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Abstract
Prostate cancer (PCa) is the second most frequent cancer diagnosis in men and the sixth leading cause of cancer death world-
wide with increasing numbers globally. Therefore, differentiated diagnostic imaging and risk-adapted therapeutic approaches 
are warranted. Multiparametric magnetic resonance imaging (mpMRI) of the prostate supports the diagnosis of PCa and is 
currently the leading imaging modality for PCa detection, characterization, local staging and image-based therapy planning. 
Due to the combination of different MRI sequences including functional MRI methods such as diffusion-weighted imaging 
(DWI) and dynamic contrast-enhanced MRI (DCE-MRI), mpMRI enables a high sensitivity and specificity for the detection 
of PCa. The rising demand for individualized treatment strategies requires methods to ensure reproducibility, completeness, 
and quality of prostate MRI report data. The PI-RADS (Prostate Imaging Reporting and Data System) 2.1 classification 
represents the classification system that is internationally recommended for MRI-based evaluation of clinically significant 
prostate cancer. PI-RADS facilitates clinical decision-making by providing clear reporting parameters based on clinical 
evidence and expert consensus. Combined with software-based solutions, structured radiology reports form the backbone to 
integrate results from radiomics analyses or AI-applications into radiological reports and vice versa. This review provides an 
overview of imaging methods for PCa detection and local staging while placing special emphasis on mpMRI of the prostate. 
Furthermore, the article highlights the benefits of software-based structured PCa reporting solutions implementing PI-RADS 
2.1 for the integration of structured data into decision support systems, thereby paving the way for workflow automation in 
radiology.
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PI-RADS	� Prostate imaging reporting and data system
PSA	� Prostate-specific antigen
PSAD	� Prostate-specific antigen density
PSMA	� Prostate-specific membrane antigen
PZ	� Peripheral zone
SVI	� Seminal vesicle invasion
SVM	� Support vector machine
TRUS	� Transrectal ultrasound
TURP	� Transurethral resection of the prostate
T2w	� T2-weighted
TZ	� Transition zone

Introduction

Prostate cancer (PCa) is the most commonly diagnosed can-
cer type in men in the Western world [1], imposing specific 
requirements for prostate imaging which are essential for the 
development of risk-adapted therapy approaches. Applica-
tion of PSA testing in early PCa diagnosis has led to the 
detection of an increasing number of prognostically favora-
ble cases with low-tumor stages [1]. Nevertheless, there is 
still a considerable number of highly aggressive primary 
tumors with possible extraprostatic extension (EPE) and 
lymph node (LN) or bone/distant metastases in the early 
stages of the disease.

In the past, the usage of MRI in PCa diagnosis has been 
limited. Its primary use was restricted to patients with PCa 
as an abdominal staging test, and for the evaluation of EPE. 
Despite adequate anatomic evaluation using morphological 
MRI sequences, especially for EPE detection in T2-weighted 
imaging (T2w), MRI showed suboptimal potential for the 
detection of clinically insignificant PCa [2].

However, the role of MRI in PCa diagnosis has evolved 
in the last decade: with the addition of novel imaging 
sequences, such as dynamic contrast-enhanced MRI (DCE), 
diffusion-weighted imaging (DWI), and MR spectroscopy 
(MRS), functional information was added to the anatomi-
cal image data provided by T2w. Therefore, mpMRI was 
established as a principle non-invasive imaging technique 
to support PCa diagnosis, characterization, surveillance, and 
biopsy guidance. The implementation of a multiparametric 
MRI protocol led to a migration of PCa detection into earlier 
stages of the disease providing additional information about 
tumor aggressiveness in addition to anatomical information 
[3].

Within this article, a detailed overview of appropri-
ate PCa detection, structured reporting, and subsequent 
PCa analysis focusing on an MRI-guided pathway within 
the course of the disease is given. We discuss the added 
diagnostic value and clinical significance of mpMRI of the 
prostate in combination with structured reporting accord-
ing to the PI-RADS v2.1 classification that, in combination 

with radiomics analyses, forms the basis for the prospective 
implementation of artificial intelligence (AI) into the clinical 
reporting workflow.

Imaging methods for prostate cancer 
detection

TNM classification and tumor staging

TNM classification of PCa is based on the current UICC 
classification [4, 5]. The tumor stages T1–2 N0 M0 describe 
locally confined PCa, whereas locally advanced PCa encom-
passes the stages T3–4 N0/+ and M0. Therefore, locally 
advanced PCa includes tumors that extend the prostate cap-
sule (T3a), infiltrate the seminal vesicles (T3b) or neigh-
boring structures (e.g., rectum and urinary bladder, T4), or 
expansions as locoregional LN metastases (N +) without 
distant metastases. Higher Gleason score distribution, a 
higher proportion of clinical T2 disease (or higher), as well 
as extraprostatic extension (EPE) and the incidence of peri-
neural invasion are associated with positive surgical resec-
tion margins and thus, higher biochemical recurrence rates 
(BCR) with a worse prognosis, respectively [6]. Within a 
prospective study investigating 1308 PCa patients, multivari-
ate Cox’s proportional hazards regression analysis clearly 
outlined T3 stages (with presence of ECE) as an independent 
pathological risk factor for BCR prediction in comparison to 
pathological T2 stages (p < 0.001) [6].

Clinical practice guidelines propose using the results 
obtained during primary diagnosis to determine local tumor 
extent (T stage). The currently used clinical terminology 
suggests a differentiation between “locally confined” and 
“locally advanced” PCa generally referring to DRE without 
specifying further conditions. Due to increasingly improved 
therapeutic strategies, medical imaging is of high relevance 
for the detection of primary PCa as well as for staging of 
locally advanced PCa considering the presence of EPE, 
potential lymphogenic or bone/distant metastases [7]. Dif-
ferent approaches for the determination of local tumor extent 
and the identification of distant metastases exist within the 
clinical workflow. In addition to DRE and PSA testing, non-
invasive imaging techniques such as TRUS, CT, mpMRI are 
used. Besides that, positron emission tomography (PET)—
ideally in combination with CT (PET/CT) and mpMRI—can 
be applied. After bioptic detection of tumor tissue, metas-
tases can be diagnosed through bone scintigraphy, which 
should be performed in symptomatic patients independent 
of PSA level, ISUP grade, or clinical stage according to the 
Guideline Working Panel of the European Association of 
Urology. In addition, PET/CT has gained increasing clini-
cal relevance because of its added diagnostic value to detect 
BCR, either as local tumor recurrence or with presence of 
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LN or bone metastases [8, 9]. Gupta et al. demonstrated a 
superior diagnostic accuracy for the detection of lymph node 
metastases using 68Ga-PSMA PET-CT in comparison to 
mpMRI with 95.1% vs. 90.5%, respectively (p = 0.001) [9].

