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Abstract
Successful on-time delivery of projects is a key enabler in resolving major societal 
challenges, such as wasted resources and stagnated economic growth. However, pro-
jects are notoriously hard to deliver successfully, partly due to their interconnected 
and temporal complexity which makes them prone to cascading failures. Here, 
we develop a cascading failure model and test it on a temporal activity network, 
extracted from a large-scale engineering project. We evaluate the effectiveness of six 
mitigation strategies, in terms of the impact of task failure cascading throughout the 
project. In contrast to theoretical arguments, our results indicate that in the major-
ity of cases, the temporal properties of the activities are more relevant than their 
structural properties in preventing large-scale cascading failures. In practice, these 
findings could stimulate new pathways for designing and scheduling projects that 
naturally limit the extent of cascading failures.
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Introduction

Project-based processes are central in resolving major societal challenges [35], 
from accelerating economic growth through infrastructure development [25, 41] 
to fostering public resilience through mobilizing emergency resources [38], [47]. 
World Bank data (2009) indicate that more than 22% of the world’s gross domes-
tic product—equivalent to approximately $48 trillion—relies almost entirely 
on project-based delivery mechanisms [57]. Despite the importance of deliver-
ing projects successfully, many fail to meet their targets [69]. Delays, cost over-
runs and quality problems are regularly observed across all project domains, 
from software development [48] and construction [43] to infrastructure [23] and 
defence [12]. An industry survey reviewed 10,624 projects from 200 companies 
in 30 countries and across a variety of industries and concluded that only 2.5% 
of the companies delivered all of their projects successfully [50]. More recently, 
a review of 1417 IT projects reveals that 236 of them experienced cost overruns 
of at least 200% and the delivery of these projects was delayed by almost 70% in 
time [22]. The implications of project failure are expected to increase even fur-
ther in the future due to their projected 1.5–2.5% annual growth in project value 
[21].

Research into understanding project failure can be broadly classified into two 
distinct, yet complementary, strands [52]. This first strand relies on qualitative 
methods, focusing on mapping the relationships between sociological factors 
that contribute to project failure, e.g., importance of leadership [59, 65], team 
communication [45] and corporate culture [55]. This line of research is central 
in identifying potential relationships that can control project failure (e.g., that 
quality of the initial planning is correlated with the project performance, contex-
tual task features (i.e., technical complexity, novelty) is correlated with project 
success [56]. Whilst important, this research strand is generally associated with 
a multitude of biases such as recollection bias (i.e., information bias in which 
recalled information is inaccurate) and self-report bias (i.e., behavioral bias in 
which participants over-report positive results). As a result, these biases chal-
lenge the integration of their findings towards more general mitigation strategies 
against project failure [52].

A second research strand relies on computational methods [4] that model the 
condition of project failure, from the mechanism by which delay propagates [17] 
to the propensity of wastefully repeating certain tasks [58]. Under this view, pro-
jects are typically modeled as directed acyclic graph, often called activity net-
work. This activity network corresponds to a set of distinct, yet interdependent 
activities that need to be scheduled and sequenced under a given set of constraints 
[66].

Using tools from operations research, the first surge of work on project fail-
ure focused on simulating an intuitive failure scenario—project-wide delays 
that arise from delays in completing certain critical tasks [62]. The criticality of 
these tasks arises from their inclusion in the critical path, which is defined as 
the sequence of tasks that determines the project duration. As such, a delay of 
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x days in completing a critical task—and assuming that task has zero buffer in 
relation to its immediate successor task(s)—the project will also be delayed by a 
maximum of x days [17, 30]. Note the linear nature of this failure scenario, i.e., 
the project delay can never be higher than the sum of the individual task delays. 
Prominent methods for evaluating the impact of delay propagation include criti-
cal path method [36], program evaluation and review technique [42], and their 
Monte-Carlo variants.

