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Abstract
Timely estimation of the distribution of socioeconomic attributes and their move-
ment is crucial for academic as well as administrative and marketing purposes. In 
this study, assuming personal attributes affect human behavior and movement, we 
predict these attributes from location information. First, we predict the socioeco-
nomic characteristics of individuals by supervised learning methods, i.e., logistic 
Lasso regression, Gaussian Naive Bayes, random forest, XGBoost, LightGBM, and 
support vector machine, using survey data we collected of personal attributes and 
frequency of visits to specific facilities, to test our conjecture. We find that gender, a 
crucial attribute, is as highly predictable from locations as from other sources such 
as social networking services, as done by existing studies. Second, we apply the 
model trained with the survey data to actual GPS log data to check the performance 
of our approach in a real-world setting. Though our approach does not perform as 
well as for the survey data, the results suggest that we can infer gender from a GPS 
log.
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Machine learning · Survey data

The authors are grateful to Professor Takaaki Ohnishi for his advice on preparing the survey data 
and to Mr. Mori Kurokawa at KDDI Research, Inc. for his careful reading of the manuscript. This 
work was supported in part by JSPS KAKENHI Grant numbers 19K22852 and 18H03627.

 *	 Shohei Doi 
	 s.doi3@kurenai.waseda.jp

	 Takayuki Mizuno 
	 mizuno@nii.ac.jp

	 Naoya Fujiwara 
	 fujiwara@se.is.tohoku.ac.jp

1	 Waseda University, Tokyo, Japan
2	 National Institute of Informatics, Tokyo, Japan
3	 Tohoku University, Sendai, Japan
4	 The University of Tokyo, Tokyo, Japan

http://orcid.org/0000-0003-1647-8511
http://crossmark.crossref.org/dialog/?doi=10.1007/s42001-020-00073-w&domain=pdf


188	 Journal of Computational Social Science (2021) 4:187–205

1 3

Introduction

Recent technological developments in portable devices such as smartphones and 
car navigation systems enable us to use people’s location information for academic, 
administrative and marketing purposes [12, 14]. For example, border-control agen-
cies of European countries use this kind of information to control immigrants and 
refugees; Germany and Denmark amended domestic laws to authorize their agen-
cies to extract data from the cellphones of asylum seekers, and similar bills were 
proposed in Belgium and Austria. Also, a few years ago, the United Kingdom and 
Norway investigated the portable devices of refugees. Information on the movement 
of refugees helps us understand how integrated they are into local society and plan 
effective policies for them, though the intention of these governments may differ 
from this.

As such, information on the distribution of personal socioeconomic attributes like 
gender, age, and education in a specific area is necessary for administrators to make 
suitable policies for their areas and for companies to determine the location of new 
stores or products. However, because of privacy security regulations, such as the 
General Data Protection Regulation (GDPR) enforced by the European Union (EU), 
broadly available location information of smart-phones is anonymized and not asso-
ciated with user attributes. Consequently, except for companies that own such raw 
data, it is difficult to ascertain the distribution of personal attributes.

We assume, however, that because our attributes drive our behavior and, there-
fore, define our location, we can reverse engineer this process. Several studies aim at 
stochastically predicting personal attributes from location information. For example, 
Lamanna et al. estimated the number of Twitter users tweeting in foreign languages 
in several areas, combining the residential areas of Twitter users inferred from geo-
tagged tweets actively posted at night and the language of the tweets [19]. Similarly, 
Lenormand et al. predicted the workplaces of Twitter users from the places where 
they tweet during the day [21]. We can infer some personal attributes from these 
estimated workplaces and residences.

Instead of predicting personal attributes, some studies aim at estimating the spa-
tial distribution of personal attributes. A most notable example of this predicts eco-
nomic situations from mobile phone data [4], while others use restaurant data [9]. 
Beyond location information, many studies use other resources to predict individual 
attributes. These resources include social networking services (SNS) [3, 6, 17, 23, 
26, 27], especially Twitter and Facebook, which have high-resolution and easily 
accessible information on personal attributes, photos [22], and mobile phone behav-
ior [2]. In this context, our study extends these analyses by adding another source, 
i.e., location information, to predict personal attributes.

