
Vol.:(0123456789)

Journal of Computational Social Science (2022) 5:383–400
https://doi.org/10.1007/s42001-021-00123-x

1 3

RESEARCH ARTICLE

Mitigation strategies against cascading failures
within a project activity network

Christos Ellinas1 · Christos Nicolaides2,3 · Naoki Masuda4,5,6

Received: 29 June 2020 / Accepted: 13 May 2021 / Published online: 18 June 2021
© The Author(s) 2021, corrected publication 2021

Abstract
Successful on-time delivery of projects is a key enabler in resolving major societal
challenges, such as wasted resources and stagnated economic growth. However, pro-
jects are notoriously hard to deliver successfully, partly due to their interconnected
and temporal complexity which makes them prone to cascading failures. Here,
we develop a cascading failure model and test it on a temporal activity network,
extracted from a large-scale engineering project. We evaluate the effectiveness of six
mitigation strategies, in terms of the impact of task failure cascading throughout the
project. In contrast to theoretical arguments, our results indicate that in the major-
ity of cases, the temporal properties of the activities are more relevant than their
structural properties in preventing large-scale cascading failures. In practice, these
findings could stimulate new pathways for designing and scheduling projects that
naturally limit the extent of cascading failures.

Keywords Project risk · Cascading failures · Mitigation strategies · Complex
networks

 * Christos Ellinas
 christos@nodeslinks.com

 * Naoki Masuda
 naokimas@buffalo.edu

1 Nodes and Links Ltd, Salisbury House, Station Road, Cambridge CB1 2LA, UK
2 Department of Business and Public Administration, University of Cyprus, 1 Panepistimiou Av.,

2109 Nicosia, Cyprus
3 Initiative on the Digital Economy, Massachusetts Institute of Technology, 100 Main St.,

Cambridge, MA 02142, USA
4 Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900,

USA
5 Computational and Data-Enabled Science and Engineering Program, State University of New

York at Buffalo, Buffalo, NY 14260-5030, USA
6 Faculty of Management and Economics, Dalian University of Technology, No. 2 Linggong

Road, Ganjingzi District, Dalian 116024, Liaoning, China

http://orcid.org/0000-0001-5146-6554
https://orcid.org/0000-0002-1485-2736
https://orcid.org/0000-0003-1567-801X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42001-021-00123-x&domain=pdf

384 Journal of Computational Social Science (2022) 5:383–400

1 3

Introduction

Project-based processes are central in resolving major societal challenges [35],
from accelerating economic growth through infrastructure development [25, 41]
to fostering public resilience through mobilizing emergency resources [38], [47].
World Bank data (2009) indicate that more than 22% of the world’s gross domes-
tic product—equivalent to approximately $48 trillion—relies almost entirely
on project-based delivery mechanisms [57]. Despite the importance of deliver-
ing projects successfully, many fail to meet their targets [69]. Delays, cost over-
runs and quality problems are regularly observed across all project domains,
from software development [48] and construction [43] to infrastructure [23] and
defence [12]. An industry survey reviewed 10,624 projects from 200 companies
in 30 countries and across a variety of industries and concluded that only 2.5%
of the companies delivered all of their projects successfully [50]. More recently,
a review of 1417 IT projects reveals that 236 of them experienced cost overruns
of at least 200% and the delivery of these projects was delayed by almost 70% in
time [22]. The implications of project failure are expected to increase even fur-
ther in the future due to their projected 1.5–2.5% annual growth in project value
[21].

Research into understanding project failure can be broadly classified into two
distinct, yet complementary, strands [52]. This first strand relies on qualitative
methods, focusing on mapping the relationships between sociological factors
that contribute to project failure, e.g., importance of leadership [59, 65], team
communication [45] and corporate culture [55]. This line of research is central
in identifying potential relationships that can control project failure (e.g., that
quality of the initial planning is correlated with the project performance, contex-
tual task features (i.e., technical complexity, novelty) is correlated with project
success [56]. Whilst important, this research strand is generally associated with
a multitude of biases such as recollection bias (i.e., information bias in which
recalled information is inaccurate) and self-report bias (i.e., behavioral bias in
which participants over-report positive results). As a result, these biases chal-
lenge the integration of their findings towards more general mitigation strategies
against project failure [52].

A second research strand relies on computational methods [4] that model the
condition of project failure, from the mechanism by which delay propagates [17]
to the propensity of wastefully repeating certain tasks [58]. Under this view, pro-
jects are typically modeled as directed acyclic graph, often called activity net-
work. This activity network corresponds to a set of distinct, yet interdependent
activities that need to be scheduled and sequenced under a given set of constraints
[66].

Using tools from operations research, the first surge of work on project fail-
ure focused on simulating an intuitive failure scenario—project-wide delays
that arise from delays in completing certain critical tasks [62]. The criticality of
these tasks arises from their inclusion in the critical path, which is defined as
the sequence of tasks that determines the project duration. As such, a delay of

385

1 3

Journal of Computational Social Science (2022) 5:383–400

x days in completing a critical task—and assuming that task has zero buffer in
relation to its immediate successor task(s)—the project will also be delayed by a
maximum of x days [17, 30]. Note the linear nature of this failure scenario, i.e.,
the project delay can never be higher than the sum of the individual task delays.
Prominent methods for evaluating the impact of delay propagation include criti-
cal path method [36], program evaluation and review technique [42], and their
Monte-Carlo variants.

Subsequent work on project failure has focused on an alternative failure scenario
in which changes in task specifications can trigger rework in subsequent, down-
stream tasks and similarly affect the timely delivery of the overall project. In this
case, a relatively minor change in the specifications of a single task can propagate
across an entire project, severely affecting the overall project performance. For
example, Sosa [60] provides a case where a single, minor change in the specifica-
tions of a task impacted nearly a third of all tasks within a project. Similarly, Ter-
wiesch and Loch [63] report a case where a similar change in task specifications
resulted in a 20–40% increase in the overall project cost. Additional cases have also
been reported by Mihm et al. [46]. In this case, a relatively minor change in the
specifications of a single task can propagate across an entire project, severely affect-
ing the overall project performance. This asymmetry between cause and effect sug-
gests that nonlinear effects are in place [46], which is distinct from the linear effects
of delay propagation as described in the previous paragraph.

Both failures scenarios—where a delay or a change in the task specification can
be the cause of a failure propagating within the project—can be understood within
the broader definition of an archetypal dynamical process called ‘cascading failure’.
By ‘cascading failure’, we refer to iterative processes in which a single failure leads
to subsequent failures, which can amplify the impact of the original failure, eventu-
ally leading to system-wide failure [9, 68]. Such cascade dynamics have been noted
in a wide range of research domains, including epidemic spreading [49, 53], social
contagion [2, 3], and traffic congestion in transportation systems [64], power grid
blackouts [8] and financial systemic failure [28].

