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Thomas Uriot1, Dario Izzo1(B), Lúıs F. Simões2, Rasit Abay3, Nils Einecke4, Sven Rebhan4,
Jose Martinez-Heras5, Francesca Letizia5, Jan Siminski5, and Klaus Merz5

1. The European Space Agency, Noordwijk, 2201 AZ, the Netherlands

2. ML Analytics, Lisbon, Portugal

3. FuturifAI, Canberra, Australia

4. Honda Research Institute Europe GmbH, Offenbach 63073, Germany

5. ESOC, Space Debris Office, Darmstadt 64293, Germany

ABSTRACT

Spacecraft collision avoidance procedures have become an essential part of satellite

operations. Complex and constantly updated estimates of the collision risk between

orbiting objects inform various operators who can then plan risk mitigation measures.

Such measures can be aided by the development of suitable machine learning (ML) models

that predict, for example, the evolution of the collision risk over time. In October 2019, in

an attempt to study this opportunity, the European Space Agency released a large curated

dataset containing information about close approach events in the form of conjunction

data messages (CDMs), which was collected from 2015 to 2019. This dataset was used

in the Spacecraft Collision Avoidance Challenge, which was an ML competition where

participants had to build models to predict the final collision risk between orbiting objects.

This paper describes the design and results of the competition and discusses the challenges

and lessons learned when applying ML methods to this problem domain.

KEYWORDS

space

debris

collision avoidance

competition

kelvins

Research Article

Received: 1 October 2020

Accepted: 27 January 2021

© The Author(s) 2021

1 Introduction

The overcrowding of the low Earth orbit (LEO) has been

extensively discussed in the scientific literature [1, 2].

More than 900,000 small debris objects with a radius

of at least 1 cm have been estimated to be currently

orbiting uncontrolled in the LEO①, posing a threat

to operational satellites [3]. The consequences of an

impact between orbiting objects can be dramatic, as the

2009 Iridium-33/Cosmos-2251 collision demonstrated [4].

While shielding a satellite may be effective for impacts

with smaller objects [5], any impact of an active satellite

with objects that have cross-sections larger than 10 cm

is most likely to result in its complete destruction.

Over the past decades, international institutions and

agencies have become increasingly concerned with and

B dario.izzo@esa.int
① Data from https://sdup.esoc.esa.int/discosweb/statistics/

(accessed on 3 June 2020).

contributed to defining guidelines to mitigate collision

risk and preserve the space environment for future

generations [6]. As a result, agencies, as well as operators

and manufacturers, have been assessing a number of

approaches and technologies in an attempt to alleviate

this problem [7–9].

Despite all the efforts to actively control debris and

satellite populations, this problem is still of increasing

concern today. To illustrate the crowding of some areas

of the LEO, we have visualized, as of 22 May 2020, the

position of all 19,084 objects monitored by the radar

and optical observations of the United States Space

Surveillance Network (SSN) in Fig. 1. The figure clearly

shows the density of objects at low altitudes, as well as

the density drop around the northern and southern polar

caps owing to the orbital dynamics being dominated by

the main perturbations that, in LEO, act primarily on

the argument of perigee and on the right ascension of the

https://sdup.esoc.esa.int/discosweb/statistics/
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ascending node [10].

To obtain a first assessment of the risk posed to

an active satellite operating, for example, in a Sun-

synchronous orbit, we computed the closest distance

of a Sun-synchronous satellite to the LEO population

and its distribution at random epochs and within a two-

year window. Figure 2 shows the results for Sentinel-3B.

In most of the epochs, the satellite was far from other

objects, but in some rare scenarios, the closest distance

approached values that were of concern. A Weibull

distribution can be fitted to the obtained data, where

results from extreme value statistics justify its use to make

preliminary inferences on collision probabilities [11]. Such

inferences are very sensitive to the Weibull distribution

parameters and, in particular, to the behavior of its tail

close to the origin.

Fig. 1 Visualization of the density of objects orbiting the
low Earth orbit as of 2020-May-22 (data from www.space-
track.org).

-

Fig. 2 Distribution of the distance between the closest
object and Sentinel-3B, and a fitted Weibull distribution
(fit skewed to represent the tail with higher accuracy).

This type of inference, as well as a series of

resounding events, including the destruction of Fengyun-

1C (2007), the Iridium-33/Cosmos-2251 collision (2009),

and the Briz-M explosion (2012), convinced most satellite

operators to include the possibility of collision avoidance

maneuvers in the routine operation of their satellites [12].

In addition, the actual number of active satellites is

steadily increasing, and plans for mega-constellations such

as Starlink, OneWeb, and Project Kuiper [13] indicate

that the population of active satellites is likely to increase

in the coming decades. Thus, satellite collision avoidance

systems are expected to be increasingly important,

and their further improvement, in particular their full

automation, will be a priority in the coming decades [14].

1.1 Spacecraft collision avoidance challenge

To advance the research on the automation of preventive

collision avoidance maneuvers, the European Space

Agency (ESA) released a unique real-world dataset

containing a time series of events representing the

evolution of collision risks related to several actively

monitored satellites. The dataset was made available to

the public as part of a machine learning (ML) challenge

called the Collision Avoidance Challenge, which was

hosted on the Kelvins online platform①. The challenge

occurred over two months, with 96 teams participating,

resulting in 862 submissions. It attracted a wide range of

people, from students to ML practitioners and aerospace

engineers, as well as academic institutions and companies.

In this challenge, the participants were requested to

predict the final risk of collision at the time of closest

approach (TCA) between a satellite and a space object

using data cropped at two days to the TCA.

In this paper, we analyze the competition’s dataset

and results, highlighting problems to be addressed by

the scientific community to advantageously introduce

ML in collision avoidance systems in the future. The

paper is structured as follows: In Section 2, we describe

the collision avoidance pipeline currently in place at

ESA, introducing important concepts used throughout

the paper and crucial to the understanding of the

dataset. In Section 3, we describe the dataset and the

details of its acquisition. Subsequently, in Section 4,

we outline the competition design process and discuss

some of the decisions made and their consequences. The

① Hosted at https://kelvins.esa.int/.

https://kelvins.esa.int/


Spacecraft collision avoidance challenge: Design and results of a machine learning competition 123

competition results, analysis of the received submissions,

and challenges encountered when building statistical

models of the collision avoidance decision-making process

are the subjects of Section 5. In Section 6, we evaluate

the generalization of ML models in this problem beyond

their training data.

2 Collision avoidance at ESA

A detailed description of the collision avoidance process

currently implemented at ESA is available in previous

reports [15, 16]. In this section, we briefly outline several

fundamental concepts.

The Space Debris Office of ESA supports operational

collision avoidance activities. Its activities primarily

encompass ESA’s missions Aeolus, Cluster II, Cryosat-2,

the constellation of Swarm-A/B/C, and the Copernicus

Sentinel fleet composed of seven satellites, as well as

the missions of third-party customers. The altitudes of

these missions plotted against the background density of

orbiting objects, as computed by the ESA MASTER①,

are shown in Fig. 3.

Fig. 3 Operational altitudes for the missions in LEO
supported by ESA Space Debris Office, and the spatial density
of objects with a cross-section of > 10 cm.