Subsequent work on project failure has focused on an alternative failure scenario 
in which changes in task specifications can trigger rework in subsequent, down-
stream tasks and similarly affect the timely delivery of the overall project. In this 
case, a relatively minor change in the specifications of a single task can propagate 
across an entire project, severely affecting the overall project performance. For 
example, Sosa [60] provides a case where a single, minor change in the specifica-
tions of a task impacted nearly a third of all tasks within a project. Similarly, Ter-
wiesch and Loch [63] report a case where a similar change in task specifications 
resulted in a 20–40% increase in the overall project cost. Additional cases have also 
been reported by Mihm et  al. [46]. In this case, a relatively minor change in the 
specifications of a single task can propagate across an entire project, severely affect-
ing the overall project performance. This asymmetry between cause and effect sug-
gests that nonlinear effects are in place [46], which is distinct from the linear effects 
of delay propagation as described in the previous paragraph.

Both failures scenarios—where a delay or a change in the task specification can 
be the cause of a failure propagating within the project—can be understood within 
the broader definition of an archetypal dynamical process called ‘cascading failure’. 
By ‘cascading failure’, we refer to iterative processes in which a single failure leads 
to subsequent failures, which can amplify the impact of the original failure, eventu-
ally leading to system-wide failure [9, 68]. Such cascade dynamics have been noted 
in a wide range of research domains, including epidemic spreading [49, 53], social 
contagion [2, 3], and traffic congestion in transportation systems [64], power grid 
blackouts [8] and financial systemic failure [28].

Work within the project space supports the relevance of this network-oriented 
view. For example, recent work has made links between project performance and the 
number of connections between tasks [5, 14, 34], the heterogeneity by which those 
connections are spread across tasks [33, 61], the necessity of these connections (i.e., 
“non-redundant” vs. “redundant”) [7] and the variety in the nature of these connec-
tions (e.g., functional dependency, information exchange) [5, 67].

Driven by the intersection of these lines of research (i.e., cascading failures and 
network-oriented project view) recent studies tackled long-lasting project manage-
ment challenges using failure cascades as the central modeling framework. For 
example, Ellinas et al. [15] assessed the propensity of a project in promoting con-
flicts between subcontractors by assessing the different incentives generated by their 
respective involvement within different cascades of failures. Building on this work, 
Ellinas [13] and Guo et al. [26] developed broader modeling frameworks to identify 
certain project network features that influence the exposure of a project to cascad-
ing failures. However, this body of work does not provide any actionable mitigation 
strategies by which a decision maker can contain these failure cascades. They rather 
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assessed the extent to which different project features could contribute to project’s 
robustness against failure cascades.

To fill this gap, we develop a simple failure cascade model and use it to evaluate 
the performance of six mitigation schemes. In terms of the cascade model, we build 
on a popular cascade model by integrating the buffering effect of float between pairs 
of tasks [24]. We do so by assuming that a large free float between two consecutive 
tasks lowers the probability that failure in a task impacts its immediate successors. 
We then use this model on an empirical activity network of 723 tasks and numeri-
cally evaluate the performance of six mitigation schemes. Each mitigation scheme 
relies on some properties of nodes, either structural or temporal. Our overall objec-
tive is to identify which node’s property can provide the most effective way for pri-
oritizing which task(s) to be mitigated first. Our results suggest that in a majority of 
cases, and in contrast to current theoretical arguments, the temporal (i.e., start and 
end date of each task) rather than the structural properties of the activities (e.g., task 
connectivity) provides the most efficient way for mitigating failure cascades. This 
result has implications for decision makers on how to prioritize task mitigation for 
improving project performance.

