital maneuvers to

approach the target in its orbit, i.e., the chaser is “active”.

Additionally, for controlled autonomous operations,

a satellite may possess supportive features, such as

transponders, reflectors, artificial visual markers, and

dedicated fixtures, which enable harmonious cooperation

with another body that has sensory devices to detect

certain features. For any proximity operations in space, if

a target satellite is designed with external markers, they

are labeled “cooperative”. A few applications of these

have been discussed in the literature [9–13]. Typically, the

target satellite may not have specific markers available

for rendezvous and docking operations and, hence, is

classified as “non-cooperative”. Moreover, the dynamics

of the target may result in tumbling or non-tumbling

motion. Nevertheless, the target satellite may have an

active controller and be cooperative. In this investigation,

however, the target is considered to be non-cooperative

and tumbling, enabling the testing of GNC algorithms

for more extreme and challenging cases.

On-ground tests of algorithms for space missions are

essential for validating systems before they are launched.

Only a few research test beds are available for the on-

ground validation of orbital GNC systems and algorithms,

particularly those that rely on emulating motions in

space, such as the European Proximity Operations

Simulator (EPOS) at the German Aeronautics Centre

(DLR) [14] consisting of two robot systems with six and

seven degree-of-freedom (DoF) motion capabilities, the

GNC Rendezvous and Landing Simulator (GRALS) at

the European Space Research and Technology Centre

(ESTEC) in the Netherlands [15] that includes a 7-

DoF robot and rail system with floating platforms, and

the Testbed for Robotic Optical Navigation (TRON) in

Stanford University [16] with two 7-DoF robot systems.

The Zero-G Lab at the University of Luxembourg is a

newly developed facility for performing spatial motion.

These facilities offer testing capabilities for proximity

operations, debris capture and removal, validation of

computer vision systems, etc. When testing a GNC

algorithm designed for autonomous satellite rendezvous

in challenging space environments, hardware-in-the-loop

(HIL) experiments are used to stress-test their reliability

for actual spatial operations. The HIL tests in this

investigation involve three main components: a robotic

test-bed facility consisting of ceiling and wall robots that

emulate target and chaser trajectories to replicate the

rendezvous operation, a vision-based navigation system

to deliver relative satellite poses, and a GNC algorithm

that accounts for orbital dynamics. Preliminary studies

have validated the use of software-in-the-loop (SIL)

experiments to validate GNC algorithms; however, the

performance of vision-based navigation under extreme

lighting conditions necessitates the use of actual cameras

and trajectories.

This investigation focuses on the adoption of a 7-DoF

robotic testbed in the Zero-G Lab at the University of

Luxembourg to emulate rendezvous scenarios. Herein, we

discuss the setup of HIL tests, integration of the visual

GNC, and real-time testing of the combined systems. The

remainder of this paper is organized as follows: Section 2

presents the overall GNC architecture and emphasizes

the infrastructure requirements of an on-ground test

facility to validate the feasibility of space operations.

Section 3 presents the dynamics of the satellite motion
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and the GNC strategy. The operational dynamics of the

integrated robotic testbed are discussed in Section 4.

Section 5 presents the experimental setup and the results

of HIL experiments. Finally, important takeaways and

remarks are presented in Section 6.

2 Problem statement

2.1 GNC architecture

The aim of this investigation is the ground validation of

an autonomous GNC technique for orbital rendezvous in

near-Earth orbits that exploits coupled orbit and attitude

dynamics. In the context of the orbital rendezvous

described here, both the target and chaser satellites

are modeled as rigid bodies that require a minimum

prescribed separation to avert potential collisions between

them. Furthermore, in an eventual docking scenario,

a predetermined face of the satellite is structured to

facilitate contact. In either scenario, the center of

mass of the target and chaser satellites must never

overlap but maintain a fixed separation from each

other during the entirety of rendezvous operations.

Navigation is performed using a custom system built

by Blackswan Space Ltd. onboard a chaser satellite,

which delivers the pose of a potential target satellite.

The applicability of the GNC algorithm is initially

validated using the Mission Design Simulator (MDS)

software (also developed by Blackswan Space Ltd.)

[17]. An outline of the GNC architecture is shown in

Fig. 1; it relies on key packages such as orbital dynamics

simulator (ODS), vision-based navigation (VBN), and

the software/hardware infrastructure, similar to the one

adopted in Ref. [18]. The ODS is a Python package that

outputs waypoints for hardware motion or control outputs

for software application programming interfaces (APIs)

while accepting pose observations from the VBN system.

The ODS package incorporates equations for relative

orbital dynamics and attitude motion. Relevant features

are incorporated to identify the guidance path through

a nonlinear optimizer and identify control maneuvers

to overcome the predicted deviations. Furthermore, if

the controller feature is turned off, a natural ballistic

motion of these satellites is achieved, which does not

include any midcourse trajectory corrections. Similarly,

the VBN system is incorporated using a different Python

package configured with the hardware infrastructure

within the software, and it identifies the satellite pose

as the output. More rigorous HIL tests are subsequently

required to assess the durability of the guidance and

control algorithms, particularly under the limiting cases

of VBN. The VBN system is deliberately exposed to

Orbital Dynamics Simulator (ODS)

Clohessy–Wiltshire Equations for relative orbital motion

Euler’s rigid body equation for satellite attitude motion

Natural Dynamics Ballistic Motion

Guidance:
Baseline Trajectory

(IPOPT)

Linear Controller
(LQR)

Rendezvous

Vision Based Navigation

Estimation
(Kalman Filter)

In
it

ia
l

C
o
n
d
it

io
n
s

Observations
(Pose)

Optical Sensing
(Sensor Data + Processing)

Software-in-the-Loop

Software integration through API
Satellite motion simulation

Hardware-in-the-Loop

Program interface through

Robot Operating System (ROS)
Robot motion (satellite) through

waypoints

Fig. 1 Overview of the GNC architecture. The ODS block integrates equations governing both orbital and attitude motion
and evaluates guidance and control algorithms. The VBN block houses algorithms for pose estimation. The architecture flexibly
adapts to either SIL or HIL testing through suitable infrastructure and programs.
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shadows, insufficient lighting, partial visibility, lens flares,

and other challenging conditions. These tests are crucial

for achieving space-level readiness.

Furthermore, this study includes a non-cooperative

target for HIL experiments, i.e., the satellite by itself

does not have built-in features for active navigation. This

study was an indirect extension of prior tests conducted

at the Zero-G Lab at the University of Luxembourg,

which focuses on cooperative rendezvous in the cislunar

system and utilizes ArUco markers on the target satellite

fixture for pose observations [13].

2.2 On-ground validation platform

Space missions are expensive and challenging. On-ground

test facilities enable the testing of various subsystems

before they are launched. One such facility is the Zero-

G Lab at the University of Luxembourg. Through this

study, the capabilities of the Zero-G Lab for on-ground

validation tests are enhanced by integrating a linear

motion along a rail to deliver an additional DoF for

robots to emulate satellite motion, eventually enabling

the testing of a wider range of motion. Consolidating a

linear rail into a robot control block to obtain a combined

interface is vital. The challenges and motivations for

augmenting an additional DoF motion for the robotic

test-bed facility are presented herein. This study focuses

on evaluating workspace accessibility, limiting joint

conditions, and safe operation of the augmented system

by avoiding potentially risky and unstable joint motions.