The main source of information of the collision

avoidance process at ESA is based on conjunction

data messages (CDMs). These are ascii files produced

and distributed by the United States based Combined

Space Operations Center (CSpOC). Each conjunction

contains information on one close approach between a

monitored space object (the “target satellite”) and a

second space object (the “chaser satellite”). The CDMs

contain multiple attributes of the approach, such as the

① Available at https://sdup.esoc.esa.int/master/.

identity of the satellite in question, the object type of the

potential collider, the TCA, the positions and velocities

of the objects, and their associated uncertainties (i.e.,

covariances). The data contained in the CDMs are then

processed to obtain risk estimates by applying algorithms

such as the Alfriend–Akella algorithm [17].

In the days after the first CDM, regular CDM updates

are received, and over time, the uncertainties of the object

positions become smaller as the knowledge on the close

encounter is refined. Typically, a time series of CDMs

over one week is released for each unique close approach,

with approximately three CDMs becoming available per

day. For a particular close approach, the last obtained

CDM can be assumed to be the best knowledge available

on the potential collision and the state of the two objects

in question. If the estimated collision risk for a particular

event is close to or above the reaction threshold (e.g.,

10−4), the Space Debris Office will alarm control teams

and begin planning a potential avoidance maneuver a

few days prior to the close approach, as well as meeting

the flight dynamics and mission operations teams. While

the Space Debris Office at ESA provides a risk value

associated with each CDM, to date, it has not attempted

to propagate the risk value into the future. Therefore, a

practical baseline that can be considered as the current

best estimate would be to use the latest risk value as the

final prediction. We introduce this estimate as the latest

risk prediction (LRP) baseline in Section 4.4.

3 Database of conjunction events

The CDMs collected by the ESA Space Debris Office in

support of collision avoidance operations between 2015

and 2019 were assembled into a database of conjunction

events. Two initial phases of data preparation were

performed. First, the database of collected CDMs was

queried to consider only events where the theoretical

maximum collision probability (i.e., the maximum

collision probability obtained by scaling the combined

target-chaser covariance) was greater than 10−15. Here,

the target refers to the ESA satellites, while the

chaser refers to the space debris or object to be

avoided. In addition, events related to intra-constellation

conjunctions (e.g., for the Cluster II mission) and

anomalous entries, such as scenarios with null relative

velocity between the target and chaser, were removed.

Finally, some events may cover a period during which

https://sdup.esoc.esa.int/master/
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the spacecraft performs a maneuver. In these scenarios,

the last estimation of the collision risk cannot be

predicted from the evolution of the CDM data, as the

propulsive maneuver is not described. These scenarios

were addressed by removing all CDM data before the

maneuver epoch.

The second step in the data preparation was the

anonymization of the data. This involved transforming

absolute time stamps and position/velocity values in

relative values, respectively, in terms of time to the TCA

and state with respect to the target. The names of the

target mission were also removed, and a numerical mission

identifier was introduced to group similar missions. A

random event identifier was assigned to each event. The

full list of the attributes extracted from the CDMs and

released in the dataset, as well as their explanations, are

available on the Kelvins competition website.

Here, we briefly describe only a few attributes relevant

to later discussions:

• time to tca: time interval between the CDM creation

and the TCA (day).

• c object type: type of the object at a collision risk

with the satellite.

• t span: size of the target satellite used by the collision

risk computation algorithm (m).

• miss distance: relative position between chaser and

target.

• mission id : identifier of the mission from which the

CDMs are obtained.

• risk : self-computed value at the epoch of each CDM,

using the attributes contained in the CDM, as

described in Section 2.

Table 1 provides an overview of the resulting database,

indicating the number of entries (i.e., CDMs) and unique

close-approach events. The risk computed from the last

available CDM is denoted as r.

Table 1 Database of conjunction events at a glance

Characteristics Number

Events 15,321
High-risk events (r ⩾ 10−4) 30
High-risk events (r ⩾ 10−5) 131
High-risk events (r ⩾ 10−6) 515

CDMs 199,082
Average CDMs per event 13
Maximum CDMs per event 23
Minimum CDMs per event 1

Attributes 103

4 Competition design

The database of conjunction events constitutes an

important historical record of risky conjunction events

that occurred in LEO and creates the opportunity to

test the use of ML approaches in the collision avoidance

process. The decision on whether to perform an avoidance

maneuver is based on the best knowledge one has of the

associated collision risk at the time when the maneuver

cannot be further delayed, i.e., the risk reported in the

latest CDM available. Such a decision would clearly

benefit from a forecast of the collision risk, enabling

past evolution and projected trends to be considered.

During the design of the Spacecraft Collision Avoidance

Challenge, it was natural to begin from a forecasting

standpoint, seeking an answer to the question: can an ML

model forecast the collision risk evolution from available

CDMs?

Such a forecast could assist the decision of whether

or not to perform an avoidance maneuver by providing

a better estimate of the future collision risk before

further CDMs are released. Forecasting competitions

are widely recognized as an effective means of

determining good predictive models and solutions for a

particular problem [18]. The successful designing of such

competitions requires a good balance to be determined

between the desire to create an interesting and fair ML

challenge, motivating and involving a large community

of data scientists worldwide, and fulfills the objective

of furthering the current understanding by answering a

meaningful scientific question [19].

Designing a competition to forecast r from the database

of conjunction events presents a few challenges. First,

the distribution of the final risk r associated with all the

conjunction events contained in the database is highly

skewed (Fig. 4), revealing how most events eventually

result in a negligible risk. Intuitively, the effect is due to

the uncertainties being reduced as the objects get closer,

which in most scenarios results in close approaches where

a safe distance is maintained between the orbiting objects.

Furthermore, events that already require an avoidance

maneuver are removed from the data, thus reducing

the number of high-risk events. This is particularly

troublesome as the interesting events, the ones that are

to be forecasted accurately, are the few ones for which

the final risk is significant. Second, there is significant

heterogeneity in the various time series associated with
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Fig. 4 Histogram of the latest known risk value (logarithmic
scale) for the entire dataset (training and testing sets). Note
that there are 9505 events with a final risk value of log10 r =
−30 or lower, which are not displayed in this figure.

different events, both in terms of the number of available

CDMs and the actual time to tca at which CDMs are

available, and most importantly, of the time to tca of

the last available CDM that defines the variable r to

be predicted. Therefore, the test and training sets and

the competition metric were designed to alleviate these

problems.

4.1 Definition of high-risk events

Many mission operators in LEO use 10−4 as a risk

threshold to implement an avoidance maneuver. Over

time, this value has been applied by default. However, the

selection of a suitable reaction threshold for a particular

mission depends on many different parameters (e.g., size

of the chaser, target satellite), and its selection can be

driven by considerations of the risk reduction that an

operator seeks to achieve [20]. Therefore, ESA missions

in LEO adopt reaction thresholds ranging between 10−5

and 10−4. Events are monitored and highlighted when

the collision risk is larger than a notification threshold,

which is typically set to one order of magnitude lower

than the reaction threshold. Note that in the remainder

of this paper, the log10 of the risk value is used frequently,

such that log10 r ⩾ −6 defines high-risk events. Thus, we

often omit writing log and simply refer to r ⩾ −6. For

the objectives of the competition, a single notification

threshold was used for all missions, and its value was

set at 10−6. The threshold value was selected to have a

higher number of high-risk events while maintaining its

value close to the more frequently used operational value

of 10−5. Figure 4 shows the risk computed from the last

available CDM for all the close approach events in the

database, revealing an abrupt increase in the risk value

of −6. In particular, there were 30 events with r > −4,

131 events with r > −5, and 515 events with r > −6

(Table 1).

