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Abstract
Prostate cancer (PCa) is the second most common type of cancer among males and the fifth major contributor to cancer-
related mortality and morbidity worldwide. Radiomics, as a superior method of mining big data in medical imaging, has 
enormous potential to assess PCa from diagnosis to prognosis to treatment response, empowering clinical medical strategies 
accurately, reliably, and effectively. Hence, this article reviews the basic concepts of radiomics and its current state-of-the-art 
in PCa as well as put forwards the prospects of future directions.
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Introduction

Prostate cancer (PCa) is the second most common type 
of cancer among males and the fifth major contributor to 
cancer-related mortality and morbidity worldwide [1–3]. 
However, accurate identification and effective treatment of 
PCa remain a major public health challenge, largely due to 
its substantial heterogeneity which often leads to imprecise 
diagnosis and suboptimal disease management.

Digital rectal examination (DRE), prostate-specific anti-
gen (PSA) test, and transrectal ultrasound (TRUS)-guided 
prostate biopsy are currently the most widely used diagnos-
tic methods of PCa in clinical practices. However, each of 
these methods has some limitations [4], including differ-
ent suitable conditions, unstable accuracy, sampling error, 
over-diagnosis, etc. The current paradigm for screening and 
diagnosis is imperfect, with relatively low specificity, high 
cost, and high morbidity. Meanwhile, the optimal clinical 
management which may include watchful waiting, active 
surveillance, open, laparoscopic or robotic-assisted radical 
prostatectomy, external beam radiation therapy (EBRT), and 
brachytherapy [5], is highly dependent on accurate diagno-
sis. Early detection of PCa enables radical treatment and 

long-term patient survival. Nevertheless, once the tumor 
infiltrates out of the prostate capsule, the treatment effect 
and prognosis are often poor.

With the rapid development of medical imaging tech-
niques, many imaging modalities have demonstrated great 
value in the screening, diagnosis, treatment response meas-
urement, and prognosis evaluation of PCa. Magnetic reso-
nance imaging (MRI) could provide the advantage of detect-
ing prostate and periprostatic characterization and structures 
with high spatial resolution, superior contrast resolution in 
soft tissue, multiplanar imaging capabilities, and larger field 
of view (FOV) [6, 7]. Multi-parametric magnetic resonance 
imaging (mpMRI) has shown promise to improve detection 
and characterization of PCa considerably with more seminal 
information combining structure and function, which plays 
an extremely crucial role in tumor detection and localiza-
tion, staging, aggressiveness assessment, treatment option 
assistant, and patient follow-up of PCa [8–10]. Besides, to 
standardize the use of mpMRI, the Prostate Imaging Report-
ing and Data System (PI-RADS) was presented by the Euro-
pean Society of Urogenital Radiology (ESUR) in 2013 [8] 
and an updated version (PI-RADS v2) in 2015 [11] which 
has been keeping updating and supplementing up to now 
[12, 13]. Nevertheless, there are also some limitations, such 
as invasive and with biopsy errors of MR-directed biopsy 
(MRDB), the lack of consistency and nonquantitative nature 
of dynamic contrast-enhancement-MRI (DCE-MRI), not 
providing recommendation regarding the best threshold, 
unavailable 3D tumor volume delineation, and a large degree 
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of subjectivity related to imaging quality, radiologists, and 
urologist with PI-RADS [14–18].

Compared with traditional medical imaging, radiomics 
has the strong ability of extracting more critical and com-
prehensive information of lesions with high throughput by 
quantitative methods [19–21]. It enables automatic locali-
zation and characterization of PCa as well as identifies the 
great value of grading and staging, therapeutic evaluation, 
prognostic analysis, and even genomics, helping a lot in 
clinical diagnosis and treatment decisions. Hence, this arti-
cle reviews the basic concepts of radiomics and its current 
state-of-the-art in PCa.

Basic concepts of radiomics in PCa

Definition

“Radiomics” was first mentioned by Gillies et al. [22] in 
2010 to describe the extraction of quantitative features from 
image images. In 2012, Lambin et al. [19] formally put for-
ward the definition of “Radiomics” for the first time, as ana-
lyzing medical image data quantitatively that extracting a 
large number of features from medical images with high 
throughput and then transforming them into high resolu-
tion and deep-going mineable database with automatic or 
semi-automatic software. In the same year, Kumar et al. [23] 
expanded the definition of radiomics to extraction and analy-
sis of a large number of advanced and quantitative image 
features from medical imaging such as computed tomog-
raphy (CT), positron emission tomography (PET), or MRI 
with high throughput.