Drawing on these studies, we developed classifiers estimating the socioeco-
nomic attributes of people directly from their location information. Because some 
studies mentioned above use SNS users, we collected a sample of Japanese citi-
zens who reflect features of the population through a research company. Our 
sample includes 3000 respondents in Tokyo, which is extensive data systemati-
cally containing personal and location information. Using this sample, we trained 
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various supervised machine learning models, including logistic Lasso regression, 
Gaussian Naive Bayes, random forest, XGBoost, LightGBM, and support vector 
machine (SVM), and compared their performance. We found it is possible to pre-
dict several attributes, including gender, from locations and XGBoost generally 
performed well over other methods. Moreover, we used another sample consisting 
of about 1000 individuals outside of Tokyo and actual GPS logs of about 150 per-
sons to check the performance of the models for out-sample prediction.

Despite the advantage of understanding personal movement and attributes, we 
need to take care of the concern about privacy. It is possible that, for example, 
men (women) are regarded as women (men) by machine learning and this prob-
lem is more sensitive for persons with gender neutrality (LGBT). In this con-
text, we face a trade-off: if we can perfectly predict personal attributes, we would 
reveal sensitive information, like sexual orientation, while if we poorly predict 
them, some persons may be treated in a problematic way. Keeping this possibil-
ity in mind, our probabilistic approach allows us to balance the benefit and cost 
of predicting personal attributes, that is, if men (women) are predicted as women 
(men), it is impossible to distinguish this between misclassifying and uncovering 
sexual orientation.

Our predictive models developed in this study contribute to advance in social 
survey methods using location information obtained from portable devices. In the 
fight against COVID-19 pandemic, for example, the government of Israel decided 
to “track people suspected or confirmed to have been infected with the coronavirus 
by monitoring their mobile phones” [13] and Baidu provide tracing data of mobile 
phones to understand how and why the outbreak happened [28]. In the academic 
field, the relation between human mobility and infection has been intensively stud-
ied not only for the novel corona virus [8, 11, 16, 18] but also others like SARS 
and H1N1 influenza [1, 5, 10]. Though data on human trajectory itself are useful to 
analyze and forecast pandemic, location information with personal socioeconomic 
attributes must enrich the understanding of pandemic. It is argued that elderly peo-
ple tend to severely suffer from this novel coronavirus but the young are less likely 
to show disease and more likely to transmit it by moving around. Therefore, though 
it is beyond the scope of this paper, if we detect the mobility of young and elderly 
persons almost in a timely manner, we can find suspicious routes of infection and 
clusters of those who vulnerable to the virus and promptly take necessary meas-
ures. For another example, because GPS is two-dimensional information, it is hard 
to detect a shop or restaurant which a person visited inside a building. If we can use 
personal attributes estimated from other visit information, it may be possible to find 
a facility which he/she was most likely to visit.

The remainder of this paper proceeds as follows: in Sect. 2, we describe the two 
datasets used in this study: our survey data and actual GPS log data collected by 
other researchers. In Sect.  3, we explain the supervised learning methods to pre-
dict personal attributes and metrics for the evaluation of the performance of each 
method. In Sect. 4, we report the results of our analysis, particularly on gender and 
age, which have been intensively studied as essential attributes. We tested not only 
in-sample and out-sample performance using our survey data, but also applied our 
learner to the GPS log data.
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Data

In this study, we used two types of data: survey data and GPS log data. We collected 
our sample through the Rakuten Insight, Inc. research company to ensure that our 
sample reflects the features of the Japanese population. Because this company has 
a pool of respondents, their demographic information (gender, age, and residence) 
is registered. Our sample consisted of 3000 people in Tokyo, 400 in Miyagi, 400 
in Hiroshima, and 160 in Nagasaki. In addition to Tokyo, the capital of Japan, we 
selected Miyagi and Hiroshima as regional central cities in the Tohoku and Chu-
goku areas, and Nagasaki in the Kyushu area as typical suburban cities. In 2019, 
Hiroshima, Miyagi, and Nagasaki were the 12th, 14th, and 30th largest prefectures 
out of 47 in terms of population. From the viewpoint of the means of transporta-
tion, Nationwide Person Trip Survey by Ministry of Land, Infrastructure and Trans-
port in 2015 shows 44.2% of people in 23 wards of Tokyo move by train whereas 
44.6% in Hiroshima city (the prefectural capital of Hiroshima) and 53.4% in Sendai 
(the prefectural capital of Miyagi) move by car (these data do not cover Nagasaki). 
We include these regions as well as Tokyo in the sample to ensure our data contain 
respondents with various features.