To evaluate the GNC algorithm, the ceiling and wall

robots at the Zero-G laboratory are mounted with

satellite mockups and a camera, and subsequently mimick

the target and chaser trajectories (in position and

orientation) to replicate a rendezvous operation. Previous

research demonstrates the use of a 6-DoF robot system

to perform rendezvous motion but offers only a limited

range of motion [13].

3 Orbital rendezvous with vision-based
navigation

3.1 Dynamics

In close-proximity operations, the precise relative

positions and orientations of a chaser satellite and its

target are crucial. In particular, for navigation that relies

on capturing images of the target satellite using cameras

on the chaser satellite, control over all six DoFs (three

in position and three in orientation) is of paramount

importance. Therefore, a complete coupled orbit and

attitude dynamics are considered for close-proximity

operations.

The relative nonlinear dynamics of a chaser body with

respect to a target body in a circular orbit are highlighted

in the Clohessy–Wiltshire (CW) model (defined in Fig. 2)

[19]. The CW model has been exploited for numerous

rendezvous and formation flying applications [18–25] in

circular orbits in near-Earth space, and subsequently used

for modeling orbital dynamics in this work. Furthermore,

the application of the CW equations is suitable for

a large number of artificial objects in nearly circular

LEOs [26]. The CW equations accommodate additional

control variables that enable us to describe the dynamics

of controllable objects, such as active satellites, and

non-controllable objects, such as defunct satellites and

debris. The motion of the chaser relative to the target is

defined as

ẍ = 3Ω2x+ 2Ωẏ + u1 (1)

ÿ = −2Ωẋ+ u2 (2)

z̈ = −Ω2z + u3 (3)

where x, y, and z define the position vector (ρ̄) of the

chaser relative to the target, i.e., ρ̄ = xx̂ + yŷ + zẑ.

Here, the orbital angular velocity of the target body is

defined as

Ω =

√
µ

a3
(4)

where a is the radius of the target object, and µ is the

standard gravitational parameter for the Earth. The

Fig. 2 Rotating coordinate frame (R) representing the CW
model. The frame is centered on the target body. Direction x̂
points radially away from the Earth, ŷ points in the direction
of orbit velocity, and ẑ completes the right-hand coordinate
system and points in the direction of the positive angular
momentum vector [18].
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quantities u1, u2, and u3 are the external accelerations

that the chaser satellite can deliver along each of the

principal directions, respectively.

The attitude dynamics for the chaser and target bodies

are expressed using Euler’s equations for rigid-body

dynamics. For ease of operation, they are modeled in

different frames. During rendezvous, the orientation of the

chaser must be consistent with that of the target. Hence,

for simplicity, the chaser’s orientation is defined relative

to the target body frame. Therefore, the quantities for

the angular velocity and orientation quaternions are

expressed as

Cω̇1 =
1

CI1

[
T1 − (CI3 − CI2)Cω2

Cω3

]
(5)

Cω̇2 =
1

CI2

[
T2 − (CI1 − CI3)Cω1

Cω3

]
(6)

Cω̇3 =
1

CI3

[
T3 − (CI2 − CI1)Cω1

Cω2

]
(7)

Cε̇1 =
1

2

(
Cω1

Cε4 − Cω2
Cε3 + Cω3

Cε2
)

(8)

Cε̇2 =
1

2

(
Cω1

Cε3 + Cω2
Cε4 − Cω3

Cε1
)

(9)

Cε̇3 =
1

2

(
−Cω1

Cε2 + Cω2
Cε1 + Cω3

Cε4
)

(10)

Cε̇4 =
1

2

(
−Cω1

Cε1 − Cω2
Cε2 − Cω3

Cε3
)

(11)

where Cω ≡ ω(Chaser→ Target) and Cεi ≡ εi(Chaser→
Target), with the left superscript C symbolizing the

chaser. The moments of inertia of the chaser body along

each principal axis are given by CI1,
CI2, and CI3. Here,

the quantities T1, T2, and T3 are the components of the

external torques delivered by the chaser to deliberately

change its course during rendezvous. For convenience,

control variables T1, T2, and T3 are occasionally referred

to as u4, u5, and u6, respectively.

However, the target is modeled relative to the inertial

frame for ease of incorporating external effects such as the

Earth’s gravity gradient torque. The angular velocity and

orientation quaternions are denoted by the left superscript

T to represent the target. Thus, the equations for the

attitude dynamics of the target are expressed as

Tω̇1 =
TI3 − TI2

TI1

(
3C12C13Ω2 − Tω2

Tω3

)
(12)

Tω̇2 =
TI1 − TI3

TI2

(
3C11C13Ω2 − Tω1

Tω3

)
(13)

Tω̇3 =
TI2 − TI1

TI3

(
3C11C12Ω2 − Tω1

Tω2

)
(14)

Tε̇1 =
1

2

(
Tω1

Tε4 − Tω2
Tε3 + Tω3

Tε2
)

(15)

Tε̇2 =
1

2

(
Tω1

Tε3 + Tω2
Tε4 − Tω3

Tε1
)

(16)

Tε̇3 =
1

2

(
−Tω1

Tε2 + Tω2
Tε1 + Tω3

Tε4
)

(17)

Tε̇4 =
1

2

(
−Tω1

Tε1 − Tω2
Tε2 − Tω3

Tε3
)

(18)

where the effects of the gravity gradient torque along

different principal directions are mapped by the elements

of the rotation matrix C, which defines the transformation

between the target body frame and rotating coordinate

frame (R). Note that the quantity Cij is the element

in the i-th row and j-th column. The terms specifically

used in the aforementioned equations correspond to the

orientation of each of the target body axes in the direction

of the gravitational pull, i.e., the x̂ direction in the CW

frame. The moments of inertia of the target body along

each of its principal axes are given by TI1,
TI2, and TI3.

Appropriate initial conditions for the target body are

selected to achieve a non-tumbling motion balanced by

the gravity torque. Other sets of initial conditions produce

the corresponding tumbling motions.

The chaser and target satellites are rigid bodies;

therefore, the rendezvous path must be gradual and

without collisions. During this process, the chaser satellite

must remain at a fixed distance from the target body

(defined by %̄ and labeled as “approach site”) to avoid a

collision (see Fig. 3). For simplicity, the entire system is

described by the state vector x:

x = [x, y, z, ẋ, ẏ, ż,Cω1,
Cω2,

Cω3,
Cε1,

Cε2,
Cε3,

Cε4,

Tω1,
Tω2,

Tω3,
Tε1,

Tε2,
Tε3,

Tε4, x%, y%, z%]
T (19)

which includes information such as the chaser’s position

Fig. 3 Approach site (%̄), offering the potential location
of the center of mass of the chaser relative to the target
satellite during rendezvous [18]. This parameter is defined to
ensure a safe operating distance without collision between the
satellites.
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(x, y, z) and velocity (ẋ, ẏ, ż) relative to the target,

the chaser’s angular velocity (Cω1,
Cω2,

Cω3) and

orientation (ε1,
Cε2,

Cε3,
Cε4) relative to the target, the

target’s angular velocity (Tω1,
Tω2,

Tω3) and orientation

(Tε1,
Tε2,

Tε3,
Tε4) relative to the inertial frame, and the

location along the approach site (x%, y%, z%). Similarly,

the control input vector uk is defined as

uk = [u1, u2, u3, T1, T2, T3]T (20)

and includes the translational accelerations u1, u2, and

u3 along the x, y, and z directions required for the chaser

to progress toward the target. Control torques T1, T2,

and T3 (also denoted as u4, u5, and u6, respectively) are

included to alter the orientation of the chaser. If uk is a

null vector, i.e., all elements are zero, then the motion of

the chaser satellite evolves under natural dynamics.