Transrectal ultrasonography (TRUS)

TRUS is used to determine prostate volume and is applied as 
a first diagnostic test in patients with increased PSA levels 
to explore PCa localization in addition to its guiding func-
tion for systematic or targeted punch biopsies when PCa is 
suspected. In prior studies, the diagnostic accuracy to local-
ize PCa was rated significantly inferior in comparison to 
more advanced imaging modalities such as MRI [10, 11]. 
A retrospective study of 90 PCa patients demonstrated a 
significantly higher diagnostic accuracy to detect and espe-
cially localize PCa using mpMRI in comparison to TRUS 
biopsy within the base (AUC 0.81 vs. 0.61), mid gland (0.75 
vs. 0.68), and apex (0.70 vs. 0.67) in a mixed model analysis 
(p < 0.0001) [11].

A high proportion of PCa cannot be detected sufficiently 
through TRUS due to their heterogenous appearance, with 
isoechogenic tumors being the most common form on ultra-
sound imaging. For this reason—and to increase diagnostic 
accuracy − 10 to 12, systematic core biopsies are considered 
as standard-of-care, and are recommended by the Guide-
line Working Panel of the European Association of Urology 
(EAU) [10, 12]. The probability of malignancy for a suspi-
cious lesion detected by TRUS varies between 17 and 57% 
[13]. Despite these benefits, complications of TRUS-guided 
prostate biopsies should not be neglected. While the risk for 
rectal bleeding ranges from 1.3 to 5.8%, inflammation occurs 
in up to 4% of patients [12]. Although TRUS enables a volu-
metric characterization of the prostate as well as the assess-
ment of EPE in some cases, TRUS is not recommended as a 
staging method for locally advanced PCa by the EAU [10].

Multiparametric magnetic resonance imaging 
(mpMRI)

MpMRI describes the combination of anatomic and func-
tional sequences in MRI and is nowadays mainly com-
posed of morphological T2w imaging, DWI, and DCE 
imaging (i.e., dynamic contrast-enhanced MRI) [14]. The 
diagnostic value for PCa detection lies in the variety of 
possible image contrasts that allow structural imaging 
and (functional) assessment of healthy and pathologically 
altered tissue. High-resolution T2w sequences allow the 
most accurate visualization of the zonal prostate anatomy, 
the capsule, and assessment of local tumor extension. For 
the detection of EPE, including seminal vesical invasion 
(SVI) and infiltration of the neurovascular bundles, T2w 
imaging achieves a diagnostic accuracy for the detection of 

EPE of up to 0.74 [15, 16]. The detection rate of PCa using 
T2w sequences is impaired by signal intensity changes 
based on post-inflammatory, post-therapeutic, and atrophic 
tissue changes, particularly in the peripheral zone (e.g., in 
the context of chronic prostatitis). Overall, morphologic 
T2w sequences are sensitive (ranging from 88 to 91% 
depending on the study) but not specific (ranging from 61 
to 67%) for the detection of prostate cancer [14, 17, 18]. 
Combining different MRI techniques including functional 
MRI methods, DCE-MRI, and DWI leads to higher sen-
sitivity and specificity for the detection of PCa [19–21].

DWI is based on the motility of water molecules within 
the tissue. Due to the high cell density of tumor tissue, the 
motility of water molecules is impaired, which enables 
the differentiation between tumor and normal tissue using 
DWI. The extent of impaired diffusion can be quantified 
via apparent diffusion coefficient (ADC) maps (Fig. 1). 
Thereby, the degree of diffusion restriction allows a quali-
tative and quantitative assessment of the aggressiveness 
and clinical significance of PCa. Nowak et al. demon-
strated that ADC measures achieved AUC values of up to 
78.9% for discriminating between lesions with Gleason 
scores < 7 vs. Gleason scores ≥ 7 [21].

DCE-MRI (perfusion imaging) consists of multiple 
fast T1-weighted (T1w) sequences after a bolus injection 
of gadolinium-based contrast media. Perfusion imaging 
allows the examination of contrast agent accumulation 
within specific areas of the prostate. Perfusion depends 
on the characteristics of small vessels in the tissue. Since 
the formation of new vessels (neovascularization) is a 
common feature of tumors by which their high nutrient 
requirements are met, tumor tissues show strong blood 
circulation in these imaging modalities. Thus, PCa may 
display an early and strong enhancement as well as a fast 
wash-out of contrast agents (wash-out phenomenon) com-
pared to benign tissue [22–24].

Currently, mpMRI of the prostate is the leading imaging 
method for the detection, characterization, and assessment 
of local tumor extent of PCa. If MRI is applied as a first 
diagnostic test before TRUS-biopsy, it enables the detec-
tion of up to 18% more cases of clinically significant PCa 
while simultaneously sparing one in four men the primary 
biopsy [25]. According to the EAU guidelines [7], mpMRI 
of the prostate is particularly recommended before biopsies 
in biopsy naïve patients or for patients with prior negative 
biopsy and consistent suspicion of PCa (Fig. 2). It reaches 
high diagnostic accuracy in the detection of PCa especially 
in anterior regions and areas near the apex of the prostate 
that can be challenging to detect via TRUS or TRUS-guided 
biopsies since up to 80% of lesions identified in the distal 
apex were shown to be PCa positive at targeted biopsy and 
may have been missed on TRUS-guided systematic biopsy 
only [17, 25].
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Local tumor staging using mpMRI

MpMRI is the gold standard for local T-staging of PCa [17]. 
It is superior to common methods like TRUS and DRE for 
the assessment of local tumor extent and EPE [18, 26]. A 
clear advantage of MRI in comparison to other imaging 
techniques is the possibility of high-resolution depictions 
of prostate morphology, its capsule, and its neighboring 
organs. While the transition zone is predominantly evalu-
ated using T2w imaging, the peripheral zone is predomi-
nantly evaluated using DWI according to the PI-RADS v2.1 
guideline (Table 1). The tumor stage T2 refers to carcinomas 
that are restricted to the prostate and do not show signs of 
EPE (Fig. 3), whereas T3 carcinomas extend beyond the 
prostate capsule (T3a) or show SVI (T3b), either with con-
tinuous tumor spread into the seminal vesicles along the 
excretory ducts or via secondary invasion of the seminal 
vesicles after macroscopic EPE [27]. The T4 stage describes 
a direct tumor infiltration into adjacent organs such as rec-
tum or urinary bladder infiltration.