Process of radiomics

Radiomics is a multi-disciplinary technology, of which the 
core steps include data acquisition, features selection, model 
building, and analysis, aiming at converting routine clini-
cal images into mineable data, with high fidelity and high 
throughput.

The process of radiomics generally consists of several 
closely related steps as followed:

1.	 acquiring high-quality standardized imaging data and 
reconstruction;

2.	 segmentation of the region of interest (ROI) or the vol-
ume of interest (VOI) manually or automatically with 
computer-assisted contouring;

3.	 high-throughput features extraction and quantification;
4.	 feature selection and construction of clinical prediction 

models;
5.	 validation of the models and establishment of shared 

databases [19, 23, 24].

Image acquisition and reconstruction

Acquisition of high-quality images is the basis of radiomics, 
thus, it is pivotal to standardize the process of data acquisi-
tion and reconstruction. Those imaging data are obtained 
with CT, MRI, PET/CT, or PET/MRI. CT is mainly used 
to evaluate the density, shape, and texture characteristics 
of lesions due to its high spatial resolution, while it is not 
recommended for PCa because of without characteristic 
manifestation. MRI, especially mpMRI is widely used for 
the analysis of PCa lesions because of its better soft-tissue 
resolution and comprehensive information. Functional MRI 
such as diffusion weighted imaging (DWI) and DCE-MRI 
extracts more image features about cell structure and micro-
vascular perfusion, meanwhile, tissue metabolism informa-
tion can be provided by PET/CT or PET/MRI [10, 25–27].

However, the robustness could be affected by many fac-
tors, such as pulse sequence, FOV, slice thickness et al. of 
PCa-widely-used MRI. The reproducibility and repeatability 
of image data characters rely heavily on standardized image 
acquisition protocols. In addition, calibration of imaging 
settings is crucial as images acquired at different imaging 
settings may have poor repeatability [28]. Therefore, great 
efforts have been made by many international organizations, 
such as Radiological Society of North America, the Society 
of Nuclear Medicine and Molecular Imaging, the Interna-
tional Society of Magnetic Resonance in Medicine, and the 
World Molecular Imaging Society [24] to define the acquisi-
tion and reconstruction standards for radiomics.

Segmentation

Image segmentation, referred as delineation of the target 
area (such as tumor), is the premise of data extraction to 
ensure that the follow-up work goes on well. There are gen-
erally three ways of segmentation: manual, semi-automatic, 
and automatic, of which the former two are mostly used at 
present. Among these methods, manual segmentation has 
the advantage of high accuracy, especially for most tumors 
with clear boundaries but irregular shape. However, man-
ual segmentation is time-consuming with low efficiency 
and inter-operator variability. For PCa tumors with blurred 
margins, the heterogeneity in locating the tumor bounda-
ries by different radiologists can cause limited data repeat-
ability. Automatic or semi-automatic segmentation, on the 
contrary, can reduce this heterogeneity. Nevertheless, they 
are not precise enough in some confusing components with 
limited interpretability of models that need further improve-
ment. There are many algorithms developed for segmenta-
tion, such as region-growing method [29], graph-cuts algo-
rithm, atlas-based segmentation [30], volumetric CT-based 
segmentation [31], semi-automatic segmentation [32], active 
contours algorithm [33], live-wire-based segmentation [34], 
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etc. Currently, several software packages are available for 
segmentation, including ITK-SNAP (www.itksn​ap.org), 
3DSlicer (www.slice​r.org), MIM (www.mimso​ftwar​e.com) 
and ImageJ (https​://image​j.nih.gov/ij/), etc. Automatic seg-
mentation will be encouraged strongly in the future while 
requires large data sets for training.