Experimental design

Data

We use real-world project data to evaluate the performance of six mitigation strat-
egies. The data are from a large-scale engineering project in the defence domain, 
were human generated by a team of professional project planners and were used 
throughout the lifecycle of the project to drive delivery. Specifically, the data set 
corresponds to a set of planned activities ( N = 723 ), which we refer to as tasks, that 
need to be completed to deliver a commercial defence product. The overall dura-
tion of the project is 745 days. Each task has a scheduled start and end date and the 
resolution of time is a day. The dependency between a pair of tasks is represented 
by a directed edge. There are 1220 directed links in total. The directed edge from 
task i–j, denoted by eij ∈ E , indicates that the output of task i, such as information 
or a physical artifact (i.e., product), is an input to task j. A directed edge from task i 

Fig. 1  Schematic of an activity network. A rounded rectangle represents a node (i.e., task). The gray 
rounded rectangles represent the tasks that may fail in response to a failure of the seed node shown in red
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to task j implies that task i must be completed before task j starts. Therefore, task j 
can start only after all tasks that send a directed edge to task j have been completed. 
Similarly, a failure in task i may directly impact task j, and potentially all following 
(and reachable) tasks (see Fig. 1). The free float between task i and j is defined as 
the time difference between the completion�ij of task i and the start of task j [51]. 
The free float is equivalent to a widely used term, inter-event time [31, 32, 44]. We 
denote the free float between i and j as �ij.

The 723 activities (nodes) and the 1220 links define the activity network, which is 
a time-stamped directed acyclic graph. The number of immediate predecessors and 
successors of each task is equal to the task’s in-degree and out-degree, respectively. 
The mean in- and out-degrees of a task are equal to 1.69. The in-degree has standard 
deviation 4.45 and ranges from 0 to 90. A total of 111 nodes out of the 723 nodes 
have an in-degree of 0. Those tasks are located in the most upstream position in the 
network; and initiating any of these tasks does not need any other task to be com-
pleted beforehand. The out-degree has standard deviation 2.82 and ranges from 0 to 
52. A total of 32 nodes have an out-degree of 0; these tasks are located in the most 
downstream position in the network, and failure of any of these tasks does not cause 
a cascading failure. The in- and out-degrees obey somewhat long-tailed distributions 
(Fig. 2a), as is evidenced by their relatively large standard deviations as compared to 
the mean. The inter-event time has the mean equal to 141.4 days, standard deviation 

Fig. 2  Distributions of basic properties of the temporal network of tasks. a Survival probability (i.e., 
probability that the degree is larger than or equal to a specified value) of the in- and out-degrees of the 
node. b Survival probability of the inter-event time. c Survival probability of the task duration. d Frac-
tion of tasks that have been completed by day t, plotted against t 
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169.5 days, and ranges from 0 to 670 days. The distribution of inter-event times is 
shown in Fig. 2b. The duration of task has the mean equal to 62.1 days, standard 
deviation 112.5 days, and ranges from 1 to 647 days. The distribution of the duration 
of tasks is shown in Fig. 2c. As time progresses, tasks are completed; the fraction of 
completed tasks by day is shown in Fig. 2d. The data set of the temporal network of 
tasks, including the start time and end time of each task, is provided as supplemen-
tary information and is available online (see Data availability section).

Modeling cascading failures of tasks

We introduce a discrete-time cascading failure model with binary states of the node, 
which is analogous to the Independent Cascade model [51] and other cascade-fail-
ure models [40, 52]. In our model, the probability that a failure propagates from 
an affected node i to a non-affected downstream neighbor node of node i, denoted 
by j, is a function of the free float between the two nodes and the values of the two 
parameters, as we explain in the following.

The final state of node j (1 ≤ j ≤ N) is denoted by sj ∈ [0, 1] , where ‘0’ and ‘1’ 
correspond to the non-affected and affected state, respectively. We start the cascade 
dynamics from an initial condition, where one seed node (which can be any node) 
is in state 1 and all the other N − 1 nodes are in state 0. During the cascade dynam-
ics, node j may irreversibly switch from state 0 to state 1 if node j has at least one 
upstream neighbour that is in state 1. Consequently, a node with no upstream neigh-
bors can only be in a state of 1 if and only if it is a seed node.

