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ABSTRACT

A frozen orbit is beneficial for observation owing to its stationary apsidal line. The

traditional gravitational field model of frozen orbits only considers the main zonal harmonic

terms J2 and limited high-order terms, which cannot meet the stringent demands of all

missions. In this study, the gravitational field is expanded to J15 terms and the Hamiltonian

canonical form described by the Delaunay variables is used. The zonal harmonic coefficients

of the Earth are chosen as the sample. Short-periodic terms are eliminated based on the

Hori–Lie transformation. An algorithm is developed to solve all equilibrium points of

the Hamiltonian function. A stable frozen orbit with an argument of perigee that equals

neither 90◦ nor 270◦ is first reported in this paper. The local stability and topology of the

equilibrium points are obtained from their eigenvalues. The bifurcations of the equilibrium

points are presented by drawing their global long-term evolution of frozen orbits and their

orbital periods. The relationship between the terms of the gravitational field and number

of frozen points is addressed to explain why only limited frozen orbits are found in the

low-order term case. The analytical results can be applied to other Earth-like planets and

asteroids.
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1 Introduction

Considering the gravity of non-spherical perturbations

on a satellite, both precession of the orbital plane and

apsidal line rotation in the inertial space exist. However,

a special case called a frozen orbit occurs where the

rotation of the apsidal line stops [1, 2].

Frozen orbits are generated by non-spherical

gravitational perturbations. Because of the importance

of satellite orbit perturbations in the design of a satellite

orbit in space, satellite orbit perturbation theory to

analytically solve the real orbit has been developed and

improved for more than 70 years. Since the 1950s, several

well-known scholars, e.g., Brouwer [3] and Kozai [4],

have studied orbital evolution under zonal harmonic

perturbations. Brouwer used Delaunay variables instead

of orbital elements to transform the Lagrangian planetary

perturbation equation into its Von Zeipel form and then

divided the perturbation terms into secular, long-periodic,

and short-periodic [3]. Under the effect of J4 zonal

harmonics, Kozai applied the double-averaging method

to analytical solutions of the mean orbital elements [4].

Musen improved Hansen’s method to extend solutions

of any order under zonal harmonic perturbations [5].

Vinti derived a closed-form analytical solution under

the influence of oblateness by replacing conventional

circular coordinates with rotating ellipsoidal coordinates

in Ref. [6]. Kaula developed a second-order solution under

both zonal and tesseral harmonic perturbations using

mean orbital elements [7]. Lorell et al. used averaging to

develop the second-order long-periodic and secular effects

of oblateness [8]. To avoid the difficulties caused by small

eccentricity or inclination, Poincaré variables instead

of Delaunay variables were used to improve Brouwer’s

results in Ref. [9]. Hori [10] and Deprit [11] employed

the Lie series method in the canonical transform to

simplify the canonical perturbation equation following
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Nomenclature

U potential of spacecraft subject to the attraction of an axisymmetric body
F Hamiltonian function
µ gravitational parameter of the oblate body
R disturbing potential
ae mean equatorial radius of the oblate body
r distance of the spacecraft from the center of the body
ϕ latitude of the spacecraft
Jn zonal harmonics coefficients of degree n
Cmn, Smn tesseral harmonics coefficients of degree m,n
Pn(x) Legendre polynomials
Pmn(x) associated Legendre polynomials
a semi-major axis
e eccentricity
i inclination
ω argument of perigee
Ω right ascension of the ascending node (RAAN)
M mean anomaly and its derivative in terms of time
λ geographical longitude
f true anomaly
L, l,G, g,H, h Delaunay variables

the approach of Brouwer [3]. Barrar improved Vinti’s

work [6] to achieve an analytical solution with the same

accuracy, yet in a simpler form [12].

The majority of the methods for frozen orbits have

been developed along with orbital perturbation theory.

The concept of a frozen orbit was proposed in the

SEASAT-A mission by Cutting in 1977 [13]. Because its

eccentricity and argument of perigee remain constant on

average, the frozen orbit has been applied to high-latitude

communication missions and remote sensing satellites

around the Earth and other celestial bodies. Currently,

frozen orbits can be divided into two types. The first type

of frozen orbit considers only the gravity field up to the J2

perturbation term, which has been typically adopted in

other studies [14, 15]. The inclination angle of this frozen

orbit is either 63.43◦ or 116.57◦; this angle is also called

the critical inclination. The Russian satellite Molniya [16],

which was conducted in 1965, is representative of this type

of frozen orbit. The other type of frozen orbit considers

higher zonal harmonic terms. The argument of perigee is

90◦ or 270◦ with small eccentricity (1 × 10−3) in this type

of frozen orbit, which is represented by the SEASAT,

LandSat [17], and GeoSat [18] conducted by the United

States in 1978, 1972, and 1985, respectively. The latter

type of frozen orbit is the primary focus of this study.