3.2 Guidance, navigation, and control
(GNC)

The GNC of orbital rendezvous involves the application

of mathematical principles to plan and execute the

trajectory and attitudes of satellites during the

rendezvous process. A two-layer guidance-and-control

strategy is adopted in this investigation [13]. Guidance

and control are achieved using features built within

the ODS package, whereas the vision-based navigation

package offers feedback to the ODS.

3.2.1 Guidance: optimal reference motion

An open-source nonlinear optimizer toolkit called CasADi

is employed with an interior-point optimization (IPOPT)

method to generate a baseline guidance path that serve

as an ideal trajectory for rendezvous. To compute an

optimal path, a cost function J is minimized, such that

J =

∫ τ

0

[(ρ̄− %̄R)TQ1(ρ̄− %̄R) + Cω̄TQ2
Cω̄

+ Cε̄TQ3
Cε̄+ uTRu]dt

where each weighting matrix is a parameter that can be

altered depending on the scenario. The weighting matrices

Q1, Q2, and Q3 penalize the deviations in position

states from the approach site, relative angular velocity

of the chaser relative to the target, and relative change

in orientation between the two spacecraft, respectively.

The control inputs u are weighted by the matrix R. As

mentioned previously, the chaser and target satellites

are rigid bodies; consequently, any collisions must be

prevented. A collision avoidance constraint is added

during orbital rendezvous, represented by ‖ρ̄‖ > rcollision

and maintains the position of the chaser satellite outside

a spherical volume of radius rcollision from the center of

the target. The guidance algorithm delivers a sequence of

control accelerations and torques to facilitate the coupled

orbit and attitude motion of the chaser as it progresses

toward the target satellite. The obtained reference path

represents an ideal and precise guidance path without

fluctuations or uncertainties. However, in reality, actual

paths are subject to inherent errors. To address these

errors, state estimation and control algorithms operate

concurrently throughout proximity operations.

3.2.2 Navigation: vision-based pose

A proprietary VBN system from Blackswan Space is used

to detect, recognize, and estimate the position of the

target object. This vision system utilizes a deep-learning

algorithm based on a Mask-RCNN [27] and consists of

several building blocks, as shown in Fig. 4. The captured

image is processed by a convolutional neural network,

HRNet [28], followed by a region proposal network that

outputs relative regions in the feature space, and is

eventually pooled using “ROIAlign” [27]. Ultimately,

two downstream task heads are built: keypoint head

and bounding box (BBox) head. The keypoint head

is based on a convolutional auto-encoder to predict

keypoints on a 2D image plane, which are then used

by a perspective-n-point (PnP) solver to output the

relative 3D position and orientation. The BBox head

is based on simple linear deep-learning layers that

output a BBox and the category class of an object.

The algorithm was trained using a synthetic dataset

from a simulated orbital environment consisting of a

digital twin of a target CubeSat on the MDS software.

A small sample dataset (scenario A) obtained from a

laboratory emulation was also incorporated into the

learning model. The details of the cameras used for the

object identification, image resolution, and sample size

are listed in Table 1. Additional image datasets were

provided for further testing of the algorithm and were

classified by dataset in scenarios B and C. The images

of the target CubeSat mockup were captured in the

laboratory using an Intel Real-Sense D435i camera at

varying distances ranging between 0.5 and 3 m and at

different light intensities.

A Kalman filter is introduced to estimate the states

from the available navigation data. The Kalman filter

incorporates the observed data to iteratively update the
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Fig. 4 Pose estimation deep-learning model based on Mask-RCNN.

Table 1 Datasets used for training and testing. Training dataset: synthetic and scenario A. Validation datasets: scenarios B
and C

Dataset N samples Distance Image resolution Camera type Light intensity Object

Synthetic dataset 1000 2–5 m 512 × 512 Virtual Camera (FOV 30 deg) — CubeSat
Lab scenario A 42 0.5–3 m 1280 × 720 Intel Real-Sense D435i 35% CubeSat
Lab scenario B 1021 0.5–3 m 1280 × 720 Intel Real-Sense D435i 25% CubeSat
Lab scenario C 2789 0.5–3 m 1280 × 720 Intel Real-Sense D435i 30% No object

covariance matrix and state estimates using the system

dynamics in Eqs. (21) and (22):

δxj+1 = Ajδxj + Bj∆vj + wj (21)

δyj+1 = Hjδxj + ej (22)

where x is the vector of the state deviations from the

baseline path, y is the observed pose, and Hj = ∂y/∂x.

Moreover, wj and ej are stochastic noises assumed to be

Gaussian, with covariances E[wjw
T
j ] = Q and E[eje

T
j ] =

R. The sampling frequency of the pose data is larger

than that of maneuver delivery; hence, the value of ∆vj

may be zero at certain sampling time tj . Furthermore,

note that the target’s position and orientation relative to

the Earth’s inertial frame develop independently of the

dynamics of the chaser satellite. Subsequently, a chaser’s

pose observations or maneuvers have no impact on the

motion of the target satellite. Consequently, the number

of partial derivatives of the states relative to the observed

pose is zero.

3.2.3 Control: linear quadratic regulator

Navigation feedback offers state deviations from the

baseline path, which are typically small, and the

linearized dynamics evaluated along the baseline path are

adequate for rapidly forecasting an appropriate control

output. Linear dynamics are governed by

δxk+1 = Akδxk + Bkδuk (23)

where Ak is the 23×23 state transition matrix, and Bk is

a 23× 6 matrix corresponding to the partials of the state

vector at the final time (xk+1) to a control vector δuk,

which is assessed along the baseline route. Because the

motion of the target and location of the approach site are

independent of the motion of the chaser, several partials

in matrix Ak are zero. A discrete linear quadratic regular

(LQR) then offers a cost-optimal sequence of control

maneuvers to minimize the cost functional J̃ , such that

J̃ = δxT
N P̃NδxN +

N−1∑
k=0

δxT
k Q̃kδxk + δuT

k R̃kδuk (24)

and regulates any position, orientation, and angular

velocity deviation in the state vector estimated from the

baseline path. It also modulates the size of the control

output. The solution to this linear quadratic regulator

problem is given by [29, 30]:

δuk = −K̃kδxk (25)

where K̃k is the gain matrix that satisfies the discrete

algebraic Ricatti equation to iteratively solve for the

coefficient matrices and eventually the gain matrix.
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3.3 Initial assessment of GNC algorithm

The primary focus of this investigation is to test the

feasibility of the algorithm under realistic extreme

conditions in an HIL setup. However, the effectiveness

and adaptability of an algorithm in a safe environment,

such as software and numerical simulations, should be

understood before demonstrating it on actual hardware.

