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ABSTRACT

This study analyzes the optimal transfer trajectory of a spacecraft propelled by a spin-

stabilized electric solar wind sail (E-sail) with a single conducting tether and a spin

axis with a fixed direction in an inertial (heliocentric) reference frame. The approach

proposed in this study is useful for rapidly analyzing the optimal transfer trajectories of

the current generation of small spacecraft designed to obtain in-situ evidence of the E-sail

propulsion concept. In this context, starting with the recently proposed thrust model

for a single-tether E-sail, this study discusses the optimal control law and performance

in a typical two-dimensional interplanetary transfer by considering the (binary) state of

the onboard electron emitter as the single control parameter. The resulting spacecraft

heliocentric trajectory is a succession of Keplerian arcs alternated with propelled arcs,

that is, the phases in which the electron emitter is switched on. In particular, numerical

simulations demonstrated that a single-tether E-sail with an inertially fixed spin axis

can perform a classical mission scenario as a circle-to-circle two-dimensional transfer by

suitably varying a single control parameter.
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1 Introduction

This paper analyzes the optimal performance of

an interplanetary spacecraft propelled by an electric

solar wind sail (E-sail) [1, 2] with an unconventional

configuration comprising a single conducting tether that

spins around a fixed inertial direction. In fact, the usual

E-sail arrangement comprises various conductive tethers

connected to the spacecraft main body [3, 4], which

are deployed and maintained stretched by spinning the

vehicle around its symmetry axis [5]. Although such

a configuration allows the designer to fine-tune the

propulsive performance by selecting both the number of

cables and tether length [6], it requires a rather complex

spacecraft design in terms of tether reeling [7, 8] and

deployment mechanisms [9].

Therefore, as described in the recent review paper

by the authors [10], the in-space validation of the E-

sail propulsion concept will be left to a small spacecraft

(probably a CubeSat [11–13]) with a single conducting

tether of some hundred meters in length [14–16]; see the

conceptual scheme of Fig. 1, which describes the proposed

ESTCube Lunar Cubesat E-Sail Experiment [17].

Fig. 1 Artistic impression of CubeSat with a spinning,
single-tether, E-sail. Image courtesy of Mario F. Palos.

Because the thrust vector of such a configuration

cannot be described by the geometric formulation
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Nomenclature

a propulsive acceleration vector (mm/s2)
ac characteristic acceleration (mm/s2)
C spacecraft center of mass

d̂ auxiliary unit vector
e error vector
E endpoint Lagrangian
f dynamics vector
h orbital angular momentum magnitude

(km2/s)
H Hamiltonian function
H maximized Hamiltonian
Hc part of H that depends on the control

{î, ĵ, k̂} unit vectors of T
J cost function
O Sun’s center of mass
r orbital radius (au)
r̂ radial unit vector
t time (years)

t̂ transverse unit vector
T body reference frame
T� heliocentric reference frame
u radial component of spacecraft velocity

(km/s)

x spacecraft state vector
{x, y, z} axes of T
αd angle between d̂ and r̂ (rad)
αλ primer vector angle (rad)
α0 auxiliary angle (rad)
β dimensionless form of ac
θ polar angle (rad)
λ costate vector
λp primer vector with λp = ‖λp‖
{λr, λθ, λu, λh} costates
µ� Sun’s gravitational parameter (km3/s2)
τ dimensionless control parameter
ω spacecraft spin rate (rad/s)
Subscripts
f final

0 initial, at time t0 , 0
⊕ at 1 au from the Sun
Superscripts
· time derivative
– mean value
∧ unit vector
? optimal

discussed by Huo et al. [18], which is valid for a multi-

tether E-sail, the authors recently proposed a specific

mathematical model [19] to estimate the propulsive

acceleration of a low-performance E-sail with a single

conducting tether. In particular, the model proposed

in Ref. [19], which is briefly summarized in Section 2,

shows that the average propulsive acceleration of a single-

tether arrangement can be reduced to a single-vectorial

equation. Moreover, Ref. [19] also indicated how this

single-tether thrust model can be used to describe the

two-dimensional dynamics of an E-sail-based spinning

spacecraft with a fixed inertial direction of the spin axis.

