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Abstract
Partisan gerrymandering poses a threat to democracy. Moreover, the complexity of 
the districting task may exceed human capacities. One potential solution is using 
computational models to automate the districting process by optimizing objective 
and open criteria, such as how spatially compact districts are. We formulated one 
such model that minimised pairwise distance between voters within a district. Using 
US Census Bureau data, we confirmed our prediction that the difference in com-
pactness between the computed and actual districts would be greatest for states that 
are large and, therefore, difficult for humans to properly district given their limited 
capacities. The computed solutions highlighted differences in how humans and 
machines solve this task with machine solutions more fully optimised and displaying 
emergent properties not evident in human solutions. These results suggest a divi-
sion of labour in which humans debate and formulate districting criteria whereas 
machines optimise the criteria to draw the district boundaries. We discuss how cri-
teria can be expanded beyond notions of compactness to include other factors, such 
as respecting municipal boundaries, historic communities, and relevant legislation.

Keywords Gerrymandering · Computational redistricting · Weighted k-means · 
Cognitive limitations

Introduction

One of the greatest threats to democracy, particularly in the USA, is gerrymander-
ing. Gerrymandering is the practice of (re)drawing electoral district boundaries to 
advance the interests of the controlling political faction. The term is a portmanteau, 
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coined in 1812 when people noticed that a district—approved by the then governor 
of Massachusetts, Elbridge Gerry—resembled a salamander [20].

Gerrymandering leads to districts with unnecessarily visually complex shapes, 
e.g. North Carolina (see Fig. 3c). Although there are laws (both at the state and fed-
eral levels) to safeguard the rights of citizens (including minorities) during the redis-
tricting process, in practice these laws do little to reduce partisan gerrymandering 
[15]. Worryingly, gerrymandering is on the rise [25] due to partisan actions of both 
Republicans and Democrats [5]. In the 17 states where Republicans controlled the 
redistricting process, they secured 72% of the available seats on only 52% of the 
vote. Mirroring, in the six states where Democrats controlled the districting process, 
they secured 71% of the seats on 56% of the vote.

The two main gerrymandering strategies are packing and cracking [1]. Cracking 
dilutes people likely to vote for the opposition, assigning them to as many districts 
as possible, see Fig. 1b. One cracking tactic is to dilute urban voting blocs by having 
multiple districts from the countryside converge like the spokes of a wheel at a city’s 
fractured hub. In contrast, packing concentrates people who will likely vote for the 
opposition within a small number of districts, rendering their vote inconsequential 
in the remaining districts, see Fig. 1c.

Fig. 1  An illustrative example 
of three redistricting plans. The 
50 voters (circles) are grouped 
into 5 districts (polygons) with 
the background colour denoting 
the winning party. The purple 
party (60% of voters) secures 
60%, 100%, and 40% of the 
seats under the three plans, 
respectively. a Compact, fair: 
the proportion of wins (60%) 
by the purple party reflects its 
overall level of voter support. 
b Compact, not fair: all five 
districts are won by the purple 
party because the orange vote 
has been cracked. c Not com-
pact, not fair: the purple party 
has been packed into two dis-
tricts (its only wins) and cracked 
in the remaining districts. We 
recommend the video that moti-
vated this figure [26]
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One possible solution to partisan gerrymandering is to rely on computer algo-
rithms to impartially draw districts [27]. In theory, there is no reason why such a 
solution could not be adopted in the USA. Indeed, many states within Mexico use 
computer algorithms to district [2, 11, 13, 24]. Moving to computational redistrict-
ing would “elevate the legislative redistricting debate from a battle over line drawing 
to a discussion of representational goals” [6, p. 1381]. In other words, the role for 
humans would be to decide and formalise the criteria (e.g. people within a district 
should be close to one another) and the computer’s job would be to find the best 
solution without human tinkering. Thus, the appeal of automation is twofold: (a) 
open source computer algorithms can be written to follow objective criteria absent 
corrupting influences; (b) computers are able to toil away optimising the objec-
tive criteria in contrast to humans who have limited cognitive capacity and time to 
devote. While the first point, namely that purposeful gerrymandering occurs and 
leads to unfair solutions may be obvious, the second point may be less so. However, 
from a psychological perspective, it is clear that humans do not consider all logically 
possible solutions in combinatoric problems (e.g. districting), but may instead rely 
on shortcuts and general organisational principles [23]. Counterintuitively, some of 
what we perceive as gerrymandering may simply reflect that humans are not very 
good at the districting task.

