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analysis
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ABSTRACT

In real scenarios, the spacecraft deviates from the intended paths owing to uncertainties in

dynamics, navigation, and command actuation. Accurately quantifying these uncertainties

is crucial for assessing the observability, collision risks, and mission viability. This

issue is further magnified for CubeSats because they have limited control authority

and thus require accurate dispersion estimates to avoid rejecting viable trajectories

or selecting unviable ones. Trajectory uncertainties arise from random variables (e.g.,

measurement errors and drag coefficients) and processes (e.g., solar radiation pressure

and low-thrust acceleration). Although random variables generally present minimal

computational complexity, handling stochastic processes can be challenging because

of their noisy dynamics. Nonetheless, accurately modeling these processes is essential,

as they significantly influence the uncertain propagation of space trajectories, and an

inadequate representation can result in either underestimation or overestimation of the

stochastic characteristics associated with a given trajectory. This study addresses the gap

in characterizing process uncertainties, represented as Gauss–Markov processes in mission

analysis, by presenting models, evaluating derived quantities, and providing results on

the impact of spacecraft trajectories. This study emphasizes the importance of accurately

modeling random processes to properly characterize stochastic spacecraft paths.
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1 Introduction

In a real-life scenario, a spacecraft is unlikely to follow

the prescribed nominal path owing to uncertainties

in dynamics (e.g., gravitational parameters or noisy

radiation pressure profiles), navigation (i.e., imperfect

state knowledge or approximations in the measurement

model), and command actuation (i.e., thrust magnitude

and pointing angle error) [1]. The correct quantification

of these uncertainties and their impact on the spacecraft

trajectory is a required task in space operations, for

example, to evaluate the observability of a spacecraft

trajectory or assess the collision risk with another object

[2]. In mission analysis, uncertainty quantification is of

paramount importance for determining the flyability of

trajectories, and consequently, the feasibility of spacecraft

missions. In fact, it is not uncommon that even if they can

be nominally exploited, some trajectories are not useful

after an uncertainty assessment is performed owing to

navigation costs [3] or risks [4].

Uncertainties related to spacecraft trajectory analysis

are random variables (e.g., measurement errors,

drag coefficients, and mass parameters, which are

usually modeled as Gaussian variables) and random

processes (e.g., solar radiation pressure and low thrust

acceleration). Although random variables usually do not

pose any additional complexity from a computational

perspective, stochastic processes can be difficult to handle

because of their noisy dynamics. Nevertheless, their

impact on propagation under space trajectory uncertainty

is relevant, and improper modeling can lead to under-

or overestimation of the stochastic characteristics of the
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given trajectory. Particularly, errors in the estimation

of the dispersion, i.e., the distance between the real

and nominal trajectory, can lead to the discarding of

feasible trajectories (in the case of over-estimation) or

to the selection of unflyable trajectories, requiring a

large amount of propellant when in flight (in the case

of under-estimation). Therefore, the characterization of

random processes, usually represented as Gauss–Markov

processes in mission analysis tasks, their modeling as

discrete processes to be used inside a computational

algorithm, and the assessment of their impact on

uncertain propagation are critical.

In mission analysis, Gauss–Markov processes are

commonly used in navigation tasks in a linearized

sense [5, 6], and models exist for certain nonlinear

uncertainty propagation algorithms [7]. However, the

impact of computational-compliant discrete models

of Gauss–Markov processes on spacecraft trajectories

remains incomplete in the context of Monte Carlo

simulations, essential for dispersion analysis, as well as

the characterization of their derived quantities.

The remainder of this paper is structured as follows.

Section 2 presents the Gauss–Markov processes and their

properties. The driving noise characteristics together with

two discrete models for the processes are presented in

Section 3, and Section 4 presents an assessment of some

derived quantities of interest in the mission analysis. The

results are presented in Section 5 and the conclusions are

given in Section 6.

2 Gauss–Markov processes

In spacecraft trajectory design, stochastic processes are

usually regarded as stationary Gauss–Markov processes,

also known as Ornstein–Uhlenbeck processes [5]. These

are random functions whose characteristics do not change

when shifted in time and enjoy both Gaussian and

Markov properties, that is, every variable subset has

a multivariate normal distribution, and every variable

transition probability depends only on the immediately

preceding state and not on the full past history [8].

Generally, a Gauss–Markov process η(t) follows the

Langevin differential equation in a heuristic manner [9]:

η̇(t) = −βη(t) + ω(t) (1)

where ω is the noise with zero mean and finite variance

σω, and β = 1/τ is the inverse of the correlation time τ .