Numerous scholars have studied frozen orbits using

different methods. Coffey used the Lie transformation to

derive the normalized Hamiltonian canonical equation

at J9 zonal harmonics and derived families of frozen

orbits around an Earth-like planet [19]. The bifurcation

in the study by Coffey et al. is similar to that in this

study. However, certain equilibrium points were ignored

owing to the limitations of the low-order gravitational

field. Moreover, the global distribution and evolution

of the equilibrium points were not displayed in that

study. Aorpimai et al. derived an analytical solution

of Earth frozen orbits with arbitrary terms of zonal

harmonics by avoiding the singularity of the equation

through epicycle elements [20]. In addition, the study

of frozen orbits has been extended to other celestial

bodies such as the Moon and Mars. Liu et al. proposed

a frozen condition and analyzed the differences in

frozen orbits around the Earth and Moon based on

the different coefficients of the gravitational field model

between different celestial bodies [21]. Abad et al. [22]

used the same method as San-Juan et al. [23] and

applied it to frozen orbits for a lunar orbiter. Liu et

al. found four families of Martian frozen orbits, three

of which were orbits with small eccentricity, using the

Lie transformation [24, 25]. Wang et al. proposed several

control strategies to realize a Sun-synchronous frozen

orbit with arbitrary orbital elements using continuous
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low-thrust [26]. Lara used a methodology based on

the construction of both eccentricity vector diagrams

and inclination-eccentricity diagrams of frozen orbits

to disclose the qualitative and quantitative differences

introduced in the Earth’s orbit behavior by truncation to

different degrees of the Legendre polynomial expansion

of the zonal geopotential [27] .

The goal of this study is to explore the additional

properties of frozen orbits and identify unreported frozen

orbits that could not be obtained in the low-order case.

Thus, the gravitational model is extended to the J15

term described in Delaunay variables, which are used as

the main variables to simplify the calculation; orbital

elements are adopted to better present the properties of

the frozen orbits. Short-periodic terms are eliminated to

accelerate the long-term evolution of the frozen orbits

through a Hamiltonian canonical transformation based

on the Lie series. The equilibrium points of dynamical

systems after the Hori–Lie transformation can also be

referred to as frozen orbits. Only equilibrium points (or

frozen orbits) with the argument of perigee ω equal

to either 90◦ or 270◦ have been widely studied in

previous reports under low-order gravitational fields;

these points are defined as traditional equilibrium points

(or traditional frozen orbits) in this study. The other

equilibrium points, whose argument of perigee ω is

not equal to 90◦ or 270◦, are defined as nontraditional

equilibrium points or frozen orbits; they can be considered

as the bifurcations of the traditional orbits presented by

their global evolutions. The relationship between the

terms of the gravitational field and number of frozen

points is used to explain why fewer frozen orbits are

found in lower-order cases.

2 High-order gravitational field reduced
by Hori–Lie transformation

The main perturbation of a satellite near an Earth-

like planet is caused by the non-central force of the

gravitational field. The gravitational potential function

is typically written as [28]:

U =
µ

r

[
1−

∞∑
n=2

Jn

(ae
r

)n

Pn(sinϕ)

+
∞∑

n=2

n∑
m=2

(ae
r

)n

Pmn(sinϕ)(Cmn cosmλ+ Smn sinmλ)

]
(1)

where Pn(x) are Legendre polynomials, Pmn(x) are the

associated Legendre polynomials, ae is the equatorial

radius, ϕ is the geocentric latitude, λ is the geographical

longitude, and r is the radial distance. The terms

involving Jn are zonal harmonics. The terms involving

Cmn and Smn are tesseral harmonics. Then, R is defined

as the disturbing potential, i.e., R = U − µ
r .

Because the measure of a non-recursive orbit is larger

than that of a recursive orbit, the non-recursive orbit

is mainly considered in this study. For a non-recursive

orbit, the effects of the tesseral harmonic terms are

primarily offset, on average, by the rotation of the

Earth-like planet. In addition, the tesseral harmonic

terms do not produce resonance terms with significantly

enhanced perturbation effects on low-orbit satellites.

Therefore, only zonal harmonics J2–J15 are considered

in the disturbing potential. To calculate the frozen

orbit, an analytic derivation is required to eliminate the

short-periodic terms. Keplerian elements are replaced

by Delaunay variables to describe the orbital motion.

The relationship between the Delaunay variables and

Keplerian elements is as Eq. (2):

l = M g = ω h = Ω

L =
√
µa G =

√
µa(1− e2) H =

√
µa(1− e2) · cos i

(2)

where a is the semi-major axis, ω is the argument of

perigee, Ω is the right ascension of the ascending node, e

is the eccentricity, i is the inclination, and M is the mean

anomaly. The units of length, time, and mass are meter,

second, and kilogram, respectively. Thus, the units of the

Delaunay variables L, G, and H are m2/s. For simplicity,

the units of the Delaunay variables are omitted in this

study.