Figure 1a shows the proportion of each generation of Japanese males and females 
in the population (dark gray bars) and our sample (light gray bars). Although our 
sample reflects the demographic features of the population, there are more young 
people in their 20s and 30s and less older people in their 80s. We intentionally col-
lected young respondents more than in the population to obtain information on the 
young with various backgrounds because these the 20s include students and workers 
and the 30s contain single and married persons, while we could not find a sufficient 
proportion of older people.

Because this divergence of generations may bias our sample toward the younger 
generation and the company collected the respondents via the internet, we also 
checked the usage of SNS and other internet services (Fig.  1b). We obtained 
the information for the population in 2019 from a report issued by the Institute 
for Information and Communications Policy, Ministry of Internal Affairs and 

Fig. 1   Comparison between population and sample



191

1 3

Journal of Computational Social Science (2021) 4:187–205	

Communications in Japan. Overall, the respondents in our sample use SNS and 
other web services as often as the entire Japanese population, which suggests that 
the respondents do not consist of those who more heavily use the internet than the 
population.

We asked each respondent 50 questions on their socioeconomic attributes as tar-
gets and 50 questions on the frequency of their visiting a specific place or facility as 
predictors (see the appendix for the lists of full attributes and location information). 
Socioeconomic attributes include gender, age, education, job, marriage status, reli-
gion, family structure, income, savings, and assets. We obtained the location infor-
mation by asking the respondents how often they visit “XXX (the name of a specific 
facility)”. Their choices were (1) rarely, (2) once a year or less, (3) twice a year, (4) 
once every few months, (5) once a month, (6) a few times a month, (7) once a week, 
(8) a few times a week, and (9) almost every day. Additionally, because we also 
questioned the respondents about their residence, we collected economic and demo-
graphic information about the district they live in to use as predictors.

After developing classifiers to predict socioeconomic attributes from location 
information using this survey data, we applied these predictive models to actual GPS 
log data [15]. They gathered the latitude and longitude of 184 respondents in the 
Kanto region (including Tokyo) almost every 5 min from the respondents’ mobile 
phones from November 28 to December 22, 2011, estimated the rectangle of stay 
information (i.e., the maximum and minimum latitude and longitude), and asked the 
respondents to report the name of the estimated locations voluntarily. Because our 
purpose is to estimate personal attributes from the GPS log itself, instead of using 
this stay information, we assume a respondent stayed if they moved only within a 
radius of 100 m for at least 20 min [24]. Figure 2 shows an example of an actual 
GPS log (black dots) and detected stops (grey circles) of one of the authors (not 
obtained from the dataset). The dataset also contains the names and the rectangles 

Fig. 2   Example of stop detec-
tion from GPS log
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(i.e., the maximum and minimum latitude and longitude) of many facilities the 
respondents visited. By coding the category of the facilities’ names to match those 
in our survey data, we made the correspondence table between the rectangle and 
category of a facility. Based on this table, we checked if the latitude and longitude of 
the estimated stay from the GPS logs were located in the rectangle of a facility, and 
calculated the frequency of visiting each category of facilities.

Methods

We used several supervised learning methods and compared their performance: 
logistic Lasso regression, Gaussian Naive Bayes, random forest, XGBoost, Light-
GBM, and support vector machine (SVM) with a radial basis function. Because we 
have about 50 targets to predict, we use several common hyperparameters of these 
models and the default settings in scikit-learn [25] and imbalanced-
learn [20], not tune them for each target. Therefore, the performance we show in 
the next section could be improved by tuning the hyperparameters more precisely 
for each target.

We briefly describe each method we use in this study as follows. Let yi and 
Xi = (xi1,… , xim) denote a target (i.e., an attribute) and a vector of features (i.e., vis-
iting and district information) for person i. For visiting information, xij ∈ {0,… , 8} 
is the response to the questions on the frequency of person i visiting facility j, where 
1 implies he/she rarely visits there and 9 implies he/she visits there almost every 
day. Other components of an input vector are economic, social, demographic, and 
geographical district-level information of the residence of the respondents. The full 
list of target variables and input features appears in Appendix.