Work within the project space supports the relevance of this network-oriented
view. For example, recent work has made links between project performance and the
number of connections between tasks [5, 14, 34], the heterogeneity by which those
connections are spread across tasks [33, 61], the necessity of these connections (i.e.,
“non-redundant” vs. “redundant”) [7] and the variety in the nature of these connec-
tions (e.g., functional dependency, information exchange) [5, 67].

Driven by the intersection of these lines of research (i.e., cascading failures and
network-oriented project view) recent studies tackled long-lasting project manage-
ment challenges using failure cascades as the central modeling framework. For
example, Ellinas et al. [15] assessed the propensity of a project in promoting con-
flicts between subcontractors by assessing the different incentives generated by their
respective involvement within different cascades of failures. Building on this work,
Ellinas [13] and Guo et al. [26] developed broader modeling frameworks to identify
certain project network features that influence the exposure of a project to cascad-
ing failures. However, this body of work does not provide any actionable mitigation
strategies by which a decision maker can contain these failure cascades. They rather

386 Journal of Computational Social Science (2022) 5:383–400

1 3

assessed the extent to which different project features could contribute to project’s
robustness against failure cascades.

To fill this gap, we develop a simple failure cascade model and use it to evaluate
the performance of six mitigation schemes. In terms of the cascade model, we build
on a popular cascade model by integrating the buffering effect of float between pairs
of tasks [24]. We do so by assuming that a large free float between two consecutive
tasks lowers the probability that failure in a task impacts its immediate successors.
We then use this model on an empirical activity network of 723 tasks and numeri-
cally evaluate the performance of six mitigation schemes. Each mitigation scheme
relies on some properties of nodes, either structural or temporal. Our overall objec-
tive is to identify which node’s property can provide the most effective way for pri-
oritizing which task(s) to be mitigated first. Our results suggest that in a majority of
cases, and in contrast to current theoretical arguments, the temporal (i.e., start and
end date of each task) rather than the structural properties of the activities (e.g., task
connectivity) provides the most efficient way for mitigating failure cascades. This
result has implications for decision makers on how to prioritize task mitigation for
improving project performance.

Experimental design

Data

We use real-world project data to evaluate the performance of six mitigation strat-
egies. The data are from a large-scale engineering project in the defence domain,
were human generated by a team of professional project planners and were used
throughout the lifecycle of the project to drive delivery. Specifically, the data set
corresponds to a set of planned activities (N = 723), which we refer to as tasks, that
need to be completed to deliver a commercial defence product. The overall dura-
tion of the project is 745 days. Each task has a scheduled start and end date and the
resolution of time is a day. The dependency between a pair of tasks is represented
by a directed edge. There are 1220 directed links in total. The directed edge from
task i–j, denoted by eij ∈ E , indicates that the output of task i, such as information
or a physical artifact (i.e., product), is an input to task j. A directed edge from task i

Fig. 1 Schematic of an activity network. A rounded rectangle represents a node (i.e., task). The gray
rounded rectangles represent the tasks that may fail in response to a failure of the seed node shown in red

387

1 3

Journal of Computational Social Science (2022) 5:383–400

to task j implies that task i must be completed before task j starts. Therefore, task j
can start only after all tasks that send a directed edge to task j have been completed.
Similarly, a failure in task i may directly impact task j, and potentially all following
(and reachable) tasks (see Fig. 1). The free float between task i and j is defined as
the time difference between the completion�ij of task i and the start of task j [51].
The free float is equivalent to a widely used term, inter-event time [31, 32, 44]. We
denote the free float between i and j as �ij.

The 723 activities (nodes) and the 1220 links define the activity network, which is
a time-stamped directed acyclic graph. The number of immediate predecessors and
successors of each task is equal to the task’s in-degree and out-degree, respectively.
The mean in- and out-degrees of a task are equal to 1.69. The in-degree has standard
deviation 4.45 and ranges from 0 to 90. A total of 111 nodes out of the 723 nodes
have an in-degree of 0. Those tasks are located in the most upstream position in the
network; and initiating any of these tasks does not need any other task to be com-
pleted beforehand. The out-degree has standard deviation 2.82 and ranges from 0 to
52. A total of 32 nodes have an out-degree of 0; these tasks are located in the most
downstream position in the network, and failure of any of these tasks does not cause
a cascading failure. The in- and out-degrees obey somewhat long-tailed distributions
(Fig. 2a), as is evidenced by their relatively large standard deviations as compared to
the mean. The inter-event time has the mean equal to 141.4 days, standard deviation

Fig. 2 Distributions of basic properties of the temporal network of tasks. a Survival probability (i.e.,
probability that the degree is larger than or equal to a specified value) of the in- and out-degrees of the
node. b Survival probability of the inter-event time. c Survival probability of the task duration. d Frac-
tion of tasks that have been completed by day t, plotted against t

388 Journal of Computational Social Science (2022) 5:383–400

1 3

169.5 days, and ranges from 0 to 670 days. The distribution of inter-event times is
shown in Fig. 2b. The duration of task has the mean equal to 62.1 days, standard
deviation 112.5 days, and ranges from 1 to 647 days. The distribution of the duration
of tasks is shown in Fig. 2c. As time progresses, tasks are completed; the fraction of
completed tasks by day is shown in Fig. 2d. The data set of the temporal network of
tasks, including the start time and end time of each task, is provided as supplemen-
tary information and is available online (see Data availability section).

Modeling cascading failures of tasks

We introduce a discrete-time cascading failure model with binary states of the node,
which is analogous to the Independent Cascade model [51] and other cascade-fail-
ure models [40, 52]. In our model, the probability that a failure propagates from
an affected node i to a non-affected downstream neighbor node of node i, denoted
by j, is a function of the free float between the two nodes and the values of the two
parameters, as we explain in the following.

The final state of node j (1 ≤ j ≤ N) is denoted by sj ∈ [0, 1] , where ‘0’ and ‘1’
correspond to the non-affected and affected state, respectively. We start the cascade
dynamics from an initial condition, where one seed node (which can be any node)
is in state 1 and all the other N − 1 nodes are in state 0. During the cascade dynam-
ics, node j may irreversibly switch from state 0 to state 1 if node j has at least one
upstream neighbour that is in state 1. Consequently, a node with no upstream neigh-
bors can only be in a state of 1 if and only if it is a seed node.