We determine the final state of each node (and hence the final cascade size) by 
marking the nodes one by one as follows. Initially, the seed node is the only marked 
node (i.e., finalized to state 1) in the network. During the course of the following 
procedure, all nodes that are yet to be marked have state 0. Marked nodes have state 
either 0 or 1. In each round, we pick an unmarked node j whose all upstream neigh-
bors have been marked. The first node to be marked after the seed node is a node 
that does not have any upstream neighbor (i.e., in-degree equal to 0) or a node that 
has the seed node as the only upstream neighbor. To determine the final state of 
node j (i.e., to mark node j), we assume that the failure of each upstream neighbor of 
node j, referred to as node i, independently causes node j to fail with probability pij . 
Then, we set the final state of node j to 1 with probability

where E is the set of links. Otherwise, we set the final state of node j to 0. In Eq. 1, 
the product term is the probability that node j does not fail, and each factor in the 
product is the probability that node i does not cause the failure of node j. If si = 0 , 
this probability is equal to 1. If si = 1 , this probability is equal to 1 − pij . Once 
the state of node j is determined in this manner, we mark node j and select a next 
unmarked node such that all its upstream neighbors have been marked. Note that the 
results do not depend on the order of marking the nodes.

(1)Pj = 1 −
∏

i;eij∈E

[(

1 − si
)

+ si
(

1 − pij
)]

,
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To set the value of pij , we consider the impact of time between the completion 
of task i and start of task j, which is called the free float in management literature 
and inter-event time in network science literature. We denote this quantity by �ij . 
We assume that the probability that the failure of node i causes the failure of node j 
decreases as �ij increases because a larger �ij indicates that more time is available for 
containing the effect of task i’s failure on its downstream neighbors [16, 39]. Reduc-
ing inter-event times has been suggested to reduce the risk of failure propagation as 
well [10, 29]. Therefore, we assume that

where q0 ∈ [0, 1] and 𝜏(> 0) are parameters. Parameter q0 is the probability that task 
j fails if task i does and there is no spare time (i.e., no free float) between the two 
tasks, i.e., �ij = 0 . Equation 2 indicates that if the two tasks are far apart in time, it 
is not likely that failure of one task triggers failure of a successor task. Parameter 𝜏 
controls the impact of the free float, �ij , on the probability that the failure of node i 
causes the failure of node j. By definition, a large 𝜏 value yields a small probability 
that the failure of node i causes the failure of node j, and vice-versa.

Temporal mitigation of cascading failures

Robustness against cascading failures on networks can be engineered via struc-
tural or temporal mitigation schemes. Structural mitigation can be deployed when 
the structure of the network can be changed. For example, in power grids, one can 
modify the network structure to discourage the onset of large-scale cascades, e.g., 
by introducing network modules or purposefully fragmenting the network before a 
cascade happens [27]. However, some networks that are susceptible to cascading 
failures may not accommodate structural mitigation. In this situation, temporal miti-
gation, i.e., changing the timing of nodes or links without changing the static net-
work structure, may be deployed without compromising the function of the system. 
In general, a temporal mitigation scheme can be implemented if nodes or links have 
timestamps that are relatively flexible. For example, in air traffic networks where 
nodes and time-stamped links are airports and flights, respectively, delaying flights 
is probably more feasible than changing the destination of the flights as a preven-
tive measure against cascading failures [1, 20]. Similarly, in project management 
context, deploying structural mitigation in activity networks is not often practical 
because a directed edge from task i (e.g., designing a structural column for a build-
ing) to task j (e.g., manufacturing that column) indicates that task i’s output is neces-
sary for starting task j, and therefore cannot be amended.