For simplicity, we assume that a target is binary, yi ∈ {0, 1} , in this section, but 
the methods can be applied to a multinomial target. In logistic regression, the condi-
tional probability is given as a logistic function,

where � is a vector of coefficients for the features. Then, we obtain the cross-entropy 
to minimize as

In logistic Lasso regression, we add a penalty term, �|�| , to this loss function. Intui-
tively, because the loss function increases as the coefficients become large, this pen-
alty term makes the coefficients “shrink” more and the regularization parameter, 
� , determines the degree of shrinkage. In the following analysis, the regularization 
strength, � , in the objective function is 0.1, 1, 10, or 100.

Gaussian Naive Bayes is a simple classification method based on the Bayes theo-
rem. According to this theorem, we obtain the conditional probability as

(1)Pr(yi = 1 ∣ Xi) =
eXi�

1 + eXi�
=

1

1 + e−Xi�
,

(2)−
∑

i

{
yi log Pr(yi = 1 ∣ Xi) + (1 − yi) log Pr(yi = 0 ∣ Xi)

}
.
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and, if elements of Xi are independently and normally distributed, the likelihood in 
the numerator becomes

where �(⋅) is the probability density function of Gaussian distribution, and �y and �2
y
 

are the mean and variance of this feature in class y. Because we can simply estimate 
these parameters from data by the maximum likelihood, we have no hyperparam-
eters to tune with this method.

Random forest, XGBoost, and LightGBM are ensemble learning based on a deci-
sion tree, which is a predictive method to find partitions corresponding to the class 
of a target according to the value of the features. Random forest, XGBoost, and 
LightGBM construct multiple weak decision trees and predict a target by the mode 
of the classes predicted by them. While random forest parallelly creates weak learn-
ers, XGBoost and LightGBM employ gradient boosting, which sequentially gener-
ates weak learners using the result of the previous one. For random forest, we have 
a variety of hyperparameters, but only choose the number of trees from 10, 100, and 
1000, whereas we do not tune any parameters for XGBoost and LightGBM.

SVM is a supervised learning method to obtain a hyperplane that linearly sepa-
rates feature space into positive and negative cases. If the sets are not linearly sepa-
rable, we can construct a non-linear classifier using a kernel trick and the Gaussian 
(radial basis function) kernel, exp(−�|Xi − Xj|2) , is a well-known kernel function. In 
the following analysis, the regularization parameter (as discussed in Lasso), � , is 50 
or 100 and the kernel coefficient, � , in the Gaussian kernel function is also 0.01 or 
0.02.

Some targets in our survey data are imbalanced in that most cases are negative, 
while only a few are positive. For example, only 2.2% of the respondents in our 
data answered that practicing martial arts is their hobby. If we predicted that nobody 
likes to practice martial arts, we got 97.8% accuracy, but this result is misleading or 
meaningless. To deal with this problem of imbalanced data, we used the synthetic 
minority over-sampling technique (SMOTE), which increases positive (or minority) 
cases by interpolating [7]. For one minority case, SMOTE randomly draws one case 
from its k-neighbors and creates an artificial data point between an initial one and 
a selected one. Repeating this process, SMOTE increases the number of minority 
cases up to that of the majority.

Moreover, we rely on not only accuracy, but also other metrics considered to 
be more robust to imbalance, like the F score, the area under the receiver operat-
ing characteristic curve (ROC AUC) and precision–recall curve (PR AUC), and 
the Matthews correlation coefficient (MCC). In the confusion matrix (Table 1), we 
have four strata according to the ground truth, yi , and the prediction, ŷi : true positive 
(TP), true negative (TN), false positive (FP), and false negative (FN). Accuracy is 
the ratio of correctly predicted cases:

(3)Pr(yi ∣ Xi) =
Pr(Xi ∣ yi)Pr(yi)

Pr(Xi)

(4)Pr(Xi ∣ yi) =
∏

j

�

(
xij ∣ �y, �

2
y

)
,
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F score is the harmonic mean of precision and recall, where

MCC is also known as the � coefficient of the 2 × 2 contingency matrix, which we 
can obtain by

Before defining ROC AUC and PR AUC, we introduce the false-positive rate, rfp , 
and true-positive rate, rtp,

and suppose that there exists some threshold, p, such that if the predicted probability 
of an individual being positive, p̂i , is greater than p, we predict that the individual is 
positive. Then the true-positive and false-positive rates depend on this threshold and 
we obtain the ROC curve, (rfp(p), rtp(p)) and area under the ROC curve. Similarly, we 
obtain the area under the PR curve, (Precision(p), Recall(p)) . For multiclass targets, 
e.g., job, we do not calculate the F score, ROC AUC, and PR AUC, and for the con-
tinuous target, only age in this study, we use the root mean squared error (RMSE), �

1

N

∑
i(yi − ŷi)

2 , and mean absolute error (MAE), 1
N

∑
i �yi − ŷi� , as metrics.