This is a rather important scenario because it models the

typical behavior of a spinning single-tether CubeSat with

reduced control authority [17], in which the spin plane

is substantially fixed with respect to an inertial frame.

In this case, the spacecraft has a single binary control

parameter, that is, the state of the onboard electron

emitter, which determines the state of charge of the single

tether. In this context, the natural question is whether a

single-tether E-sail with a fixed attitude can be used in

classical heliocentric orbit transfers.

The main contribution of this study is to answer this

important question. Using the authors’ recent thrust

model [19], this paper discusses the control law and

minimum time trajectories in a typical heliocentric

mission scenario. More precisely, a circle-to-circle two-

dimensional orbit transfer was parametrically studied in

an optimal framework using an indirect method, assuming

a fixed sail inertial attitude and a single control variable

related to the (binary) power state of the onboard electron

emitter. Numerical simulations show that, in this highly

constrained mission scenario, a suitable control law allows

the spacecraft to complete a circular orbit raising (or

lowering) with flight time depending on the maximum

magnitude of the E-sail propulsive acceleration at a

reference distance.

2 Mathematical preliminaries

This section summarizes the main analytical results

obtained in recent literature [19] in the context of a

single-tether E-sail with a fixed inertial attitude. This

mathematical foundation is the starting point for the

trajectory optimization process illustrated in Section 3,

which constitutes one of the contributions of this study.

Consider a spacecraft propelled by a single-tether

E-sail that rotates at a constant spin rate ω around

the z-axis of a right-handed reference frame T (C;x, y, z)

with unit vectors {î, ĵ, k̂}. The origin C of T coincides
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with the center of mass of the spacecraft and the x-axis

is aligned with the conducting tether. Plane (î, ĵ), which

is perpendicular to the spin-unit vector k̂, coincides with

the E-sail nominal plane [20]; see Fig. 2.

Conducting

tether

E-sail
nominal plane Spacecraft

x

y

z

C

Tip mass

ω k

i

j

Fig. 2 Conceptual scheme of an E-sail-based spacecraft
with a single, spinning, conducting tether. Reproduced with
permission from Ref. [19], © Elsevier Masson SAS 2023.

According to Ref. [19], the propulsive acceleration

vector a given by a single-tether E-sail can be analytically

described as Eq. (1):

a =
acτ

2

(r⊕
r

) [
r̂ −

(
r̂ · î

)
î
]

(1)

where r is the Sun–spacecraft distance, r⊕ = 1 au is a

reference distance, r̂ is the Sun–spacecraft (or radial) unit

vector, τ ∈ {0; 1} is a dimensionless term that models

the on/off mode of the onboard electron emitter, and

ac is the characteristic acceleration, which is the typical

performance parameter of an E-sail-based spacecraft [21]

and coincides with the maximum value of ‖a‖ when

r = r⊕. Note that a depends on the azimuthal position of

the conducting tether on the E-sail nominal plane (i.e., in

the time-varying direction of î) such that the components

of the propulsive acceleration vector change during the

rotation of the spacecraft around its spin axis. To avoid

this problem and obtain a simple expression suitable for

a preliminary trajectory design at a generic time instant

t, the thrust model in Ref. [19] uses a mean acceleration

value a computed over one spin period centered at t,

which is given by

a ,
ω

2π

∫ t+π/ω

t−π/ω
adt ≈ acτ

2

(r⊕
r

) [
r̂ +

(
r̂ · k̂

)
k̂
]

(2)

The expression of a, which may be considered as a special

case of the multi-tether thrust model discussed in Ref.