4.2 Test and training sets

ML algorithms learn relationships between inputs and

outputs by maximizing a particular objective function.

The aim is to automatically learn patterns from the

training data that generalize to unseen data, known as

the test set. Hence, the training and test sets must be

obtained from similar data distributions. In addition, the

data in the test set should reflect the type of data that

we care about when deploying the ML model in the real

world.

While releasing the raw database of conjunction events

to the public was a priority, and thus provide the

community with an unbiased set of information to learn

from, the various models produced during the competition

were tested primarily on predictions of events deemed

particularly meaningful. Consequently, while the training

and test sets originated from a split of the original

database, they were not randomly sampled from it.

Events corresponding to useful operational scenarios

appeared in the test set.

In particular, for some events, the latest available CDM

was days away from the (known) time to the closest

approach, which made its prediction (also if correct) not

a good proxy for the risk at the TCA. Furthermore,

potential avoidance maneuvers were planned at least two

days prior to the closest approach; thus, events that

contain several CDMs at least two days prior to the TCA

were more interesting. Overall, three constraints were

imposed on the events to be eligible in the test set:

(1) The event had to contain at least two CDMs, one to

infer from and one to use as the target.

(2) The last CDM released for the event had to be within

a day (time to tca < 1) of the TCA.

(3) The first CDM released for the event had to be at

least two days before the TCA (time to tca ⩾ 2) and

all the CDMs that were within two days from the

TCA (time to tca < 2) were removed.

Figure 5 depicts an example of an event that satisfied

the requirements. Note that by permitting only events

that satisfied the aforementioned requirements in the test

set, the number of high-risk events was considerably
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Fig. 5 Diagram depicting the raw CDMs time series for one
event (top), and the same series if it was selected for the test
set (bottom): only the CDMs prior to two days to TCA were
made available (labeled as x) and the latest CDM was used
as the target (labeled as y).

diminished. After enforcing the three requirements

described above, only 216 high-risk events (out of 515)

were eligible for the test set. Note that the remaining

299 high-risk events were maintained in the training set

without being necessarily representative of the test events.

Because of the unbalanced nature of the dataset and

the small number of high-risk events eligible for the test

set, we decided to place most of the eligible events into

the test set. Specifically, 150 eligible high-risk events were

included in the test set and 66 in the training set. To

alleviate the risk of directly probing the test set and

thus overfitting, we limited the number of submissions

per team to two per day during the first month of the

competition and to a single submission per day during

the second month.

4.3 Competition metric

In this section, we introduce the metric used to rank the

participants and discuss its advantages and drawbacks.

Several criteria were used to design a metric that could

be fair and reward models of interest for operational

objectives. The Spacecraft Collision Avoidance Challenge

had two main objectives: (i) the correct classification of

events into high- and low-risk events; (ii) the prediction

of the risk value for high-risk events. In other words,

whenever an event belonged to the low-risk class, the

exact risk value was not important, and if an event

belonged to the high-risk class, its exact value was of

interest. Furthermore, because in the context of collision

avoidance, false negatives were much more disastrous than

false positives, their occurrences were to be penalized

more. Finally, this was a highly unbalanced problem,

where the proportion of low-risk events was much higher

than that of high-risk events.

The final metric used considered these requirements

and summarized them into one overall value to rank

competitors. Eventually, the Spacecraft Collision

Avoidance Challenge metric included both the

classification and regression parts. Denoting the final risk

as r and the corresponding prediction as r̂, the metric

can be defined as

L(r̂) =
1

F2
MSEHR(r, r̂) (1)

where F2 is computed over the entire test set using two

classes (high final risk: r ⩾ −6, low final risk: r < −6)

and MSEHR(r, ·) is only computed for high-risk events.

More formally, we obtain

MSEHR(r, r̂) =
1

N∗

N∑
i=1

1i(ri − r̂i)
2 (2)

where N is the total number of events, N∗ =
∑N

i=1 1i

is the number of high-risk events, ri and r̂i are the true

and predicted risks for the ith event, respectively, and

1i =

{
1, if ri ⩾ −6

0, otherwise
(3)

Finally, the F score is defined as

Fβ = (1 + β2)
p× q

(β2 × p) + q
(4)

where β essentially controls the trade-off between

precision and recall, denoted as p and q, respectively.

A higher value of β means that a recall has more weight

than precision; thus, more emphasis is placed on false

negatives. To penalize false negatives more, we set β = 2.

While the metric encourages participants to have a

higher F2 score and a lower mean squared error, it

introduces many layers of subjectivity. This is because the

metric contains multiple sub-objectives that are combined

into one meta-objective. In the denominator, the F2

score is already an implicit multiobjective metric, where

precision and recall are maximized to 1. Thus, there is a

trade-off between precision and recall, which is controlled

by β. In the numerator, the mean squared error penalizes

erroneous predictions for high-risk events. The squaring

is justified by the desire to penalize large errors.

In the metric defined in Eq. (1), F2 functions as a

scaling factor for MSEHR, where F2 assumes values

in [0, 1] and MSEHR in R+, which means that the

metric is largely dominated by MSEHR in the numerator.
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Nonetheless, as reported in Section 5, even the highest-

ranked models achieved a relatively small MSEHR; thus,

the F2 scaling factor is appropriate.

In conclusion, several objectives were combined into

one metric, which introduced some level of complexity and

subjectivity. An alternative to the metric used in Eq. (1)

would have a simple weighted average for each sub-metric

(F2 and MSEHR). This scoring scheme is routinely used

in public benchmarks such as the popular GLUE [21]

score used in natural language processing, and it presents

similar problems in the selection of weights that function

as scaling factors.

Note that according to Eq. (1), as soon as an event is

predicted to be low-risk (r̂ < −6), the optimal prediction

to assign to the event is r̂ = −6− ϵ, where ϵ > 0. Thus,

for a false negative, we minimize MSEHR, and for a true

negative, the actual value does not matter, as long as

r̂ < −6. Consequently, all risk predictions can be clipped

at a value slightly lower than 10−6 to improve the overall

score (or at least produce an equivalent score). In the

remainder of this paper, we utilize this clipping, and the

scores of the various teams are reported after the clipping

has been applied, using ϵ = 0.001.

4.4 Baselines

To have a sense of the effectiveness of a proposed

solution, baseline solutions should be introduced. For

the Spacecraft Collision Avoidance Challenge, two simple

concepts can be used to build such baselines. Let us

denote r̂i and r−2i as the predicted risk and the latest

known risk for the ith event, respectively (the subscript

−2 reminds us that the latest known risk for a close-

approach event is associated with a CDM released at

least two days before the TCA, as shown in Fig. 5). The

first baseline solution, called the constant risk prediction

(CRP) baseline, is then defined as

r̂i = −5 (5)

and has an overall score of L = 2.5. It constantly predicts

the same value for the risk, and it was highlighted during

the competition as a persistent entry in the leaderboard.