The perturbed equations of motion can be expressed

in canonical form:

Ẋ =
∂F

∂x
, ẋ = − ∂F

∂X
(3)

where

[
X
x

]T
=

[
L G H
l g h

]T
, and Hamiltonian function

F is described by

F =
µ2

2L2
+R (4)

Based on the relationships: sinϕ = sin i sin(g + f) and

r = a(1−e2)
1+e cos f , where f is the true anomaly, the potential

R can be expanded in the Delaunay variables. Most terms

involving f are ignored because they can be eliminated



252 Y. Ma, Y. He, M. Xu, et al.

in the following derivation process. Because J3–J15 of

an Earth-like planet are of the same order as J2
2 , the

Hamiltonian function F can be expressed as

F = F0 + F1 + F2

F0 =
µ2

2L2

F1 = −µ2J2a
2
e

G3

G

r2

[
1

4
(1− 3 cos2 i)(1 + e cos f)

− 3

4
(1− cos2 i)(cos(2g + 2f) +

e

2
cos(2g + 3f)

+
e

2
cos(2g + f))

]
F2 = R− F1 (5)

The short-periodic perturbation is eliminated through

canonical transformation based on the Lie series, which

is also known as the Hori–Lie transformation. After the

Hori–Lie transformation, the new Hamiltonian function

F ∗ is given by

F ∗
0 = F0 = µ2

2L2

F ∗
1 = F1s

S1 =
∫
F1pdt

∗

F ∗
2 = F2s +

1
2{F1 + F ∗

1 , S1}s
S2 =

∫ (
F2p +

1
2{F1 + F ∗

1 , S1}p
)
dt∗

(6)

where the symbol {} is the Poisson bracket, F1s and

F2s are the averages of F1(t
∗) and F2(t

∗) about t∗, and

F1p = F1 − F1s.

The detailed analytical expression of the new

Hamiltonian function F ∗ is presented in the Electronic

Supplementary Material. The variables after this

paragraph are all mean variables after applying the Hori–

Lie transformation.

After the Hori–Lie transformation, the new

Hamiltonian function F ∗ based on the mean elements

does not have short-periodic terms. The angular variables

l and h do not exist in the new Hamiltonian function

F ∗. Based on Eq. (3), it can be proven that L = const

and H = const, where L and H are the mean elements

after the canonical transformation. Thus, the order of

the new canonical equation is reduced.

Frozen orbits are traditionally defined as those where

both the eccentricity and argument of perigee remain

constant on average [29]. Thus, the frozen conditions

are ė = 0, ω̇ = 0, i̇ = 0, which are equal to Ġ = 0, ġ =

0, H = const in the Delaunay variables. Because short-

periodic perturbation is not considered in frozen orbits,

the variables above are the mean elements after canonical

transformation. In this study, the differential equation:
dG

dt
=

∂F ∗

∂g
dg

dt
= −∂F ∗

∂G

(7)

is chosen as the main nonlinear dynamical differential

equation, and the angular variables l and h are not

considered. Based on Eq. (2): H = L ·
√
1− e2 · cos i,

L is assumed to be constant. Then, H is considered

an important parameter in the analysis of frozen orbit

dynamics.

Based on the nonlinear differential equations in Eq. (7),

the Delaunay variablesG and g are independent variables.

The equilibrium points are calculated using numerical

methods. In addition, phase portraits are drawn through

the following steps: (1) select the initial points (G0, g0)

in their domain (H < G0 < L, 0 < g0 < 2π) and

(2) integrate the differential equation in Eq. (7) using

the Runge–Kutta method to obtain the corresponding

trajectories. The differences between different phase

portraits are changes in the Delaunay variables H and

terms considered in the gravitational model.

3 Expansion of traditional frozen orbits
in high-order gravitational field

The earliest frozen orbit, which was designed based

on the perturbation model of the gravitational field,

is accurate for J2 and J3. With the improved terms

of the gravitational field model, the order of Eq. (7)

increases. Thus, the solutions to the differential equation,

which are also called frozen points, increase in number. In

traditional frozen orbits, the Delaunay variable g, which

corresponds to the argument of perigee ω, is equal to

either 90◦ or 270◦. In fact, we can make dG
dt and dg

dt equal

zero by adjusting the values of Delaunay variables G

and g at a given H and L. Thus, there are equilibrium

points whose g values are equal to neither 90◦ nor 270◦.

However, such frozen orbits have rarely been mentioned

in other literature reports because of the limitation of

the terms of the gravitational field model adopted in

their work. This type of equilibrium point is defined as a

nontraditional equilibrium point. Only traditional frozen

orbits are discussed in this section; nontraditional frozen

orbits are investigated in the next section.