By the construction of our cascade model, increasing an inter-event time is a 
viable mechanism to reduce the probability that failure propagates from a task to 
another. Therefore, by postponing the start of a downstream task j, we reduce the 
probability of it being affected by a failure in its predecessor, task i. We utilize this 
mechanism to construct mitigation schemes, where we postpone some of the tasks 
located downstream to the seed node that has failed. Doing so increases some of the 

(2)pij = q0 exp

(

−
𝜏ij

𝜏

)

,
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inter-event times in the nodes belonging to the out-component of the seed node (i.e., 
the nodes downstream to the seed node). Therefore, a mitigation scheme is expected 
to reduce the overall probability that the failure propagates.

A mitigation scheme has to respect the end date of the entire project; no task can 
be postponed beyond the delivery date of the entire project. Furthermore, any down-
stream neighbor of task j is only allowed to start after task j has been completed. 
Therefore, the extent of postponing task j is further constrained by the start date of 
its downstream neighbours. Note that we allow the end date of task j to coincide 
with the start date of its downstream neighbor, in which case the inter-event time is 
equal to zero.

Precisely, the fraction of the nodes in the out-component of the seed node for 
which we postpone the start time is denoted by � ∈ [0, 1] . For each mitigation 
scheme, we first consider the ranking of nodes in the out-component of the seed 
node. We then sequentially postpone a fraction � of these nodes in descending order 
of the rank. When postponing each task i sequentially, we postpone it as much as 
possible under the following two conditions. First, adjacent tasks must not overlap 
[37]. In other words, the end date of task i must not exceed the start date of any task 
j that needs completion of task i. Second, the overall project duration must not be 
extended. In other words, the end date of task i must not exceed the original delivery 
date of the project.

We test six mitigation schemes, in which nodes to be mitigated are ranked based 
on either the (i) out-degree, (ii) size of out-component (i.e., the number of nodes 
that are reachable from the node in question), (iii) duration of the task, (iv) start 
date of the task, (v) end date of the task or (vi) at random. For example, consider 
the network shown in the upper part of Fig. 3a and assume that node v1 fails. The 
subscript attached to the nodes in the figure represents the ranking in terms of the 
out-degree. The figure indicates that node v3 is the first node to be mitigated (i.e., 
postponed). The amount of maximum postponement that can be applied to node v3 
is constrained by the start date of its immediate neighbor, node v4 . Therefore, we 
postpone node v3 such that its new end date is equal to the start date of node v4 (the 
network shown in the lower part of Fig. 3a). Similarly, node v5 is postponed such 
that its new end date is equal to the start date of node v6 . The same procedure is 
applied to node v2 and then to node v6 . Note that postponing node v5 makes the inter-
event time between node v5 and node v6 equal to zero. However, postponing node v6 
subsequently increases the same inter-event time. We do not postpone the remain-
ing two tasks with the lowest out-degrees, i.e., v4 and v7 , because the fraction of the 
mitigated nodes, denoted by � , is set to 0.67 for illustration purposes, such that only 
four out of the six nodes downstream to node v1 can be mitigated. Implementation 
of three other mitigation schemes on the same network and the same � value is sche-
matically shown in Fig. 3b–d.

The mitigation scheme is implemented as follows. Once seed node i fails, all 
nodes reachable from node i along a directed path (i.e., nodes belonging to the out-
component of node i), which can fail, are rank ordered based on the node’s score. 
The score of these nodes is equal to one of the following six quantities: out-degree, 
size of the out-component (i.e., the number of nodes that are reachable from the 
node to be scored), duration of the task, start date of the task, end date of the task, 
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or an entirely randomly drawn value. When multiple nodes have identical scores, 
we break the tie by ranking the nodes having the same score in a uniformly random 
order.