[18], is useful for describing the spacecraft dynamics in

a heliocentric mission scenario, where the flight time is

several orders of magnitude higher than the spacecraft

spin period [22]. Now, we investigate a two-dimensional

transfer problem with the following two assumptions:

(i) the spin axis z is along the plane of the spacecraft

osculating orbit at the initial time t0 = 0 and (ii) the

direction of k̂ is fixed with respect to an inertial reference

frame. Notably, changing the E-sail inertial attitude (or

varying the inertial orientation of the sail nominal plane)

is a complex task for a single-tether configuration [22,

23]. Therefore, a possible simplification of the E-sail

guidance law is to maintain a fixed inertial direction of

the spacecraft’s spin axis, which amounts to assuming k̂ ≡
k̂0 , k̂(t0) for t > t0. In particular, the direction of k̂0 is

determined by the auxiliary angle α0 ∈ [−π/2, π/2] rad,

which is defined as the angle between the direction of

k̂0 and the Sun–spacecraft line at the initial time t0; see

Fig. 3, where r0 denotes the initial radial distance.

Sun

Spin
axis

Initial
position

Conducting

tether k̂0

r̂0

α0

r0

Fig. 3 Spacecraft initial position and auxiliary angle α0.

In this case, the average acceleration a is conveniently

written in a polar reference frame T�(O; r, θ) with unit

vectors (r̂, t̂), the origin of which coincides with the

Sun’s center of mass, θ is the polar angle measured

counterclockwise from the Sun–spacecraft line at time t0,

and t̂ , ĥ× r̂ is the transverse unit vector, where ĥ is

the unit vector of the orbital angular momentum. From

Eq. (2), we obtain

a = arr̂ + att̂ (3)

where ar and at are the radial and transverse components

of propulsive acceleration, respectively. In particular, ar

and at are given by

ar =
βτ

2

µ�

rr⊕
(1 + cos2(α0 − θ)) (4)

at =
βτ

2

µ�

rr⊕
sin(α0 − θ) cos(α0 − θ) (5)

where µ� is the gravitational parameter of the Sun and

β is a dimensionless form of ac, defined as

β =
ac

µ�/r2⊕
(6)

where µ�/r
2
⊕ ≈ 5.93 mm/s2. The dimensionless (binary)

term τ is the only control parameter in Eqs. (4) and
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(5). Accordingly, the heliocentric trajectory of a single-

tether E-sail with a fixed inertial attitude is a succession

of Keplerian arcs (when τ = 0) that alternates with

propelled arcs (when τ = 1).

Bearing in mind Eqs. (3)–(5), the heliocentric

spacecraft dynamics is described by the nonlinear

equations of motion:

ẋ(t) = f(x(t), τ(t)) (7)

with

f ,


u

h/r2

−µ�/r
2 + h2/r3 + ar
rat


where u is the radial component of the spacecraft’s inertial

velocity, h is the magnitude of the angular momentum

vector, and x is the spacecraft state vector, defined as

Eq. (8):

x , [r, θ, u, h]T (8)

whose initial value is

x(t0) = x0 , [r0, θ0, u0, h0]T (9)

The single-tether thrust model and previous equations

of motion are used in Section 3 to analyze the optimal

transfer trajectory in a classical heliocentric mission

scenario.

3 Optimal control law and trajectory
analysis

The optimal spacecraft trajectory is obtained using

an indirect approach [24, 25] based on Pontryagin’s

maximum principle [26–28]. In this respect, to obtain

a result that can also be used in a locally-optimal control

law [29], the first step is to determine the value τ? that

maximizes the projection of a along a (prescribed) generic

direction [30]. The latter is described by the unit vector:

d̂ , cosαdr̂ + sinαdt̂ (10)

where αd ∈ [−π, π] rad is an auxiliary angle defined as the

angle between d̂ and r̂ (see the scheme in Fig. 4). Note

that αd > 0 when d̂ · t̂ > 0 and αd < 0 when d̂ · t̂ < 0.

The problem of maximizing the projection of a along

d̂ involves maximizing the projection of a along d̂. To

that end, bearing in mind Eqs. (4) and (5), consider the

cost function J defined as

J , a · d̂ =
β

2

µ�

rr⊕
τ [(1 + cos2(α0 − θ)) cosαd

+ sin(α0 − θ) cos(α0 − θ) sinαd] (11)

C

Sun

r̂0
αdd̂

t̂

Fig. 4 Sketch of the unit vector d̂ and the auxiliary angle
αd.