Feature extraction and quantification

Extraction and quantification of the imaging features which 
could characterize the attributes of the target area are the 
heart of radiomics. There are two types of features extracted 
in radiomics: “semantic” and “agnostic” features [24]. The 
former “semantic” is used to describe qualitative morpho-
logical features such as size, shape, location, vascularity, 
speculation, necrosis, and attachments or lepidics. The latter 
“agnostic” refers to invisibly quantitative description of het-
erogeneity of lesions such as textures, histogram, wavelets, 
Laplacian transforms, Minkowski functionals, and fractal 
dimensions. Textures can be obtained through first-, second-, 
and high-order statistical methods generally. The first-order 
features based on histogram mainly include maximum, mini-
mum, average, standard deviation, variance, energy, entropy, 
sharpness, skewness, and kurtosis, gray-scale, which acquire 
relevant statistical information by frequency distribution of 
different gray levels in ROI. Second-order texture feature 
algorithms include gray-level co-occurrence matrix (GLCM) 
[35] and gray-level run-length matrix (GLRLM) [36]. High-
order algorithms customarily make use of neighborhood 
gray-tone difference matrix (NGTDM) [37] and gray-level 
size zone matrix (GLSZM) [38]. As for methods based on 
models or transformation, Laplacian transforms are often 
utilized in image preprocessing and wavelet transform is in 
extracting texture features from sub-images to mine informa-
tion more deeply. Similarly, a lot of software packages have 
been put into features extraction such as IBEX [39], MaZda 
[40], Pyradiomics [41], CERR [42], ePAD [43], LifeX [44], 
and some other R-based or MATLAB-based programs. 
Cooperative use of different software may help to acquire 
more comprehensive radiomics features.

Feature selection and construction of clinical prediction 
models

To avoid some algorithms failure caused by high dimen-
sionality of feature space, reduce over-fitting, improve the 
model stability, and shorten the training time, feature selec-
tion will be carried out before modeling. Fisher’s discri-
minant ratio, mutual information feature selection (MIFS), 
maximal relevance and minimum redundancy (mRMR), 
principal component analysis (PCA), consensus clustering 
(CC), locally linear embedding (LLE), etc., are common 
feature-selecting methods [45–47]. Database and model 

construction are a breakthrough point of radiomics analysis 
that could be applied as a powerful assistant tool for diagno-
sis and treatment effect prediction. After that, the classifier 
or prediction model is usually built with machine learning 
algorithms, which mainly known as Support Vector Machine 
(SVM) [47, 48], Logistic Regression [49], Random Forest 
(RF), Decision Tree (DT), clustering analysis, etc. Besides, 
Convolutional Neural Network (CNN), Artificial Neural 
Network (ANN), K-Nearest Neighbor (KNN), Holistically 
Nested Network (HNN) [50, 51], etc., which belong to rapid-
developing deep learning, really accelerated the pace of radi-
omics progress. The establishment of database and modeling 
is a complex and challenging process, which is necessary to 
strengthen the cooperation of multi-disciplinary and multi-
team especially medical science and engineering, so as to 
standardize management and make efficient use of images 
feature data, as well as to build stable and accurate models.

Data sharing and mining

Radiomics is a bigdata analysis method, inevitably, whose 
results may be affected by some relevant factors such as the 
single source of research objects, different imaging equip-
ment and parameters, complexity of image segmentation and 
feature extraction, etc. Thus, validation in multiple centers is 
quite of necessary, so as to improve the stability and repre-
sentativeness of data. Though it is really hard to work radi-
omics done, we need to capture valuable data and share them 
across institutions to accumulate sufficient numbers for sta-
tistical power, as the QIN [52] proposing. Also, it is quietly 
important to make great efforts to mine data more deeply.

The current state‑of‑the‑art of radiomics 
in PCa

In PCa, radiomics has been intensively applied to tumor 
detection, localization, staging, aggressiveness assessment, 
treatment decision-making assistant, and patient follow-up.