Although the evaluation of EPE on mpMRI should be 
interpreted with caution [15], a majority of patients with 
aggressive tumors, especially intermediate- and high-risk 
PCa, show a significantly higher risk of capsule infiltra-
tion and EPE as assessed within a retrospective study with 
1045 PCa patients [16]. Lee et al. evaluated only a limited 
preoperative staging accuracy of EPE for high pathological 
stages (≥ T3) with an overall sensitivity and specificity of 
52.6% and 82.1%, respectively [16]. Reliable signs of EPE 
on MRI are the obliteration of the rectoprostatic angle or an 
infiltration/asymmetry of the neurovascular bundles (T3a). 
Furthermore, the length of capsular contact has been shown 
to be more sensitive for the detection of EPE than subjective 

assessments [28–30]. Mehralivand et al. reported that cur-
vilinear contact length to the capsule of more than 1.5 cm 
(EPE grade 1), capsular bulge/irregularity (EPE grade 1), 
both features together (EPE grade 2) or a frank breach of 
the prostatic capsule with or without invasion of adjacent 
structures (EPE grade 3) are associated with a higher risk 
of pathologically confirmed EPE: grade 1 with 24.3%, grade 
2 with 38.2%, grade 3 with 66.1%, respectively [28]. EPE 
of the tumor at the prostate apex with infiltration of the ure-
thral sphincter can also be assessed and is of high clinical 
relevance since infiltration of the urethral sphincter can lead 
to urinary incontinence after radical prostatectomy [31].

Assessment of EPE through mpMRI by an experienced 
radiologist has a negative predictive value of 94–96% and a 
positive predictive value of up to 79% [32–36]. Although a 
majority of recent studies suggests only moderate sensitivi-
ties of 49–57% for the detection of EPE, mpMRI demon-
strated very high specificities of 74–91% [16, 37, 38]. Sensi-
tivity and specificity for the detection of SVI are comparable 
with 44% and 95%, respectively [16]. MRI-based assessment 
of EPE in the tumor stage pT3 is impaired when no macro-
scopic signs of periprostatic fat infiltration or obliteration of 
the rectoprostatic angle are present [39]. Another reason for 
the low sensitivity of different imaging approaches to detect 
EPE is the lack of visualization methods of initial micro-
scopic extracapsular extension. Jager et al. demonstrated a 
significant increase in the detection rate of EPEs from 14 to 
100% depending on the infiltration depth into the extrapro-
static fat (< 1 mm vs. > 3 mm) [40].

LN metastases are present in up to 60% of patients with 
locally advanced prostate cancer. However, a meta-analy-
sis of 24 studies [41] demonstrated only a poor sensitiv-
ity of 32% (22–56%) and a moderate specificity of 82% 

Fig. 1   72-year-old patient with PSA levels of 6.4  ng/ml. a T2w-
hypointense lesion without complete encapsulation (arrow) consist-
ent with a T2w score of 2 (PI-RADS v2.1). b, c The atypical nodular 
lesion shows strong diffusion restriction including hyperintense signal 
intensities at high b2000 value images and corresponding low signal 

intensities in ADC maps (arrows in b, c) consistent with a DWI score 
of 4 (PI-RADS v2.1). The overall PI-RADS score (v2.1) is 3. MRI 
ultrasound fusion biopsy of this moderately suspicious prostate lesion 
reveals an acinar adenocarcinoma (Gleason 4 + 3 = 7b, ISUP grade 3)
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(79–83%) for the detection of locoregional LN metastases 
through mpMRI. Similarly, contrast-enhanced CT showed 
a poor sensitivity of up to 42% and a specificity of up to 
82% for the detection of locoregional LN metastases [41]. 
In contrast, PET/CT, ideally conducted as PSMA-PET/CT, 
represents one of the most sensitive imaging modalities for 
the detection of LN (and distant) metastases and is most 
commonly applied for the post-treatment setting [10, 42]. 
As highlighted in a recent meta-analysis, PSMA-PET/CT 
demonstrates a high sensitivity and high specificity of up to 
77% and 97% for advanced PCa detection in a per-patient 
analysis [43]. Nevertheless, the detection rate for LN metas-
tases through PSMA-PET/CT in a primary staging setting 
prior to radical prostatectomy also reveals moderate suc-
cess rates with sensitivities of 33–65% and specificities of 
98–100%, respectively [44].

MRI‑guided fusion biopsy

Ideally, prostate biopsies detect clinically significant PCa 
while sparing non-relevant, indolent tumors. Under the 
current standard-of-care, tissue cores are obtained in a sys-
tematical manner through TRUS-guided biopsies, a tech-
nique first described by Hodge et al. [45]. However, it was 
shown to suffer from both poor sensitivity and specificity 
as a standalone diagnostic test for clinically significant PCa 
[25, 46, 47]. Within the PROMIS trial, mpMRI was more 
accurate than TRUS-biopsy in terms of both sensitivity 
(93% vs. 48%) and negative predictive value (89% vs. 74%) 
for the detection of clinically significant prostate cancer 
(p < 0.0001) [25].

By combining mpMRI with ultrasound methods as tar-
geted fusion biopsies, these deficits have been overcome 

Fig. 2   Prostate cancer in a 54-year-old patient following two con-
secutive negative TRUS biopsies. a Axial T2w and c, d DWI/ADC 
images: the tumor (* or arrows), scored as PI-RADS 5 lesion, is 
localized within the left anterior peripheral zone (PZa) of the apex 
and shows focal T2w-signal hypointensity with strong diffusion 

restriction b DCE imaging does; however, not exhibit suspicious 
enhancement dynamics (DCE−). Targeted MRI ultrasound fusion 
biopsy revealed an acinar adenocarcinoma (Gleason score 4 + 5 = 9, 
ISUP grade 5)
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Table 1   Summary of differences in lesion scoring for PI-RADS v2.1 (2019) vs. PI-RADS v2.0 (2015) for the assessment of clinically significant 
prostate cancer

Score PI-RADS v2.1 PI-RADS v2.0

T2WI:transitional zone 1 Normal appearing TZ (rare) or a round, 
completely encapsulated nodule (“typical 
nodule”)

Homogeneous intermediate signal intensity 
(normal)

2 A mostly encapsulated nodule or
a homogeneous circumscribed nodule with-

out encapsulation (“atypical nodule”) or
homogeneous mildly hypointense area 

between nodules

Circumscribed hypointense or heterogeneous 
encapsulated nodule(s) (BPH)

3 Heterogeneous signal intensity with 
obscured margins; includes others that do 
not qualify as 2, 4 or 5

4 Lenticular or non-circumscribed, homo-
geneous, moderately hypointense 
and < 1.5 cm in greatest dimension

5 Lenticular or non-circumscribed, homo-
geneous, moderately hypointense 
and ≥ 1.5 cm in greatest dimension or 
definite extraprostatic extension/invasive 
behavior

T2WI:peripheral zone 1 Uniform hyperintense signal intensity 
(normal)