In light of these observations, we tested the psychologically motivated prediction 
that differences in compactness between the computed and actual districts will be 
greatest for states that are large and, therefore, difficult for humans to properly dis-
trict. To evaluate this prediction, we devised a novel clustering algorithm to redis-
trict the USA’s 435 congressional districts (more populous states are allotted more 
seats). The algorithm maximises a notion of compactness by minimising the average 
mean distance between people within the same district, cf. [3, 8, 14].

In accord with federal law, our novel algorithm includes an additional constraint 
to create clusters (i.e. districts) of roughly the same cardinality (i.e. population). We 
refer to our algorithm as weighted k-means because it is based on k-means clustering 
[4, 18]. Details are provided in Materials and methods and the open source code is 
available to reproduce the reported results at https ://osf.io/5fepu /.

Materials and methods

This section details how the US Census Bureau data were preprocessed and provides 
details on the weighted k-means model.

Census data

US Census Bureau data were used to perform the district clusterings reported in the 
main text. For clustering, we used the smallest available geographic unit, known as 
a census block. The US Census Bureau collects data for just over 11 million census 
blocks of which almost 5 million have a population of 0. The last decennial census 
occurred in 2010. However, as recently as 2015, the US Census Bureau conducted 

https://osf.io/5fepu/
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the ACS (American Community Survey), which is a survey at one level above the 
block level, which is referred to as a block group. Using these 2015 counts, we esti-
mated the population of each census block in 2015 by calculating its population 
share of its block group in 2010 and, assuming these proportions had not changed, 
updated the block populations based on the 2015 ACS. Notice that our population 
estimates for census blocks in 2015 is not constrained to be an integer.

Census blocks in urban areas tend to be geographically smaller but more popu-
lated. Based on our estimates combining the 2010 and 2015 data, the mean popula-
tion of a census block is 29.49 with a median of 3.41 people. The mean area of a 
census block 1.11 km2 with a median of 0.04 km2.

Initialisation

The manner in which clusters are initialised will affect the quality of the final solu-
tion because our algorithm, like k-means which it generalises, moves toward a local 
optimum. We initialise the centroids using the procedure from k-means++ [4].

Weighted k‑means algorithm

Weighted k-means generalises k-means by preferring clustering solutions in which 
clusters have roughly the same cardinality (i.e. number of members) with the 
strength of this preference determined by a parameter value. This scaling factor is 
necessary to ensure that clusters (i.e. districts) have roughly the same number of 
voters, which is fair and required by federal law. In effect, the scaling makes it more 
likely that clusters with fewer members will geographically expand to encompass 
more members (see parameter fitting for how we found values for the scaling factor).

Like k-means, in each iteration, items are assigned to the nearest cluster and at 
the end of iteration the position of the cluster (i.e. centroid) is updated to reflect 
its members’ positions. After a number of iterations, the algorithm converges to a 
local optimum. Weighted k-means differs from k-means by penalising clusters with 
more members such that distances to these clusters are multiplied by a scaling factor 
reflecting the cluster’s cardinality. The weight for cluster i is

where |Ci| is the cardinality of cluster i, K is the number of clusters, and � is a param-
eter that determines how much to penalise clusters with a disproportionate number 
of members.

To stabilise solutions across iterations and prevent oscillations, the scaling factor 
si,t for cluster i at time t (i.e. iteration t) is calculated as a weighted combination of 
the previous scaling factor si,t−1 and wi

(1)wi =
�Ci��

∑K

j=1
�Cj��

,

(2)si,t = �si,t−1 + (1 − �)wi,
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where � is a control parameter in the range [0, 1). In the first iteration, each si,0 is 
initialised to 1

K
 , where K is the number of clusters.

The scaled distance of point x to the cluster i is

where �i is the position of cluster i and d is the distance metric, which in this con-
tribution is great-circle distance (also known as orthodromic or geodesic distance, 
estimated using the haversine formula), which respects the curvature of the Earth. 

 Finally, argminids(x,�i) is used to find the nearest weighted cluster i from point x, to 
which x will be assigned. Notice that this algorithm is identical to k-means when � is 
0. As � increases, the constraint of equal cardinality becomes firmer. The algorithm 
is presented in pseudocode in Algorithm 1.

Parameter fitting

Solutions are only considered that converge and for which the cardinalities of the 
clusters are in line with that of actual congressional districts. In principle, one could 
use any parameter search procedure to find � and � that minimised the measure we 
report, which is the pairwise distance of voters within a district (i.e. cluster). For 
example, one could use grid search to consider all possible combinations (at some 
granularity) of � and �.