We evaluated the performance in several ways. We conducted fivefold cross-
validation for the Tokyo sample and averaged those metrics to check the in-sample 
performance. Then we trained the predictive models using the whole Tokyo sample 
and tested the out-sample performance with samples from the other three regions. 
Finally, we checked the performance in a real-world setting with the GPS log data. 
Note that we oversampled only the training set, not the test set, and standardized 

(5)Accuracy =
TP + TN

TP + TN + FP + FN
.

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN
.

(8)MCC =
TP ⋅ TN − FP ⋅ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

(9)rfp =
FP

TN + FP

(10)rtp =
TP

TP + FN
,

Table 1   Confusion matrix Ground truth

yi = 1 yi = 0

Prediction ŷi = 1 True positive (TP) False positive (FP)
ŷi = 0 False negative (FN) True negative (TN)



195

1 3

Journal of Computational Social Science (2021) 4:187–205	

and scaled both the training and test sets so that all features had a mean of one and a 
variance of zero.

Results

We investigated the gender and age predictions in detail because these are fundamen-
tal attributes that the existing studies mentioned above also tried to predict. Figure 3a 
shows the results of predicting gender from location information; the dark gray bars 
are the accuracy of each method for the Tokyo sample and the light gray bars are those 
for the samples outside Tokyo by XGBoost. Looking at the accuracy (because gender 
is balanced in our sample), the classifiers predicted gender with about 80% accuracy 
on average and XGBoost shows the highest performance with accuracy of 0.8463, F 
score of 0.8498, and ROC AUC of 0.9202, which is as accurate as the existing stud-
ies. For example, the ROC AUC of Koniski et al. using “Facebook Likes”, one of the 
prominent studies on SNS and personal attributes, is 0.93 [17]. In general, the average 
accuracy and F score of the gender prediction from the SNS information were 0.83 
and 0.84, according to the survey article [6]. Moreover, the out-sample accuracy for 
three prefectures is higher than the in-sample one, probably because we used the entire 
Tokyo sample to train for these cases and there is no “metropolitan” bias.

To see how strongly and in which direction location information is associated 
with gender, we further investigated the coefficients of predictors in the logistic 
Lasso regression when the regularization parameter is 10 (Fig.  3b). We used the 
Lasso results because, unlike tree-based methods, Lasso shows not only the strength 
of the predictors, but also the sign of the coefficients. In the figure, the dark gray 
bars show the coefficient of features related to females and the light gray ones are 
those for males. The most significant but trivial factor was whether to go to a barber-
shop or beauty salon. More interestingly, we can predict gender from buying behav-
ior; that is, those who frequently go to department stores, furniture stores, or super-
markets are likely to be regarded as female, while those who go to electronic, sport, 
or discount stores are considered male.

Figure 4a, b shows the result of the generation and age prediction. First, we split the 
sample into three groups—young (under 29), middle-aged (between 30 and 59), and 
elderly (over 60) persons—because, as we mentioned in “Introduction”, tracing routes 
of and detecting cluster of young and elderly people is crucial in dealing with the coro-
navirus pandemic. The accuracy and MCC for several models to predict generation are 
almost 0.68% and 0.5 but this result is less intuitive because the generation is multi-
nomial variable. Second, therefore, we predict it as a continuous variable by regres-
sion and use RMSE and MAE as metrics to evaluate the performance of each method. 
MAEs are no less than about nine, which implies that location information hardly pre-
dicts 10-year age groups but, combining the first result, it is still useful in predicting 
boarder generation. Again, there is no systematic difference between in-sample and out-
sample predictions for both predictions. In Fig. 4c, the dark gray and light gray bars rep-
resent the coefficient of the predictors associated with older and young people, respec-
tively. Other than whether they are a student, facilities related to hobby seem strongly 
correlated with young people, e.g., arcade, bowling alley, karaoke, internet cafe, and 
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bar. In contrast, older people tend to go to facilities related to health, e.g., clinic, dentist, 
and hospital. Though the accuracy leaves room for improvement, the result is intuitive 
and suggests that location information could provide us with an individual’s age.