2 Linear or wedge-shaped hypointensity or 
diffuse mild hypointensity, usually indis-
tinct margin

3 Heterogeneous signal intensity or
Non-circumscribed rounded, moderate 

hypointensity; includes others that do not 
qualify as 2, 4 or 5

4 Circumscribed, homogeneous moderate 
hypointense focus/mass confined to pros-
tate and < 1.5 cm in greatest dimension

5 Circumscribed, homogeneous moderate 
hypointense focus/mass confined to pros-
tate and ≥ 1.5 cm in greatest dimension or 
definite extraprostatic extension/invasive 
behavior

DWI: peripheral zone or transitional zone 1 No abnormality on ADC, high b value DWI
2 Linear/wedge-shaped hypointense on ADC 

and/or
Linear/wedge-shaped hyperintense on high 
b value DWI

Indistinct hypointense on ADC

3 Focal (discrete and different from the back-
ground) hypointense on ADC and/or

Focal hyperintense on high b value DWI
May be markedly hypointense on ADC or 

markedly hyperintense on high b value 
DWI, but not both

Focal mildly/moderately hypointense on 
ADC and

Isointense/mildly hyperintense on high b 
value DWI

4 Focal markedly hypointense on ADC and
Markedly hyperintense on high b value 

DWI
 < 1.5 cm in greatest dimension

5 Focal markedly hypointense on ADC and
Markedly hyperintense on high b value 

DWI
 ≥ 1.5 cm in greatest dimension or definite 

extraprostatic extension/invasive behavior
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recently. In addition to implementing a triage test that 
increases diagnostic accuracy of PCa detection, mpMRI 
allows to perform mapped and targeted fusion biopsies of 
suspicious index lesions in addition to systematic but blind 
samplings [48, 49]. As demonstrated in recent trials, MRI-
TRUS fusion biopsies may prevent up to 27% of patients 
from unnecessary biopsies when compared to systematic 
TRUS-guided biopsies [25]. Kasivisvanathan et al. demon-
strated that the detection rate of clinically significant PCa 
can be increased with use of targeted biopsies in comparison 
to standard TRUS-guided biopsies (38% vs. 26%; p = 0.005) 
while simultaneously reducing overdiagnosis of clinically 
insignificant cases (9% vs. 22%; p < 0.001) [47].

Diagnostic accuracy of mpMRI can be further improved 
by including additional clinical parameters such as PI-
RADS, PSA, prostate volume, age, and DRE results [50]. 
For instance, performing systematic TRUS-guided biopsies 
in men with PI-RADS category 1 or 2 will on average detect 
8% of clinically significant PCa cases and at the same time 
overdiagnose 18% of patients with insignificant PCa [51]. 
Therefore, two out of three PCa diagnoses would lead to 
overtreatment and potential risk of increased patient mor-
bidity. Diagnostic yields for significant PCa increase with 
higher PI-RADS categories growing from 12 to 21% over 
39–48% to 72–73% for PI-RADS categories 3, 4, and 5, 
respectively [52, 53]. In case of MRI-guided fusion biop-
sies, these favorable diagnostic results for PI-RADS cat-
egories > 3 are further emphasized even when performing 
targeted biopsies alone, as this was the case for the above-
mentioned Precision trial (with 12% increased detection 
rates for significant PCa and 13% decreased diagnosis of 
indolent, non-significant tumors) [47]. While some studies 
suggest that targeted biopsies alone will overlook up to 18% 
of cases of clinically significant tumors which would have 
been detected in systematic TRUS-guided biopsies, most of 

these additional tumors are often found in sextants adjacent 
to the lesion identified by mpMRI indicating that factors 
such as inaccurate sampling and tumor heterogeneity should 
be taken into account [49, 51]. In conclusion, evidence is 
accumulating for multiple benefits of MRI-guided biopsy 
approaches compared to TRUS-guided biopsies as the 
standard-of-care. Especially in combination with radiologi-
cal expertise reflected by structured reporting systems—such 
as PI-RADS—mpMRI and targeted biopsies do not only per-
form with significantly increased sensitivity and specificity 
for the detection of clinically significant PCa, but also reduce 
the number of men who need to undergo primary biopsies 
altogether.

Structured reporting and radiomics analysis 
of prostate cancer

Report standardization

The written radiology report is the most common method 
of communication between radiologists and their stakehold-
ers, who rely on a report with information that will enable 
clinical decision-making. However, recent studies show 
gaps in medical imaging report completeness, yet a good 
quality report is essential for patient care. According to the 
Institute of Medicine, quality of care can be defined as the 
degree to which health services for individuals and popula-
tions increase the likelihood of desired health outcomes [54]. 
The radiological report has an impact on all quality dimen-
sions, especially on appropriateness, efficiency, safety, and 
patient-centered care. A standardized way to communicate 
reporting results is important to avoid miscommunication, 
which can be caused by insufficient clinical information pro-
vided by the referring physician or a lack of feedback on the 

Table 1   (continued)

Score PI-RADS v2.1 PI-RADS v2.0

DCE-MRI: peripheral zone or transitional 
zone

 +  Focal, and
earlier than or contemporaneously with 

enhancement of adjacent normal prostatic 
tissues and

corresponds to suspicious finding on T2w 
and/or DWI

− No early or contemporaneous enhancement 
or

Diffuse multifocal enhancement not cor-
responding to a focal finding on T2w and/
or DWI or

Focal enhancement corresponding to a 
lesion demonstrating features of BPH on 
T2w (including features of extruded BPH 
in the PZ)

No early enhancement or
Diffuse enhancement not corresponding to a 

focal finding on T2w and/or DWI or
Focal enhancement corresponding to a lesion 

demonstrating features of BPH on T2w
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examination requisition. Structured reporting has developed 
as a possible solution which narrows the communication 
quality gap in medicine through standardized integration of 
feedback into the communication process.

Synoptic reporting depicts the most advanced form of 
structured reporting since it incorporates discrete fields and 
fully analyzable data based on radiological ontologies, which 
in return increase the reproducibility, completeness, and 
quality of report data for analyses. In a recent survey, > 90% 
of radiologists and urologists preferred verbal descriptions 
of confidence levels and structured prostate MRI reports 
over free text [55]. Furthermore, structured reporting tem-
plates improved the sensitivity of prostate MRI for clinically 
significant PCa in the peripheral zone (PZ) from 53 to 70% 
[56]. Published documented benefits of structured prostate 

MRI reporting include increased perceived clinical impact 
of report, improved reproducibility, and improved commu-
nication [57, 58]. As such, the use of a specified lexicon to 
convey ideas such as levels of confidence in the diagnosis 
of EPE may improve communication and help referring cli-
nicians [59]. Structured reporting encompasses qualitative 
descriptors based on expertise and has become a priority 
for many radiological societies, including the European 
Society of Radiology, the Radiological Society of North 
America (RSNA), and other organizations such as Cancer 
Care Ontario [60].