Of the 97 teams, 38 managed to produce a better model.

One of the simplest approaches in time series prediction

is the naive forecast [22], i.e., forecasting with the last

known observation. This is known to be optimal for

random walk data, and it operates well on economic and

financial time series. Based on this fact, a second baseline

solution, called latest risk prediction (LRP) baseline is

defined as the clipped naive forecast:

r̂i =

{
r−2i , if r−2i ⩾ −6

−6.001, otherwise
(6)

and has a score of L = 0.694 when evaluated on the

complete test set. Of the 97 teams, 12 managed to submit

better solutions. A few different teams obtained and

utilized this baseline (or equivalent variants) in their

submissions. The score achieved by the LRP is also

reported in Table 3 and is plotted as a horizontal line in

Fig. 9, along with the proposed solutions from the top ten

teams. The LRP was of interest in this competition, as in

any forecasting competition, because it provides a simple

and yet surprisingly effective benchmark to improve upon.

4.5 Data split

This section discusses the splitting of the original dataset

into training and test sets. First, principal component

analysis (PCA) is applied to the data and it demonstrates

that the attributes depend on the mission identifier. In

other words, attributes recorded during different missions

are not obtained from the same distribution, making it

difficult to generalize from one mission to another. Next,

we study the effect of different splits of the test data on

the leaderboard scores (evaluated on a portion of the test

set) and in the final ranking (evaluated on the full test

set), using the LRP baseline solution.

In Fig. 6, the PCA projection of the original data

is shown by maintaining only the first two principal

components. While the first two principal components

only account for 20% of the total variance, the projected

data can still be distinguished and crudely clustered by

Mission_id

Mission_id

Mission_id

Mission_id

Mission_id

Fig. 6 Projection of the original CDMs, from the test set,
onto the first two principal components, colored according to
mission id.
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mission id, in particular mission id : 7 and mission id : 2.

This unsurprisingly implies that the attributes from the

CDMs do not come from the same distribution, making

it potentially difficult to generalize from one mission

to another. Thus, each mission id refers to a different

satellite orbiting at different altitudes in regions of space

with varying space debris density (Fig. 3).

Therefore, imbalances in mission type should not be

created when splitting the data into training and test

sets. Figure 7 shows that, for low-risk events, the missions

are proportionally represented in both the training and

test sets. However, when we examine only high-risk

events (Fig. 8), we observe that the missions are not

well distributed. In particular, mission id : 2, mission id :

15, and mission id : 19 are over-represented in the test

set, whereas mission id : 1, mission id : 6, and mission id :

20 are under-represented. This is because the dataset

was randomly split into training and testing, considering

only the risk value and not the mission type. For future

Mission_id

Fig. 7 Distribution of the mission type for the test and
training sets for low-risk events.

Mission_id

Fig. 8 Distribution of the mission type for the test and
training sets for high-risk events.

research, we recommended that mission type should be

considered during the splitting of the dataset, or datasets

with a higher homogeneity should be created with respect

to the mission type. Note that further analysis of the

dataset split and the correlation between the training

and test sets are presented in Section 6.

5 Competition results

After the competition ended and the final rankings

were made public, a survey was distributed to all the

participating teams in the form of a questionnaire. The

results of the survey, the final rankings, the methods of a

few of the best-ranking teams, and a brief meta-analysis

of all the solutions are reported in this section.

5.1 Survey

A total of 22 teams participated in the survey, including

all top-ranked teams. Some questions from the survey

were targeted to gather more information on the

background of the participants. The questions were

phrased as follows: “How would you describe your

knowledge in space debris/astrodynamics?” A similar

approach was conducted for ML and data science.

The possible answers were limited to “professional”,

“studying”, and “amateur”. The answers are reported

in Table 2, which shows that most participants had a

background in ML and less in orbital mechanics. Note

that the top three teams all identified themselves as ML

professionals and two as studying orbital mechanics.

Table 2 Background of the participants, out of 22
respondents to the end of the competition questionnaire

Discipline
Proficiency

Professional Student Amateur

Machine learning 10 10 4
Orbital mechanics 4 5 15

As mentioned in Section 4.2 and reported in Table 1,

the dataset for the collision avoidance challenge is highly

unbalanced, with the training and test sets not randomly

sampled from the dataset. A question from the survey

probed whether the participants explicitly attempted to

address class imbalance (e.g., by artificially balancing the

classes, assigning importance weighing to samples) by

asking, “Did you apply any approach to compensate

for the imbalances in the dataset?” A total of 65%
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of the participants answered positively. Furthermore,

half of the participants reported attempting to build a

validation set with similar properties and risk distribution

as the test set, albeit failing since most surveyed teams

lamented a poor correlation between training and test

set performances.

One of the main scientific questions that this

challenge aimed at addressing was whether the temporal

information contained in the time series of CDMs was

used to infer the future risk of collision between the

target and chaser. A specific question from the survey

asked participants if they found the evolution of the

attributes over time useful to predict the final risk value.

Surprisingly, 65% of the teams framed the learning

problem as a static one, summarizing the information

contained in the time series as an aggregation of attributes

(e.g., using summary statistics, or simply the latest

available CDM). This may have been a direct consequence

of the great predictive strength of a naive forecast for

this dataset, as outlined in the approaches implemented

by the top teams in Section 5.3.

Finally, because of the small number of high-risk events

in the test set and the emphasis placed on false negatives

induced by the F2 score, it is natural to ask whether teams

probed the test set through a trial-and-error process.

Overall, 30% of the participants (including the top-ranked

team sesc, see Section 5.3) reported utilizing a trial-and-

error method to identify high-risk events, suggesting that

the difference between the test and training sets posed a

significant problem for many teams, a fact that deserves

some further insight, which we provide in Section 6.

5.2 Final rankings

96 teams participated to the challenge and produced a

total of 862 different submissions during the competition

timeframe. The scores on the leaderboard changed

frequently, and the final ranking remained uncertain until

the end of the competition. The evolution of the scores

for the top ten teams throughout the competition is

shown in Fig. 9. Note how the top four teams closely

competed for first place until the very last days. Another

observation is that while all the top teams managed

to beat the LRP baseline, most of the teams required

approximately 20 days to do so, implying that the LRP

baseline was fairly strong. This was further supported

by the fact that the scores did not improve much below

the LRP baseline, suggesting that the naive forecast is

Fig. 9 Evolution of the scores of the submission of various
top teams.

an important predictor of the risk value at the closest

approach.

The final results, broken down into MSEHR, with the

risk clipped at −6.001 and the F2 components, are shown

in Table 3 for the top ten teams. All teams managed

to improve upon the LRP baseline score by obtaining a

better MSEHR. However, many teams failed to obtain a

better F2 value than the LRP baseline.