A previous study demonstrated the integration of a

portion of the GNC algorithm as a Python API for SIL

testing using the MDS toolkit [18]. The MDS application

enables the generation of a variety of orbital scenarios

involving the target and chaser satellites [17]. Additional

test cases were executed using synthetic pose values to

assess the performance of the algorithm further. Learning

from the standalone controller and SIL tests aids in

understanding and adapting parameters appropriate for

higher fidelity HIL tests.

The SIL tests were conducted for a wide range of orbits

spanning from 7000 to 36,000 km radius, resembling

orbits from an LEO to a GEO. In these cases, slightly

aggressive yet prudent rendezvous tests were conducted,

achieving rendezvous between the target and chaser,

with an initial separation distance ranging between 6

and 240 m and a process duration ranging from 60 to

240 s. The details of the parameters used for optimization

and control are listed in Table 2. The selection of the

appropriate weighting matrices was crucial for these

diverse cases. Notably, the simulated cases exhibited

a final displacement error within 0.4 m. Additionally,

the chaser satellite adhered to the demanding maximum

acceleration level of 0.1 m/s2. Snapshots of the MDS

simulator during the SIL tests are shown in Fig. 5, both

during the initial phase of rendezvous and as the chaser

satellite arrives toward the approach site. The results

obtained from the SIL tests facilitated the tuning of the

weighting parameters used in rendezvous path generation

Fig. 5 Phases of chaser motion during proximity operations. (a) Chaser and target during the initial phases of the approach.
(b) Chaser arriving at the approach site.

Table 2 Sample parameters for guidance and control

Parameter Software-in-the-loop (simulation) Hardware-in-the-loop (experiment)

Radius of target orbit (km) 7000–36,000 7000
Initial separation in CW frame (x, y, z) (m) Varying [0.11, −2.81, 0.03]

(from actual observation)
Distance at rendezvous (m) 0.4–1.0 0.5
Collision avoidance radius (m) 0.4–1.0 0.5
Total time of propagation (s) 60–240 480
Control segments 30–120 60
Max. control acceleration (m/s2) 0.025–0.1 5.0 × 10−5

Max. control torque per kg (Nm) 1.0 × 10−4 1.0 × 10−4

Q1 (diagonal in log10 scale) Varying [1, 0.1, 1]
Q2 (diagonal in log10 scale) [0, 0, 0] [0, 0, 0]
Q3 (diagonal in log10 scale) [0, 0, 0] [0, 0, 0]
R (diagonal in log10 scale) [−4, −4, −4, −6, −6, −6] [−4, −4, −4, −6, −6, −6]
Pose observation interval (s) 0.1–5.0 0.5
Errors in pose (3σ) NA (default software pose values) NA (based on real pose values)
Incorrect orientation or pose flipping NA (default software pose values) NA (based on real pose values)
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across diverse scenarios. These parameters achieved

a balance by avoiding overly aggressive responses to

state changes and excessive inclination toward propellant

conservation or maneuver delivery. The values for the

weighting matrices that rendered reliable performance

are listed in Table 2 and were therefore adopted in HIL

tests.

Software-based testing facilitates the assessment of

several rendezvous scenarios, particularly those that

include significantly longer trajectories that are difficult

to simulate in a laboratory environment. However, actual

camera performance in scenarios involving challenging

lighting conditions cannot be realistically explored via

software-based testing and remains a major focus of this

investigation.

4 Robotic testbed

4.1 Laboratory setup

The Zero-G Lab at the University of Luxembourg is a

facility dedicated to the real-time emulation of on-orbit

servicing missions. The laboratory features a 5 m × 3 m

area and incorporates various components to replicate

on-orbit scenarios. The laboratory contains two 6-DoF

UR10e robotic manipulators mounted on Cobotracks

rails, enabling an additional DoF for satellite motion

emulation [31]. Figure 6 shows the laboratory setup used

in this study. For the rendezvous scenario, the target

satellite mockup is positioned on the ceiling arm, whereas

the chaser satellite mockup, represented by an optical

camera, is mounted on the wall arm. The setup includes

the following components:

• Chaser camera: The Kurokesu C1 Pro X20

camera with variable exposure (AEC), white balance

(AEB), gain, backlight compensation, and low light

compensation was used. The camera has a field

of view of 66.5 degrees. During the experiments,

exposure settings ranged from 50 to 300 ms. Images

of 1920 px × 1080 px were captured at 30 fps. Before

the experiments, the camera was calibrated using

the MoveIt Hand-eye calibration tool with OpenCV

libraries.

• Image processor: Nvidia Jetson TX2 was used as

a reference image processing platform for the chaser

to deploy and run deep-learning models during the

experiments. The TX2 has a quad-core Cortex A57

+ Nvidia Denver processor coupled with an Nvidia

Pascal 256-core video card capable of 1.33 TFLOPS

and has 8 GB of RAM.

• Satellite mockup: A 3D printed mockup of a 0.6×
scaled CubeSat resembling a 6U Nanosatellite Bus

M6P from Nanoavionics is used in the experiments

[32]. These mockups incorporated the same features

used to train the deep-learning model.

• OptiTrack - Motion Capture System (MCS):

Six Primex 13 W cameras are installed in the Zero-

Fig. 6 Zero-G Lab at the University of Luxembourg.
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G Lab facility, pointing in predefined directions

for an almost complete coverage of the laboratory

area. These cameras track passive (unpowered) and

active (powered) markers with positional errors up to

±0.20 mm and rotational errors within 0.5 degrees,

and at a frequency up to 240 Hz [33].

• Light source: A 60 W LED light with a color

temperature rating of 5600 K (similar to peak sunlight)

is used as the lighting source while vision-based

navigation is active [34]. The position of the light

source was varied according to the requirements of

the HIL experiments, as discussed later.

The OptiTrack MCS is employed to determine the

ground truth for the satellite position and orientation.

OptiTrack Motive software provides an interface for

viewing OptiTrack data and calibration through the

wanding process. As shown in Fig. 6, two sets of

abstract 3D body/coordinate frames are created using

multiple passive markers with known fixed distances from

each other. Marker frames are affixed to each robotic

arm alongside the satellite mockups, and a well-defined

transformation exists between the markers and mockups.

The states of individual markers are detected by the MCS

through triangulation, and the pose of the satellite body

is subsequently evaluated with submillimeter accuracy.

The output from the OptiTrack data is the ground truth

value, which is used for computing the guidance path,

identifying true satellite states, robot manipulation, and

retrieving appropriate transformations between different

frames relevant to HIL tests.

The open-source Robot Operating System (ROS)

toolkit is used as a robotics middleware to control and

communicate with the robots in the experimental setup.

The system consists of interconnected computers running

ROS nodes to enable HIL simulations. Robot motion

is controlled by servoing using feedback from sensors,

such as cameras and motion capture systems. The chaser

satellite follows a rendezvous path provided as Cartesian

set-points, with updates based on visual feedback and

pose estimation. MoveIt Servoing, a plugin in the MoveIt

motion planning framework, enables real-time control

of manipulators, with the chaser and target satellite

integrated into the kinematic chain. This setup enables

an accurate simulation of the rendezvous process. Concise

values of the Zero-G Lab specifications are listed in

Table 3.