As an example, the RSNA provides RadReport as a web-
based reporting application [61] including a prostate MRI 
reporting template which was constructed based on sur-
veys of radiologists and urologists. For prostate MRI, the 

Fig. 3   Prostate cancer in a 78-year-old patient after transurethral 
resection of the prostate (TURP) and PSA level of 6.3 ng/ml. a Axial 
T2w sequence. The tumor is located on the right side within the PZ 
(mid gland, arrow). b DCE reveals strong early enhancement. c DWI 
(b = 800) and d ADC map show significant diffusion restriction. The 

lesion has a maximal diameter of 1.0 cm without extracapsular exten-
sion revealing an overall PI-RADS score of 4 (v2.1, 2019). MRI 
ultrasound fusion biopsy demonstrates an acinar adenocarcinoma 
(Gleason score 4 + 4 = 8, ISUP grade 4)
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majority of surveyed radiologists indicated that contrast dose 
and type, magnetic field strength, coil type, and any medi-
cations administered describe essential report components 
[55, 62]. While these kinds of web-based applications do 
extract advantages from structured reporting, their restricted 
integration into existing radiological application systems 
and missing integration into the workflow at all limits their 
added value. Additionally, a variety of report solutions vary 
significantly in levels of complexity and content, rendering 
them unsuitable for synoptic reporting.

Synoptic reporting requires a solution that enables the 
integration of structural decision trees based on the input 
of various stakeholders. By combining structural decision 
trees with reporting systems, such as PI-RADS, successful 
communication during the clinical decision-making process 
can be achieved. Another example of structured radiology 
reporting are web-based software tools, which interactively 
transform radiological and clinical findings into structural 
decision trees (Figs. 4 and 5); therefore, providing the neces-
sary infrastructure for process automation to be integrated 
into the routine workflow. Along with the improved acces-
sibility and evaluability of clinical data, this facilitates 
the deployment of radiomics and artificial intelligence to 
support clinical decision-making [3]. However, successful 
implementation of advanced software applications requires 
distinct technical set-ups which cannot be provided in all 
clinical settings.

PI‑RADS version 2.1

With the rise of MRI usage in PCa diagnosis, characteriza-
tion, and monitoring, the need for standardized reporting 
has dramatically increased over the last decade. To address 
this issue, the European Society of Urogenital Radiology 
(ESUR) induced the initiative for PI-RADS v1 in 2012, a 
major structured reporting system for prostate mpMRI pre-
ferred by over 80% of radiologists and urologists [55, 63]. 
Over the last years, PI-RADS evolved to decrease complex-
ity within the scoring system, define minimum technical 
parameters for improved result comparability, decrease 
variability in score interpretations, and augment sensitivity 
and specificity for the detection of clinically significant PCa.

PI-RADS generates a score from 1 to 5, ranging from 
very low to very high probability of clinically significant 
PCa (Fig. 6). In spring 2019, the revised PI-RADS version 
2.1 was introduced to resolve limitations which were identi-
fied in the previous PI-RADS versions (see Fig. 6 for the 
summarized PI-RADS v2.1 algorithm). One major focus 
for the changes of PI-RADS v2.0 to v2.1 lays in adapted 
diagnostic criteria for lesions in the transition zone (TZ) 
of the prostate, particularly affecting the assessment of PI-
RADS category 1–3 lesions (Table 1). While PI-RADS 
v2.0 was able to enhance its accuracy from 81 to 93% and 

its sensitivity from 76 to 96% for TZ lesions compared to 
PI-RADS v1 [64], diagnosis of TZ lesions remained chal-
lenging compared to lesions within the PZ (Table 1). There-
fore, more detailed criteria for nodules within the TZ were 
introduced in PI-RADS v2.1 leading to improved diagnostic 
accuracy and reduced interpretation variabilities in this area 
[3]. For instance, nodules commonly associated with age-
related benign prostatic hyperplasia (BPH) were previously 
assigned as PI-RADS category 2 lesions, whereas PI-RADS 
v2.1 now classifies these nodules into PI-RADS category 1 
on T2w imaging (Fig. 7a). In addition, PI-RADS v2.1 places 
special emphasis on DWI scoring to increase the overall 
PI-RADS category, in particular for the lower T2w imaging 
categories PI-RADS 2 (Fig. 7b) and PI-RADS 3 (Fig. 6 and 
Table 1) [3]. PI-RADS v2.0 enabled the upgrade of a T2w 
PI-RADS 3 lesion to a PI-RADS 4 lesion in case of a DWI 
PI-RADS category of 5. With PI-RADS v2.1, DWI now 
has the added ability to upgrade a TZ PI-RADS 2 lesion to 
a PI-RADS 3 lesion in case of a DWI assessment of 4 or 5 
[63] (Fig. 1). Following DWI assessment, PZ PI-RADS 3 
and 4 lesions may be distinguished utilizing DCE (Fig. 6), 
which is considered positive if focal early or contemporane-
ous enhancement is present correlating with a T2 or DWI 
abnormality (Table 1). In general, an overall suspicion cat-
egory according to PI-RADS should always be summarized 
within the radiological report as well as the assignment of 
a PI-RADS score per lesion. This also accounts for benign 
focal lesions (such as BPH nodules) as well as for diffuse 
geographic signal hypointensities which may be classified 
as (chronic) prostatitis (Fig. 8).

The updated PI-RADS v2.1 classification also includes 
more information for identifying and classifying cancers 
in the anterior fibromuscular stroma (AFS) (Fig. 9) as well 
as in the central zone located as a pyramidal T2 hypoin-
tense structure within the prostate base. Especially for these 
regions, the detection of significant diffusion restriction (ide-
ally using high b values > 1400 mm2) as well as suspicious 
perfusion characteristics of a suspicious lesion on DCE 
(such as type 2 or type 3 curves) point toward the presence 
of PCa [63].

A further expansion of PI-RADS v2.1 includes specifica-
tions for the use of biparametric MRI over mpMRI, thereby 
omitting DCE-MRI for selected clinical cases, which pro-
vides several benefits: it does not only allow to perform pros-
tate MRI faster and with reduced costs, but also spares the 
use of contrast agents, thereby avoiding potential gadolinium 
retentions. However, in some cases, mpMRI is superior to 
bpMRI due to the improvement of sensitivity provided by 
DCE-MRI [22–24]. For instance, it was shown that upgrad-
ing lesions from PI-RADS category 3 to category 4 based on 
DCE scores—in this case for PI-RADS v2.0—resulted in an 
increased detection of lesions with a Gleason score ≥ 7 in up 
to a third of the patients [24]. Consequently, the PI-RADS 
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committee provides five scenarios for which mpMRI should 
be preferred in comparison to bpMRI:

1.	 Patients with prior negative biopsies in combination 
with unexplained raised serum PSA levels and those in 
active surveillance under evaluation for fast PSA dou-
bling times or changes in clinical/pathological status.