We determine the final state of each node (and hence the final cascade size) by
marking the nodes one by one as follows. Initially, the seed node is the only marked
node (i.e., finalized to state 1) in the network. During the course of the following
procedure, all nodes that are yet to be marked have state 0. Marked nodes have state
either 0 or 1. In each round, we pick an unmarked node j whose all upstream neigh-
bors have been marked. The first node to be marked after the seed node is a node
that does not have any upstream neighbor (i.e., in-degree equal to 0) or a node that
has the seed node as the only upstream neighbor. To determine the final state of
node j (i.e., to mark node j), we assume that the failure of each upstream neighbor of
node j, referred to as node i, independently causes node j to fail with probability pij .
Then, we set the final state of node j to 1 with probability

where E is the set of links. Otherwise, we set the final state of node j to 0. In Eq. 1,
the product term is the probability that node j does not fail, and each factor in the
product is the probability that node i does not cause the failure of node j. If si = 0 ,
this probability is equal to 1. If si = 1 , this probability is equal to 1 − pij . Once
the state of node j is determined in this manner, we mark node j and select a next
unmarked node such that all its upstream neighbors have been marked. Note that the
results do not depend on the order of marking the nodes.

(1)Pj = 1 −
∏

i;eij∈E

[(

1 − si
)

+ si
(

1 − pij
)]

,

389

1 3

Journal of Computational Social Science (2022) 5:383–400

To set the value of pij , we consider the impact of time between the completion
of task i and start of task j, which is called the free float in management literature
and inter-event time in network science literature. We denote this quantity by �ij .
We assume that the probability that the failure of node i causes the failure of node j
decreases as �ij increases because a larger �ij indicates that more time is available for
containing the effect of task i’s failure on its downstream neighbors [16, 39]. Reduc-
ing inter-event times has been suggested to reduce the risk of failure propagation as
well [10, 29]. Therefore, we assume that

where q0 ∈ [0, 1] and 𝜏(> 0) are parameters. Parameter q0 is the probability that task
j fails if task i does and there is no spare time (i.e., no free float) between the two
tasks, i.e., �ij = 0 . Equation 2 indicates that if the two tasks are far apart in time, it
is not likely that failure of one task triggers failure of a successor task. Parameter 𝜏
controls the impact of the free float, �ij , on the probability that the failure of node i
causes the failure of node j. By definition, a large 𝜏 value yields a small probability
that the failure of node i causes the failure of node j, and vice-versa.

Temporal mitigation of cascading failures

Robustness against cascading failures on networks can be engineered via struc-
tural or temporal mitigation schemes. Structural mitigation can be deployed when
the structure of the network can be changed. For example, in power grids, one can
modify the network structure to discourage the onset of large-scale cascades, e.g.,
by introducing network modules or purposefully fragmenting the network before a
cascade happens [27]. However, some networks that are susceptible to cascading
failures may not accommodate structural mitigation. In this situation, temporal miti-
gation, i.e., changing the timing of nodes or links without changing the static net-
work structure, may be deployed without compromising the function of the system.
In general, a temporal mitigation scheme can be implemented if nodes or links have
timestamps that are relatively flexible. For example, in air traffic networks where
nodes and time-stamped links are airports and flights, respectively, delaying flights
is probably more feasible than changing the destination of the flights as a preven-
tive measure against cascading failures [1, 20]. Similarly, in project management
context, deploying structural mitigation in activity networks is not often practical
because a directed edge from task i (e.g., designing a structural column for a build-
ing) to task j (e.g., manufacturing that column) indicates that task i’s output is neces-
sary for starting task j, and therefore cannot be amended.

By the construction of our cascade model, increasing an inter-event time is a
viable mechanism to reduce the probability that failure propagates from a task to
another. Therefore, by postponing the start of a downstream task j, we reduce the
probability of it being affected by a failure in its predecessor, task i. We utilize this
mechanism to construct mitigation schemes, where we postpone some of the tasks
located downstream to the seed node that has failed. Doing so increases some of the

(2)pij = q0 exp

(

−
𝜏ij

𝜏

)

,

390 Journal of Computational Social Science (2022) 5:383–400

1 3

inter-event times in the nodes belonging to the out-component of the seed node (i.e.,
the nodes downstream to the seed node). Therefore, a mitigation scheme is expected
to reduce the overall probability that the failure propagates.

A mitigation scheme has to respect the end date of the entire project; no task can
be postponed beyond the delivery date of the entire project. Furthermore, any down-
stream neighbor of task j is only allowed to start after task j has been completed.
Therefore, the extent of postponing task j is further constrained by the start date of
its downstream neighbours. Note that we allow the end date of task j to coincide
with the start date of its downstream neighbor, in which case the inter-event time is
equal to zero.

Precisely, the fraction of the nodes in the out-component of the seed node for
which we postpone the start time is denoted by � ∈ [0, 1] . For each mitigation
scheme, we first consider the ranking of nodes in the out-component of the seed
node. We then sequentially postpone a fraction � of these nodes in descending order
of the rank. When postponing each task i sequentially, we postpone it as much as
possible under the following two conditions. First, adjacent tasks must not overlap
[37]. In other words, the end date of task i must not exceed the start date of any task
j that needs completion of task i. Second, the overall project duration must not be
extended. In other words, the end date of task i must not exceed the original delivery
date of the project.

We test six mitigation schemes, in which nodes to be mitigated are ranked based
on either the (i) out-degree, (ii) size of out-component (i.e., the number of nodes
that are reachable from the node in question), (iii) duration of the task, (iv) start
date of the task, (v) end date of the task or (vi) at random. For example, consider
the network shown in the upper part of Fig. 3a and assume that node v1 fails. The
subscript attached to the nodes in the figure represents the ranking in terms of the
out-degree. The figure indicates that node v3 is the first node to be mitigated (i.e.,
postponed). The amount of maximum postponement that can be applied to node v3
is constrained by the start date of its immediate neighbor, node v4 . Therefore, we
postpone node v3 such that its new end date is equal to the start date of node v4 (the
network shown in the lower part of Fig. 3a). Similarly, node v5 is postponed such
that its new end date is equal to the start date of node v6 . The same procedure is
applied to node v2 and then to node v6 . Note that postponing node v5 makes the inter-
event time between node v5 and node v6 equal to zero. However, postponing node v6
subsequently increases the same inter-event time. We do not postpone the remain-
ing two tasks with the lowest out-degrees, i.e., v4 and v7 , because the fraction of the
mitigated nodes, denoted by � , is set to 0.67 for illustration purposes, such that only
four out of the six nodes downstream to node v1 can be mitigated. Implementation
of three other mitigation schemes on the same network and the same � value is sche-
matically shown in Fig. 3b–d.

The mitigation scheme is implemented as follows. Once seed node i fails, all
nodes reachable from node i along a directed path (i.e., nodes belonging to the out-
component of node i), which can fail, are rank ordered based on the node’s score.
The score of these nodes is equal to one of the following six quantities: out-degree,
size of the out-component (i.e., the number of nodes that are reachable from the
node to be scored), duration of the task, start date of the task, end date of the task,

391

1 3

Journal of Computational Social Science (2022) 5:383–400

or an entirely randomly drawn value. When multiple nodes have identical scores,
we break the tie by ranking the nodes having the same score in a uniformly random
order.