Table 3 Final rankings (from best to worst) evaluated on
the test set, for the top ten teams. The best results are shown
in bold

Team Score MSEHR F2

sesc 0.556 0.407 0.733
dietmarw 0.571 0.437 0.765
Magpies 0.585 0.441 0.753
Vidente 0.610 0.436 0.714
DeCRA 0.615 0.457 0.743
Valis 0.628 0.467 0.744
DunderMifflin 0.628 0.451 0.718
madks 0.634 0.476 0.750
vhrique 0.649 0.496 0.764
Spacemeister 0.649 0.479 0.738

LRP baseline 0.694 0.513 0.739

To further investigate the differences between the

F2 score achieved by the teams and the LRP baseline

solution, it is useful to examine the false positives and

false negatives of each returned model (Fig. 10(b)). The

Pareto front is very heterogeneous and consists of several

teams: DunderMifflin, Valis, Magpies, DeCRA, dietmarw,

vhrique, madks, and the baseline solution, denoted as

Baseline. Although the baseline solution is in the Pareto

front, we can observe that the resulting F2 score in

Fig. 10(a) is dominated by several teams. This is because

the F2 score places more emphasis on penalizing false
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(a)

(b)

Fig. 10 On the top, in (a), the F2 score and the MSEHR are
plotted for the top ten teams. On the bottom, in (b), the F2

scores are broken into two components: false negatives (out of
150 positive events) and false positives (out of 2017 negative
events).

negatives, which the baseline solution has the most of. In

Fig. 10(a), only two teams remain in the Pareto front: sesc

and dietmarw. Interestingly, dietmarw has the highest

F2 score, and sesc has the lowest MSEHR, suggesting

that their methods can be combined to achieve a better

overall score.

5.3 Methods used by top teams

5.3.1 Team sesc

The highest-ranking team was composed of scientists from

diverse domains of expertise: evolutionary optimization,

ML, computer vision, data science, and energy

management. In the early stages of the competition,

the team attempted to use different methods, including

extracting time series features [23], constructing an

automated ML pipeline via Genetic Programming [24,

25], and using random forests. All these approaches were

reported to have a score of L ∈ [0.83, 1.0] on the test set,

but they performed radically better on the training set.

Such a difference was considered an indication that an

automated, off-the-shelf ML pipeline was unlikely to be

the appropriate way of learning from this dataset.

Instead, the team resorted to a step-by-step approach

informed by statistical analysis, utilizing the metric and

the constitution of the test set. Thus, the F2 score is

biased toward false negatives, and there is a relatively

higher proportion of high-risk events in the test set

than in the training set. Furthermore, we can observe

that, in the training set, most of the high-risk events

misclassified by the naive forecast have the latest risk

r−2 only slightly below the threshold. A simple strategy

is to promote borderline low-risk events to high-risk

ones, thus improving the recall (at the cost of penalizing

precision), which is what the F2 score puts emphasis on.

In practice, this strategy was implemented by introducing

three thresholds, referred to as step 0, step 1, and step

2, as shown in Table 4 and Eq. (7).

Additional incremental improvements were achieved

by assigning events to low risk whenever either the chaser

type (c object type attribute) was identified as a payload

and the diameter of the satellite (t span attribute) was

small (below 0.5) or the miss distance was greater than

30,000 m. These steps are referred to as step 3, step 4,

and step 5, respectively, in Table 4 and Eq. (7):

Finally, the risk value for high-risk events was clipped

to a slightly lower risk value to enforce the general trend

of risk decrease over time, thus improving the MSEHR

while preserving the F2 score. This step is referred to as

step 6 in Table 4, and Eq. (7).

In summary, the aforementioned observations resulted

in the introduction of a cascade of thresholds:

r̂ =



−5.95, if − 6.04 ⩽ r−2 < −6.00 (step 0)
−5.60, if − 6.40 ⩽ r−2 < −6.04 (step 1)
−5.00, if − 7.30 ⩽ r−2 < −6.40 (step 2)
−6.00001, if c object type is “payload” (step 3)
−6.00001, if t span < 0.5 (step 4)
−6.00001, if miss distance > 30000 (step 5)
−4.00, if − 4.00 ⩽ r−2 < −3.50 (step 6)
−3.50, if r−2 ⩾ −3.50 (step 6)

(7)

5.3.2 Team Magpies

The third-ranked team was composed of a space

situational awareness (SSA) researcher and Learning

(ML) engineer. The team achieved its final score
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Table 4 Evaluation of team sesc’s approach, as additional steps were added

Combinations of steps
Training set Test set

MSEHR F2 Loss MSEHR F2 Loss Leaderboard

LRP baseline 0.330 0.411 0.804 0.513 0.739 0.694 0.718
Steps: 0 0.330 0.430 0.768 0.512 0.753 0.680 0.703
Steps: 0 + 1 0.305 0.392 0.779 0.498 0.764 0.653 0.670
Steps: 0 + 1 + 2 0.290 0.296 0.982 0.445 0.738 0.603 0.612
Steps: 0 + 1 + 2 + 3 0.290 0.301 0.966 0.426 0.735 0.579 0.587
Steps: 0 + 1 + 2 + 4 0.290 0.298 0.974 0.447 0.735 0.608 0.611
Steps: 0 + 1 + 2 + 5 0.325 0.304 1.070 0.444 0.733 0.607 0.613
Steps: 0 + 1 + 2 + 6 0.293 0.296 0.990 0.424 0.738 0.575 0.581
Steps: 0 + 1 + 2 + 3 + 4 + 5 + 6 0.327 0.311 1.050 0.414 0.728 0.569 0.564
Steps: 0 + 1 + 2 + 5 + 6 0.327 0.304 1.077 0.424 0.733 0.578 0.581
Steps: 0 + 1 + 2 + 5 + 6 + 7 0.327 0.304 1.077 0.407 0.733 0.555 0.555

by leveraging Manhattan-LSTMs [26] and a siamese

architecture based on recurrent neural networks. Team

Magpies began by analyzing the dataset and filtering

the training data according to the test set requirements

described in Section 4.2. Subsequently, they selected

seven out of 103 features (time to tca, max risk estimate,

max risk scaling, mahalanobis distance, miss distance,

c position covariance det, and c obs used) by comparing

the distribution difference of the non-anomalous event

(last available collision risk is low and ends up low at

close approach, and vice-versa for high-risk events) and

anomalous events (last available collision risk is low

and ends up high at the close approach, and vice-versa

for high-risk events). Figure 11 shows the number of

anomalous and non-anomalous scenarios. In addition to

these seven attributes, three new features were included:

the number of CDMs (number CDMs) issued before

two days, the mean (mean risk CDMs) and standard

deviation (std risk CDMs) of the risk values of the CDMs.

Fig. 11 Number of anomalous and non-anomalous events
from the training set.

Hyperbolic tangents were used as activation functions,

and Adam was used as the gradient descent optimizer [27].

The training data were split using a three-fold cross-

validation (eight events were selected in each validation

fold, from the 23 anomalous events). Subsequently,

{non-anomalous, non-anomalous}, and {non-anomalous,

anomalous} pairs were generated for the siamese network

to learn similar and dissimilar pairs, respectively.