2.	 Men with persistent suspicion for harboring clinically 
significant PCa who have undergone a previous, nega-
tive bpMRI. In this case, not missing any clinically sig-
nificant PCa has highest priority.

3.	 Patients with either prior prostate interventions (e.g., 
TRUS, BPH therapy, radiotherapy) or with prior drug/
hormonal therapies (e.g., testosterone, 5-alpha reduc-

Fig. 4   Structured PI-RADS v2.1 reporting template in English 
(above) and Chinese (below), exemplarily shown for an interactive 
web-based software tool which includes a structured decision tree and 

automatically generated text output with graphical support to enhance 
interdisciplinary communication and provide clinical decision sup-
port
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tase) which are known for changes in prostate morphol-
ogy.

4.	 Biopsy-naïve men with a strong family history, known 
genetic predispositions, elevated urinary genomic 
scores, and higher than average risk calculator scores 
for clinically significant PCa.

5.	 Patients with a hip implant or other considerations that 
can be expected to yield degraded DWI.

Other changes in the revised PI-RADS v2.1 include 
alterations in the sector maps used to compartmentalize 
the prostate into sub-regions. With the addition of two 

Fig. 5   PI-RADS v2.1 reporting template from an interactive web-
based software tool displaying the English (above) and Chinese 
(below) structured reporting sections. The structured decision tree 
includes the possibility to select the lesion location from the updated 

sector map according to PI-RADS v2.1 recommendation, now also 
including the posteromedial PZ (PZpm) at the base of the prostate as 
separate sectors
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regions to the PZ at the level of the base—the medial right 
and left posterior PZpm—the sector map is composed of 
41 sectors in total (38 within the prostate gland, two cor-
responding to the seminal vesicles, and one corresponding 
to the membranous urethra). So far, surveyed practicing 

radiologists prefer using image series and number, PZ 
vs. TZ anatomy, and apex/mid gland/base terminology to 
localize lesions. Although usage of the PI-RADS sector 
map is recommended by the PI-RADS committee, it is 
currently not preferred in all clinical centers, with only 

Fig. 6   Simplified PI-RADS v2.1 algorithm for determining the likeli-
hood of clinically significant PCa in a given patient. The PI-RADS 
system classifies imaging features into five scores with increasing 
probability of clinically suspicious PCa. This classification relies 
on DWI as the dominant sequence for the PZ and T2w imaging for 

the TZ. Note that positive enhancement in an otherwise PI-RADS 
3 lesion of the PZ upgrades that lesion to PI-RADS 4. Similarly, 
the DWI characteristics of PI-RADS 2 and 3 lesions in the TZ can 
increase the overall PI-RADS score

Fig. 7   Enlarged prostate gland of a 71-year-old patient with PSA lev-
els of 15 ng/ml. Axial T2w shows heterogeneous nodular changes in 
the case of BPH without a suspicious index lesion. a Adenomatous 
nodules (arrows) exhibit a circular hypointense capsule consistent 

with a PI-RADS score of 1 (v2.1, 2019). b Heterogeneous, hypoin-
tense signal attenuation between the adenomatous nodules are in 
accordance with a PI-RADS score of 2 (dashed arrow). The enlarged 
TZ leads to compression of the PZ
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one in ten radiologists endorsing this type of reporting 
method [62].

To ensure consistency and comparability, new guidelines 
for the measurement of total prostate volume and technical 
specifications regarding the acquisition of T2w, DWI, and 
DCE-MRI have been introduced with PI-RADS v2.1. As 
such, it is recommended to explicitly state within the report 
that the exam was PI-RADS-compliant [63].

In summary, PI-RADS v2.1 was established to reduce 
variability in mpMRI interpretation with focus on lesion 

scoring within the TZ, address the potential use of bpMRI 
for lesion assessment, revise the sector map, clarify tech-
nical features to simplify exam performance, and adjust 
as well as unify prostate volume measurements. These 
modifications aim to further strengthen the role of PI-
RADS scoring in mpMRI, thereby increasing its value in 
prostate cancer diagnosis, characterization, and clinical 
decision-making as PI-RADS represents an established 
semantic biomarker which can be extracted from radio-
logical reports.

Fig. 8   65-year-old patient with undulating PSA levels between 5 and 
7 ng/ml and clinical suspicion of PCa. a Axial T2w and b ADC map 
demonstrate bilateral streaky signal hypointensities with non-focal 

character (arrows) according to PI-RADS 2 (v2.1, 2019). Histology 
following non-target TRUS biopsy confirms chronic prostatitis, no 
cancer was detected

Fig. 9   66-year-old patient (PSA level 7  ng/ml) with prostate cancer 
presenting as an indistinct T2w hypointense area a measuring 1.0 cm 
(arrows). The lesion is located in the anterior portion of the TZ and 
involves the AFS. b Axial DWI (b = 2000) and c ADC map reveal 
strong diffusion restriction. Due to AFS involvement, TZ-criteria 
need to be deployed for lesion scoring according to PI-RADS v2.1: 

The lesion is scored with a T2w score of 3 and DWI score of 4. Over-
all, this leads to a PI-RADS score of 3 (v2.1). MRI ultrasound fusion 
biopsy of this suspicious lesion reveals an acinar adenocarcinoma 
(Gleason 3 + 4 = 7a, ISUP grade 2). Two prior TRUS biopsies did not 
detect prostate cancer presence most likely due to its anterior location 
close to the apex
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Radiomics

Radiomics refers to the high-throughput analysis of quantita-
tive image features from standard-of-care medical imaging 
aiming for prediction of certain clinical markers (clinical 
survival, radiosensitive phenotypes, or genomic features). 
This enables data extraction and application in clinical deci-
sion support systems by which diagnostic, prognostic, and 
predictive accuracy is enhanced. As such, the overall aim of 
radiomics is to reveal disease characteristics that cannot be 
captured by the naked eye, thereby improving disease diag-
nostics and treatment. For instance, in the case of PCa detec-
tion and classification, it was shown that a radiomics model 
using extracted features from mpMRI showed superior pre-
dictive performance when compared to parameters such as 
PI-RADS category, mean ADC, or DRE findings. While 
the radiomics model alone achieved a mean AUC of 0.78, 
an ensembled radiomics model—which included PI-RADS 
categories, DRE findings, and PSA density—resulted in an 
increased mean AUC of 0.89 for the prediction of PCa pres-
ence [65]. In order for radiomics to develop, its full potential 
and to progress as a field from research to clinical routine, 
a minimum standard of quality regarding image acquisi-
tion, image segmentation, feature extraction, and radiomics 
modeling via machine-learning methods must be achieved. 
Overall, a whole multitude of factors drastically influences 
the performance of radiomics-based decision support sys-
tems. Thereby, these factors affect outcome predictions, 
diagnostic accuracy, and therapy planning. In this process, 
standardization is a crucial step by which robustness and 
performance of these radiomics-based decision support sys-
tems can be achieved [66]. Currently, the field of radiomics 
lacks standardized evaluation of both scientific integrity and 
clinical relevance of different radiomics investigations. Thus, 
distinct evaluation criteria and reporting guidelines need to 
be established for radiomics to mature as a discipline [66].