Global searches of frozen orbits around an oblate Earth-like planet 253

3.1 Expansion and distribution of traditional
frozen orbits

Based on the analytical expressions of dG
dt and dg

dt ,
dG
dt = 0

can be satisfied by setting ω to either 90◦ or 270◦, which

is considered a basic condition of traditional frozen orbits.

Based on Eq. (7), the remaining frozen condition dg
dt = 0

can be satisfied by changing the value of G when L and

H are given. Because of the gravitational field model with

higher terms derived herein, more traditional equilibrium

points are obtained in this study.

Based on the analysis above, the global distribution

of the frozen orbits is determined by Delaunay elements

G and H when L is constant. H ranges from zero to

L to include the corresponding G that can satisfy the

frozen condition. The relationship between the frozen

elements G and H after the numerical calculation is

displayed in Fig. 1. G and H are transformed into orbital

elements e and i after the numerical calculation. The new

relationship is displayed in Fig. 2. Every point in Figs. 1

and 2 corresponds to one frozen orbit.

Each H corresponds to multiple equilibrium points

g

g

Fig. 1 Relationship of frozen orbits between G and H; L =
5.29096 × 1010; blue line indicates g = 90◦ and red line
indicates g = 270◦.

(°)

g

g

Fig. 2 Relationship between frozen eccentricity e and
inclination i : L = 5.29096 × 1010; blue line indicates the
argument of perigee is 90◦ and red line indicates the argument
of perigee is 270◦.

and the number of equilibrium points decreases with an

increase in H, as indicated in Fig. 1. Based on H = L ·√
1− e2 ·cos i. and H = G·cos i, the ranges of i and G can

be obtained by 0 < i < arccos H
L and H < G < L. With

an increase inH, the ranges of i andG decrease gradually;

thus, the number of equilibrium points is reduced. There

is a maximum of 19 equilibrium points, with at least

two points corresponding to each H. Figure 2 indicates

that there are typically frozen orbits with an inclination

i ranging from 0◦ to 90◦ when the argument of perigee is

equal to 90◦ or 270◦. More precisely, there is a maximum

of four frozen eccentricity values for a certain inclination

when the argument of perigee is 90◦, and there is a

maximum of two eccentricity values for each angle of

inclination when the argument of perigee is 270◦.

With the exception of the frozen orbits near the

critical inclination, the frozen orbits corresponding to

the equilibrium points in Fig. 2 can be divided into

quasi-circular orbits and large elliptic orbits based on

the eccentricity. First, the quasi-circular frozen orbits

with eccentricity less than 0.01 correspond to those in

the bottom of Fig. 2, which are typically studied in the

majority of reports. Secondly, the eccentricity values

of large elliptic frozen orbits are greater than 0.5 and

these orbits supplement the quasi-circular frozen orbits

because of the higher-order terms of the gravitational

field model derived in this study; these terms are rarely

studied in other reports. Frozen orbits near the critical

inclination are the link between the quasi-circular orbits

and large elliptic orbits. Thus, it is implied that the

high-order terms of the gravitational field cannot be

neglected for orbits with large eccentricity [19, 30]. This

phenomenon reflects the complexity of the gravitational

field and proves the importance of the gravitational

model with high precision. Because the order of Delaunay

variable G in the differential equation increases with

the increasing terms of the gravitational field, which

contributes significantly to the evolution of the orbit

when G is sufficiently small, the influence of high-order

terms gradually increases with increasing eccentricity.

3.2 Evolution period of traditional frozen
orbits

To analyze the nonlinear dynamical property of the

orbits near the equilibrium points, the canonical equation

after the Hori–Lie transformation is linearized using the

differential method.
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Taylor expansion is performed around the equilibrium

points to linearize the differential formulations of the

mean orbital elements. The canonical equation is

expanded via a Taylor expansion to approximately

linearize the dynamical equation. For the sake of

convenience, assuming point (G0, g0) is the equilibrium

point, the differential equation is expanded to a first-order

Taylor expansion at (G0, g0):

[
G̈
g̈

]
= A

[
G
g

]
, A =


∂Ġ

∂G

∂Ġ

∂g
∂ġ

∂G

∂ġ

∂g


(G0,g0)

(8)

The stability of the equilibrium point can be

determined by the eigenvalues of the coefficient matrix A.

The eigenvalues of the coefficient matrix A can be divided

into two classes: one class is a pair of conjugate complex

numbers for which the real part is zero, corresponding to

the centers; the other class is a pair of real eigenvalues of

opposite sign and equal magnitude, corresponding to the

saddle points. Because the center is a stable point, the

evolution of the orbit around a center is a closed loop;

the saddle point is an unstable equilibrium point.