For each validation fold, several networks were trained

using different hyperparameters. Networks that attained a

reasonably high performance were then used in a majority

voting ensemble scheme with equal weights. The majority

vote outcome was denoted as f , used ten features as

inputs, denoted as x, and predicted whether a low-risk

event was anomalous or not. Then, the final predictions

of the test set were expressed as

r̂ =


−6.001, if r−2 < −6 and f(x) = non-anomalous

−5.35, if r−2 < −6 and f(x) = anomalous

r−2, if r−2 ⩾ −6

(8)

where −5.35 is the average risk value of all high-risk

events in the training set.

5.4 Difficulty of samples

In this section, we investigate the events in the test set

that were consistently misclassified by all the top ten

teams. These events can be separated into two groups:

false positives and false negatives. The false negatives

correspond to events that were incorrectly classified as low

risk and false positives correspond to events incorrectly

classified as high risk. Figure 12 shows the evolution of

the risk of events that were consistently misclassified. The

figure shows that these events all experience a significant

change in their risk value, as they progressed to the

closest approach, thus rendering the use of the latest risk
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(a)

(b)

Fig. 12 Events consistently misclassified by all the top ten
teams: (a) false negatives, (b) false positives. In the top panel,
we show all false negatives (11 out of 150 high-risk events).
Each event is represented as a line, and the CDMs are marked
with crosses. The evolution of the risk between two CDMs
is plotted as a linear interpolation. In the bottom panel, we
show ten randomly sampled events out of 62 false positives
in total. These events were particularly difficult to classify
because of the big leap in risk closer to the TCA, ranging
from low risk to high risk in (a) and vice-versa in (b).

value misleading. Furthermore, as shown in Fig. 12, the

temporal information is likely to be of little use to make

good inferences in these scenarios: there is no visible

trend and the risk value jumped from one extreme to

the other (from very low to very high risk in (a) and

vice-versa in (b)). One characteristic that all these events

have in common is high uncertainties in their associated

measurements (e.g., position and velocity), resulting in

very uncertain risk estimates, susceptible to large jumps

close to the TCA. Figure 13 shows the evolution of the

uncertainty in the radial velocity of the target spacecraft

(t sigma rdot) for the 150 high-risk events in the test set.

Fig. 13 Evolution of the uncertainty in the radial velocity
of the target spacecraft (t sigma rdot) over time, up until
two days to the TCA. The evolution of the uncertainty of
the 11 false negative events (Fig. 12) is indicated in red. The
evolution of the uncertainty of the 139 remaining true positive
events is indicated in black.

The uncertainty values were generally higher for

misclassified events. Note that many more uncertainty

attributes were recorded in the dataset, and Fig. 13

shows only one of them. Higher uncertainties for the

misclassified events suggests that there may be value in

building a model which takes these uncertainties into

account at inference time, for instance, by outputting a

risk distribution instead of a point prediction.

6 Post competition ML

Further ML experiments were conducted on the dataset,

both to analyze the competition and to further investigate

the use of predictive models for collision avoidance.

The aim of these experiments was to understand the

difficulties experienced by competitors in this challenge

and to gain deeper insights into the ability of ML models

to learn generalizable knowledge from these data.

6.1 Training/test set loss correlation

The first experiment was designed to analyze the

correlation between the performance of ML models on

the training and test sets used during the competition.

Only the training set events conforming to the test set

specifications (Section 4.2) were considered: final CDM

within a day of the TCA, and all other CDMs at least

two days away from the TCA. The last CDM that is at

least two days away from the TCA, the most recent CDM

available to operators when making the final planning

decisions, was used here as the sole input to the model.
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In other words, temporal information from the CDM

time series was not considered. From that CDM, only

the numerical features were used; the two categorical

features (mission id and object type) were discarded.

Thus, for models to learn mission or object-specific rules,

they would have to utilize features encoding relevant

properties of that feature or object. It was hoped that

this would force the model to learn more generalizable

rules. In addition to this step, no other transformations

were applied to the CDM raw values (such as scaling

or embedding). Similarly, no steps were implemented to

impute the missing values that occurred at times in many

of the CDM variables. We left these to be addressed by

the ML algorithm (LightGBM in our case) through its

own internal mechanisms. Most importantly, the model’s

target was defined as the change in risk value between

the input CDM and the event’s final CDM (r − r−2),

rather than the final risk r itself. This facilitated the

learning task as it implicitly reduced the bias toward the

most represented final risk (i.e., −30). Furthermore, it

enabled a direct comparison to the LRP baseline, as the

various models were de facto tasked to predict a new

estimator (h) such that r = LRP + h. The quantity h

was further encoded through a quantile transformer to

assume a uniform distribution.

Eventually, the training data consisted of a table of

8293 CDMs from as many events, each described by 100

features. Each CDM was assigned a single numerical value

that was to be predicted. Overall, these steps resulted in

a simplified data pipeline. Note the absence of any steps

to address the existing class imbalance and the absence of

any focus on high-risk events during the training process.

Models were requested to learn the evolution of risk

across the full range of risk values, although they were

mostly assessed on their performance at one end of the

range of risk values during evaluation. The competition’s

MSEHR metric was obtained only over the true high-risk

events, and the use of clipping at a risk of −6.001 further

ignored where the final predicted risk lay if it fell below

this value. In addition, F2, a classification metric, cared

only for where the risk values lay with respect to the

−6 threshold.

For the type of regression problem outlined above,

with tabular data representation, gradient boosting

methods [28] offer state-of-the-art performance. Thus, we

selected the LightGBM gradient boosting framework [29]

to train many models. To attain both training speed

and model diversity, we changed the hyperparameters

as follows (with respect to the default in the

LGBMRegressor of LightGBM 2.2.3): the n estimators

was set to 25, feature fraction to 0.25, and learning rate

to 0.05. Together, these settings resulted in an ensemble

with fewer decision trees (the default is 100), and each

tree was trained exclusively on a small random subset of

25% of the available features (the default is 100%), and

each successive tree had a reduced capability to overrule

what previous trees had learned (the default learning

rate, also known as shrinkage in the literature, is 0.1).

Figure 14 shows the evaluations of 5000 models, on the

training and test sets, on the MSEHR and 1/F2 metrics,

as well as their product (the competition’s score, or loss

metric). The risk values were clipped at −6.001 prior to

measuring the MSEHR. We compared the performance of

the models on the training (x-axis) and test sets (y-axis).

Fig. 14 Performance levels achieved by 5000 gradient boosting regression models trained using the competition’s dataset
split.
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As a reference, the dotted lines show the performance

of the LRP baseline (Section 4.4). The Spearman rank-

order correlation coefficient was computed as an indicator

of the extent to which performance in the training set

generalizes to the test set.

Only one model (0.02% of the trained models)

outperformed the LRP baseline loss in both the training

and test sets. With a test set loss of 0.684 (1.4% gain

over LRP), that model would have ranked 11 th in the

official competition.

Overall, Fig. 14 shows several undesirable trends. The

MSEHR plot exhibited a positive correlation: the training

set performance was predictive of the performance on the

test set. However, the models struggled to improve the

LRP in both sets. Most models degraded the risk estimate

available in the most recent CDM. In 1/F2, we observed

a strong negative correlation: the better the performance

on the training set, the worse it was on the test set.