Structured reporting of radiological findings describes 
a powerful tool by which this goal can be achieved. PI-
RADS incorporates technical specifications and parameters 
required for standardized imaging. This approach ensures 
that comparability is given on the level of medical image 
acquisition itself, enhancing reproducibility and perfor-
mance of radiomics-based systems. In addition, these struc-
tured reporting systems provide access to semantic features, 
which—when combined with radiomics data—significantly 
increase the predictive value of radiomics data sets [67].

In summary, structured reporting systems provide a 
framework by which standardization, accessibility, and com-
pleteness of radiological data are increased, thereby paving 
the way for high-quality data acquisition and complementary 
radiomics analysis. As such, they yield direct influence on 
diagnosis, prognosis, and clinical decision-making [56, 66, 
67].

Clinical implications

Role of mpMRI

Regarding its clinical relevance, mpMRI has become 
widely accepted as a reliable imaging technique for the 
detection and diagnosis of PCa. The increasing application 
of mpMRI in combination with PI-RADS v2.1 intends to 
prevent unnecessary biopsies in primary diagnostics, as 
it enables the assessment of suspicious lesions and their 
local extent. Despite a tendency to underestimate the size 
of PCa when correlated with histological analysis [68, 
69], mpMRI facilitates the conduct of targeted biopsies 
(e.g., as MRI ultrasound fusion biopsy), which improves 
pre-therapeutic risk stratification of PCa patients. Assess-
ment of local tumor extent of PCa through mpMRI aids in 
determining further uroradiological therapeutic concepts. 
In some European institutions, MRI is used for surgi-
cal planning prior to radical prostatectomy. In this case, 
MRI can facilitate the surgical decision for nerve-sparing 
surgery to preserve the neurovascular bundles. A recent 
study assessing positive surgical resection margins within 
a cohort of 382 patients that underwent radical prostatec-
tomy revealed that TZ tumors were more likely to extend 
to the apical (37%) and anterior (22%) margins, especially 
in case of bladder neck involvement (37%), whereas PZ 
tumors were more likely to extend to the posterolateral 
(47%) and also apical (44%) resection margins, the latter 
accounted as the most common site of positive surgical 
margins, respectively [70].

Despite the potential of mpMRI to prove apical posi-
tivity as a significant preoperative predictor of a positive 
surgical margin, image-based evidence of external urethral 
sphincter infiltration is essential for further surgical plan-
ning to maximize the membranous urethra length [19, 31].

Standardized application of mpMRI in combination 
with distinct biopsy procedures allows precise therapy 
planning for surgical as well as for focal therapeutic proce-
dures (e.g., high-intensity focused ultrasound or cryother-
apy) and brachytherapy [71–73]. As part of advanced PCa 
screenings with a high rate of low-risk cancers, personal-
ized therapy approaches have gained more significance 
due to lower complication rates when compared to more 
aggressive therapy approaches [74]. Over the last decades, 
mpMRI has been increasingly used for radiotherapy plan-
ning of locally advanced PCa in addition to CT to define 
the exact target volume for radiation treatment. Com-
parative studies indicate that target volumes for radiation 
therapy based on MRI findings can be reduced by 30% as 
anatomic structures of the apex and posterior gland as well 
as their surroundings can be determined more precisely 
in comparison to CT [75, 76]. The American Urological 
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Association and the American Society for Radiation 
Oncology recommend that adjuvant radiotherapy should 
be considered for patients with adverse pathologic findings 
at prostatectomy (i.e., seminal vesicle invasion, positive 
surgical margins, or EPE) and salvage radiotherapy for 
patients with PSA or local recurrence after prostatectomy 
[77]. Hence, the application of mpMRI in the pre-thera-
peutic setting can support the interdisciplinary confirma-
tion of individualized concepts for patients with locally 
advanced PCa [78].

Clinical decision support systems for diagnosis 
of prostate cancer

Clinical Decision Support Systems (CDSS) offer patient-
specific advice based on guideline recommendations to 
enhance the process of decision-making by physicians and 
other healthcare practitioners, improve safety, and facilitate 
evidence-based practice. A multifactorial decision support 
system (mDSS) describes a tool which improves the clinical 
decision-making process by utilizing clinical inputs for an 
individual patient to generate case-specific therapy advice 
[79].

Different decision support systems can be applied in PCa 
diagnostics to enhance early tumor detection, reduce over-
diagnosis, and avoid unnecessary testing. These systems 
utilize several parameters including imaging, clinical, and 
biological features to improve detection and risk classifica-
tion of PCa in a minimally invasive way, thereby maximiz-
ing individual treatment. mDSS for diagnostic interventions 
aim to detect, diagnose, or classify PCa using various meth-
ods. Several prediction tools are currently used in clinics to 
support PCa diagnostics including analysis of potential LN 
involvement, organ confinement, seminal vesicle involve-
ment, and extracapsular extension as well as the risk of fail-
ure after treatment [79].

Sadoughi et al. [80] trained an artificial neural network 
on laboratory results to conduct particle swarm optimization 
supporting the distinction between localized PCa and benign 
hyperplasia of the prostate. Van Leeuwen et al. [81] devel-
oped a nomogram that includes many parameters, e.g., PI-
RADS-score, age, PSA, DRE findings, prostate volume, and 
prior biopsy results. The model performed with an AUC of 
0.864 on an external validation set enabling the proposal of 
an optimal strategy to reduce the number of biopsies needed 
while minimizing the risk of underdiagnosis. A study con-
ducted by Lee et al. [82] was designed to support the use of 
a biopsy by predicting initial biopsy outcomes through dif-
ferent models based on TRUS findings and clinical param-
eters, including age and PSA. Comparing multiple logistic 
regression analysis, artificial neural networks, and support 
vector machines (SVM), AUC values of 0.768, 0.778, and 
0.847 could be achieved, respectively [79, 82].