Equation (1) is a first-order linear ordinary differential

equation and its solution is [5, 10]:

η(t) = η0e−β(t−t0) +

∫ t

t0

e−β(t−τ)ω(τ)dτ (2)

with η0 = η(t0). Because the integral part is a function

of the noise, Eq. (2) cannot be computed analytically,

but can be evaluated only in a stochastic sense. Since

E[ω] = 0 by definition, the stochastic integral has a null

mean. Thus,

η = E[η(t)] = η0e−β(t−t0) (3)

The process mean depends only on the value of the initial

distribution, and vanishes exponentially over time. If a

nonzero-mean process is required, the Vasicek model can

be exploited [11]. The associated Langevin equation is

expressed as Eq. (4):

η̇(t) = −β(η(t)− µ) + ω(t) (4)

where µ is a constant that represents the steady-state

mean. In fact, the general solutions to Eq. (4) are as

Eq. (5):

η(t) = µ+ (η0 − µ)e−β(t−t0) +

∫ t

t0

e−β(t−τ)ω(τ)dτ (5)

and

lim
t→∞

η(t) = µ (6)

In this study, only the unbiased Gaussian–Markov process

was considered, without loss of generality.

The autocorrelation function for a general Gaussian–

Markov process between two generic time t1 and t2 is

evaluated as [12]:

Rη(t1, t2) = E[η(t1)η(t2)] = e−β(t2−t1)Rη(t1) (7)

where Rη(t1) is the autocorrelation of η at time t1:

Rη(t1) = E[η(t1)η(t1)]

= σ2
η0

e−2β(t1−t0) +
σ2
ω

2β

(
1− e−2β(t1−t0)

)
(8)

One of the most important characteristics of Gauss–

Markov processes can be inferred from Eq. (7), which

decreases exponentially with time at a rate that depends

on the correlation time τ . Therefore, the values drawn

from this type of stochastic process are also known as

exponentially correlated random variables (ECRV).

3 Driving noise characterization

3.1 Continuous driving noise

The stochastic characteristics of Gauss–Markov processes

are functions of the driving noise. However, in
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astrodynamic applications, noise statistics are not easily

available, and the process characteristics can be inferred

directly from experimental or historical data. Thus, to

correctly model Gauss–Markov processes in numerical

simulations, it is crucial to evaluate the driving noise

covariance starting from the process values.

The Gauss–Markov variance can be derived directly

from Eq. (8). In fact, for a generic time t,

σ2 = E[(η(t)− η)(η(t)− η)] = E[η(t)η(t)]− η2

= σ2
η0

e−2β(t−t0) +
σ2
ω

2β

(
1− e−2β(t−t0)

)
− η2

0e−2β(t−t0)

(9)

where σ2
η0

= E[η2
0 ]. Without loss of generality, the initial

process can be drawn from a normal distribution with a

zero mean and a prescribed standard deviation σ, that is,

η0 ∼ N (0, σ2). In this case, the noise standard deviation

σω can be directly inferred from the process variance, as

Eq. (10):

σω =
√

2βσ (10)

It is noteworthy that Eq. (9) is singular when computing

σω for t = t0. However, because σ = ση0 at t0 for any

choice of σω, Eq. (10) can be extended to t = t0.

3.2 Discrete driving sequence

The use of Gaussian driving noise is impractical in the

case of numerical simulations of a system depending

on Gauss–Markov process because integration schemes

cannot cope with continuous noise and will generally fail.

Therefore, in practical applications, white noise is usually

substituted with a random driving sequence, that is, a

piecewise constant function ω(t) = ω̂(t) with a constant

value ωk when t ∈ [tk, tk+1]. In this case, the Langevin

equation can be numerically solved using integration

schemes for stochastic differential equations (SDE), such

as the Euler–Maruyama scheme, Milstein method, and

the SDE Runge–Kutta scheme [13]. For example, the

Euler–Maruyama scheme is an extension of the forward

Euler method, which integrates the SDE. In the case of

a Gauss–Markov process, the forward step is defined as

ηk+1 = ηk − βηkδt+ ωk
√
δt (11)

where the subscripts correlate with time and δt = tk+1−
tk. The second term in Eq. (11) represents the forward

Euler step of the deterministic part. The last term can be

interpreted as the forward step for the nominal Gaussian

random sequence, with the standard deviation divided

by
√
δt.