Table 3 Features of the Zero-G Lab

Target DoFs 6+1
Simulation range Rendezvous/proximity
Orbital mechanics Included through ODS

package
Spacecraft (mockup)

payload
10 kg (maximum)

Operating range 3.2 m (longest direction)
Sensing modality OptiTrack MCS/RGB-D Cam
Ground truth

error/tracking error
0.576 mm (based on

calibration)
Simulation latency 100–280 ms
ROS support Yes
Customizable mockups Yes

4.2 Motion control of robotic manipulators
for spacecraft emulation

4.2.1 Inverse kinematics: jacobian pseudo-inverse
formulation

Consider an emulated satellite (mockup) whose center of

mass (COM) coincides with the tool center point (TCP)

of the robot end-effector. A satellite is defined as an

additional link to the UR10e robot system. Any position

or velocity imparted to this satellite is conceived as the

rotation and translation of its COM. Because of the

coincidence of the satellite COM with the TCP of the

robot, the velocities and positions of the emulated satellite

are the same as those of the robot TCP (i.e., robot end-

effector). Based on the assumptions that the rendezvous

scenario involves no interactions (i.e., no force and torque

transfer) and the manipulator can achieve highly accurate

motion control, the velocity of the mockup is related to

the joint velocities of the manipulator as Eq. (26):

ẋ = Jq̇ (26)

where ẋ ∈ Rm, q̇ ∈ Rn, and J ∈ Rn×m is the Jacobian

matrix that maps the joint velocities to Cartesian

velocities and depends on the frame in which the end-

effector velocities are modeled. For a non-redundant

manipulator, m = n, and J is a square matrix, whereas

for a redundant manipulator, m < n, the Jacobian is a

non-square matrix. The Jacobian J for an isolated 6-DoF

robot (i.e., no rails included in the system) is a square

matrix. If the Jacobian does not lose rank, the inverse

relationship holds true:

q̇ = J−1ẋ (27)

and enables the identification of the corresponding joint

states to achieve certain Cartesian positions and/or

velocities.
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For a redundant manipulator, as for an augmented

7-DoF robot (i.e., rails are included in the system), the

Jacobian is no longer a square matrix but a rectangular

one, thus offering at least one degree of redundancy. In

such cases, the inverse solution is calculated using the

pseudo-inverse of the Jacobian matrix:

q̇ = J+ẋ (28)

to identify the corresponding joint states. Considering

this mapping between the Cartesian and joint spaces in

terms of differential motion, the relation is described as

dq = J+dx (29)

thereby relating the incremental positions between the

Cartesian and joint spaces. Despite being computationally

efficient, the Jacobian pseudo-inverse J+ suffers

from instabilities in the singular and near-singular

configurations. The utilization of this method for robot

motion control involves a trade-off between computational

efficiency and instability. Other possible solutions include

the use of the damped pseudo-inverse and selectively

damped least-squares solutions. Although inherently

stable for singular configurations, unlike the Jacobian

pseudo-inverse method, these methods require dynamic

decoupling and exhibit a loss of accuracy with increased

damping [35]. A practical solution to successfully achieve

Jacobian inverse-based control without adverse effects

is to avoid the singularity altogether. However, the

overall workspace of the robot manipulator is not

used efficiently. The motivation for using the Jacobian

inverse method for motion control is twofold. First,

it is computationally efficient and highly accurate.

Second, because of the availability of an off-the-shelf

implementation along with singularity and collision

avoidance [36], the implementation has been adapted

to the laboratory setup for the on-ground validation of

on-orbital scenarios.

The limited workspace of the manipulator, combined

with high joint velocities in singular configurations, also

results in discrepancies between the simulated motion

states and the motion states emulated by the TCP

manipulator. To mitigate these effects, velocity scaling is

implemented as

q̇ =


q̇, λ(J) 6 λl

q̇ ·
(

1− λ(J)− λl
λu − λl

)
, λl < λ(J) < λu

0, λ(J) > λu

(30)

and scale down the velocities as the satellite (mockup)

reaches kinematic singularities. Here, the condition

number λ(J) is used to assess the sensitivity of the inverse

kinematic solution. A high value of λ(J) implies that a

small change in the input may cause a large amplification

of the output (as observed for robot singularities when

small Cartesian velocities cause large joint velocities). It

reflects the proximity to a singular configuration. The

definition of λ(J) is approximated from the eigenvalues

of J as Eq. (31):

λ(J) ≈ σmax(J)

σmin(J)
(31)

where σi denotes the singular values of the Jacobian. If

the condition number of the Jacobian matrix exceeds

the lower threshold λl, the joint velocities begin to

decelerate. In contrast, if the condition number exceeds

the upper threshold λu, the joint velocities are set to zero,

preventing any motion. For the UR10e configuration in

the Zero-G Lab, the lower limit λl is set to 17, and the

upper limit λu is 30.

4.2.2 Control architecture

The HIL experiments involve the systematic and

safe operation of a robot and rail hardware, timely

data acquisition for navigation, and solving orbital

dynamics for appropriate satellite motions. An elaborate

representation of the implementation is presented as a

block diagram in Fig. 7. The prominent aspects of the

implementation are the Jacobian pseudo-inverse control

method highlighted under the green block and the ODS,

which numerically solves the satellite motion to identify

waypoints for the robots to follow. A combined ROS

interface is implemented to operate two robotic hardware

(robot and rail) as one. The end-effector motion (as a

result of the combined motion of the joints) is obtained

via a forward transformation. In the ground-truth data

acquisition block, based on the ROS TF2 package [37]

combined transformations are obtained not only from

the robotic hardware but also from pose estimation

from cameras and motion capture system. Any mockup

added becomes part of the serial kinematic chain, whose

transformation relative to the robot control frames (e.g.,

base-link, tool link, etc.) is easily obtained via the

ground-truth data acquisition block. This block diagram

explains both the chaser and target motions. For the

motion-actuated robots used in this study, the emulated

satellite (mockup) motion was specified using the desired
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Fig. 7 Overall control block diagram.

waypoints xd in Cartesian space. The positional error

term e = xd − x, where x is the actual satellite Cartesian

position. Note that when emulating the target satellite

motion, x includes the position and orientation of the

target satellite from Eq. (19). Similarly, when emulating

the chaser motion, x includes the position and orientation

of the chaser satellite from Eq. (19). The orientation of

the ground truth is expressed in terms of a quaternion.

Consequently, the orientational error ωe is defined as

Eq. (32):

ωe = Eerror =


εx
εy
εz
εw

 = Edesired · E−1
current (32)

which is then expressed in the angle-axis format as

av =

αxαy
αz

 =


εx√
1−ε2w
εy√
1−ε2w
εz√
1−ε2w

 (33)

Θe = 2 · arccos(εw) (34)

where av is the equivalent axis of rotation, and Θe

is the angle of rotation. Considering the linear and

angular terms of dx in Eq. (29) described in Section 4.2.1

separately as dx =

[
v
ω

]
dt, the translational terms are

mapped into the differential terms via a PID controller as

v = Kp · e + Ki ·
∫

edt+ Kd · ė (35)

and the angular terms are mapped as

ωm = Kp · ωe + Ki ·
∫
ωedt+ Kd · ω̇e (36)

where ωm is an intermediate term used to obtain the final

differential angular motion along each of its constituent

directions:

ω =

ωm · αx
ωm · αy
ωm · αz

 (37)

The expressions in Eqs. (35) and (37) allow obtaining

the differential motion in the joint space, as shown in

Eq. (29). Depending on the control mode in which the

robot’s internal motion controller operates, dq is either

provided as a set point to the position controller while

respecting the joint position limits or converted to a

velocity term to serve as a set point to the velocity

controller while respecting the velocity scaling terms

defined by Eq. (30). Table 4 lists the set of parameters

used in the experiments performed in this study. Note

that although a full PID controller can be used, the choice

Table 4 Parameter table for Jacobian pseudo-inverse control

Parameter 6-DoF case 7-DoF case

P, I, D (x-axis) 2.0, 0.021, 0.0 5.0, 0.021, 0.0
P, I, D (y-axis) 2.0, 0.021, 0.0 5.0, 0.021, 0.0
P, I, D (z-axis) 2.0, 0.021, 0.0 5.0, 0.021, 0.0

P, I, D (angle-axis) 0.5, 0.0, 0.0 5.0, 0.0, 0.0
λl, λu 17, 30 17, 30
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of gains in this study was sufficient to provide accurate

tracking results. Although the gains for terms P, I, and D

may depend on various factors, selecting higher P gains

was sufficient for a successful 7-DoF implementation. The

identification of the optimal gains was beyond the scope

of this study.