The center point corresponds to a frozen orbit, i.e.,

a periodic orbit, whereas the blue curves around it

correspond to quasi-periodic orbits. The evolution periods

of the quasi-periodic orbits around the frozen points

(centers) can be obtained by integrating. The orbits

around the selected center are indicated in Fig. 3. The

points on the red dashed line from Point A to Point B in

Fig. 3 are the initial values of the integrals, with g equal

to π/2. The x -axis coordinates in Fig. 4 are the values

of the Delaunay variables G in these initial values. The

relationship between G and the periods is displayed in

A

B

g

G

Fig. 3 Orbits around selected center at H = 2.43 × 1010;
Point B indicates selected center (G0 = 5.2908887 × 1010,
g0 = π/2) and Point A indicates orbit near boundary of
convergent domain.

T
 (

s)

Fig. 4 Evolution periods of orbits around selected center.

Fig. 4.

As revealed in Fig. 4, the evolution periods of the

orbits around the same center do not change with the

initial G changing and can be considered the same value.

Therefore, the evolution period of the frozen orbit can

be defined by the eigenvalue of the equilibrium point.

Assume [0± βi] are the eigenvalues of the frozen orbits.

The evolution period of the frozen orbit can be given by

T = 2π
β based on the theory of ordinary differential

equations that describes the evolution of the frozen

orbits. This period, obtained by eigenvalue, represents the

evolution periods of the orbits around the frozen orbit.

Next, the eigenvalues of all the traditional equilibrium

points in Fig. 1 are calculated to determine the stability

of each equilibrium point and obtain the period of each

center. Figure 5 displays the periods of the frozen orbits

for all values of the variables H.

H T

T
 (

s)

Fig. 5 Relationship of frozen evolution period with changing
Delaunay variable H: blue line indicates that the argument of
perigee is 90◦ and red line indicates the argument of perigee
is 270◦; L = 5.29096 × 1010.

Based on Figs. 1 and 2, one value of H corresponds

to several frozen orbits. As indicated in Fig. 5, several

evolution periods are concentrated at the bottom. The
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evolution periods of the different frozen orbit families are

considerably different because of the Delaunay variable

G, which indicates the eccentricity in orbital elements.

The larger the Delaunay variable G of the center, the

longer the period. Based on Eq. (2), eccentricity e is

a monotonically decreasing function of the Delaunay

variable G, i.e., period T increases as the eccentricity e

of the center decreases.

An interesting phenomenon is indicated in Fig. 5.

By defining the frozen orbits with similar values of

eccentricity e as a family of frozen orbits in this chapter,

it can be observed that the period of a family of frozen

orbits changes slowly and actually remains constant as the

Delaunay variable H changes. The period T approaches

infinity during the derivative or disappearance of the

center corresponding to the frozen orbit, confirming the

result in Section 3.

4 Topology and bifurcation of
nontraditional equilibrium points

4.1 Evolution and topology of nontraditional
equilibrium points

Apart from more traditional frozen orbits, a high-order

gravitational field also brings the equilibrium points

whose g values are neither 90◦ nor 270◦, which are defined

as nontraditional frozen orbits in Section 3. Because of

the high-order terms of the gravitational field model

containing the J15 term, we calculate the accurate values

of nontraditional equilibrium points and discover the

global evolution of all equilibrium points containing

centers and saddle points with the Delaunay variable

H changing based on constant L. When the Delaunay

variable g is not equal to 90◦ or 270◦, the solution of

Eq. (7) is transformed from a solution problem of a one-

dimensional equation into a two-dimensional equation

(compared with that based on g equaling 90◦ or 270◦).

Because of the complexity of the differential equation,

this solution requires particular methods to determine

all the equilibrium points at any Delaunay variable H.

Variables ex and ey are used to replace the orbital

elements e and ω used in several studies. The relationship

between them is as follows: ex = e cosω, ey = e sinω. As

indicated in Ref. [22], Coffey drew the contour map of

F ∗ in the space (ex, ey) to obtain a local phase portrait

within the small range of G, i.e., e. We obtain the same

result under the same initial condition (the gravity field

up to J9 and J15 in Fig. 6).

The method described above can be applied to draw a

local phase portrait. However, the Hamiltonian function

F ∗ varies significantly with changes in G. We attempted

to draw the contour map of F ∗ to obtain the global phase

portrait (G ∈ [H,L]) and obtained the following result

as shown in Fig. 7.

It can be observed that the information for numerous

equilibrium points is lost. For whatever the resolution

of the counter map of F ∗ selected, the total equilibrium

points cannot be displayed entirely. This is because the

Hamiltonian function F ∗ changes dramatically with G in

the high-order gravitational field. Thus, the contour map

of F ∗ can only present a local phase portrait; it cannot

be used to draw the global phase portrait. The global

phase portrait is drawn as described in the following.