However, trajectories are usually computed by

integrating the spacecraft dynamics using high-order

variable-step solvers. This choice allows for accurate

solutions with a reasonable computational effort.

However, traditional SDE solvers cannot operate with

variable-step schemes because they depend on the step

itself. Therefore, an alternative modelization that can be

used in the traditional variable-step methods is required.

Moreover, the model can provide a Gauss–Markov process

solution at any time, as required by the integration

scheme.

3.2.1 Solution-preserving model

In the case of a random sequence, the solution can be split

into n =
⌈

t−t0
tk+1−tk

⌉
time domains, each with a constant

driving noise. For each time domain, Eq. (2) can be

applied as

ηk+1 = ηke−β(tk+1−tk) +

∫ tk+1

tk

e−β(tk+1−τ)ωkdτ

= ηke−β(tk+1−tk) +
ωk
β

(
1− e−β(tk+1−tk)

)
(12)

where a constant value of ωk is used. Combining Eq. (12)

for all subintervals from t0 to tn 6 t 6 tn+1, a general

solution can be obtained, which is

η(t) = η0e−nβδte−β(t−tn)

+
1

β

n−1∑
k=0

[
ωk
(
1− e−βδt

)
e−β(t−tk+1)

]
+
ωn
β

(
1− e−β(t−tn)

)
(13)

where δt = tk+1 − tk denotes the random sequence

characteristic.

Moreover, from Eq. (13), a more precise formula

linking noise and process variance can be obtained by

exploiting the analytical solution of a Gauss–Markov

process subjected to a driving random sequence. Indeed,

σ2 = E
[
η2

0e−2nβδte−2β(t−tn)
]

+
1

β2
E

[{
n−1∑
k=0

[
ωk
(
1− e−βδt

)
e−β(t−tk+1)

]
+
ωn
β

(
1− e−β(t−tn)

)}2]
(14)

where the independence of the random sequence and

the initial process distribution were exploited. Because

E[ωkωn] = σ2
ωδ(tk−tn) by definition, where δ is the Dirac

delta function, Eq. (14) can be simplified as Eq. (15):
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σ2 = σ2
η0

e−2nβδte−2β(t−tn)

+
1

β2
E

[[
n−1∑
k=0

ωk
(
1− e−βδt

)
e−β(t−tk+1)

]2

+
[
ωn
(
1− e−β(t−tn)

)]2]

= σ2
η0

e−2nβδte−2β(t−tn) +
1

β2

(
1− e−βδt

)2
e−2β(t−tn)

· E

[
n−1∑
k=0

(
ωke−β(n−k−1)δt

)2]

+
1

β2

(
1− e−β(t−tn)

)2
E[ω2

n] (15)

where the property E[ωkωh] = σ2
ωδ(tk − th) is exploited

again, considering that t− tk+1 = t− tn + (n− k − 1)δt.

Considering the summation as a geometric series, the

previous expression can be simplified as Eq. (16):

σ2 = σ2
η0

e−2nβδte−2β(t−tn) +
1

β2

(
1− e−βδt

)2
· e−2β(t−tn)

(
1− 1− e−2β(n−1)δt

1− e2βδt

)
σ2
ω

+
1

β2

(
1− e−β(t−tn)

)2
σ2
ω (16)

After mathematical manipulation, considering ση0
= σ,

the expression in Eq. (16) is rearranged as Eq. (17):(
1− e−2β(t−t0)

)
σ2

=
1

β2

[(
1− e−β(t−tn)

)2
+ χe−2β(t−tn)

]
σ2
ω (17)

where χ = (1−e−2βnδt) tanh(βδt/2). Hence, the standard

driving noise variation is

σω = β

√
1− e−2β(t−t0)(

1− e−β(t−tn)
)2

+ χe−2β(t−tn)
σ (18)

Usually, the random sequence characteristic time is

smaller than the correlation time, that is, (t− tn) 6 δt�
τ = 1/β, representing the integration over time of the

constant noise of variance σ. In this case, e−β(t−tn) → 1

and tanh(βδt/2)→ βδt/2. Thus, Eq. (18) is simplified to

σω =

√
2β

δt
σ (19)

As expected, in this case, the driving sequence variance

is modified with the sequence characteristic time δt, as

in the Euler–Maruyama scheme, because the solution-

preserving model can be considered a continuous

extension of that model. Moreover, it can be noted that

a small δt can increase the fidelity of the model; however,

it can lead to an unbearable computational burden and

a huge value for the noise variance.