Detection and diagnosis

Accurate tumor diagnosis and staging is the cornerstone of 
proper patient management. Cameron et al. [53] proposed 
a quantitative comprehensive feature model called MAPS 
based on radiomics for automatic detection of PCa and 
achieved an accuracy (ACC) of 87%. Furthermore, Khal-
vati et al. [54] designed a new automatic mpMRI texture 
feature models incorporating computed high-b (CHB-
DWI) and correlated diffusion imaging (CDI). It helped to 
improve radiomics-driven detection of PCa significantly 
compared to conventional mpMRI models. And the ACC 
and area under the curve (AUC) of the receiver-operating 
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characteristic (ROC) of the full modalities model reached 
0.82, 0.86 and 0.88, 0.88 using sensitivity and specific-
ity, respectively, as performance criteria. Another study 
by Wibmer et al. [55] using MRI in 147 patients with PCa 
confirmed by biopsy showed that Haralick texture features 
derived from T2-weighted images and apparent diffusion 
coefficient (ADC) maps had the potential to differentiate 
PCa and non-cancerous prostate tissue. In the discrimina-
tion between clinically significant PCa (csPCa) and clini-
cally insignificant PCa (ciPCa), Min et al. [56] demonstrated 
that mpMRI-based radiomics signature had the potential 
to noninvasively work it done using a cross-validation of 
a machine learning method, which may help clinicians to 
facilitate prebiopsy and pre-treatment risk stratification 
(AUC, sensitivity, and specificity are 0.823, 0.841, and 
0.727, respectively). Furthermore, more useful parameters 
with good performance are being excavated. For instance, 
Cuocolo et al. [57] thought that the surface area-to-volume 
ratio (SAVR) derived from ADC maps was recognized as 
the most promising tool in the discrimination of csPca from 
non-csPca, outperforming other shape features even such 
as lesion volume and maximum diameter (AUC = 0.78). As 
for identifying lesions in transition zone (TZ) and peripheral 
zone (PZ), Ginsburg et al. [58] suggested that a zone-aware 
classifier CPZ significantly improved the accuracy of cancer 
detection in the PZ, with the AUC of 0.71.

There are also PI-RADS related studies pointing out that 
MR radiomics could help to improve the performance of 
PI-RADS v2 in clinically relevant PCa [59], with the aid 
of which the sensitivity significantly increased (79–94.4% 
in PZ PCa, 73.4–91.6% in TZ PCa). Though the samples 
were small (< 100). Similarly, Chen et al. [60] compared 
radiomics-based analysis with PI-RADS v2, which indicated 
that T2 W- and ADC-based radiomics models showed high 
diagnostic efficacy in distinguishing PCa vs. non-PCa at a 
high ACC of 0.991, as well as in high-grade vs. low-grade 
(ACC 0.867). Those are complementary to the refinement of 
specific standards and optimization model both each other.

Aggressiveness evaluation and staging

As the gold standard for PCa aggressiveness assessment 
[61], Gleason grading system plays an important role in the 
stratification of risk for PCa. Radiomics-combined patterns 
can impact clinical outcomes, treatment selection, and the 
determination of disease status noninvasively. In this aspect, 
Wibmer et al. [55] reported that entropy derived from the 
ADC map is significantly associated with PCa Gleason 
score (GS) in PZ, independently from the median ADC 
value (P < 0.05). Nketiah et al. [62] worked on distinguish-
ing GS3 + 4 from GS4 + 3 PCa with several T2 W MRI-
derived textural features and MRI parameters, among which 
angular second moment (ASM) and entropy produced the 

best results (AUC = 0.83, both). As the first study that had 
implemented cross-modality intensity statistics for identify-
ing radiomic features associated with GS, Chaddad et al. 
[63] presented a novel type of radiomic analysis model based 
on joint intensity matrices (JIMs), then evaluated its ability 
of predicting the GS in PCa patients, and compared it with 
GLCM. Final results showed that JIMs, which were sug-
gested as a complementary biomarker to predict PCa GS, 
described the heterogeneity across mpMRI images better 
than GLCM (AUC of 78.37% vs 68.62% for GS ≤ 6, 80.54% 
vs 71.09% for GS3 + 4, and 62.65% vs 60.39% for GS ≥ 4+3, 
respectively). Then, they tested and confirmed the hypoth-
esis that radiomic features extracted from mpMRI could 
predict the GS of patients with PCa in the same year [64]. 
Their research provided a reference for guiding the treatment 
planning of PCa, and also enlightened a new way for our 
future studies that multi-classification method can be applied 
to extract and analyze new multi-modal features.

Treatment evaluation and prognosis analysis

The management of advanced PCa has changed substantially 
with the availability of multiple effective novel treatments, 
which has led to improved disease survival. The imaging 
more precise, the earlier detection of metastatic disease 
and identification of oligometastatic disease more accurate 
are, so as to optimal assessment of treatment response. In 
prostate focal therapy, it is of great importance to localize 
malignant lesions accurately to increase biological effect 
of the tumor region while achieving a reduction in dose to 
non-cancerous tissue. Thus, a radiomics-based radiotherapy 
planning framework had been presented by Shiradkar et al. 
to generate targeted focal treatment plans [65]. It could boost 
dose to the cancerous lesions whilst minimize damage to the 
surrounding structures for brachytherapy and EBRT, as well 
as reduce treatment related side effects. Walsh et al. [66] pro-
vided a ‘proof-of-concept’ methodology enabling the deter-
mination of a threshold 5% that would most likely benefit 
from proton therapy prospectively. It justified the selection 
of proton-EBRT (P-EBRT) or photon-EBRT (X-EBRT) for 
PCa patients in a clinical decision support system (CDSS). 
For monitoring treatment changes, radiomics also plays a 
unique role. Abdollahi et al. compared radiomics features 
between pre- and post-radiotherapy and final results told that 
radiomics was being potentially useful imaging biomark-
ers for predicting the complications and structural changes 
in the bladder wall of PCa after RT (the highest AUC​mean 
0.68, of pre-IMRT T2W radiomics). Feature changes had a 
good correlation with radiation dose and radiation-induced 
urinary toxicity [67, 68].