For a given triplet {θ, α0, αd}, the value of τ that

maximizes J is

τ = τ? ,

sign((1 + cos2(α0 − θ)) cosαd
+ sin(α0 − θ) cos(α0 − θ) sinαd) + 1

2
(12)

where sign(�) denotes the signum function.

The general results for Eq. (12) can be used to

obtain the optimal control law using variational calculus.

Although the procedure described below can be easily

extended to more complex mission cases, we limit our

discussion to the classical circle-to-circle orbit transfer, in

which the spacecraft initially traces a circular heliocentric

orbit of a given radius r0. The initial state vector x0

defined in Eq. (9) becomes

x0 , [r0, 0, 0,
√
µ�r0]T (13)

where the initial polar angle θ0 is set to zero without

loss of generality. As is typical in E-sail mission design

[5, 10], the transfer trajectory is obtained by minimizing

the flight time tf necessary for the spacecraft to be placed

in a circular coplanar orbit of a given radius rf 6= r0.

The optimization problem consists of finding the optimal

control law τ(t) that maximizes the performance index

J , −tf subject to the nonlinear dynamics (7), the initial

constraints (13), and the final constraint:

e(tf) = 0 (14)

with

e(tf) ,

 r(tf)/rf − 1

u(tf)/
√
µ�/r0

h(tf)/
√
µ�r0 −

√
rf/r0


where the final polar angle θ(tf) is left free.

By paralleling the general procedure described in

Ref. [26], given an optimal solution, there exists

an absolutely continuous covector function λ and

covector ν that satisfy the adjoint equations, the

Hamiltonian maximization condition, the Hamiltonian

value condition, the Hamiltonian evolution equation,
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and the transversality condition. In particular, the

Hamiltonian function H and the Endpoint Lagrangian

E are given by

H = λTf(x(t), τ(t)), E = −tf + νTe(tf) (15)

where the covector

λ , [λr, λθ, λu, λh]T (16)

is the vector of the adjoint variables {λr, λθ, λu, λh}
associated with the spacecraft states {r, θ, u, h}. The

adjoint equations are as Eq. (17):

λ̇ = −∂H
∂x

(17)

According to Pontryagin’s maximum principle, the

Hamiltonian maximization condition amounts to

maximizing, at any time, the Hamiltonian function

with respect to the control variable τ . Therefore, the

maximized Hamiltonian:

H , max
τ

(H) (18)

is obtained by maximizing the portion of H (namely, Hc)

that explicitly depends on the control, that is

Hc , λuar + λhrat (19)

By substituting Eqs. (4) and (5) into Eq. (19), the latter

becomes

Hc = λp
βτ

2

µ�

rr⊕
[(1 + cos2(α0 − θ)) cosαλ

+ sin(α0 − θ) cos(α0 − θ) sinαλ] (20)

where λp ,
√
λ2u + r2λ2h is the magnitude of Lawden’s

primer vector λp , [λu, r, λh]T [30] and the auxiliary

angle αλ ∈ [0, 2π) rad is implicitly defined from

λu = λp cosαλ, rλh = λp sinαλ (21)

A comparison of Eqs. (11) and (20) indicates that the

optimal control law is equivalent to Eq. (12) by simply

substituting αd with αλ, that is

τ =

sign((1 + cos2(α0 − θ))(λu/λp)
+ sin(α0 − θ) cos(α0 − θ)(λh/λp)) + 1

2
(22)

The Hamiltonian value condition [26] provides the value

of H at final time tf , which is given by

H(λ(tf),x(tf)) = −∂E
∂tf

= 1 (23)

while the Hamiltonian evolution equation states that

dH
dt

=
∂H

∂t
= 0 (24)

where the last equality follows from the fact that the

dynamic system (7) is autonomous, so that the maximized

Hamiltonian is a constant of motion. In particular, by

considering Eq. (23), we obtain

H(t) ≡ H(tf) = 1 (25)

Finally, the optimal solution satisfies the transversality

conditions:

λ(tf) =
∂E

∂x(tf)
(26)

from which

λθ(tf) = 0 (27)

Therefore, the two-point boundary value problem

associated with the optimization procedure requires the

calculation of the flight time tf and the initial value of

the adjoint variables {λr, λθ, λu, λh} by enforcing the

final constraints given by Eqs. (14), (25), and (27),

respectively.