Due to the application of various MRI sequences in 
mpMRI, the correct and consistent interpretation of mul-
tiparametric image data is still challenging. An automated 
decision support system that conducts image segmenta-
tion, feature extraction, and classification enables a com-
puter-aided diagnosis by which a systematic and objective 
approach for PCa diagnosis and staging can be achieved 
[83].

As a comparison between MRI and biopsy results, Chan 
et al. generated statistical maps based on SVM and Fisher 
linear discriminant (FLD) analysis on calculated ADC, PD, 
and T2 maps from T2w and DWI performed at 1.5 T with 
TRUS-guided biopsy results. Additionally, Vos et al. used 
T2w and parametric DCE-MRI maps at 3.0 T validated with 
whole-mount sections to develop a CAD (Computer-Aided 
Design) system based on SVM [83].

Another study performed to introduce a new method of 
decision support systems for detecting and localizing PCa 
in the PZ is described by Shah et al. [83]. They used SVM 
to train their model on pathological regions of MRI scans 
of patients who underwent prostatectomy with the aim of 
diagnosing PCa as well as locating it specifically on MRI 
scans by modeling voxel specific risk analyses. Sensitivity 
and specificity of the model with optimized SVM parameters 
were both 90%. The generated cancer probability maps can 
support the localization of tumors and facilitate planning of 
targeted biopsies and focal therapies [83].

Outlook: workflow automation and artificial 
intelligence in radiology

Within healthcare systems, AI will prospectively become 
a major driver of many applications, including medical 
diagnostics and imaging, risk management, and hospital 
management. AI enables the recognition of complex pat-
terns in image data resulting in an automated quantitative 
assessment. Therefore, more accurate and standardized 
image assessment is possible when AI is integrated into the 
clinical workflow as a tool to assist physicians in their daily 
routine. The primary trigger for the implementation of AI 
in medical imaging has been the desire for greater efficacy 
and efficiency in clinical processes [84].

AI methods are often based on machine learning algo-
rithms. Machine learning involves engineered features that 
are defined by human experts and interpreted in terms of 
mathematical equations and can thus be quantified by com-
puter programs. These features are used as inputs to machine 
learning models, which are trained to classify diseases, 
thereby supporting clinical decision-making [84]. Machine 
learning will generate novel algorithms which partly auto-
mate several aspects of the radiological workflow including 
image analysis, interpretation, and report creation to opti-
mize decision support and therapy planning in the long term.
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To achieve this, a workflow integration of quantitative 
imaging biomarkers detected by AI, radiomics, or structured 
reporting data is required. Implementing results of quan-
titative image analysis and image-based measures directly 
into the radiological report avoids redundant processes and 
allows to prepopulate radiological reports based on algo-
rithm findings which ensures time-efficient reporting. Prior 
studies addressing the detection of quantitative imaging 
biomarkers clearly show an advantage of semi- or fully 
automated methods of data extraction for outcome predic-
tion [85, 86], the refinement of software tools for importing 
biomarker data into structured reports [87, 88], the develop-
ment of tools to facilitate longitudinal imaging biomarker 
tracking [89], and the integration of these tools into existing 
radiological information systems [90]. More recent studies 
show that quantitative imaging biomarkers using radiomics-
based analysis and guideline-driven reporting via PI-RADS 
can assess tumor aggressiveness and that a combination of 
clinical factors (such as PSA density), structured reporting 
(according to PI-RADS) and radiomics analysis even leads 
to a superior prediction of prostate cancer presence and 
aggressiveness [65]. Although sufficient scientific evidence 
is available for a range of radiomics and AI-based studies 
to enhance tumor characterization and outcome predic-
tion, quantitative image parameters and semantic data from 
structured reports are nowadays insufficiently incorporated 
into clinical decision-making processes since the availabil-
ity of structured reporting software tools as a platform for 
AI-integration in daily clinical routine is limited. For the 
widespread dissemination and increasing implementation 
of practical AI applications in medical diagnostics, huge 
amounts of data have to be prepared in a structured way and 
the analyzed models have to be trained continuously [91]. 
Currently, the dependence of AI on well-curated datasets 
and large amounts of medical data constitutes a major limita-
tion in the development and advancement of AI algorithms. 
While in some cases, such as for photographic images, 
crowdsourcing can be utilized to label and curate a dataset, 
medical datasets need to be classified by trained personnel to 
ensure that defined quality criteria are met. Data protection 
requirements also constrain the development of AI tools and 
increases both costs and time needed [84].

To overcome these limitations, semi- or fully automated 
segmentation algorithms have been developed in an effort 
to curate datasets and prime them for subsequent use with 
novel AI algorithms. So far, these segmentation algorithms 
still require human readers for post-hoc verification of the 
segmentation results, limiting their benefits during the cura-
tion process [92]. Combining synoptic reporting and subse-
quent integration of findings from automated segmentation 
may overcome these limitations.

Besides, ethical concerns arise when AI is deployed in 
medicine. AI tools utilize large amounts of sensitive patient 

data during development and consequent application. To 
ensure adequate safety, secure connections are required 
both within medical institutions and to AI systems. So far, 
major effort has been expended to improve data sharing 
with minimal safety concerns. For instance, by training AI 
models with encrypted datasets and sharing the AI models 
without their input data, AI algorithms can be used without 
distributing patient data between institutions. ‘Cryptonets’ 
further increase privacy, since these deep learning networks 
are not only trained on encrypted datasets but also provide 
encrypted predictions which can only be decrypted by the 
designated institution holding the decryption key [84]. 
Nonetheless, these solutions are still in their initial devel-
opment phase and need further advancements before they 
can be brought into operation in daily routine [60].

Conclusions

Currently, mpMRI is the leading pre-therapeutic imaging 
modality for the assessment of local tumor extent of PCa 
and superior to other imaging methods such as TRUS. Struc-
tured reporting of PCa is based on the revised PI-RADS 
classification (v2.1, 2019) which includes modifications in 
the diagnostic criteria for tumors in the TZ on T2w, a clear 
distinction between typical and atypical nodules in the TZ, 
a revision of the sector map, and clinical indications for the 
utilization of bpMRI over mpMRI. A workflow integration 
of radiological results through guideline-driven, software-
based structured reporting tools and advanced image analy-
sis using radiomics leads to the optimization of diagnostic 
processes. This may facilitate the implementation of AI-
based applications that enable the recognition of complex 
patterns in image data, resulting in an automated quantitative 
assessment. Synoptic reporting depicts the most advanced 
form of structured reporting, since it incorporates discrete 
fields and fully analyzable data based on radiological ontolo-
gies, which increase the reproducibility, completeness, and 
quality of report data for subsequent analyses building the 
foundation to standardize and automate the radiological 
workflow.
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