We denote by Ṽ  the rank-ordered set of the nodes downstream to node i. In the 
example shown in Fig.  3a, in which the rank is determined according to the out-
degree of the task, we obtain Ṽ  =

{

v3, v5, v2, v6, v4, v7
}

 . Parameter � ∈ [0, 1] speci-
fies the fraction of nodes in Ṽ  that are to be mitigated. In Fig. 3a, we set � = 0.67 . 
Therefore, the four highest-ranked nodes out of the six nodes, i.e., v3, v5, v2 and v6 , 
are mitigated. Node v3 is first postponed until its end date coincides with the start 
date of its downstream neighbor v4 . Next, the same postponement process is applied 
to node v5 , node v2 and then node v6 . The temporal network after the mitigation is 
shown in the lower part of Fig. 3a.

Performance measures for mitigation schemes, R1 and R2

We evaluate the performance of the six mitigation schemes in terms of their ability 
of containing cascading failures. These mitigation schemes attempt to increase �ij for 
some i and j to reduce the probability that a failure cascade progresses. Our focus is 

Fig. 3  An example illustrating the four mitigation schemes: a out-degree, b start date, c end date and d 
random. For each mitigation scheme, the top and bottom panels correspond to before and after the miti-
gation, respectively. Every node is ranked (subscript index) and postponed in that order. The tie is broken 
uniformly randomly. In all examples, we set � = 0.67 such that four out of the six tasks are mitigated
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on the impact of the parameters that control the cascading dynamics 
(

q0 and 𝜏
)

 and 
the fraction of the tasks to be postponed (�).

We measure the performance of each mitigation scheme in terms of two quanti-
ties. The first quantity, denoted by R1, is defined as the cascade size that stems from 
a seed node when the mitigation scheme is implemented, divided by the cascade 
size when there is no mitigation, averaged over all seed nodes. Quantity R1 captures 
the relative impact of mitigation in the sense that the contribution of mitigating a 
large cascade is equivalent to that of mitigating a small cascade. The second quan-
tity, denoted by R2, is defined as the cascade size averaged over all seed nodes when 
the mitigation is applied, which is then divided by the cascade size averaged over all 
seed nodes when no mitigation is applied. Quantity R2 captures the absolute impact 
of mitigation in the sense that mitigating a large cascade is considered to be more 
valuable than mitigating a small cascade. A small R1 or R2 value indicates that the 
mitigation scheme is efficient.

For the given values of q0 , 𝜏 , � , and the given seed node, we ran the cascading 
dynamics 100 times (except for Supplementary Fig. 1, for which we ran the simula-
tion 300 times). In the figures, we show the average values of the observables over 
all runs.

Results

We first focus on the unmitigated failure cascades to understand the effect of the 
free parameters of our model q0 and 𝜏 on the impact of failure. By definition, higher 
values of q0 and 𝜏 increase the probability of a single activity failing, resulting in a 
larger average cascade size (Fig. 4a). In addition, a higher value of 𝜏 increases both 
the average cascade size and the probability of encountering a cascade of a given 
size (Fig. 4b). Activity networks are prone to large failure cascades, where the fail-
ure of a single activity can impact a disproportionately large number of subsequent 
activities. The heavy-tailed distribution of all cascade sizes highlights the dispro-
portionate nature of these cascades, with a majority of failure cascades impacting a 
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Fig. 4  a Average cascade size as a function of q
0
 for four values of 𝜏 . b Survival probability of observing 

a cascade of size x , where we set q
0
= 1 (i.e., worst case scenario)
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small number of tasks and a small number of failure cascades impacting many tasks. 
For example, when the probability that task j fails if task i does and there is no spare 
time between them (i.e., q0 = 1 ) and time dependence is low (i.e., 𝜏 = 103 ), the aver-
age cascade size is ~ 7 (Fig. 4a), whilst the largest cascade size is over 100 (Fig. 4b).