This was a clear sign of overfitting. When aggregated,

we remained with a loss metric displaying essentially

no correlation. This observation, while bound to the

modeling choices made, offers a possible explanation for

competitors’ sentiment of disappointment over models

that were good in their local training setups evaluating

poorly on the leaderboard.

6.2 Simulating 10,000 virtual competitions

To further our understanding of the absence of a

significant Spearman rank correlation between training

and test set performances, as highlighted in Fig. 14,

we simulated 10,000 possible competitions that differed

in the data split. In each, a test size was randomly

selected from a set of 19 options, containing the values

from 0.05 through 0.95 in steps of 0.05. This setting

indicates the fraction of events that should be randomly

selected to be moved to the test set. The full dataset

being partitioned was composed solely of the 10,460

events that conformed to the official competition’s test set

specifications. We adopted a different splitting procedure

from that reported in Section 4.5. A stratified shuffle

splitter was used, so the proportions of final high-risk

events in both the training and test sets would always

match the proportion observed in the dataset being

partitioned (2.07%) as closely as possible. For reference, a

test size of 0.2 results in 172.8 high-risk events on average

in the training set, and 43.2 in the test set (and 8195.2

and 2048.8 low-risk events, respectively). In the training

and test sets, no allowances were made to preserve the

event distributions of mission ids and chaser object types

present in the full dataset being partitioned. As shown

in Figs. 7 and 8, the fraction of events from the different

missions had such an imbalance that many of these

generated splits likely either resulted in some missions

being entirely unrepresented in either the training or

test set or having such low volumes as to render the

learning of their properties unlikely. Similarly, the object

type attribute had an identical imbalance, which led

to similar challenges. Although this partitioning process

made achieving a higher score on the performance metrics

more difficult, it served the current aim of evaluating the

generalization capability.

In each of the 10,000 virtual competitions, 100

regression models were trained using the same data

pipeline and model settings as described in the previous

section. On average, 526 competitions were simulated

for each of the 19 different test size settings, each with

its own distinct data split. In total, 1 million models

were trained. Although framed here as virtual recreations

of the Kelvins competition, this process implemented,

per test size setting, a Monte Carlo cross-validation or

repeated random sub-sampling validation [30]. If the

number of random data splits approached infinity, the

results would tend toward those of leave-p-out cross-

validation.

The experiment’s results are shown in Figs. 15–19.

Figure 15 shows statistics on the Spearman rank-order

correlation coefficients between model evaluations in

the training and test sets per evaluation metric. A

positive Spearman correlation signals the ability to use

the metric for model selection. The better a model is

on the training set, the better we expect it to be on the

unseen events of the test set. A negative correlation is a

sign of overfitting or inability to generalize beyond the

training set data. Figure 16 complements the analysis in

Fig. 15 by showing the statistics on the percentage of the

models per simulated competition that outperformed the

LRP baseline in their respective training and test sets.

The curves show the mean performance as a function

of the test size, and the shaded areas represent the

region within one standard deviation. Figure 17 also

shows the correlations between the training and test

set evaluations, but now matches MSEHR correlations

to 1/F2 correlations. Thus, an overview of the effect

of the same data split on models’ capabilities to learn
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MSEHR MSEHR

Fig. 15 Extent to which different data splits affected the ability to infer test set performance from the training set performance.
Expected Spearman rank-order correlation coefficients between training and test set evaluations, as data sets vary in the
fraction of events assigned to both (shown in the x-axis). Correlations measured in the MSEHR and 1/F2 metrics, as well as
their product.

MSEHR MSEHR

Fig. 16 Expected percentage of ML models that would outperform the LRP baseline in both the training and test set, as
data sets varied in the fraction of events assigned to both (shown in the x-axis). Performance measured in the MSEHR and
1/F2 metrics, as well as their product.

generalizable knowledge simultaneously with respect to

regression and classification objectives can be obtained.

The red star places the Kelvins competition’s unstratified

(with respect to high-risk events) data split in the context

of 10,000 stratified splits, indicating how much of an

outlier it turned out to be.

The first conclusion to be drawn from these figures

is that the aggregated loss metric, MSEHR/F2, was

decidedly uninformative in terms of identifying models

that were likely to generalize. It required two metrics that

by themselves displayed a low correlation between the

training and test set and aggregated them into a single

value, which was even less correlated. Furthermore, as

shown in Fig. 17, the highest loss correlations tended

to occur when the MSEHR was highly correlated. The

MSEHR was of the three metrics the one that tended to

display a higher rank correlation. However, as shown in

Fig. 16, few models outperformed the MSEHR obtained

by the LRP baseline on both sets. This indicated an

identical scenario to that shown in Fig. 14, in which we

obtained a high positive correlation, but the models were

not particularly successful. Predicting the actual final risk

value was difficult; therefore, the further our predictions

moved away from the most recent risk estimate in high-

risk events (the only events scored by this metric), the

worse we were likely to perform, both in the training

and test sets. Nonetheless, as shown in the 1/F2 plots in

Figs. 15 and 16, even if the predicted final risk values were

not accurate, those perturbations moved the values across

the −6 risk threshold to result in improved capability to

forecast the final risk class. With a test size of 0.2, 67.55%

of the trained models outperformed the LRP baseline
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Fig. 17 Extent to which different data splits affected the
ability to infer test set performance from the training set
performance, as observed through simultaneous evaluations
of regression and classification metrics. Spearman rank-
order correlation coefficients between training and test set
evaluations of the three performance metrics in 10,000 different
data splits using different test size fractions. The red star
corresponds to the data split of the official competition
(Fig. 14).

Fig. 18 Expected 1/F2 performance gain (%) over the LRP
baseline as data splits varied in the fraction of events assigned
to either the training or test set.

on both their training and test sets. This was in stark

contrast to Fig. 14, where only 0.04% of the models (two

out of 5000) outperformed the LRP baseline for the 1/F2

metric.

By normalizing models’ 1/F2 evaluations with respect

to the LRP baseline 1/F2 values, performance became

comparable across different data splits. Figure 18 shows

the mean and standard deviation of models’ percentage

gains in performance over the LRP baseline in the training

and test sets. Statistics were calculated across all models

trained over all the data splits that used the same test size

setting. Figure 19 shows models’ 1/F2 evaluations in the

training and test sets, normalized against their respective

LRP 1/F2 baseline, for selected test size settings. Over

50,000 ML models are shown in each subplot, trained

over 500 data splits on average with that test size setting.

At one end, with a test size of 0.95, training sets had

merely 523.0 events to learn from (10.8 of which are

of high risk). With insufficient data to learn from, the

models quickly overfit and failed to learn generalizable

rules. This was indicated by a mean gain in performance

of 12.61% on the training set, but a 7.73% mean loss

in performance on the test set, both with respect to

the LRP baseline. As we increased the amount of data

available for training models, the training set performance

decreased (more data patterns to learn from and harder

to incorporate individual event idiosyncrasies into the

model), but test performance increased. At the other

end, with a test size of 0.05, most data were available

for training, but the small test set was no longer

representative (523.0 events to evaluate models on, 10.8

of high risk). Depending on the “predictability” of events

that ended up on the test set, we either obtained a very

high or very low performance: a mean gain of 0.04% on

the test set, with a standard deviation of 9.83%. Here,

the optimal trade-off lay in a test size of 0.2, where a

6.45% gain in the training set performance over the LRP

baseline translated into a 1.12% gain in the test set.