First, select four typical values for Delaunay variable

H based on the distribution of the traditional equilibrium

(a) (b) (c)

Fig. 6 Local phase portrait in gravity field up to J9: ae/a = 1, H/L = 0.44505. (a) Result in Coffey’s paper; (b) result
obtained in proposed gravity model up to J9; (c) result obtained in proposed gravity model up to J15.
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1 2 3 4 5 6

g

2.5

3

3.5

4

4.5

5

G

×1010 J
15

Fig. 7 Global contour map of F ∗ in space (G, g). ae/a = 1,
H/L = 0.44505.

points in Figs. 1 and 2 that correspond to the four typical

configurations: H = 1 × 1010, 2.273 × 1010, 3.25 × 1010,

and 3.9 × 1010. Next, draw the phase portraits based on

Delaunay variables G and g at these values of H in the

definition domain (H < G < L, 0 < g < 2π) via parallel

computing using a graphics processing unit. Find all the

equilibrium points in these phase portraits and calculate

the accurate values. Because the values of the equilibrium

points change minimally when the Delaunay variable H

changes minimally little, all the equilibrium points at the

known Delaunay H value can be considered as starting

points for calculating the equilibrium points at the next

H. Thus, the four groups of equilibrium points at the

four chosen H values are the starting points, and all the

equilibrium points at all values of H (0–5.29 × 1010)

are iteratively calculated with a step size of 1 × 106.

During the computational process, the corresponding

phase portraits must be drawn to verify the results and

add the ignored equilibrium points. Finally, the global

equilibrium points at every Delaunay variable H are

obtained. The stability of the equilibrium points can be

determined from the eigenvalues of coefficient matrix A in

Eq. (8). Thus, the number of equilibrium points, centers,

and saddle points can be determined based on the results

above. The interval of Delaunay variable H(0–5.29 ×
1010) can be divided into 35 parts based on the number

and distribution of the equilibrium points. Because the

phase portraits in the same part are similar, we select

one respective phase portrait for each part. Figure 8

Fig. 8 Number of equilibrium points varying with Delaunay
variable H from 0 to L: red line indicates number of
equilibrium points, blue line indicates number of centers,
and green line indicates the number of saddle points, and
number in figure indicates corresponding part. L = 5.29096
× 1010.

and Table 1 display the boundaries of each part and

the corresponding number of equilibrium points, centers,

and saddle points; they also display the evolution of

the global frozen orbits for global H. Figure 8 indicates

the respective phase portrait at the particular Delaunay

variable H of each part that can describe the distribution

of equilibrium points in the corresponding part.

Figure 9 confirms the existence of nontraditional

equilibrium points at any value of H. It indicates that

the majority of the nontraditional equilibrium points

are saddle points, and there are a maximum of four

nontraditional centers for any Delaunay variable H value.

As can be observed in Fig. 8, the number of traditional

equilibrium points decreases as Delaunay variable H

increases, accounting for the results in Section 3. In

general, the total number of equilibrium points containing

both traditional and nontraditional equilibrium points

decreases as Delaunay variable H increases. However,

the number of equilibrium points does not continue to

decrease because of the bifurcation of nontraditional

centers. The number of centers and saddle points are

denoted as nc and ns, respectively. It can be concluded

from Fig. 9 that nc = ns+ 2. Thus, there always exists

an even number of equilibrium points for any value of H,

which can also be derived from the fact that nc = ns+ 2.

Furthermore, nontraditional equilibrium points are found

dually.

4.2 Bifurcation of equilibrium points

The global evolution of frozen points with Delaunay

variable H changing from 0 to 5.29 × 1010 can also
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G

×1010 H=5×1010

(35)

Fig. 9 Corresponding phase portraits in each part of H from zero to 5.29 × 1010: red points indicate centers, green points
indicate saddle points, and red stars indicate frozen orbits widely studied in other reports.

be obtained based on Fig. 9. Equilibrium points move,

appear, and disappear as H changes, which results in

a change in the number of equilibrium points. When H

is a small value, the majority of the equilibrium points

are located in the bottom region. The distribution of

frozen points tends to be uniform as Delaunay variable H

increases. Finally, whenH is a large value, the majority of

the equilibrium points disappear, and there are only two

centers in Part (35). In addition, there is a maximum of

38 equilibrium points for the same Delaunay variableH in

Parts (2), (5), and (7). Because centers and saddle points

appear and disappear at the same time, the evolution of

the centers is selected to describe the bifurcation in this

study. There are two evolution cases for nontraditional

centers. In the first case, either one traditional center

changes into a pair of nontraditional centers and one

traditional saddle point as H increases or an inverse

process occurs. Figure 10 displays this evolution case,

which reflects the evolution from Part (1) to Part (2),

which is denoted by Parts (1)–(2). The evolutions between

Parts (7)–(8) and (23)–(24) are also examples of this case.