In the case where we mitigate all downstream tasks (i.e., � = 1 ), the mitigation 
scheme based on the end date of the task outperforms the other five mitigation 
schemes. This is the case in terms of both performance measures R1 (Fig. 5) and 
R2 (Fig. 6). Quantities R1 and R2 measure the relative and absolute reduction in the 
cascade size by a mitigation scheme. These figures also show that apart from the 
mitigation scheme based on the end date of the task, the random mitigation scheme 
outperforms the other four mitigation schemes. The relative ranking of the six miti-
gation schemes is consistent in the whole range of q0 and 𝜏 ∈

{

1, 10, 102, 103
}

 , 
except for 𝜏 = 103 , where there are some rank changes presumably due to random 
fluctuations. Note that as 𝜏 tends large ( ̃𝜏 ≥ 103 ), pij is approximately equal to q0 
regardless of the size of �ij and regardless of the mitigation scheme. Therefore, R1 
and R2 converge to 1 for any q0 as 𝜏 increases (see Supplementary Fig. 1 for numeri-
cal results with 𝜏 = 104 and 𝜏 = 105).

To investigate the entire parameter space, we identified the mitigation scheme that 
was the most efficient, i.e., yielding the smallest value of R1 and R2, when we varied 
q0 , 𝜏 and � . The results in terms of R1 are shown in Fig. 7. When there is little varia-
tion between the best and worst performing schemes (<1%; arbitrarily chosen; white 

Fig. 5  Performance of the six mitigation schemes in terms of R1, as a function of q
0
 . a 𝜏 = 1 . b 𝜏 = 10 . c 

𝜏 = 10
2 . d 𝜏 = 10

3 . We set � = 1
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Fig. 6  Performance of the six mitigation schemes in terms of R2, as a function of q
0
 . a 𝜏 = 1 . b 𝜏 = 10 . c 

𝜏 = 10
2 . d 𝜏 = 10

3 . We set � = 1

Fig. 7  Best performing mitigation scheme in terms of R1 in the parameter space spanned by q
0
 and � . a 

𝜏 = 1 . b 𝜏 = 10 . c 𝜏 = 10
2 . d 𝜏 = 10

3
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regions labeled ‘Unspecified’ in Fig.  7), we argue that no best mitigation scheme 
exists. Figure 7 reveals two parameter regimes. First, when � ≥ 0.8 , the mitigation 
scheme based on either the out-degree, duration, end date or at random performs 
the best, depending on the specific combination of � and q0 values. As 𝜏 increases 
from 1 to 103 , the mitigation scheme based on the end date tends to be consistently 
the best in this parameter regime (Fig.  7d). Second, when 𝛾 < 0.8 , the mitigation 
scheme based on the start date tends to be the best performing mitigation scheme 
across the entire range of q0 and 𝜏 . The results in terms of R2 (Supplementary Fig. 2) 
are similar to those in terms of R1 (Fig. 7).

Discussion

We modeled project failures as cascading failures on networks composed of tasks 
constituting the project. The model incorporates both structural and temporal fea-
tures of activity networks of projects. We implemented six mitigation schemes 
by postponing a fraction � of tasks downstream to the task that has failed. When 
one was allowed to postpone all the tasks downstream to the task that has failed, 
our numerical results indicated that it was more efficient to prioritize task mitiga-
tion according to the end date of each task than the other five mitigation schemes. 
When one was allowed to postpone a relatively small fraction of tasks, it was gen-
erally more efficient to postpone tasks based on their start date. Some additional 
cases existed where the mitigation scheme based on the out-degree or duration of 
the task was the most efficient. Specifically, when � is large, either the mitigation 
scheme based on the out-degree, that based on the duration, or that based on the end 
date was the best. These numerical results suggest that, in a majority of the param-
eter region that we have explored, temporal features of the tasks, such as the dura-
tion, start and end date of the task, may be more important than structural features, 
such as the out-degree of the task, for preventing large-scale cascading failures of 
projects.