5 Experiments and results

5.1 Robotic testbed assessment

5.1.1 Workspace augmentation for enhanced
motion emulation

As described in the previous section, although

avoiding singularity guarantees stable robot performance,

restrictions on the usable workspace persist. In such a

scenario, the incorporation of an additional joint, such

as a linear axis, increases the redundancy of the overall

system and augments the volume of the workspace. This

enhanced workspace volume is critical for simulating

longer rendezvous trajectories. In this research, maximal

workspace reachability was also considered. Figure 8

depicts the workspace augmentation concept. A 6-DoF

system that comprises only robotic arms can access

a limited workspace and is marked by a green point

cloud for both ceiling and wall robots. The green

point cloud almost forms a spherical sector volume,

in which the delivered waypoints are reached using

the robot alone. By comparison, the red point cloud

indicates an enhanced workspace, thus enabling the

emulation of longer rendezvous trajectories. Among

the possible configurations in the point cloud, the

addition of boundary constraints and obstacles in the

vicinity of robotic hardware makes the workspace more

hemispherical. Furthermore, as demonstrated in Fig. 9,

the augmented workspace of the robots partially overlaps

and enables the emulation of various interaction scenarios

such as docking and berthing.

5.1.2 Workspace utilization

Understanding the reachability and workspace overlap,

albeit intuitively, serves two functions: (1) setting up a

feasible position of the robot base for each experiment

and (2) effective utilization of the workspace [38]. An

augmented workspace enables more configurations that

robots can achieve; however, different configurations

affect joint state motions differently. The impact of the

joint state motion on achieving Cartesian waypoints

(a)

(b)

Fig. 8 Visualization: robot workspace with 6 DoFs (green)
vs. augmented workspace with the usage of rail, i.e., 7
DoFs (red). In these demonstrations, the actual workspace is
indicated by a point cloud, and its limits are approximately
marked with a geometrical volume. (a) Ceiling robot (side
view of the laboratory). (b) Wall robot (top view of the
laboratory).

Fig. 9 Overlap of augmented workspaces of ceiling (green)
and wall robots (orange). View: front view of the laboratory.
The actual workspace is indicated by a point cloud, and its
limits are approximately marked with a geometrical volume.

influences the usefulness of workspace augmentation.

Mathematically, this impact can be understood from

the manipulability index [39], which is defined by
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M =
√

det(JJT) = σ1σ2 · · ·σm (38)

where σ1, σ2, · · · , σm are the singular values of the

Jacobian matrix. The effects of the Jacobian matrix

in physical space are shown in Fig. 10, where the

singular values denote appropriate transformation along

the principal axes. Matrices U and V correspond to the

left and right singular vectors that denote the principal

directions at the final and initial times, respectively.

As the robot approaches a singular configuration, at

least one of the singular values collapses to 0, i.e.,

σi → 0, indicating that any change in joint states along

corresponding principal axes Vi will have no impact on

the final Cartesian velocity in the direction defined by

Ui. Consequently, the manipulability index deteriorates

as the robot approaches a singular configuration. The

emulation of any satellite (mockup) motion causes the

manipulability index M to approach zero when the robot

reaches its workspace limit. Beyond this point, joint space

motion may not necessarily drive the desired motion in

Cartesian space. Recall that the robots may stop before

the manipulability index becomes exactly zero because

of the safety limits adopted in Eqs. (30) and (31).

1

2

σ
1

σ
2

Joint velocity states, q̇
Cartesian velocity states, ẋ

V1

V2

J

U1

U2

Fig. 10 State change along principal directions mapped by
the Jacobian matrix.

Two sample trajectories were imparted to demonstrate

the limitations of the 6-DoF robot system in comparison

with the 7-DoF robot–rail system. These trajectories,

as shown in Fig. 11, were carefully selected to drive

the robots towards two different singular configurations:

one that moved towards the “external” limits and the

other that remained within the “internal” limits of the

geometric volume encompassed by the ceiling arm with a

fixed base. The manipulability indices and corresponding

joint states for these cases are illustrated in Figs. 12(a)

and 12(b), respectively. For convenience, all values for

the 6-DoF system are marked with solid lines, and those

for the 7-DoF system are marked with dashed lines. Note

Fig. 11 Trajectories that include singularity at external and
internal boundaries.

that in a 6-DoF system, the Jacobian is a 6× 6 matrix.

However, when the same manipulator is considered as

part of a 7-DoF serial kinematic chain in the system,

the overall Jacobian is a 6× 7 matrix. For consistency,

the submatrix of J that corresponds to the same joint

states as those of the 6-DoF system is used for calculating

M. The effect of the manipulability index on the joint

velocities is explained as follows:

• “External” trajectory

In a 6-DoF system, the trajectory that leads the robot

into a singularity at the external boundary of its

workspace results in an “elbow singularity” (owing to

the arm being fully stretched with elbow joint position

values close to zero). As the robot approaches the

singularity, it cannot maintain the desired satellite

trajectory and is compelled to halt close to the

boundary (via Eq. (30)) to avoid unstable behavior.

In the 7-DoF system augmented by using the rails,

the additional linear DoF enables complete emulation

of the desired trajectory. As shown in Fig. 12(a), the

quantity M for a 6-DoF system degrades over time

(approaching close to zero) as the robot approaches

the singularity and eventually flattens out, and no
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Fig. 12 Comparison of manipulability for internal and external type trajectories. (a) External trajectory. (Top) Manipulability
index for a 6-DoF system, and a 6-DoF system during an augmented 7-DoF motion. (Bottom) Joint state profile for both 6-
and 7-DoF systems. (b) Internal trajectory. (Top) Manipulability index for a 6-DoF system, and a 6-DoF system during an
augmented 7-DoF motion. (Bottom) Joint state profile for both 6- and 7-DoF systems.

subsequent motion occurs for the remaining duration

of the trajectory. In contrast, all the joints in the 7-

DoF system are operational for the entire duration,

of which a significant portion of the linear motion is

performed by the rails. The manipulability index of

the 7-DoF system exhibits a consistent evolution and

does not plateau with time.

• “Internal” trajectory

Evident in Fig. 11, the trajectory that lies within the

internal workspace volume of a 6-DoF UR10e system

forces the robot into another singular configuration

known as “shoulder singularity” (owing to the wrist

being close to the shoulder origin in one or more axes).