We denote by Ṽ the rank-ordered set of the nodes downstream to node i. In the
example shown in Fig. 3a, in which the rank is determined according to the out-
degree of the task, we obtain Ṽ =

{

v3, v5, v2, v6, v4, v7
}

 . Parameter � ∈ [0, 1] speci-
fies the fraction of nodes in Ṽ that are to be mitigated. In Fig. 3a, we set � = 0.67 .
Therefore, the four highest-ranked nodes out of the six nodes, i.e., v3, v5, v2 and v6 ,
are mitigated. Node v3 is first postponed until its end date coincides with the start
date of its downstream neighbor v4 . Next, the same postponement process is applied
to node v5 , node v2 and then node v6 . The temporal network after the mitigation is
shown in the lower part of Fig. 3a.

Performance measures for mitigation schemes, R1 and R2

We evaluate the performance of the six mitigation schemes in terms of their ability
of containing cascading failures. These mitigation schemes attempt to increase �ij for
some i and j to reduce the probability that a failure cascade progresses. Our focus is

Fig. 3 An example illustrating the four mitigation schemes: a out-degree, b start date, c end date and d
random. For each mitigation scheme, the top and bottom panels correspond to before and after the miti-
gation, respectively. Every node is ranked (subscript index) and postponed in that order. The tie is broken
uniformly randomly. In all examples, we set � = 0.67 such that four out of the six tasks are mitigated

392 Journal of Computational Social Science (2022) 5:383–400

1 3

on the impact of the parameters that control the cascading dynamics
(

q0 and 𝜏
)

 and
the fraction of the tasks to be postponed (�).

We measure the performance of each mitigation scheme in terms of two quanti-
ties. The first quantity, denoted by R1, is defined as the cascade size that stems from
a seed node when the mitigation scheme is implemented, divided by the cascade
size when there is no mitigation, averaged over all seed nodes. Quantity R1 captures
the relative impact of mitigation in the sense that the contribution of mitigating a
large cascade is equivalent to that of mitigating a small cascade. The second quan-
tity, denoted by R2, is defined as the cascade size averaged over all seed nodes when
the mitigation is applied, which is then divided by the cascade size averaged over all
seed nodes when no mitigation is applied. Quantity R2 captures the absolute impact
of mitigation in the sense that mitigating a large cascade is considered to be more
valuable than mitigating a small cascade. A small R1 or R2 value indicates that the
mitigation scheme is efficient.

For the given values of q0 , 𝜏 , � , and the given seed node, we ran the cascading
dynamics 100 times (except for Supplementary Fig. 1, for which we ran the simula-
tion 300 times). In the figures, we show the average values of the observables over
all runs.

Results

We first focus on the unmitigated failure cascades to understand the effect of the
free parameters of our model q0 and 𝜏 on the impact of failure. By definition, higher
values of q0 and 𝜏 increase the probability of a single activity failing, resulting in a
larger average cascade size (Fig. 4a). In addition, a higher value of 𝜏 increases both
the average cascade size and the probability of encountering a cascade of a given
size (Fig. 4b). Activity networks are prone to large failure cascades, where the fail-
ure of a single activity can impact a disproportionately large number of subsequent
activities. The heavy-tailed distribution of all cascade sizes highlights the dispro-
portionate nature of these cascades, with a majority of failure cascades impacting a

Cascade size,

~

~

~
~

Av
er

ag
e

ca
sc

ad
e

si
ze

Fig. 4 a Average cascade size as a function of q
0
 for four values of 𝜏 . b Survival probability of observing

a cascade of size x , where we set q
0
= 1 (i.e., worst case scenario)

393

1 3

Journal of Computational Social Science (2022) 5:383–400

small number of tasks and a small number of failure cascades impacting many tasks.
For example, when the probability that task j fails if task i does and there is no spare
time between them (i.e., q0 = 1) and time dependence is low (i.e., 𝜏 = 103), the aver-
age cascade size is ~ 7 (Fig. 4a), whilst the largest cascade size is over 100 (Fig. 4b).

In the case where we mitigate all downstream tasks (i.e., � = 1), the mitigation
scheme based on the end date of the task outperforms the other five mitigation
schemes. This is the case in terms of both performance measures R1 (Fig. 5) and
R2 (Fig. 6). Quantities R1 and R2 measure the relative and absolute reduction in the
cascade size by a mitigation scheme. These figures also show that apart from the
mitigation scheme based on the end date of the task, the random mitigation scheme
outperforms the other four mitigation schemes. The relative ranking of the six miti-
gation schemes is consistent in the whole range of q0 and 𝜏 ∈

{

1, 10, 102, 103
}

 ,
except for 𝜏 = 103 , where there are some rank changes presumably due to random
fluctuations. Note that as 𝜏 tends large (̃𝜏 ≥ 103), pij is approximately equal to q0
regardless of the size of �ij and regardless of the mitigation scheme. Therefore, R1
and R2 converge to 1 for any q0 as 𝜏 increases (see Supplementary Fig. 1 for numeri-
cal results with 𝜏 = 104 and 𝜏 = 105).

To investigate the entire parameter space, we identified the mitigation scheme that
was the most efficient, i.e., yielding the smallest value of R1 and R2, when we varied
q0 , 𝜏 and � . The results in terms of R1 are shown in Fig. 7. When there is little varia-
tion between the best and worst performing schemes (<1%; arbitrarily chosen; white

Fig. 5 Performance of the six mitigation schemes in terms of R1, as a function of q
0
 . a 𝜏 = 1 . b 𝜏 = 10 . c

𝜏 = 10
2 . d 𝜏 = 10

3 . We set � = 1

394 Journal of Computational Social Science (2022) 5:383–400

1 3

Fig. 6 Performance of the six mitigation schemes in terms of R2, as a function of q
0
 . a 𝜏 = 1 . b 𝜏 = 10 . c

𝜏 = 10
2 . d 𝜏 = 10

3 . We set � = 1

Fig. 7 Best performing mitigation scheme in terms of R1 in the parameter space spanned by q
0
 and � . a

𝜏 = 1 . b 𝜏 = 10 . c 𝜏 = 10
2 . d 𝜏 = 10

3

395

1 3

Journal of Computational Social Science (2022) 5:383–400

regions labeled ‘Unspecified’ in Fig. 7), we argue that no best mitigation scheme
exists. Figure 7 reveals two parameter regimes. First, when � ≥ 0.8 , the mitigation
scheme based on either the out-degree, duration, end date or at random performs
the best, depending on the specific combination of � and q0 values. As 𝜏 increases
from 1 to 103 , the mitigation scheme based on the end date tends to be consistently
the best in this parameter regime (Fig. 7d). Second, when 𝛾 < 0.8 , the mitigation
scheme based on the start date tends to be the best performing mitigation scheme
across the entire range of q0 and 𝜏 . The results in terms of R2 (Supplementary Fig. 2)
are similar to those in terms of R1 (Fig. 7).