Fig. 3   Prediction of gender
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Fig. 4   Prediction of age
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We compared the overall in-sample performance for all targets by XGBoost because 
this method performed reasonably well on average. XGBoost shows higher perfor-
mance in terms of MCC probably for two reasons. First, generally speaking, tree-based 
approaches, i.e., Random Forest, XGBoost, and LightGBM, are less sensitive to the 
scale of the value of input features because they recursively split a sample into several 
groups with a threshold during train. In contrast, logistic (Lasso) regression assumes the 
same interval of value implies the same weight. For example, the frequency of visit is 
coded as an integer from 1 to 9 in our dataset but the difference between 1 (rarely) and 
2 (once a year or less) and that between 8 (a few times a week) and 9 (almost every day) 
may not have substantively equal importance for predicting personal attributes. Second, 
XGBoost and LightGBM employ gradient boosting, which generates a weak learner 
reflecting errors by previous weak learners during train while Random Forest uses 
bagging, which parallelly generates weak learners. As a result, we consider XGBoost 
shows high performance (though LightBGM also has slightly lower predictive power).

In Fig. 5, the targets are arranged in order of the value of MCC from top to bot-
tom. Gender, living with infants and children, hobbies that require specific facilities 
(e.g., playing golf or tennis), and gambling (pachinko and race) are highly predict-
able. Although it is difficult to set criteria for the strength of the correlation coef-
ficient, we may predict other important socioeconomic attributes like marital status 
and individual income and savings. In contrast, living with adults or older people 
and hobbies not related to a specific place (e.g., playing video games and smoking) 
are difficult to predict from location information only.

Finally, we predicted gender and generation from the GPS log, applying XGBoost 
trained by our survey data from Tokyo, and compared it with the cross-validation predic-
tion. Note that, because the GPS log data coverage is 1 month and does not contain infor-
mation on residence, we trained the learner again after replacing the answers of visiting a 
specific facility less than once a month with those of never visiting in the survey data and 
dropping the district-level variables (therefore, the performance for the survey data differs 
from that in the previous figures). In addition, when it comes to predicting generation, the 
GPS log data contain only young and middle-aged persons, so that we drop the sample of 
elderly people from the training set. Although the prediction of gender by the GPS log is 
less accurate than by the survey data, gender is still a predictable attribute from a location 
history with accuracy of 0.63% (Table 2a). In contrast, GPS log can predict generation 
less accurately than survey data (Table 2b). The performance with GPS data is not as high 
as that with the survey data, probably because (1) the GPS log data only covers 1 month 
and (2) the respondents in the GPS data went to facilities we did not ask in the survey, 
both of which can be solved by improving the data collection procedure. Moreover, if we 
incorporate the sequence of locations into classifiers, the performance must be improved.

Conclusion

In this study, we tested our conjecture that locations hint at personal attributes. 
To this end, we collected a comprehensive dataset of personal attributes and loca-
tion information in Japan and showed that it is possible to estimate socioeconomic 
attributes, including gender, living with infants and children, marital status, and 
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individual income, from the frequency of visits to facilities. We also applied our pre-
dictive model to location information we extracted from real GPS log data to check 
the performance in a realistic situation and found that the performance of predicting 
gender is predictable to some extent, though less than from the survey data. Over-
all, our analysis suggests that socioeconomic attributes affect human behavior and, 
therefore, human location.

At the same time, our study poses several limitations. First, we need more 
extended time coverage of the GPS log to predict attributes as accurately as from the 
survey data. Second, we found that the respondents in the GPS data visited places or 

Fig. 5   Overall in-sample performance of XGBoost for all attributes
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facilities that we did not ask about while collecting survey data, but which might have 
information on their characteristics. Third, if we use the sequence of human move-
ment in prediction, the performance must be higher than our result in this paper, but 
trajectory data with personal attributes are hard to access for researchers. All require 
a more elaborate data-collecting process in the training and test sets. Nevertheless, 
our study shows how accurately socioeconomic attributes can be predicted just by the 
frequency of visiting facilities and places. Because more and more companies collect 
information on the movement of customers from portable devices, if these companies 
provide researchers with this information as Twitter does for SNS, the analysis of 
human movement will be a major topic in computational social science.