Similar to the previous case, the additional linear

DoF in the 7-DoF system enables the execution of

the desired trajectory. Figure 12(b) describes that the

joint positions in the 7-DoF system evolve to avoid

singularity for its entire duration; however, for a 6-

DoF system, the quantity M collapses at a certain

time, beyond which robot does not execute the desired

waypoints.

Note that the 7-DoF system suffers from its

singularities; however, this is beyond the scope of this

paper. The use of an additional rail is sufficient to improve

the emulation capability of robots when performing HIL

experiments.

5.2 Hardware-in-the-loop GNC validation

The HIL tests enable the integration of actual sensors,

hardware components, and simulation environments to

assess the real-time performance of GNC systems [40].

In this investigation, a visible-light camera is introduced
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to deliver pose information, whereas the guidance and

control scheme operates on an object-oriented Python

library and communicates over the ROS to test the real-

time feasibility of the entire GNC framework. Finally,

satellite mockups mounted on robotic manipulators

enable the capture of relative satellite poses and the

visualization of rendezvous operations.

Successful execution of the rendezvous motion in

the Zero-G Lab requires adaptability to the limited

available space and the ability to accommodate different

initial conditions. The guidance and control package

implemented in this study allows for flexibility by

accepting any initial relative position and orientation

between the chaser and target satellites. The target

satellite mockup is securely mounted on the ceiling end-

effector, whereas the chaser satellite, represented by

a camera, is mounted on the wall arm. A schematic

representation of the Zero-G Lab configured for the

HIL experiment, along with the associated frames, is

shown in Fig. 13. To ensure consistency, the CW rotating

frame is selected at the center of the target and kept it

fixed throughout the entire experiment. The prominent

direction of the approach, i.e., the ŷ direction in the CW

frame (the direction of orbital velocity), is set along the

larger dimension of the laboratory, one that is parallel

to the rails. The relative position and orientation of the

chaser are determined either from the initial camera pose

readings or from the OptiTrack MCS, which serves as the

ground truth. Four distinct scenarios are tested under

varying lighting conditions and the initial conditions

remain unchanged in each case.

5.2.1 Scenario description

The HIL experiment focuses on an LEO with a radius

of 7000 km. Initially, the chaser and target satellites

are separated by approximately 2.81 m. Detailed values

for the different axes and weighting parameters are

listed in Table 2. The aim of the rendezvous is to

achieve a final separation of 0.5 m while maintaining

a collision avoidance radius of the same value. The

complete rendezvous motion is designed to be completed

within 480 s with 60 equally spaced control segments

identified for the process. Pose observations are captured

at intervals of 0.5 s throughout the proximity operations.

Optimization techniques are applied to obtain a guidance

path, which serves as a reference for all HIL experiments.

Figure 14 shows the guidance path along with snapshots

CW
 fra

me

Target

Chaser
(camera frame)

World/ZeroG

x̂ x̂

ŷ

ŷ

ẑ

ẑ

Fig. 13 Configuration of the Zero-G Lab with associated
frames for HIL testing. The camera’s optical frame axis is
specifically marked in RGB colors.

Without guidance

With guidance
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0.5
0.0

−0.5
−1.0

x (m)

y (m)
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Fig. 14 Optimal reference path calculated using the
guidance strategy. The natural path (without guidance) is
obscured by the chaser’s body. A snapshot of the orientation
of the chaser (in green) and target (in orange) satellite is
also provided for reference. Note that the orientation is also
compensated with the trajectory.

demonstrating the orientation of the target and chaser

satellites. Note that, for the physics and visualization in

the HIL tests, the target and chaser satellites are modeled

as 6U CubeSats. As the chaser approaches the target,

pose values were obtained as feedback, and the linear

control inputs are adjusted accordingly to keep the chaser

near the reference path.

In satellite operations utilizing vision-based navigation,

environmental factors can contribute to significant

uncertainties in pose estimation. The intensity and

direction of light, as well as the surface reflectivity of

the target satellite, are crucial in pose determination.

Deliberate attempts are made to test some of these

challenging cases in the Zero-G Lab. Four different

positions for the light source are considered, as depicted
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Target
Chaser

World / ZeroG

Fig. 15 Four different positions for light sources considered
for the experiments, as identified in the schematic of the
laboratory space (top view).

in Fig. 15. For simplicity, these locations are referred

to as LP1, LP2, LP3, and LP4, where LP means “light

position”, and the number following corresponds to the

one in Fig. 15. These specific light positions induce

partial and complete shadows being cast by the chaser,

and inevitably by the robots, onto the target satellite,

as shown in Fig. 16. Light at LP4 also induced lens

flare at intermittent periods of flight (see Fig. 16(f)).

In addition to environmental factors, operation beyond

the calibrated specifications of the camera in terms of

separation distances and viewing angles contributes to

inaccurate predictions of relative satellite pose. Even

when the target satellite is fully visible in the camera

frame, instances of inaccurate pose predictions are

observed during laboratory experiments, and shown in

Fig. 17. Moreover, certain orientations of the chaser

(a) (b)

(c) (d)

(e) (f)

Fig. 16 High uncertainty in pose estimation as a result of environmental factors. Some observed cases were as follows:
(a, b) partial shadow of the chaser or other bodies cast on the target causing incorrect pose prediction; (c) only one edge of
the target visible; (d) partial edge of the target visible; (e) complete darkness or no pose detected; and (f) lens flare.
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camera relative to the target do not provide favorable

conditions for image identification, resulting in frequent

periods of flight where no pose is determined.

Pose observations are initially identified in the local

camera frame (depicted in Fig. 13). Subsequently, these

values are transformed into the CW frame, which serves

as the reference frame for the primary states within the

Kalman filter and controller. Note that the camera frame

may not always align with the CW frame because it

evolves along with the orientation of the chaser satellite.

Figure 18 displays the pose values determined in the

camera frame for each case. During intermittent time

intervals, the camera fails to capture images of the target,

resulting in no available pose values. This occurrence is

evident across all cases and is depicted as a gap in the

pose data. Among the four light positions tested, LP1

exhibited the most favorable conditions, with minimal

shadow regions. The light sources at LP2 and LP3 had

more instances of partial and complete shadows, making

accurate pose estimation challenging, and resulting in

higher uncertainties in certain areas. The presence of a

lens flare significantly affected pose observations in LP4.

(a) (b)

Fig. 17 Limitations in modeling causes of uncertainty in pose estimation. Some recurring cases are the following:
(a) misidentification of mounting points on external apparatus as part of the target, and (b) limited images within the
training set for the pose algorithm.
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Fig. 18 Pose estimated through images captured under distinct lighting conditions as the chaser approached the target.
Positions for the light source were varied as in Fig. 15. Values are indicated in the camera’s optical frame (see Fig. 13).
(a) Light source at position 1. (b) Light source at position 2. (c) Light source at position 3. (d) Light source at position 4.
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Additionally, imprecise camera parameters contributes to

variations in pose quality, yielding accurate observations

at specific viewing distances and angles while producing

inferior results in other areas.

5.2.2 Controller characteristics

To assess the influence of pose estimation on satellite

control during the rendezvous process, the state and

control histories of all four cases are analyzed. Among

these four cases, the light source at position 1, or

case LP1, is observed to be the most favorable for

feature detection, thereby offering reliable navigation.