The present results suggest that the importance of tasks should not only be ranked 
based on the impact (i.e., the size of the cascade failure) that the failure of a single 
task can cause (e.g., project delay) but also based on the extent to which the impact 
can be mitigated. We provided proxies for identifying important tasks in the sense 
of mitigation using a task’s start and end date. Using these proxies, decision mak-
ers can focus on proactively managing these tasks. One way for incorporating this 
in practice is to relax the typically strict constraints in terms of start (and end) date 
for some tasks by, for example, removing monetary penalties for such delays [19]. 
Relaxing such penalties can introduce planning flexibility for decision makers to 
purposefully postpone certain tasks, reducing the overall exposure of the project to 
cascading failures.

This work is aligned with other, domain-specific research strands that focus on 
the broader objective of improving project performance. For example, Eppinger 
et  al. [18] focused on modular and decomposable projects, where links between 
activities can be modified to some extent [18]. By doing so, the authors were able to 
re-sequence certain activities to reduce risk and improve overall project performance 
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[18]. Based on this idea, Baldwin and Clark [6] deployed task re-sequencing for 
optimizing project modularity, which was argued to be able to reduce project risk 
[6]. In these scenarios, structural mitigation is deployed because there are no hard 
constraints assumed on the links between activities, so that the links can be rewired. 
In our case, we assumed temporal mitigation due to the constraint that the network 
structure, which represents precise inter-dependency among the tasks, is not allowed 
to be changed. Despite the contextual differences, their work and ours have the com-
mon thread of utilizing network structure and complex systems thinking for improv-
ing project performance, which we believe is a promising research direction.

Our modeling framework has some limitations. First, our analysis has focused 
only on the benefits of deploying mitigation in the form of postponing the start 
date of tasks. However, postponing tasks may increase the number of active tasks 
on particular days, which is generally associated with poor project performance 
due to an increased cost or decreased quality [11, 37, 58]. In addition, postponing 
tasks is impossible when a sequence of tasks has no float between any consecu-
tive pair of tasks, which is a type of critical path [54]. Future work should consider 
this drawback in conjunction with the benefits potentially gained through the miti-
gation mechanisms proposed in the present study. Second, from a methodological 
standpoint, our approach is limited by the single pass in which mitigation is applied 
to tasks. Consider the example shown in Fig. 3a, in which node v5 was postponed 
before node v6 was. In this case, the amount of postponement is constrained by the 
start date of node v6 . Postponing node v6 at a later stage opens up the opportunity for 
node v5 to be further postponed, which is currently not exploited. One can exploit 
this opportunity to explore further improvements in mitigation efficiency. Third, a 
mitigation scheme can be classified into passive and active. In a passive mitigation 
scheme, one modifies the structure or time stamps of the activity network before a 
cascade is possibly seeded. In contrast, in an active mitigation scheme, one modifies 
the activity network while a cascade is progressing. In the present study, we focused 
on active mitigation schemes. Carefully planning the start time of each task, given, 
for example, the network structure and the possibility of different tasks to fail with 
different probabilities, may consist in a plausible passive mitigation scheme on the 
activity network. This topic also warrants future work. Fourth, we do know have 
mechanistic understanding of why one mitigation scheme works better than another. 
To clarity this requires a more systematic investigation, possibly involving multiple 
data sets, which is beyond the scope of the present study.

In addition, our methodology hints to the possibility of mitigation having unin-
tended negative effects. In the example shown in Fig.  3a, the probability that the 
failure of node v1 propagates to node v2 has been reduced because �v1v2 has been 
increased. This is a positive effect of mitigation that we have intended. However, 
in the same example, the probability that the failure of node v2 propagates to node 
v3 has been increased compared to the case of the unmitigated activity network, 
because the mitigation has decreased �v2v3 . This is a negative effect of mitigation that 
we have not intended.

Despite these and other possible limitations, the present modeling framework 
serves as a stepping stone for future work. It  opens new pathways of exploring 
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whether causal relationships exist between structural and/or temporal features of 
temporal networks of tasks and mitigation effectives and efficiency.
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