Discussion

We modeled project failures as cascading failures on networks composed of tasks
constituting the project. The model incorporates both structural and temporal fea-
tures of activity networks of projects. We implemented six mitigation schemes
by postponing a fraction � of tasks downstream to the task that has failed. When
one was allowed to postpone all the tasks downstream to the task that has failed,
our numerical results indicated that it was more efficient to prioritize task mitiga-
tion according to the end date of each task than the other five mitigation schemes.
When one was allowed to postpone a relatively small fraction of tasks, it was gen-
erally more efficient to postpone tasks based on their start date. Some additional
cases existed where the mitigation scheme based on the out-degree or duration of
the task was the most efficient. Specifically, when � is large, either the mitigation
scheme based on the out-degree, that based on the duration, or that based on the end
date was the best. These numerical results suggest that, in a majority of the param-
eter region that we have explored, temporal features of the tasks, such as the dura-
tion, start and end date of the task, may be more important than structural features,
such as the out-degree of the task, for preventing large-scale cascading failures of
projects.

The present results suggest that the importance of tasks should not only be ranked
based on the impact (i.e., the size of the cascade failure) that the failure of a single
task can cause (e.g., project delay) but also based on the extent to which the impact
can be mitigated. We provided proxies for identifying important tasks in the sense
of mitigation using a task’s start and end date. Using these proxies, decision mak-
ers can focus on proactively managing these tasks. One way for incorporating this
in practice is to relax the typically strict constraints in terms of start (and end) date
for some tasks by, for example, removing monetary penalties for such delays [19].
Relaxing such penalties can introduce planning flexibility for decision makers to
purposefully postpone certain tasks, reducing the overall exposure of the project to
cascading failures.

This work is aligned with other, domain-specific research strands that focus on
the broader objective of improving project performance. For example, Eppinger
et al. [18] focused on modular and decomposable projects, where links between
activities can be modified to some extent [18]. By doing so, the authors were able to
re-sequence certain activities to reduce risk and improve overall project performance

396 Journal of Computational Social Science (2022) 5:383–400

1 3

[18]. Based on this idea, Baldwin and Clark [6] deployed task re-sequencing for
optimizing project modularity, which was argued to be able to reduce project risk
[6]. In these scenarios, structural mitigation is deployed because there are no hard
constraints assumed on the links between activities, so that the links can be rewired.
In our case, we assumed temporal mitigation due to the constraint that the network
structure, which represents precise inter-dependency among the tasks, is not allowed
to be changed. Despite the contextual differences, their work and ours have the com-
mon thread of utilizing network structure and complex systems thinking for improv-
ing project performance, which we believe is a promising research direction.

Our modeling framework has some limitations. First, our analysis has focused
only on the benefits of deploying mitigation in the form of postponing the start
date of tasks. However, postponing tasks may increase the number of active tasks
on particular days, which is generally associated with poor project performance
due to an increased cost or decreased quality [11, 37, 58]. In addition, postponing
tasks is impossible when a sequence of tasks has no float between any consecu-
tive pair of tasks, which is a type of critical path [54]. Future work should consider
this drawback in conjunction with the benefits potentially gained through the miti-
gation mechanisms proposed in the present study. Second, from a methodological
standpoint, our approach is limited by the single pass in which mitigation is applied
to tasks. Consider the example shown in Fig. 3a, in which node v5 was postponed
before node v6 was. In this case, the amount of postponement is constrained by the
start date of node v6 . Postponing node v6 at a later stage opens up the opportunity for
node v5 to be further postponed, which is currently not exploited. One can exploit
this opportunity to explore further improvements in mitigation efficiency. Third, a
mitigation scheme can be classified into passive and active. In a passive mitigation
scheme, one modifies the structure or time stamps of the activity network before a
cascade is possibly seeded. In contrast, in an active mitigation scheme, one modifies
the activity network while a cascade is progressing. In the present study, we focused
on active mitigation schemes. Carefully planning the start time of each task, given,
for example, the network structure and the possibility of different tasks to fail with
different probabilities, may consist in a plausible passive mitigation scheme on the
activity network. This topic also warrants future work. Fourth, we do know have
mechanistic understanding of why one mitigation scheme works better than another.
To clarity this requires a more systematic investigation, possibly involving multiple
data sets, which is beyond the scope of the present study.

In addition, our methodology hints to the possibility of mitigation having unin-
tended negative effects. In the example shown in Fig. 3a, the probability that the
failure of node v1 propagates to node v2 has been reduced because �v1v2 has been
increased. This is a positive effect of mitigation that we have intended. However,
in the same example, the probability that the failure of node v2 propagates to node
v3 has been increased compared to the case of the unmitigated activity network,
because the mitigation has decreased �v2v3 . This is a negative effect of mitigation that
we have not intended.

Despite these and other possible limitations, the present modeling framework
serves as a stepping stone for future work. It opens new pathways of exploring

397

1 3

Journal of Computational Social Science (2022) 5:383–400

whether causal relationships exist between structural and/or temporal features of
temporal networks of tasks and mitigation effectives and efficiency.

Supplementary Information The online version contains supplementary material available at https:// doi.
org/ 10. 1007/ s42001- 021- 00123-x.

Data availability The datasets generated during and/or analyzed during the current study are available in
the GitHub repository https:// github. com/ naoki mas/ proje ct_ netwo rk.

Declarations

Conflict of interest The authors declare no competing interests. CE is the co-founder of Nodes & Links.
Nodes & Links provided support in the form of salaries for CE, but did not have any additional role in the
study design, analysis, decision to publish, or preparation of the manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. AhmadBeygi, S., Cohn, A., Guan, Y., & Belobaba, P. (2008). Analysis of the potential for delay
propagation in passenger airline networks. Journal of Air Transport Management, 14(5), 221–
236. https:// doi. org/ 10. 1016/j. jairt raman. 2008. 04. 010

 2. Aral, S., & Nicolaides, C. (2017). Exercise contagion in a global social network. Nature Com-
munications, 8, 14753. https:// doi. org/ 10. 1038/ ncomm s14753

 3. Aral, S., & Walker, D. (2011). Viral product design: A randomized trial of peer influence in net-
works. Management Science, 57(9), 1623–1639. https:// doi. org/ 10. 1287/ mnsc. 1110. 1421

 4. Ashworth, M. J., & Carley, K. M. (2007). Can tools help unify organization theory? Perspectives
on the state of computational modeling. Computational and Mathematical Organization Theory,
13(1), 89–111. https:// doi. org/ 10. 1007/ s10588- 006- 9000-9