4 Model validation and numerical
simulations

In this section, we present a set of numerical simulations

for the previously discussed optimal control law. In

particular, the proposed solution was first compared

with the approximate analytical solution obtained in

Ref. [19], where a locally optimal control law that

maximizes the local value of the θ-variation of the

angular momentum magnitude was used to obtain a

(nearly) circle-to-circle orbit transfer. Specifically, Ref.

[19] described an approximate method to estimate the

required characteristic acceleration as a function of the

initial and final orbit radii and the number n of complete

revolutions during the transfer. The approximate model

in Ref. [19] requires a low-performance E-sail, while the

approach of this study is more general as is valid for any

value of characteristic acceleration.

Second, we analyzed heliocentric transfers that model

classical ephemeris-free mission scenarios from the Earth

to Mars or Venus. In all numerical simulations, a value

of r0 = r⊕ was assumed, which is consistent with a

spacecraft that leaves the Earth’s sphere of influence

on a parabolic escape trajectory, with the simplifying

assumption that the Earth’s heliocentric orbit is circular

and coplanar to the target circular orbit.

4.1 Comparison with approximate literature
results

According to the approximate analytical solution

illustrated in Ref. [19], when rf ∈ {1.1, 0.9} au and
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the number of complete revolutions around the Sun is

n = 5, we obtain β ≈ {0.0182, 0.0222}, which corresponds

to ac ≈ {0.1078, 0.1318} mm/s2. Using the approach

proposed in the previous section and assuming the same

values of rf and β (or ac), we obtain the optimal transfer

trajectories shown in Fig. 5. As expected, the figure

indicates that the transfer obtained through the (exact)

optimal approach in this study is better than that

obtained with the approximate method. Note, in fact,

that the orbit transfer is completed in (slightly) less than

five revolutions around the Sun.

Figure 6 shows the time evolutions of the states in

the two cases, where v , h/r represents the transverse

component of the spacecraft velocity. The gray bars

correspond to the time intervals with τ = 1, that is, the

time intervals in which the E-sail provides a propulsive

acceleration. The number of revolutions is similar to that

estimated by the analytical approximation. Finally, Fig. 7

shows a comparison between the optimal and approximate

variations in h/h0 and θ for the two compared cases. It

can be seen that the analytical solution given by Ref.

[19], which is valid for a medium–low-performance E-sail,

approximates well the optimal solution.

4.2 Potential mission scenarios

The proposed mathematical model is now used to analyze

two classical, circle-to-circle, interplanetary transfers

with a medium–high-performance E-sail. In particular,

the radius of the target orbit is either rf = 1.524 au

or rf = 0.723 au, which correspond to the simplified

ephemeris-free Earth–Mars and Earth–Venus transfer,

respectively. In this context, Fig. 8 shows the variations

in the minimum flight time tf and final polar angle

θ(tf) with a characteristic acceleration in the range

ac ∈ [0.2, 1] mm/s2 when α0 = 0, whereas Fig. 9 shows

the variations in tf and θ(tf) with α0 ∈ [−90, 90] deg

when ac = 0.2 mm/s2 (or β ≈ 0.0337). Finally, Fig. 10

shows the optimal transfer trajectories (black line) for the

two mission scenarios as a function of ac when α0 = 0.

In this figure, the blue (or red) line indicates the Earth’s

(or the target planet) orbit.

The numerical results indicate that the two-

dimensional circle-to-circle orbit raising (or lowering)

of practical interest can be obtained by spinning a single-

tether E-sail with an inertially fixed spin axis using a

suitable control law involving a single control parameter,

that is, the on/off state of the electron emitter. In this

case, the transfer performance is strongly related to the

value of the sail characteristic acceleration, whereas the

dependence of the flight time on α0 is less pronounced.