3.2.2 Statistics-preserving model

Alternatively, Eq. (2) represents a Gaussian process that

is uniquely defined by its mean and covariance. Hence,

to obtain a discrete process that is equivalent to the

original continuous process, the integral part of Eq. (2)

can be substituted with a function with a zero mean and

variance equal to Eq. (9). In this last case, one of the

possible alternatives could be [5]:

ηk+1 = ηke−β(tk+1−tk) + ωk

√
1

2β

(
1− e−2β(tk+1−tk)

)
(20)

The general solution for the Gauss–Markov discrete

process in this case is

η(t) = η0e−nβδte−β(t−tn)

+
n−1∑
k=0

[
ωk

√
1

2β
(1− e−2βδt)e−β(t−tk+1)

]

+ ωn

√
1

2β

(
1− e−2β(t−tn)

)
(21)

and its variance, reported back to the general solution,

can be computed as

σ2 = σ2
η0

e−2nβδte−2β(t−tn)

+
1

2β

(
1− e−2βnδte−2β(t−tn)

)
σ2
ω (22)

Assuming ση0
= σ and because t− tn + nδt = t− t0, the

standard deviation of the driving noise can be inferred

as Eq. (23):

σω =
√

2β σ (23)

As expected, the statistics-preserving model sequence

mimics the continuous model noise as per its design.

Even though Eq. (18) and Eq. (23) provide two

different formulas for the driving noise variance, they can

be used equivalently because they simply descend from

two different models of the same underlying phenomenon.

The first model preserves the solution structure but

requires a tweak in the driving noise standard deviation to

obtain the correct process statistics, whereas the second

model preserves the stochastic characteristics but requires

a modification of the process solution. Following Eqs. (19)

and (23), the link between the two models is represented

by the square root of the sequence characteristic time√
δt.

4 Derived quantity characterization

Quantities derived from the Gauss–Markov process are

also of interest in trajectory design. Thus, it is crucial
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to evaluate the compatibility between computational-

compliant models and derived continuous quantities.

Additionally, if feasible, establishing a direct connection

between the statistics of the derived quantities and

the characteristics of the generated Gauss–Markov

process through a closed formula holds great significance.

This approach can potentially save time and resources

by circumventing the need for lengthy and useless

simulations.

By exploiting the properties of the mean and

covariance, it is straightforward to determine the

characteristics of the quantity of interest in the case of a

linear combination. For a generic variable q = aη(t) + b,

E[q] = q = aη + b (24)

E[(q − q)2] = a2σ2 (25)

Exploiting this, it is possible to generate a “standard”

Gauss–Markov process with a null mean and unitary

standard deviation and, later, to shift and scale it to

the desired values as a usual Gaussian variable. Thus, if

a Gauss–Markov process with a mean µ and standard

deviation σ must be generated, it can be performed by

defining the quantity:

η(t) = σν(t) + µ (26)

where ν(t) is the standard process; thus, σω =
√

2β. It

can be proven that the process in Eq. (26) has exponential

time correlation [14].

4.1 Gauss–Markov process integral

The integral of the Gauss–Markov processes in time is

found when a condensed measure is used instead of an

instantaneous one. For example, ∆v can be computed as

the time integral of thrust during the entire maneuver.

Moreover, in this case, engine manufacturers provide

only thrust statistics. Thus, if an impulsive-maneuvers

approach is used in the trajectory design, it is necessary

to retrieve the statistics on ∆v starting from the data on

the thruster. The computation of ∆v statistics is used as

an example of the Gauss–Markov process integral case.

In general, the thrust magnitude process can be

expressed using Eq. (26), as shown in Eq. (27):

T (t) = σν(t) + T (27)

where σ is the prescribed process standard deviation, and

T is the thrust mean.

Under these assumptions, ∆v can be computed as

∆v =

∫ tf

t0

T (t)

m
dt =

∫ tf

t0

σν(t) + T

m
dt (28)

Assuming that the mass is constant, and defining ∆t =

tf − t0, the integral is

∆v =
σ

m

∫ tf

t0

ν(t)dt+
T

m
∆t (29)

4.1.1 Continuous driving noise

Under the assumption of a (theoretically) continuous

driving noise, the standard process solution is given by

Eq. (2). Thus, Eq. (29) becomes

∆v =

σ

m

(∫ tf

t0

ν0e−β(t−t0)dt+

∫ tf

t0

∫ t

t0

e−β(t−τ)ω(τ)dτdt

)
+
T

m
∆t (30)