 5. Baccarini, D. (1996). The concept of project complexity—a review. International Journal of
Project Management, 14(4), 201–204. https:// doi. org/ 10. 1016/ 0263- 7863(95) 00093-3

 6. Baldwin, C. Y., & Clark, K. B. (2006). Modularity in the design of complex engineering sys-
tems. In: D. Braha, A. Minai, & Y. Bar-Yam (Eds.), Complex Engineered Systems (pp. 175–
205). Springer, Berlin, Heidelberg: Understanding Complex Systems. https:// doi. org/ 10.
1007/3- 540- 32834-3_9

 7. Browning, T. R., & Yassine, A. A. (2010). Resource-constrained multi-project scheduling: Prior-
ity rule performance revisited. International Journal of Production Economics, 126(2), 212–228.
https:// doi. org/ 10. 1016/j. ijpe. 2010. 03. 009

 8. Brummitt, C. D., D’Souza, R. M., & Leicht, E. A. (2012). Suppressing cascades of load in
interdependent networks. Proceedings of the National Academy of Sciences, 109(12), 680–689.
https:// doi. org/ 10. 1073/ pnas. 11105 86109

 9. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade
of failures in interdependent networks. Nature, 464(7291), 1025–1028. https:// doi. org/ 10. 1038/
natur e08932

https://doi.org/10.1007/s42001-021-00123-x
https://doi.org/10.1007/s42001-021-00123-x
https://github.com/naokimas/project_network
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jairtraman.2008.04.010
https://doi.org/10.1038/ncomms14753
https://doi.org/10.1287/mnsc.1110.1421
https://doi.org/10.1007/s10588-006-9000-9
https://doi.org/10.1016/0263-7863(95)00093-3
https://doi.org/10.1007/3-540-32834-3_9
https://doi.org/10.1007/3-540-32834-3_9
https://doi.org/10.1016/j.ijpe.2010.03.009
https://doi.org/10.1073/pnas.1110586109
https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932

398 Journal of Computational Social Science (2022) 5:383–400

1 3

 10. Buzna, L., Peters, K., Ammoser, H., Kühnert, C., & Helbing, D. (2007). Efficient response to
cascading disaster spreading. Physical Review E, 75(5), 056107. https:// doi. org/ 10. 1103/ PhysR
evE. 75. 056107

 11. Cho, S. H., & Eppinger, S. D. (2005). A simulation-based process model for managing complex
design projects. IEEE Transactions on Engineering Management, 52(3), 316–328. https:// doi.
org/ 10. 1109/ TEM. 2005. 850722

 12. Drezner, J. A., Jarvaise, J. M., Hess, R. W., Norton, D. M., & Hough, P. G. (1993). An analysis
of weapon system cost growth, (RAND Corporation MR-291-AF). Santa Monica, CA: RAND
Corporation.

 13. Ellinas, C. (2019). The domino effect: An empirical exposition of systemic risk across project
networks. Production and Operations Management, 28, 63–81. https:// doi. org/ 10. 1111/ poms.
12890

 14. Ellinas, C., Allan, N., & Johansson, A. (2018). Towards project complexity evaluation: a structural
perspective. IEEE Systems Journal, 12, 228–239. https:// doi. org/ 10. 1109/ JSYST. 2016. 25623 58

 15. Ellinas, C., Allan, N., & Johansson, A. (2016). Project systemic risk: Application examples of a
network model. International Journal of Production Economics, 182, 50–62. https:// doi. org/ 10.
1016/j. ijpe. 2016. 08. 011

 16. Ellinas, C., Allan, N., Durugbo, C., & Johansson, A. (2015). How robust is your project? From
local failures to global catastrophes: A complex networks approach to project systemic risk.
PLoS ONE, 10, e0142469. https:// doi. org/ 10. 1371/ journ al. pone. 01424 69

 17. Elmaghraby, S. E. (1995). Activity nets: A guided tour through some recent developments. Euro-
pean Journal of Operational Research, 82(3), 383–408. https:// doi. org/ 10. 1016/ 0377- 2217(94)
00184-e

 18. Eppinger, S. D., Whitney, D. E., Smith, R. P., & Gebala, D. A. (1994). A model-based method
for organizing tasks in product development. Research in Engineering Design, 6(1), 1–13.
https:// doi. org/ 10. 1007/ BF015 88087

 19. Estévez-Fernández, A. (2012). A game theoretical approach to sharing penalties and rewards in
projects. European Journal of Operational Research, 216(3), 647–657. https:// doi. org/ 10. 1016/j.
ejor. 2011. 08. 015

 20. Fleurquin, P., Ramasco, J. J., & Eguiluz, V. M. (2013). Systemic delay propagation in the US
airport network. Scientific Reports, 3, 1159. https:// doi. org/ 10. 1038/ srep0 1159

 21. Flyvbjerg, B. (2014). What you should know about megaprojects and why: An overview. Project
Management Journal, 45(2), 6–19. https:// doi. org/ 10. 1002/ pmj. 21409

 22. Flyvbjerg, B., & Budzier, A. (2011). Why your it project may be riskier than you think. Harvard
Business Review, 89, 601–603.

 23. Flyvbjerg, B., Holm, M. K. S., & Buhl, S. L. (2003). How common and how large are cost over-
runs in transport infrastructure projects? Transport Reviews, 23(1), 71–88. https:// doi. org/ 10.
1080/ 01441 64030 9904

 24. Goldenberg, J., Libai, B., & Muller, E. (2001). Talk of the network: A complex systems look at
the underlying process of word-of-mouth. Marketing Letters, 12(3), 211–223. https:// doi. org/ 10.
1023/A: 10111 22126 881

 25. Grimsey, D., & Lewis, M. K. (2002). Evaluating the risks of public private partnerships for
infrastructure projects. International Journal of Project Management, 20(2), 107–118. https://
doi. org/ 10. 1016/ S0263- 7863(00) 00040-5

 26. Guo, N., Guo, P., Dong, H., Zhao, J., & Han, Q. (2019). Modeling and analysis of cascading fail-
ures in projects: A complex network approach. Computers and Industrial Engineering, 127, 1–7.
https:// doi. org/ 10. 1016/j. cie. 2018. 11. 051

 27. Guo, H., Zheng, C., Iu, H. H. C., & Fernando, T. (2017). A critical review of cascading failure
analysis and modeling of power system. Renewable and Sustainable Energy Reviews, 80, 9–22.
https:// doi. org/ 10. 1016/j. rser. 2017. 05. 206

 28. Haldane, A. G., & May, R. M. (2011). Systemic risk in banking ecosystems. Nature, 469(7330),
351–355. https:// doi. org/ 10. 1038/ natur e09659