In the second case, a pair of nontraditional centers and

a pair of nontraditional saddle points appear or disappear

at the same time. Figure 11 displays this evolutionary

case, which reflects the evolution between Parts (4)–(5),

(5)–(6), (6)–(7), (8)–(9), (12)–(13), (13)–(14), (14)–(15),

(15)–(16), (18)–(19), (21)–(22), and (25)–(26).

The evolution of traditional centers has a primary case.

As indicated in Fig. 12, the two traditional centers and

two saddle points constitute the basic structure. Thus, the

stable range of one center is narrowed and the center and

two saddle points approach until changing into one saddle

point. Finally, the saddle point and other center approach

until they disappear. This process causes two changes in

the equilibrium points, where each change corresponds

to a decrease in one center and one saddle point. This
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(a)

(b)

Fig. 10 Evolution of nontraditional centers in Case 1 as H increases: (a) evolution from one traditional (left) to two
nontraditional centers (right) as H ncreases; (b) disappearance of nontraditional centers.

(a)

(b)

Fig. 11 Evolution of nontraditional centers in Case 2 as H increases: (a) appearance of nontraditional centers; (b)
disappearance of nontraditional centers.

process is irreversible as H increases. Note that the two

traditional centers are two points on the same line at

the same value of H in Fig. 1. Evolution between Parts

(2)–(3)–(4), (10)–(17)–(18), (10)–(11)–(12), (16)–(17),

(22)–(23)–(25), (26)–(27)–(28), (28)–(30)–(31), (31)–

(32)–(33), and (33)–(34)–(35) are examples of this case.
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Fig. 12 Evolution of traditional centers in Case 3 as H increases: disappearance of traditional centers as H increases. Two
centers (left) → one center (middle) → no center (right).

Table 1 Range and number of equilibrium points in each
part of H

No. Part of H
No. of
EPs

No. of
centers

No. of
SPs

1 0–7.13 × 108 36 19 17
2 7.14 × 108–1.844 × 109 38 20 18
3 1.845 × 109–1.846 × 109 36 19 17
4 1.847 × 109–2.906 × 109 34 18 16
5 2.907 × 109–3.018 × 109 38 20 18
6 3.019 × 109–3.611 × 109 34 18 16
7 3.612 × 109–3.687 × 109 38 20 18
8 3.688 × 109–3.733 × 109 36 19 17
9 3.734 × 109–4.536 × 109 32 17 15
10 4.537 × 109–5.625 × 109 30 16 14
11 5.626 × 109–5.640 × 109 28 15 13
12 5.641 × 109–6.043 × 109 26 14 12
13 6.044 × 109–8.522 × 109 30 16 14
14 8.523 × 109–8.897 × 109 34 18 16
15 8.898 × 109–9.619 × 109 30 16 14
16 9.620 × 109–9.914 × 109 26 14 12
17 9.915 × 109–1.2733 × 1010 24 13 11
18 1.2734 × 1010–1.3379 × 1010 22 12 10
19 1.3380 × 1010–1.8381 × 1010 26 14 12
20 1.8382 × 1010–2.1169 × 1010 24 13 11
21 2.1170 × 1010–2.2584 × 1010 24 13 11
22 2.2585 × 1010–2.2762 × 1010 28 15 13
23 2.2763 × 1010–2.3075 × 1010 26 14 12
24 2.3076 × 1010–2.3596 × 1010 24 13 11
25 2.3597 × 1010–2.5137 × 1010 22 12 10
26 2.5138 × 1010–2.7869 × 1010 18 10 9
27 2.7870 × 1010–3.1325 × 1010 16 9 7
28 3.1541 × 1010–3.1542 × 1010 14 8 6
29 3.1562 × 1010–3.2574 × 1010 12 8 6
30 3.2575 × 1010–3.4691 × 1010 12 7 5
31 3.4692 × 1010–4.1115 × 1010 10 6 4
32 4.1116 × 1010–4.1131 × 1010 8 5 3
33 4.1132 × 1010–4.2996 × 1010 6 4 2
34 4.2997 × 1010–4.3071 × 1010 4 3 1
35 4.3072 × 1010–5.29 × 1010 2 2 0

EP: equilibrium points; SP: saddle points.

However, there are two special cases where the

evolution between Parts (20)–(21) and (29)–(30) does

not change the number of equilibrium points; only the

positions of the centers change in these cases. The center

with g = 90◦ at the top of the phase portrait in Part (20)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

H ×1010

0

10

20

30

40

50

N

J16

Number of equilibrium points

Number of centers

Number of saddle points

Fig. 13 Number of equilibrium points varying with
Delaunay variable H from zero to L (gravity field up to
J16).

of Fig. 9 moves up until it disappears when H = 2.116 ×
1010, and the center with g = 270◦ at the top appears at

the same time. The center with g = 270◦ at the bottom

of the phase portrait in Part (29) of Fig. 9 moves down

until it disappears when H = 3.2574 × 1010, and the

center with g = 90◦ at the bottom is generated at the

same time. These two cases reflect the evolution of the

green circle indicated in Fig. 1.