In the two interplanetary mission scenarios considered

in this section, the numerical simulations also show that

the flight time of an E-sail with an inertially fixed spin

axis is significantly greater than that obtained with the

corresponding E-sail of variable attitude, that is, an E-

sail with two control parameters (i.e., electron emitter

state and sail pitch angle).

For example, when α0 = 0, an E-sail with a

characteristic acceleration of 0.5 mm/s2 completes

an Earth–Mars (or an Earth–Venus) transfer of

approximately 5.7 years (or 3.5 years) with approximately

four revolutions around the Sun. However, an E-sail with

0°
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90°
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150°

180°

210°

240°

270°

300°

330°

0

0.5 au

1 au

(a) rf = 1.1 au and β ≈ 0.0182

0°

30°

60°

90°

120°

150°

180°
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240°

270°

300°

330°

0

0.5 au

1 au

(b) rf = 0.9 au and β ≈ 0.0222

Fig. 5 Optimal transfer trajectory (black line), when r0 = 1 au, for two mission scenarios. Blue line → parking orbit; red line
→ target orbit; black circle → start; black square → arrival; orange circle → the Sun.
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Fig. 6 Time-evolutions of the state variables when r0 = 1 au, for two mission scenarios.
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Fig. 7 Comparison between optimal (black lines) and approximate (red lines) variations of h/h0 obtained through the
method described in Ref. [19].

the same characteristic acceleration completes the Earth–

Mars (or an Earth–Venus) transfer in approximately

2 years (or 1.4 years) in less than two revolutions around

the Sun if it can change both the pitch angle and the

electron emitter state. A performance comparison in

terms of minimum flight time as a function of ac between

an E-sail with an inertially fixed spin axis and an E-sail

with two control parameters is summarized in Table 1.

The table shows that, in some cases, the flight time

required by an E-sail with a single control parameter is

approximately three times greater than that required by

an E-sail with two control parameters.
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Fig. 8 Variations of tf and θ(tf) with ac when α0 = 0.
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Fig. 10 Optimal transfer trajectories for the two interplanetary mission scenarios.

Table 1 Comparison between the minimum flight time (tf)
of an E-sail with an inertially fixed spin axis (“fixed”) and an
E-sail with two control parameters (“classic”), in an Earth–
Mars (EM) and an Earth–Venus (EV) circle-to-circle two-
dimensional transfer

ac
(mm/s2)

EM scenario EV scenario

tf (years)
“fixed”

tf (years)
“classic”

tf (years)
“fixed”

tf (years)
“classic”

0.2 13.93 4.47 8.85 2.99
0.3 9.66 3.04 5.82 2.11
0.4 7.05 2.62 4.49 1.55
0.5 5.68 2.03 3.48 1.39
0.6 5.54 1.67 2.98 1.01
0.7 4.25 1.58 2.57 0.89
0.8 3.68 1.51 2.23 0.85
0.9 3.21 1.46 2.12 0.81
1.0 2.96 1.43 1.81 0.79

5 Conclusions

In this study, the optimal performance of a single-

tether E-sail with an inertially fixed spin axis in

an interplanetary framework was investigated. The

trajectory optimization problem was studied using an

indirect approach by obtaining a closed form of the

optimal control law as a function of the spacecraft states

and costates. A set of numerical simulations was used to

evaluate the single-tether E-sail performance in a two-

dimensional mission scenario that involved heliocentric

transfer between two assigned (coplanar) circular orbits.

The numerical results indicate that the single-tether

E-sail can perform optimal circle-to-circle transfer with a

simplified control law that involves only the on/off state of

the onboard electron emitter. Simulations also confirmed
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that the near-optimal control law recently proposed in

the literature can accurately describe the actual optimal

transfer when a low-performance propulsion system is

considered. Future work can focus on the analysis of

a three-dimensional heliocentric transfer in which the

variation in orbital inclination is obtained by suitably

selecting both the inertial attitude of the E-sail and the

switching strategy of the electron emitter.
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