In addition, besides the lesion itself, the PCa-associ-
ated diseases with high risk and bad prognosis should not 



51Chinese Journal of Academic Radiology (2020) 2:47–55	

1 3

be underestimated. A model combining texture analysis 
(TA) and machine learning for predicting the presence of 
histopathological extraprostatic extension (EPE) in PCa 
was suggested by Stanzione et al. [69], of which classi-
fier Bayesian network (BN) showed high diagnosis ACC 
(82.3%). Besides, extracapsular extension (ECE) may 
affect clinical decisions and prognosis, which needs to be 
predicting to help on surgical planning and reduce the risk. 
Ma et al. had proved the value of radiomics in preoperative 
prediction of ECE with a high ACC at 83.58% better than 
radiologists, and demonstrated the radiomics signature 
yielded a good performances for discrimination, calibra-
tion, and clinical usefulness [70, 71].

Radiogenomics

Radiogenomics is an encouraging field that combines 
genomics and medical imaging techniques, considered as 
a bridge connecting radiomics with genomics [72], while 
some challenges still need to be addressed. At present, 
the application of this technique in PCa is relatively less 
extensive and in-depth than that in other organs tumor 
such as brain, lung, or liver [72, 73]. Since PCa clini-
cal results are closely related to phosphatase and ten-
sin homolog (PTEN), loss of which is associated with 
increased clinical aggressive phenotype and mortality, 
related studies are giving out valuable potential. For 
example, McCann et al. [74] investigated the association 
of mpMRI features and PZ PCa, as a result of weak but 
significant negative correlation between GS and PTEN 
expression (r = − 0.30, p = 0.04) and between kep and 
PTEN expression (r = − 0.35, p = 0.02). Similarly, Switlyk 
et al. [75] explored the relationship between clinicopatho-
logic and mpMRI features s in 43 PCa patients underwent 
radical prostatectomy. They found that low PTEN expres-
sion significantly corresponded to low ADC value in PCa, 
whilst PTEN expression was negatively associated with 
lymph-node metastasis (bead arrays, p = 0.008; RT-qPCR, 
p < 0.001). On the other side, Stoyanova et al. [76, 77] 
adopted a unique approach and performed radiogenomic 
analysis on PCa patients underwent MR-guided biopsies. 
Radiomics features associated with prognostic biomark-
ers were first identified in that approach, allowing a more 
accurate radiomic–biological correlation significantly 
(≥ 0.9 in TRPM8, DPP4, and GCNT1). While the samples 
were small (6 patients, 17 biopsy samples), further large-
scale repeatable research is needed. As a relatively new 
imaging branch, radiogenomics is evolving and expected 
to play an important role in the clinical treatment of PCa, 
with an ultimate goal to predict prognosis and treatment 
response.

Habitat‑based radiomics

Habitat imaging has enormous utility to get insights of 
tumor phenotype and microenvironment quantitatively [78, 
79]. And as we know, intratumoral heterogeneity has long 
been a tricky obstacle in the diagnosis and management. For 
answering that, habitat-based radiomics was born at the right 
moment. Defining sub-regions and extracting habitat-based 
features will be added into the conventional process.

In 2018, Parra et al. [80] took use of perfusion curve 
patterns defined by DCE of mpMRI to identify the habitat 
of PCa. They evaluated both DCE and ADC features and 
affirmed the DCE features’ value for discriminating csPCa 
and ciPCa (with AUC of 0.82). Then, in the next year, they 
investigated prostate habitats by analyzing seven quantita-
tive DCE features based on the late area under the DCE 
time-activity curve (H-AUCf) [81], which was found of great 
value for predicting the csPCa (with best AUC of 0.82, 95% 
confidence interval (CI) [0.81–0.83]). Habitat-based radiom-
ics may be a hot trend, though there is very little research 
on PCa now. Thus, well-designed prospective studies with 
high-quality data are required to strengthen it in future work.