5 Relationship between number of
harmonic terms and frozen orbits

As mentioned in Section 4, the order of Eq. (7) increases

with an increase in the terms of the gravitational field

model. The zonal harmonic terms Jn influence the

number of equilibrium points. That is, both H and Jn

influence the distribution of equilibrium points at a fixed

L. Figure 8 is redrawn in the gravity field up to J16. The

number of equilibrium points under J16 is four more than

that in J15 when H is less than 4.3 × 1010. Furthermore,

the evolution boundaries under J16 shift left marginally

compared with those in J15.

Next, the numerical relationship between the terms

of the gravitational field and frozen points is studied.

Phase portraits with different zonal harmonic terms
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Fig. 14 Number of equilibrium points varying with zonal
harmonic terms from J3 to J16: red line indicates number
of equilibrium points, blue line indicates number of centers,
green line indicates number of saddle points, H = 3 × 1010,
and L = 5.29096 × 1010.

of the gravitational field from J3 to J16 are drawn to

facilitate the study. The relationship between the number

of equilibrium points and terms of the gravitational

field Jn is displayed in Fig. 14. Figure 15 displays the

corresponding phase portrait at H = 3 × 1010 and L =

5.29096 × 1010 for each term Jn, which displays the

corresponding distribution of frozen points. The terms of

gravitational field Jn indicate that the gravitational field

model contains from J2 to Jn zonal harmonic terms.

As indicated in Figs. 14 and 15, the number of

equilibrium points typically increases as the zonal

harmonic terms of the gravitational field Jn increase.

Within the range of Jn from J3 to J16, the number of

equilibrium points increases with increasing Jn. This

phenomenon is consistent with the hypothesis of Sections

3 and 4; the higher-order terms of the gravitational field

result in a greater number of equilibrium points. Note

that there are only two centers that are traditional and

have no saddle points at the zonal harmonic terms of the

gravitational field from J3 to J7 under the given Delaunay

variables L and H, thus proving the limitations of the

low-order gravitational field adopted in other reports.

In addition, the number of centers is always two more

than the number of saddle points with any order higher

than J3.

As indicated in Fig. 14, the number of equilibrium

points can continue to increase as Jn increases (even

higher than J15). All the newly increasing equilibrium

points are essentially large frozen eccentricities introduced

by the J16 term. More equilibrium points with large

eccentricity in the higher-order gravity field can be

expected to be discovered. However, the high-order

terms have minimal effect on a frozen orbit with small

eccentricity. The reference orbits in the majority of

practical missions have small eccentricities. It is for this

reason that a limited gravity field can complete these

practical missions.

6 Conclusions

Frozen orbits have been widely used in numerous practical

missions such as scientific measurements and observation

because of their constant mean semi-major axis, semi-

major axis, eccentricity, inclination, and the argument

of perigee. The evolution and distribution of frozen

orbits have not been investigated owing to the limited

terms of the gravitational field model adopted in other

studies. In this study, the gravitational field model was

extended to J15 zonal harmonic terms to observe these

undiscovered frozen points and analyze the distribution

and evolution of the frozen orbits. The Lagrangian

planetary perturbation equation was transformed into

a canonical form described in Delaunay variables, and

the averaging process was achieved through the Hori–

Lie transformation. Families of traditional frozen orbits

whose argument of perigee was either 90◦ or 270◦

were extended into three families: a family of quasi-

circular orbits, family of large elliptic orbits, and family

near critical inclination. The period of the traditional

frozen orbits decreased with increasing eccentricity e

and approached infinity rapidly when the corresponding

frozen point appeared or disappeared. In addition,

nontraditional frozen points were systematically reported

in this paper. The distribution and evolution of global

frozen orbits were investigated and the regularity of

evolution was summarized. Finally, a comparison of

phase portraits with different zonal harmonic terms

from J3 to J16 indicated the limitations of the low-order

gravitational field that have not been frequently reported.

The results in the high-order gravitational field are the

extension and complement of those in the low-order case.

This study focused on the distribution and evolution

of global frozen orbits and investigated previously

unreported properties. The results can be applied to

any orbital height by adjusting L and H. More frozen

points and frozen orbits provide more orbital options for

designing missions with frozen orbits. In addition, the

conclusions can be expanded to frozen orbital missions

involving other oblate primary celestial bodies.
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(9) (10)

(11) (12)

(13) (14)

Fig. 15 Phase portraits with up to Jn terms: H = 3 × 1010 and L = 5.29096 × 1010.
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