Finally, we believe that our study has the potential for policy implications in politi-
cal, economic, and social contexts. Moreover, as we discussed in “Introduction”, 
location information has been used in infection prevention and immigration control. 
For infection prevention of COVID-19, understanding what kind of people are going 
where is important in forecasting and preventing a pandemic. Presumably, the move-
ment of young people is suspected of routes of transmission and places where elderly 
people gather can be at higher risk of infection. For refugee and immigration pol-
icy, by applying our approach to citizens, we can understand what kind of people or 
communities interact with which part of immigrant society. This sort of analysis, we 
believe, helps policymakers integrate immigrants into a host country, relaxing dis-
putes among them, and improving social welfare. We need to seek a way of balancing 
between the protection of privacy and the utility of information for a better society.
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Table 2   Comparison between 
survey data and GPS log

(a) Prediction of gender

Metrics Survey GPS

Accuracy 0.735333 0.629371
MCC 0.472466 0.291346
AUC (ROC) 0.824475 0.637745
AUC (PR) 0.803007 0.737777
F score 0.746033 0.569106
(b) Prediction of generation
Accuracy 0.747094 0.474820
MCC 0.404128 0.109331
AUC (ROC) 0.772475 0.556818
AUC (PR) 0.875023 0.799741
F score 0.818239 0.496552
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as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

Appendix: List of variables

See Tables 3, 4 and 5.

Table 3   List of location information

Facility

Laundry
Supermarket
Electronics store
Outdoor equipment or sport shop
Furniture or interior store
DIY store
Discount store
Department or brand store
Shopping mall
Car dealership
Kindergarten or nursery
Elementary, middle or high school
University or college
Cultural center
Language school
Dentist
Clinic
Hospital
Nursing care store
Animal hospital/pet shop
Baseball field (to play) or batting center
Soccer stadium (to play)
Baseball field (to watch)
Soccer stadium (to watch)
Event hall or theater
Golf course
Tennis court
Pool or gym
Executive hotel
Hot spring
Camp site
Ski area

http://creativecommons.org/licenses/by/4.0/
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Table 3   (continued)

Facility

Sea
Zoo, aquarium or botanical garden
Museum
Park
Amusement park
Arcade or bowling alley
Racecourse
Pachinko or slots
Movie theater
Bar or tavern
Beauty salon
Barber shop
Restaurant
Karaoke or internet cafe
Shrine or temple
Church
Wedding hall
Funeral hall

Table 4   List of district information

Category

Average income
Distance from City Hall to Tokyo Station
Travel time from City Hall to Tokyo Station
Fare from City Hall to Tokyo Station
Average land price
Crime rate
Average household size
Foreign people ratio
Population
Population (0–9 years old)
Population (10–19 years old)
Population (20–29 years old)
Population (30–39 years old)
Population (40–49 years old)
Population (50–59 years old)
Population (60–69 years old)
Population (70–79 years old)
Population (80–89 years old)
Population (over 90 years old)
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Table 5   List of socioeconomic attributes

Attribute Note

Gender Female or male
Age
Marital status Single or married
Job Employee, civil servant, self-employed, part-time worker, 

housewife or other
Unemployed Unemployed or not
Permanent staff Permanent or not
Education Undergraduate, graduate or other
Religion Buddhist, Christian, other or no religion
Drinking More than once a month or less
Smoking Every day or less
Facebook More than once a month or less
Twitter More than once a month or less
Instagram More than once a month or less
YouTube More than once a month or less
LINE More than once a month or less
LinkedIn More than once a month or less
TikTok More than once a month or less
Living with infants yes or no
Living with 6–18 year old Yes or no
Living with 19–29 year old Yes or no
Living with 30–39 year old Yes or no
Living with 40–49 year old Yes or no
Living with 50–64 year old Yes or no
Living with 65–74 year old Yes or no
Living with over 75 years old More than one or not
Individual income More than 9 million yen or less
Household income Less than 1.2 million, between 1.2 million and 2 million 

yen or more than 2 million yen
Individual savings Less than 1.2 million, between 1.2 million and 2 million 

yen or more than 2 million yen
Household savings Less than 1.2 million, between 1.2 million and 2 million 

yen or more than 2 million yen
Individual asset Less than 1.2 million, between 1.2 million and 2 million 

yen or more than 2 million yen
Household asset Less than 1.2 million, between 1.2 million and 2 million 

yen or more than 2 million yen
Playing baseball Yes or no
Playing soccer or futsal Yes or no
Practicing martial arts Yes or no
Playing golf Yes or no
Playing bowling Yes or no
Playing tennis Yes or no
Playing marine sports Yes or no
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