It is common for data scientists to use 80/20 splits of

the dataset, as a rule of thumb inspired by the Pareto

principle. Note we experimentally converged as this being

the ideal setting.

To establish an ML performance baseline, we now

turn directly to the F2 score rather than its inverse

(see the discussion in Section 4.3). F2, which ranges

in [0, 1], is the harmonic mean of precision and recall,

where recall (ability to identify all high-risk events) is

valued two times higher than precision (ability to ensure

all events predicted as being of high-risk indeed are).

A Monte Carlo cross-validation with a test size of 0.2

and 505 stratified random data splits evaluated the LRP

baseline (the direct use of an event’s latest CDM’s risk

value as prediction) to a mean F2 score of 0.59967 over

the test set (standard deviation: 0.04391). Over the same

data splits, a LightGBM regressor, acting over the same

CDM raw values (see data and model configurations in
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Fig. 19 Variation in the training and test set performance of the ML models (1/F2) as a function of data availability.
Performance normalized with respect to LRP baseline performance in the same datasets.

Section 6.1), evaluated to a mean F2 score of 0.60732

over the test set (standard deviation: 0.04895; statistics

over 50500 trained models). Therefore, a gain of 1.2743%

over the LRP baseline①. The difference in performance

between both approaches is statistically significant: a

paired Student’s t-test rejects the null hypothesis of

equal averages (t-statistic: −10.23, two-sided p-value:

1.83×10−22; per data split, the LRP F2 score was paired

with the mean LightGBM model F2 score to ensure

independence across pairs).

This is the strongest evidence yet that ML models can

indeed learn generalizable knowledge in this problem. In

a domain that safeguards assets valued in millions, a 1%

gain in risk classification can already be transformative.

Furthermore, this would be a 1% gain on top of

approaches for risk determination that have been

developed for decades. Note that these results, obtained

using a classification metric, were achieved through a

regression modeling approach. Furthermore, it had an

intentionally limited modeling capability, was trained

over a basic data preparation process, and was evaluated

under adverse conditions (owing to imbalances in the

mission id and type of chaser object). Thus, we expect it

will be possible to significantly surpass these performance

levels with more extensive research in data preparation

and modeling.

6.3 Feature relevance

The experiment described in the previous section provides

a basis on which to quantify feature relevance that is

independent from the specifics of any particular data

① For comparison, cross-validation of team sesc’s method
(Section 5.3.1), over the same 505 data splits with test size
of 0.2, evaluated to a mean F2 score of 0.51563 over the test set.
This was a performance loss of 14% with respect to the LRP
baseline.

split or the decision-making of any individual model. We

provide that information here, to illustrate what signal

ML models use to arrive at their predictions, and to direct

future research towards the more important features to

train models on.

Of the 1 million models trained in the previous

section’s experiment, 47.75%, from across different test

size settings, surpassed the 1/F2 LRP baseline on both

their training and test sets. We selected all those models

and used LightGBM to quantify their “gain” feature

relevance. This process did not measure how frequently

a feature was used across a model’s decision trees, but

rather the gains in loss it enabled when that feature was

used (loss here refers to the objective function optimized

by the algorithm while building the model, not to the

competition’s MSEHR/F2 scoring function). For each

model, relevance values were normalized over the features’

total gains and converted to percentages. Subsequently,

the values were aggregated through weighted statistics

across the selected models, resulting in the relevance

assessments shown in Table 5 (only the top twenty

features are shown, out of the 100 used). The models’

fractional gains in performance over the test sets’ LRP

1/F2 baseline were used as weights.

The LRP is a strong predictor, as previously discussed.

However, relevance measurements indicated that in

the ML models, features directly related to risk (risk,

max risk scaling, max risk estimate) together accounted

for only half (54.44%) of the models’ gains in loss. Models

widely used the information available to them, with the

top twenty features in Table 5 accounting for 78.32% of

the gains in loss, and only two of the 100 features having

a relevance of 0.0.

A set of 40 features had values for both the “target”

(the ESA satellite – prefix t ), and “chaser” that should

be avoided (space debris/object – prefix c ), for a total
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Table 5 Feature relevance estimates. In the prediction of
near-term changes in risk, percentage of the reduction in error
attributable to the feature. A description of the features is
available on the Kelvins website

Feature Rank Mean Std. dev.

risk 1 29.275 9.557
max risk scaling 2 22.544 8.979
mahalanobis distance 3 3.261 1.675
c sigma t 4 3.000 1.715
max risk estimate 5 2.624 1.367
c sigma rdot 6 2.191 1.369
miss distance 7 2.089 1.112
c position covariance det 8 1.778 1.066
c sigma n 9 1.312 0.625
time to tca 10 1.236 0.517
c sigma r 11 1.177 0.739
c obs used 12 1.164 0.554
c sigma ndot 13 0.964 0.437
relative position n 14 0.954 0.754
c recommended od span 15 0.945 0.423
relative position r 16 0.835 0.440
c sedr 17 0.779 0.486
SSN 18 0.773 0.372
c crdot t 19 0.718 0.468
relative speed 20 0.699 0.400

of 80 of the 100 features. Note the absence of “target”

features in Table 5. The relevance of “target” features

summed to a total of 9.41%, while “chaser” features

summed to 23.49%. If the models were to rely too much

on the properties of the “target”, they would be learning

mission-specific rules. Instead, we observed a greater

reliance on properties of the “chaser”, and in features

with relative values, thus enabling better generalization

across missions.

The mean relevance estimates were very stable.

The unweighted aggregation of normalized relevance

values in the remaining 52.25% of trained models not

included in the selection above had a total of 10.51%

absolute difference across features. The higher-performing

models from which the statistics in Table 5 were drawn

exhibited by comparison a greater reliance on risk and

max risk scaling (+4.62%). The SSN, the Wolf sunspot

number, at a rank of 18, was one of the most relevant

features. It was also one of the features with a greater

increase with respect to the alternate ranking, climbing

three positions, and increasing relevance by 0.07%.

Note that models under consideration used CDM raw

values as inputs. After some feature engineering, the

attributes presented in Table 5 may follow a different

ranking. A result of their information content with respect

to the prediction target becoming clearer to identify and

use by the ML algorithms. Note also that correlated

features may have split relevance values between them,

causing them to appear lower in this ranking.

7 Conclusions

The Spacecraft Collision Avoidance Challenge enabled,

for the first time, the study of the use of ML methods

in the domain of spacecraft collision avoidance owing to

the public release of a unique dataset collected by the

ESA Space Debris Office over more than four years of

operations. Several challenges, mostly derived from the

unavoidable unbalanced nature of the dataset, had to

be accounted for to release the dataset in the form of

a competition and the use of automated, off-the-shelf

ML pipelines were limited. Nevertheless, the competition

results and further experiments presented here clearly

demonstrated two things. On one hand, naive forecasting

models have surprisingly good performances and thus are

established as an unavoidable benchmark for any future

work in this subject; on the other hand, ML models can

improve upon such a benchmark, hinting at the possibility

of using ML to improve the decision-making process in

collision avoidance systems.
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