Because ν(t) has a null mean by definition, the integral

part of Eq. (29) has a null mean. Thus,

∆v = E[∆v] =
T

m
∆t (31)

The variance can be computed as

σ2
∆v = E

[
(∆v −∆v)2

]
=

σ2

m2

(
E

[∫ tf

t0

ν0e−β(t−t0)dt

∫ tf

t0

ν0e−β(r−t0)dr

]
+ E

[ ∫ tf

t0

∫ t

t0

e−β(t−τ)ω(τ)dτdt

·
∫ tf

t0

∫ r

t0

e−β(r−ρ)ω(ρ)dρdr

])
(32)

where the independence of ν0 from noise was considered.

By exploiting the properties of the expected value and

integral operator, it can be conveniently written as

σ2
∆v =

σ2

m2

(
E
[
ν2

0

] ∫ tf

t0

e−β(t−t0)dt

∫ tf

t0

e−β(r−t0)dr

+

∫ tf

t0

∫ tf

t0

∫ t

t0

∫ r

t0

e−β(t−τ)e−β(r−ρ)

· E [ω(τ)ω(ρ)] dρdτdrdt

)
=

σ2

m2

[
1

β2
(1− e−β∆t)2 +

∫ tf

t0

∫ tf

t0

∫ t

t0

∫ r

t0

e−β(t−τ)

· e−β(r−ρ)σ2
ωδ(τ − ρ)dρdτdrdt

]
=

σ2

m2

[
1

β2
(1− e−β∆t)2

+
σ2
ω

β2

(
∆t+

4e−β∆t − e−2β∆t − 3

2β

)]
(33)
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where δ is Dirac’s delta and E
[
ν2

0

]
= 1 by definition.

Given that σω =
√

2β, Eq. (33) can be further

simplified as

σ2
∆v =

σ2

m2

2

β

(
∆t− 1− e−β∆t

β

)
(34)

Assuming that the maneuver duration is well below

the autocorrelation time, that is, τ = 1/β � ∆t (or,

alternatively, β∆t ≈ 0), 1− e−β∆t ≈ 1−β∆t+β2∆t2/2,

and Eq. (34) can be simplified as

σ2
∆v =

σ2

m2
∆t2 (35)

4.1.2 Discrete driving sequence

To obtain a computationally compliant algorithm, the

noise should be modeled as a random sequence. Because

there is no interest in the instantaneous solution itself,

the statistics-preserving model, as in Section 3.2.2, is the

most suitable model. In this case, the solution can be

split into n =
⌊

t−t0
tk+1−tk

⌋
time domains. By substituting

the solution into Eqs. (20) and (29) and splitting the

time domain, we obtain∫ tf

t0

ν(t)dt

=

n−1∑
k=0

∫ tk+1

tk

[
νke−β(t−tk)+

√
1

2β

(
1− e−2β(t−tk)

)
ωk

]
dt

=
1

β

n−1∑
k=0

[ (
1− e−βδt

)︸ ︷︷ ︸
α

νk

+
1√
2β

(
arcoth

(
eβδt√

e2βδt − 1

)
−
√

1− e−2βδt

)
︸ ︷︷ ︸

γ

ωk

]

(36)

with δt = tk+1 − tk. It should be noted that both

coefficients α and γ are constants and do not depend on

the sum index. Hence, the impulse can be computed as

∆v =
σ

mβ

n−1∑
k=0

(ανk + γωk) +
T

m
∆t (37)

The stochastic characteristics of ∆v can be computed

using Eq. (37). The mean is

∆v = E [∆v] =
T̄

m
∆t (38)

because E [νk] = 0 and E [ωk] = 0. The variance can be

computed as

σ2
∆v = E

[
(∆v −∆v)2

]
= E

[[
σ

mβ

n−1∑
k=0

(ανk + γωk)

]2 ]
(39)

Expanding the square of the sum yields

σ2
∆v =

σ2

m2β2
E

[
n−1∑
k=0

[
α2ν2

k + γ2ω2
k

+ 2
∑
j<k

(ανk + γωk)(ανj + γωj)

]]
(40)

As E
[
ν2
k

]
= 1 and E

[
ω2
k

]
= σ2

ω, we recall that α and γ

are constants.