 29. Helbing, D. (2013). Globally networked risks and how to respond. Nature, 497(7447), 51–59.
https:// doi. org/ 10. 1038/ natur e12047

 30. Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-constrained project sched-
uling: A survey of recent developments. Computers and Operations Research, 25(4), 279–302.
https:// doi. org/ 10. 1016/ S0305- 0548(97) 00055-5

https://doi.org/10.1103/PhysRevE.75.056107
https://doi.org/10.1103/PhysRevE.75.056107
https://doi.org/10.1109/TEM.2005.850722
https://doi.org/10.1109/TEM.2005.850722
https://doi.org/10.1111/poms.12890
https://doi.org/10.1111/poms.12890
https://doi.org/10.1109/JSYST.2016.2562358
https://doi.org/10.1016/j.ijpe.2016.08.011
https://doi.org/10.1016/j.ijpe.2016.08.011
https://doi.org/10.1371/journal.pone.0142469
https://doi.org/10.1016/0377-2217(94)00184-e
https://doi.org/10.1016/0377-2217(94)00184-e
https://doi.org/10.1007/BF01588087
https://doi.org/10.1016/j.ejor.2011.08.015
https://doi.org/10.1016/j.ejor.2011.08.015
https://doi.org/10.1038/srep01159
https://doi.org/10.1002/pmj.21409
https://doi.org/10.1080/01441640309904
https://doi.org/10.1080/01441640309904
https://doi.org/10.1023/A:1011122126881
https://doi.org/10.1023/A:1011122126881
https://doi.org/10.1016/S0263-7863(00)00040-5
https://doi.org/10.1016/S0263-7863(00)00040-5
https://doi.org/10.1016/j.cie.2018.11.051
https://doi.org/10.1016/j.rser.2017.05.206
https://doi.org/10.1038/nature09659
https://doi.org/10.1038/nature12047
https://doi.org/10.1016/S0305-0548(97)00055-5

399

1 3

Journal of Computational Social Science (2022) 5:383–400

 31. Holme, P. (2015). Modern temporal network theory: A colloquium. European Physical Journal
B, 88, 234. https:// doi. org/ 10. 1140/ epjb/ e2015- 60657-4

 32. Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125. https://
doi. org/ 10. 1016/j. physr ep. 2012. 03. 001

 33. Homer-Dixon, T. (2010). The ingenuity gap: Can we solve the problems of the future? Vintage,
Canada.

 34. Jacobs, M. A., & Swink, M. (2011). Product portfolio architectural complexity and operational
performance: Incorporating the roles of learning and fixed assets. Journal of Operations Man-
agement, 29(7–8), 677–691. https:// doi. org/ 10. 1016/j. jom. 2011. 03. 002

 35. Jensen, A., Thuesen, C., & Geraldi, J. (2016). The projectification of everything: Projects as
a human condition. Project Management Journal, 47(3), 21–34. https:// doi. org/ 10. 1177/ 87569
72816 04700 303

 36. Kelley, J. E., & Walker, M. R. (1959). Critical-path planning and scheduling. Proceedings of
Eastern Joint IRE-AIEE-ACM Computer Conference, 160–173. https:// doi. org/ 10. 1145/ 14602
99. 14603 18

 37. Krishnan, V., Eppinger, S. D., & Whitney, D. E. (2008). A model-based framework to overlap prod-
uct development activities. Management Science, 43(4), 437–451. https:// doi. org/ 10. 1287/ mnsc.
43.4. 437

 38. Kusumasari, B., Alam, Q., & Siddiqui, K. (2010). Resource capability for local government in
managing disaster. Disaster Prevention and Management, 19(4), 438–451. https:// doi. org/ 10. 1108/
09653 56101 10703 67

 39. Lawson, M. B. (2001). In praise of slack: time is of the essence. Academy of Management Perspec-
tives, 15(3), 125–135. https:// doi. org/ 10. 5465/ ame. 2001. 52296 58

 40. Lorenz, J., Battiston, S., & Schweitzer, F. (2009). Systemic risk in a unifying framework for cas-
cading processes on networks. European Physical Journal B, 71, 441–460. https:// doi. org/ 10. 1140/
epjb/ e2009- 00347-4

 41. Love, P. E. D., Davis, P. R., Chevis, R., & Edwards, D. J. (2010). Risk/reward compensation model
for civil engineering infrastructure alliance projects. Journal of Construction Engineering and Man-
agement, 137(2), 127–136. https:// doi. org/ 10. 1061/ (asce) co. 1943- 7862. 00002 63

 42. Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959). Application of a technique for
research and development program evaluation. Operations Research, 7(5), 646–669. https:// doi. org/
10. 1287/ opre.7. 5. 646

 43. Mansfield, N. R., Ugwu, O. O., & Doran, T. (1994). Causes of delay and cost overruns in Nigerian
construction projects. International Journal of Project Management, 12(4), 254–260. https:// doi.
org/ 10. 1016/ 0263- 7863(94) 90050-7

 44. Masuda, N., & Lambiotte, R. (2016). A guide to temporal networks. World Scientific.
 45. Matta, N. F., & Ashkenas, R. N. (2003). Why good projects fail anyway. Harvard Business Review,

81(9), 109–116.
 46. Mihm, J., Loch, C., & Huchzermeier, A. (2003). Problem-solving oscillations in complex engineer-

ing projects. Management Science, 49(6), 733–750. https:// doi. org/ 10. 1287/ mnsc. 49.6. 733. 16021
 47. Moe, T. L., & Pathranarakul, P. (2006). An integrated approach to natural disaster management:

public project management and its critical success factors. Disaster Prevention and Management,
15(3), 396–413. https:// doi. org/ 10. 1108/ 09653 56061 06698 82

 48. Moløkken, K., & Jørgensen, M. (2003). A review of software surveys on software effort estima-
tion. In: 2003 International Symposium on Empirical Software Engineering, 2003. ISESE 2003.
Proceedings, pp. 223–230. https:// doi. org/ 10. 1109/ ISESE. 2003. 12379 81

 49. Nicolaides, C., Cueto-Felgueroso, L., González, M. C., & Juanes, R. (2012). A metric of influen-
tial spreading during contagion dynamics through the air transportation network. PLoS ONE, 7(7),
e40961. https:// doi. org/ 10. 1371/ journ al. pone. 00409 61

 50. Nieto-Rodriguez, A., & Evrard, D. (2004). Boosting Business Performance through Programme and
Project Management. London, UK: PriceWaterhouseCoopers.