Deep learning

Deep learning, as the best promising method for radi-
omics, has been putting a step forward in radiomics. For 
instance, several studies focusing on PCa segmentation 
relying on deep learning have shown promising results 
recently. Actually, Liao et al. [82] have attempted for auto-
matic MRI prostate segmentation by deep learning frame-
work in 2013. In 2017, Cheng et al. [51] achieved auto-
mated MRI prostate segmentation using HNN and fivefold 
cross-validation, with Dice similarity coefficient (DSC) 
of (89.77% ± 3.29%) and a mean Jaccard similarity coef-
ficient (IoU) of (81.59% ± 5.18%). In 2019, Zhu et al. [83] 
proposed a boundary-weighted domain adaptive neural 
network (BOWDA-Net), which overcame the complexity 
between prostate and other structures and helped to seg-
ment prostate more accurate and sensitive (with high DSC 
of 89.67% and overperformed other methods, p < 0.05). 
However, it was limited as it worked on small data sets. 
Otherwise, to improve the performance in PCa diagno-
sis and treatment planning, Alkadi et al. [84] proposed a 
deep encoder–decoder CNN for detection and localization 
of PCa in T2WI images with gratifying results (average 
AUC of 0.995, ACC of 0.894, and recall of 0.928). Song 
et al. [85] also proposed deep CNN but in mpMRI for 
PCa diagnosis and prediction, with AUC of 0.944 (95% 
CI 0.876–0.994). However, mono-modality system was not 
as superior as multi-modality in model performance and 
generalization, which require larger data sets to validate 
in. At the same time, artificial intelligence (AI) provides 
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benefits at the expensive of a high false-positive rate [86, 
87] that needs to be under consideration and optimized.

Future directions, development, 
and potential issues

The application of AI in PCa is supposed to meet the clini-
cal demands closely and transformation of radiomics into 
the clinic may require a more comprehensive understand-
ing of the underlying morphologic tissue characteristics 
they reflect.

As heterogeneity is a well-known chasm of PCa, persis-
tent action should be taken to reduce the impact of hetero-
geneity, as well as improve the accuracy and objectivity in 
the further work. In addition, its multifocal nature prompts 
us to concentrate on PZ, TZ, surrounding tissue, and tumor 
microenvironment. Additionally, a minority of the prior 
studies focus on radiomics-guided treatment, which needs 
to be supported in further work.

Moreover, images’ differences can be tough due to 
the lack of uniform standard in scanning parameters and 
reconstruction algorithms for imaging equipment. Even in 
the same equipment, differences in contrast agent, scan-
ning thickness, convolution kernel, and even coils (body 
or endorectal), etc., will have potential influences on data 
analysis. Most of the existing studies are small sample 
exploration in a single institution, of which conclusions 
are short of extensive validation. Therefore, radiomics on 
PCa must be repeatedly refined and externally validated in 
multi-center, large-sample, randomized-controlled clinical 
trials, which can better interpret the complexity of PCa, 
by the way, meet the requirements of precision medicine. 
Perhaps, it is a good choice to unify standards, share data, 
or open source.

In addition, the application of AI in PCa should not be 
limited to simple computer-aided diagnosis (CADx) or 
machine learning, but deep learning to assist the comple-
tion of large data analysis to create more value and more 
radiologists should be involved in the sustainable develop-
ment task of AI. However, information security and privacy 
and the ethical issues of AI may pose a barrier when mining 
data depth by depth.

At present, radiomics alone is facing at a number of great 
challenges. For the foreseeable future, the multi-dimensional 
and multi-model radiomics combined with clinical and lab-
oratory information and other omics has become the next 
trend of AI-driven medicine. And that is exactly what the 
modern imaging rapidly evolving and expanding aiming at.

Conclusion

In conclusion, radiomics has the potential to become a 
useful assistant tool in clinical oncology imaging, provid-
ing important information with the characters, progno-
sis, treatment prediction, and response of tumors in PCa. 
However, the potential value of radiomics in PCa has not 
been fully investigated. In the face of great opportunities 
and challenges, we need to spare no efforts to expand it 
and derive more clinically meaningful trends, as well as 
to meet the developing needs of precision medicine and 
enhance precision medicine initiatives.
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