σ2
∆v =

σ2

m2β2

[
n(α2 + σ2

ωγ
2) + 2E

[
n−1∑
k=0

(
∑
j<k

α2νkνj

+ αγνkωj + αγνjωk + γ2ωkωj)

]]
(41)

The last two terms are simplified. In fact, E [νjωk] = 0

because future white noise cannot influence the current-

time Gauss–Markov process, and E [ωkωj ] = 0 because

ω is white noise. Moreover, by applying Eq. (20) and

exploiting j < k, we obtain

E [νkνj ] = e−β(k−j)δt (42)

E [νkωj ] = σ2
ω

√
1

2β
(1− e−2βδt)e−β(k−j−1)δt (43)

In conclusion,

σ2
∆v =

σ2

m2β2

{
n(α2 + σ2

ωγ
2) + 2

[
α2

n−1∑
k=0

∑
j<k

e−β(k−j)δt

+ αγσ2
ω

n−1∑
k=0

∑
j<k

√
1

2β
(1− e−2βδt)e−β(k−j−1)δt

]}
(44)

Considering σω =
√

2β and consequentially defining ζ =√
2β(1− e−2βδt), Eq. (44) can be further simplified as

σ2
∆v =

σ2

m2β2

[
n(α2 + 2βγ2) + 2

(
α2

n−1∑
k=1

ke−β(n−k)δt

+ αγζ
n−1∑
k=1

ke−β(n−k−1)δt

)]
(45)

A generalized geometrical series of the common coefficient

e can be solved as
n−1∑
k=1

kek =
e− nen + (n− 1)en+1

(1− e)2
(46)

Eventually, Eq. (45) can be rewritten as Eq. (47):

σ2
∆v =

σ2

m2β2
[n(α2 + 2βγ2) + 2(α2ς1 + αγζς2)] (47)

where
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ς1 =
n−1∑
k=1

ke−β(n−k)δt =
(n− 1)eβδt + e−β(n−1)δt − n

(1− eβδt)2

(48)

and

ς2 =
n−1∑
k=1

ke−β(n−k−1)δt

=
(n− 1)e2βδt − neβδt + e−β(n−2)δt

(1− eβδt)2
(49)

Consistent with the case of continuous driving noise,

we assume that τ � δt (alternatively, βδt ≈ 0). Thus,

Eq. (47) can be simplified as

σ2
∆v =

σ2

m2β2
β2(nδt)2 =

σ2

m2
∆t2 (50)

We recall that nδt = ∆t by definition. Under this

assumption, the model consistency is maintained as

expected because at the limit, the standard deviation is

the same in the case of both the driving noises (Eq. (34))

and the driving sequence (Eq. (50)).

Typically, ∆v statistics are expressed in relative terms

with respect to the maneuver nominal value to obtain a

result that does not depend on the maneuver magnitude

and duration. In this case, the relative standard deviation

can be computed. In the limit case, it is expressed as

σ% =
σ∆v

∆v
=
σ

T
(51)

4.2 Gauss–Markov process derivative

The Gauss–Markov process derivative can also be of

interest for mission analysis applications.

By defining d as a generic variable representing a

Gauss–Markov process derivative, it can be expressed as

d = η̇ =
d

dt
(σν + µ) = σν̇ (52)

where the model in Eq. (26) is used.

4.2.1 Continuous driving noise

Assuming a (theoretically) continuous driving noise, the

Langevin equation in Eq. (1) still holds. Thus, Eq. (52)

becomes

d = σ(−βν + ω) (53)

By exploiting the properties of the standard process, the

mean is

d = E [d] = 0 (54)

The variance can be computed as

σ2
d = E

[
(d− d)2

]
= σ2(β2E

[
ν2
]

+ E
[
ω2
]
)− d2

= σ2(β2 + σ2
ω) (55)

Assuming that σω =
√

2β, the derivative variance is

defined as

σ2
d = σ2(β2 + 2β) (56)

4.2.2 Discrete driving sequence

Considering a driving sequence under the solution-

preserving model as described in Section 3.2.1, the

derivative of the standard random process can be

computed using Eq. (13):

ν̇(t) = −βν + ωn (57)

The use of the solution-preserving model avoids the non-

derivable point in t = tn, which is present in the statistics-

preserving model.

As expected, the mean was

d = σE [ν̇] = 0 (58)

where ν̇ is the sum of the zero-mean Gaussian. The

variance can be computed as

σ2
d = E

[
(d− d)2

]
= σ2E

[
ν̇(t)2

]
= σ2(β2E

[
ν2
]

+ E
[
ω2
n

]
− βE [νωn]) (59)

Taking into account Eq. (13), Eq. (59) can be reduced to

σ2
d = σ2

(
β2 + σ2

ωe−β(t−tn)
)

(60)

Because σω is generally dependent on time, the

variance of the derivative varies within each subinterval.