 51. Pagani, G. A., & Aiello, M. (2013). The power grid as a complex network: A survey. Physica A,
392(11), 2688–2700. https:// doi. org/ 10. 1016/j. physa. 2013. 01. 023

 52. Parvan, K., Rahmandad, H., & Haghani, A. (2015). Inter-phase feedbacks in construction projects.
Journal of Operations Management, 40(1), 48–62. https:// doi. org/ 10. 1016/j. jom. 2015. 07. 005

 53. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes
in complex networks. Reviews of Modern Physics, 87(3), 925. https:// doi. org/ 10. 1103/ RevMo dPhys.
87. 925

https://doi.org/10.1140/epjb/e2015-60657-4
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.jom.2011.03.002
https://doi.org/10.1177/875697281604700303
https://doi.org/10.1177/875697281604700303
https://doi.org/10.1145/1460299.1460318
https://doi.org/10.1145/1460299.1460318
https://doi.org/10.1287/mnsc.43.4.437
https://doi.org/10.1287/mnsc.43.4.437
https://doi.org/10.1108/09653561011070367
https://doi.org/10.1108/09653561011070367
https://doi.org/10.5465/ame.2001.5229658
https://doi.org/10.1140/epjb/e2009-00347-4
https://doi.org/10.1140/epjb/e2009-00347-4
https://doi.org/10.1061/(asce)co.1943-7862.0000263
https://doi.org/10.1287/opre.7.5.646
https://doi.org/10.1287/opre.7.5.646
https://doi.org/10.1016/0263-7863(94)90050-7
https://doi.org/10.1016/0263-7863(94)90050-7
https://doi.org/10.1287/mnsc.49.6.733.16021
https://doi.org/10.1108/09653560610669882
https://doi.org/10.1109/ISESE.2003.1237981
https://doi.org/10.1371/journal.pone.0040961
https://doi.org/10.1016/j.physa.2013.01.023
https://doi.org/10.1016/j.jom.2015.07.005
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925

400 Journal of Computational Social Science (2022) 5:383–400

1 3

 54. Project Management Institute (2017). Project management body of knowledge: A guide to the
project management body of knowledge. In Newtown Square, Pennsylvania: Project Management
Institute.

 55. Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying software project risks: An inter-
national Delphi study. Journal of Management Information Systems, 17(4), 5–36. https:// doi. org/ 10.
1080/ 07421 222. 2001. 11045 662

 56. Scott-Young, C., & Samson, D. (2008). Project success and project team management: Evidence
from capital projects in the process industries. Journal of Operations Management, 26(6), 749–766.
https:// doi. org/ 10. 1016/j. jom. 2007. 10. 006

 57. Scranton, P. (2014). Projects as a focus for historical analysis: Surveying the landscape. History and
Technology, 30(4), 354–373. https:// doi. org/ 10. 1080/ 07341 512. 2014. 10031 64

 58. Smith, R. P., & Eppinger, S. D. (1997). Identifying controlling features of engineering design itera-
tion. Management Science, 43(3), 276–293. https:// doi. org/ 10. 1287/ mnsc. 43.3. 276

 59. Snowden, D. J., & Boone, M. E. (2007). A leader’s framework for decision making. Harvard Busi-
ness Review, 85, 68–76.

 60. Sosa, M. E. (2014). Realizing the need for rework: From task interdependence to social networks.
Production and Operations Management, 23(8), 1312–1331. https:// doi. org/ 10. 1111/ poms. 12005

 61. Sosa, M., Mihm, J., & Browning, T. (2011). Degree distribution and quality in complex engineered
systems. Journal of Mechanical Design, 133(10), 101008. https:// doi. org/ 10. 1115/1. 40049 73

 62. Tavares, L. V. (2002). A review of the contribution of operational research to project management.
European Journal of Operational Research, 136(1), 1–18. https:// doi. org/ 10. 1016/ S0377- 2217(01)
00097-2

 63. Terwiesch, C., & Loch, C. H. (1999). Managing the process of engineering change orders: The case
of the climate control system in automobile development. Journal of Product Innovation Manage-
ment, 16(2), 160–172. https:// doi. org/ 10. 1016/ S0737- 6782(98) 00041-1

 64. Toole, J. L., Colak, S., Sturt, B., Alexander, L. P., Evsukoff, A., & González, M. C. (2015). The path
most traveled: Travel demand estimation using big data resources. Transportation Research Part C,
58, 162–177. https:// doi. org/ 10. 1016/j. trc. 2015. 04. 022

 65. Turner, J. R., & Müller, R. (2005). The project manager’s leadership style as a success factor on pro-
jects: A literature review. Project Management Journal, 36(2), 49–61. https:// doi. org/ 10. 1177/ 87569
72805 03600 206

 66. Valadares Tavares, L., & Wegłarz, J. (1990). Project management and scheduling: A permanent
challenge for OR. European Journal of Operational Research, 49(1), 1–2. https:// doi. org/ 10. 1016/
0377- 2217(90) 90115-R

 67. Vidal, L. A., Marle, F., & Bocquet, J. C. (2011). Measuring project complexity using the Analytic
Hierarchy Process. International Journal of Project Management, 29(6), 718–727. https:// doi. org/
10. 1016/j. ijpro man. 2010. 07. 005

 68. Watts, D. J. (2002). A simple model of global cascades on random networks. Proceedings of the
National Academy of Sciences of the United States of America, 99(9), 5766–5771. https:// doi. org/ 10.
1073/ pnas. 08209 0499

 69. Williams, T. (1995). A classified bibliography of recent research relating to project risk manage-
ment. European Journal of Operational Research, 85(1), 18–38. https:// doi. org/ 10. 1016/ 0377-
2217(93) E0363-3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1080/07421222.2001.11045662
https://doi.org/10.1080/07421222.2001.11045662
https://doi.org/10.1016/j.jom.2007.10.006
https://doi.org/10.1080/07341512.2014.1003164
https://doi.org/10.1287/mnsc.43.3.276
https://doi.org/10.1111/poms.12005
https://doi.org/10.1115/1.4004973
https://doi.org/10.1016/S0377-2217(01)00097-2
https://doi.org/10.1016/S0377-2217(01)00097-2
https://doi.org/10.1016/S0737-6782(98)00041-1
https://doi.org/10.1016/j.trc.2015.04.022
https://doi.org/10.1177/875697280503600206
https://doi.org/10.1177/875697280503600206
https://doi.org/10.1016/0377-2217(90)90115-R
https://doi.org/10.1016/0377-2217(90)90115-R
https://doi.org/10.1016/j.ijproman.2010.07.005
https://doi.org/10.1016/j.ijproman.2010.07.005
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1016/0377-2217(93)E0363-3
https://doi.org/10.1016/0377-2217(93)E0363-3

	Mitigation strategies against cascading failures within a project activity network
	Abstract
	Introduction
	Experimental design
	Data
	Modeling cascading failures of tasks
	Temporal mitigation of cascading failures
	Performance measures for mitigation schemes, R1 and R2

	Results
	Discussion
	References