In contrast, case LP4 was detrimental to pose detection

given the direct illumination towards the camera.

Specifically, Figs. 19 and 20 describe the state and

control histories for the most conducive case (LP1) and

least conducive case (LP4), respectively. Consequently,

a comparison between LP1 and LP4 cases is conducted,

which highlights the following:

• Figure 19 shows the history of position compensation,

the reference path, and the corresponding control

acceleration levels. The position history in Figs. 19(a)

and 19(b) shows the reference path the satellite is

intended to follow in ideal conditions (indicated by

the suffix “ ref”), the ground truth or the true path

that the chaser satellite follows incorporating actual

maneuvers (“ truth”), and the estimated path after

processing pose observations through a Kalman filter

(“ est”). Similarly, as shown in Figs. 19(c) and 19(d),

the optimal control accelerations are calculated for

ideal motion along the reference path (“ optimal”),

whereas the actual control outputs accounted for

state compensation (“ actual”). For LP1, the errors
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Fig. 19 Position and acceleration history for the chaser satellites while it approached the target as illumination was varied
by placing the light source at positions 1 and 4. These lighting conditions deliver edge cases for pose estimations. (a) Position
history for LP1. (b) Position history for LP4. (c) Acceleration history for LP1. (d) Acceleration history for LP4.
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in determining position states are significantly fewer

than that of case LP4, where the pose estimator

interprets states with significant deviation owing to lens

flare. Poor pose observations results in poor estimates

and an inferior maneuver. Figure 19(d) shows erratic

maneuvers in regions with poor position observation

in comparison with Fig. 19(c), where maneuvers are

relatively gradual. Compensating pose errors result in

control maneuvers, and hence the true satellite path

does not precisely overlap the reference guidance path.

A striking observation in Figs. 19(a) and 19(b) is that,

for LP1, less uncertainty exists with minor bias in

position states, whereas less bias and high uncertainty

exists in LP4. Nevertheless, with an active Kalman

filter and frequent observation of as much as 2 Hz

(two observations every second), the overall control

history could achieve a successful rendezvous control.

Total control costs vary according to the quality of

pose observations.

• Figure 20 illustrates the chronological evolution of

the chaser’s orientation relative to the target, along

with the corresponding control torques applied. The

orientation history reveals the reference path, true

path, and estimated values (Figs. 20(a) and 20(b)).

In both LP1 and LP4 scenarios, a drift is noticeable

during the initial stages, indicating a bias in the

pose estimation process. Specifically, for LP4, the

camera’s orientation induces lens flare when it reaches

a certain position (close to 180 s); the subsequent pose

observations exhibit significant uncertainty, resulting

from frequent and abrupt changes. The estimated

orientation manifest chaotic behavior, resulting in a

significant torque demand for compensation for these

deviations. Consequently, Fig. 20(d) for LP4 shows

more pronounced fluctuations in the applied torque

throughout the experiment compared with Fig. 20(c).

Despite such large and chaotic errors, the controller is

sufficiently potent to deliver a successful rendezvous at
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Fig. 20 Orientation and torque history for the chaser satellites as they approached the target while illumination was varied by
placing the light source at positions 1 and 4. These lighting conditions deliver edge cases for pose estimations. (a) Orientation
history for LP1 in the roll, pitch, and yaw. (b) Orientation history for LP4 in roll, pitch, and yaw. (c) Torque history for LP1.
(d) Torque history for LP4.



On-ground validation of orbital GNC: Visual navigation assessment in robotic testbed facility 21

the cost of large and rapidly changing control torques.

Note that while delivering these control actions might

be mathematically feasible, practical implementation

is still challenging.

Four scenarios were tested using the same foundational

baseline rendezvous path but with varying light positions.

As observed in LP1, the navigation reliably estimated the

pose, maintaining deviations within 10 cm in the position

and 30 degrees in the orientation. Correspondingly, a

successful rendezvous resulted in a maximum acceleration

of 5 × 10−5 m/s2 (equivalent to a 50 µN thrust for

a 1 kg satellite) and a maximum thrust of 6 × 10−5

Nm torque for attitude correction. Conversely, in LP4,

which was characterized by relatively weaker navigation,

the predicted position deviations reached up to 1 m,

with orientation errors of up to 180 degrees (pose flip).

Consequently, trajectory corrections demanded a more

rigorous response, necessitating a maximum acceleration

of 6 × 10−5 m/s2 (equivalent to a 60 µN thrust for a

1 kg satellite) and a maximum thrust for a torque of

1.3 × 10−4 Nm for attitude correction. Additionally, a

more rapid change in torque was required. Cases LP2

and LP3 demonstrated performance levels between those

of LP1 and LP4. Real-world scenarios may require a

combination of navigation approaches to mitigate risks,

as pure vision-based navigation, as observed in LP4, can

be risky. The latency between the hardware and software,

ranging from a median of 100–280 ms to a maximum of

1.6 s, caused minor deviations, which were effectively

compensated for by the algorithm.

Despite the presence of inherent errors in real-world

pose observations, which may not necessarily follow

a Gaussian distribution and can vary under different

environmental conditions, the estimator and controller

demonstrated effective coherence. Navigation accuracy is

important in influencing control costs. The experimental

findings indicated that the absence of pose observations

is less detrimental and preferred over incorrect poses.

When pose data are absent, the covariance within the

Kalman filter increases, indicating reduced confidence in

the estimated states. Nevertheless, maneuvers are still

delivered based on the predictions of the apriori states. In

contrast, frequent and incorrect pose data result in poor

estimates with higher confidence levels within the Kalman

filter. Thus, a tradeoff exists between the frequency and

quality of observations.

6 Conclusions

The HIL tests are conducted to validate the feasibility

of the visual GNC approach in real-world scenarios.

All system components, including the pose-identification

camera, robot end-effectors for target and chaser motion,

and controller, are interconnected through a common

network, ensuring efficient real-time communication.

The integration of the linear rail into the robotic

system enabled an extended range of motion while

overcoming the potential singular configurations of

the 6-DoF robot system, both at the internal and

external limits of the operable 6-DoF workspace. The

mathematical significance of the inverse kinematics solver

for configuring appropriate joint motions to deliver the

desired Cartesian motion is revealed for both the 6- and

7-DoF systems. With a 7-DoF system, whenever possible,

the joint space motions are marginally altered to prevent

the manipulability index from collapsing.

The effect of the pose estimation quality on the

rendezvous process is evaluated. Conditions such as

inadequate lighting, lens flares, and camera operation

beyond its calibrated limits across different distances

and viewing angles contribute to errors in the navigation

estimates. Subsequently, these errors result in higher

control costs. However, despite these challenges, the

Kalman filter and controller enable efficient performance

in tandem, even when pose errors do not precisely follow

a Gaussian distribution. The impact of frequent and

incorrect poses on control costs is more significant than

that in the absence of pose data. In practical applications,

multiple navigation approaches can be combined to

improve the pose estimation quality. For example, in

addition to optical sensors operating in the visible-light

spectrum, other types of sensors, such as infrared or

radar-based sensors, can be employed. The integration

of diverse sensor technologies can enhance the overall

accuracy and reliability of pose observations, resulting in

more robust and effective rendezvous operations.
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