Asymptotically, the variance in the derivative is

σ2
d = σ2

(
β2 +

2β

δt

)
(61)

In the last case, the derivative differs from the continuous

driving noise result because the second term is divided

by
√
δt. This result was expected because the solution-

preserving model is a direct extension of the Euler–

Maruyama scheme. Because of this inconsistency, extra

care should be taken in the simulations when handling a

Gauss–Markov process derivative. A simple mitigation

action could be to use a characteristic sequence time

equal to the time unit, although this can considerably

increase the computational burden.

5 Results

A summary of the results on the noise characteristics

for the Gauss–Markov processes is presented in Table 1,

whereas Table 2 presents a review of the Gauss–Markov

derived quantities.
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Table 1 Summary of Gauss–Markov process noise characteristics

Analytic solution Simplified solution

Continuous driving noise σω =
√

2βσ —

Solution-preserving model σω = β
√

1−e−2β(t−t0)

(1−e−β(t−tn))2+χe−2β(t−tn) σ σω =
√

2β
δt
σ

Statistics-preserving model σω =
√

2βσ —

Table 2 Summary of Gauss–Markov derived quantities, characteristics

Mean Analytic variance Asymptotic variance

q = σν + µ — µ σ2 —

I =
∫∆t

0
qdt

Continuous noise µ∆t 2
β

(
∆t− 1−e−β∆t

β

)
σ2 σ2∆t2

Discrete sequence µ∆t σ2

β2 [n(α2 + 2βγ2) + 2(α2ς1 + αγζς2)] σ2∆t2

d =
dq

dt

Continuous noise 0 σ2(β2 + 2β) —

Discrete sequence 0 σ2(β2 + σ2
ωe−β(t−tn)) σ2

(
β2 + 2β

δt

)

5.1 Discrete sequence propagation

To verify the validity of the presented models, simulations

were performed, and the results were compared against

the predicted values. Figure 1 shows the same Gauss–

Markov process computed through different models.

Figure 1(a) represents the continuous noise solution,

evaluated using the Euler–Maruyama algorithm with

a discretization δt = 10−3τ , whereas Figs. 1(b) and 1(c)

present the results of the solution- and statistics-

preserving models together with the absolute error with

the continuous noise solution, respectively. From these

figures, it can be inferred that both discrete models

yield similar results and are able to retrace the Euler–

Maruyama solution with relatively low errors. A Monte

Carlo simulation with 1000 samples was performed to

assess the accuracy of the statistics. Figure 2 shows the

evolution in time of the variance for the three models. In

addition, from a stochastic perspective, discrete models

provide accurate results, mirroring the expected values

from the theory. The errors of both the single solution and

variance are given by the approximation error introduced

by the Euler–Maruyama integration scheme, rather than

those of the proposed models. As shown in Fig. 4, the

errors against the SRA1 method used by Rößler [15], a

(2.0, 1.5)-order integration scheme, demonstrate that it is

more accurate than the simple Euler–Maruyama scheme.

It should be noted that the errors decreased according to

the integration scheme order, confirming that the errors

in Figs. 1 and 2 are related to the approximation errors

in the integration method.

Moreover, the oscillation around the theoretical values

of σ2 = 1 is due to the limited size of the pool. Figure 3

shows the time evolution of variance for the solution-

preserving model with a discretization δt = 10−3τ ,

computed using 10,000 samples. As expected, a larger

number of samples reduces the variability of σ2, which is

closer to the unit value. Moreover, the 99%-confidence

bounds, indicated by the shaded areas, always enclose

the theoretical value.

It is of paramount importance to determine the

maximum discretization time for which the numerical

solution of a standard Gauss–Markov process can still

provide correct statistics. Figure 5 shows the process

variance as a function of the discretization time. The

Euler–Maruyama scheme cannot correctly represent the

process for high values of discretization time, that is,

with δt > 0.1τ . In fact, it is the Itô generalization of

a forward Euler scheme, and thus, it is inaccurate for

large integration steps. However, both discrete process

models can maintain the statistics in the theoretical

range, as they are built to satisfy this property. This

is confirmed by Fig. 6, where the estimated variance

together with the 99%-confidence bounds are shown.

The statistics-preserving model and analytic solution-

preserving model (blue solid line in Fig. 6(b)) can give the

correct process statistics, regardless of the discretization

choices. In contrast, the simplified solution-preserving

model (green dashed line in Fig. 6(b)) fails to provide a

good result for high values of δt, as expected, because in

these cases simplification hypotheses are no longer valid.

5.2 Uncertain trajectory propagation

Although discrete models can provide sequences

representative of the original continuous process from a
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Fig. 1 Solution of the Langevin equation for the standard
Gauss–Markov process, using (a) Euler–Maruyama scheme,
(b) solution-preserving model, and (c) statistics-preserving
model.

stochastic point of view, the impact of such discretization

on a noisy trajectory should be assessed. Excessively

tight discretization steps will yield results closer to the

continuous case, but the computational burden can be

unbearable. However, numerous steps can yield erroneous
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Fig. 2 Evolution in time of the standard Gauss–Markov
process variance, computed with 10,000 samples, using
(a) Euler–Maruyama scheme, (b) solution-preserving model,
and (c) statistics-preserving model.

results.

A test-case scenario is built to evaluate the

discretization time against the accuracy. The test case

was a Hohmann transfer from the Earth to Mars, with the

characteristics listed in Table 3. A simple test case was
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Table 3 Summary of test-case scenario trajectories

µ (km3/s2) rp (AU) ra (AU) ToF (d) σ (km/s2) β (1/d)

1.327 × 1011 1 1.52 258.31 10−8 1

selected to minimize the influence of chaotic dynamical

behavior, integration errors, and numerical issues. Thus,

any observed differences in dispersion can be confidently

attributed to differences in the process discretization. In

this case, the spacecraft dynamics are{
ṙ = v

v̇ = − µ
‖r‖3 r + σν

(62)

where ν is a three-dimensional standard Gauss–Markov

process with each dimension independent of the others.

This multidimensional ECRV was used to represent all

possible unmodeled accelerations.

The application of the Euler–Maruyama scheme or

even the SDE higher-order schemes is not suitable in

this case because it requires an extremely small step

to correctly integrate the deterministic part. Therefore,

the benchmark was obtained using a statistics-preserving

model (Eq. (20)) with a discretization time of δt = 10 s.

The solution was integrated using the Runge–Kutta 8(7)

scheme. To correctly capture the effects of uncertainties,

a maximum integration step of δt/10 was enforced.

Figure 7 shows the statistics of the test case trajectory

with different discretization time, computed through a

Monte Carlo simulation using 10,000 samples. Although

the mean is always correctly retrieved, the standard

deviation results strongly depend on the discretization

step. In this case, for δt 6 104 s ≈ 0.1τ , the standard

deviation of the relative error is approximately 10−2,

which is within the accuracy of 10,000 samples. A two-

way Kolmogorov–Smirnov test was used to test this claim.

For larger δt, greater diffusion can be observed, leading to

unrealistically large dispersions. This result was expected.

A higher δt implies that the stochastic acceleration is

kept constant in that direction for a longer time, leading

to large deviations from the unperturbed case.

In conclusion, the models discussed in Section 3.2

can build discrete sequences with the desired stochastic

characteristics regardless of the discretization time.

However, special care on the δt selection should be

taken when these sequences are used to model stochastic

perturbations to avoid over-conservative and unrealistic

behaviors in uncertainty quantification.
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Fig. 7 Standard deviation relative error with respect to the benchmark solution σ0 (left) and scatter chart at the final time
(right) for different discretization time δt, for (a) x-, (b) vx-, and (c) vy-component of the state.
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6 Conclusions

In this study, Gauss–Markov processes for mission

analysis were characterized. After a general overview

of the continuous Gauss–Markov process, two different

models, one preserving the form of the solution and the

other preserving the statistics, were introduced for a

discrete computationally compatible version. Statistics

associated with some derived quantities that could be

of interest in the mission analysis were retrieved for

both continuous and discrete cases, as well as the

definition of a standard Gauss–Markov process. Under

some hypotheses, the compatibility of the statistics

between the two cases has been demonstrated for the

integral of a process, whereas particular care should be

taken in the case of the derivative. In conclusion, the

discrete models were validated, and it was shown that

they can provide a sequence with prescribed statistics,

regardless of the discretization time. However, a low

discretization time must be used when Gauss–Markov

sequences are exploited as noisy accelerations because

high discretization time can lead to an overestimation of

the statistics associated with a given trajectory.
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