However, given available computing resources, we adopted a more efficient pro-
cedure informed by our understanding of the algorithm’s behaviour (i.e. smaller � 
values lead to tighter clusterings). The parameter search procedure began with � set 
to 0 and increased � until an acceptable solution was found. At each level of � , � was 
set to 0.5 and increased by 0.1 after a simulation failure until � exceeded its range. 
At that point, � was increased by 0.1 and the process was repeated with � set to 0.5. 
This procedure terminated when an acceptable solution was found. At that point, a 

(3)ds(x,�i) = si,t × d(x,�i),
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finer grained optimisation was performed, which considered � values up to 0.1 lower 
than first acceptable value found.

Results

Our clustering algorithm created improved maps for every state, see Fig. 2. Please 
visit http://redis trict .scien ce to compare the actual and automated districting plans 
for any address in the USA. We define the improvement for each state as the ratio 
of pairwise distances within districts between our solution and the actual districts. 
This metric favours districts in which voters are tightly clustered spatially, leading 
to a mean improvement across states of 0.796 (i.e,. about 20%) with standard devi-
ation 0.0858. To test our main prediction, a regression model was fit to the state 
improvement scores with number of districts, and square of number of districts serv-
ing as predictors, R2 = 0.550 , F(2, 40) = 24.47, p ≈ 0 . Both predictors in the fit, 
− 0.0149(number of districts) + 0.0002(number of districts)2 + 0.9027 , were sta-
tistically significant, t(40) = −5.654, p ≈ 0.0 and t(40) = 3.879, p ≈ 0 , respectively. 
Consistent with our prediction, these results suggest that the cognitive demands 
of drawing districts for larger states may tax human capacities. Thus, some of the 
unfairness in current solutions may be unintentional, as opposed to wholly attribut-
able to deliberate gerrymandering for political gain.

Fig. 2  Map of the USA showing how much more compact each state’s districts would be under computa-
tional districting. Red-coloured states would improve the most after using our algorithm to form districts 
that are compact by minimising the pairwise distances between people within a district. Blue-coloured 
states would improve the least from computational redistricting, though still show an improvement in 
within-district pairwise distances. States with grey hatching, e.g. Alaska (bottom left), have only one dis-
trict

http://redistrict.science
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The regression also included a quadratic term for the number of districts that con-
firmed the intuition that the complexity of the task should not scale linearly with the 
number of districts because the clustering is spatial and local interactions dominate. 
For instance, there are natural groupings and locality within big states, e.g. what is 
drawn for Los Angeles is unlikely to strongly affect what is drawn in San Francisco. 
People likely segment maps hierarchically into regional groupings to reduce pro-
cessing demands, as they do in other map reasoning tasks [12], which may explain 
fallacious conclusions like that Reno lies east of Los Angeles and that Atlanta is 
east of Detroit [22]. Overall, the district size results indicate that states with fewer 
districts are easier to draw properly, which suggests that state size may be another 
cause of “accidental gerrymandering” [8]. The residuals from this regression model 
can be interpreted as how gerrymandered each state is, adjusting for population. 
This analysis suggests that Arizona is the most gerrymandered state (see Table 1 for 
the complete ranking).

Let us turn to some specific examples for redistricting solutions (for an interactive 
map, visit http://redis trict .scien ce). For Iowa, which uses a neutral commission to 
draw district boundaries [16], our automated solution uses fewer segments (Fig. 3b) 
than the more complex actual solution (Fig.  3a). In the case of North Carolina, 
where maps are drawn through a partisan process, improvements are also evident 
(Fig. 3c, d).

Notwithstanding Utah’s “long tradition of requiring that districts be [...] rea-
sonably compact” [10], the densely populated northern conurbation of Provo, Salt 
Lake City, and West Valley City, is cracked, diluting the urban vote by recruiting 
parts of the countryside, reaching to the southern border of the state (Fig.  4a). 

Table 1  States sorted by their 
residuals from the regression 
model described in the main text

A state’s residual can be interpreted as how gerrymandered the state 
is after taking into account the number of districts, with negative 
residuals indicating greater gerrymandering. Of course, there could 
be other important covariates in addition to population size

State Residuals State Residuals State Residuals

AZ − 0.1482 ME − 0.0329 NE 0.0267
MD − 0.0820 NM − 0.0220 OR 0.0399
LA − 0.0792 NH − 0.0158 SC 0.0401
OH − 0.0747 WA − 0.0122 WI 0.0419
VA − 0.0747 NJ − 0.0043 CT 0.0426
UT − 0.0632 CA − 0.0036 MA 0.0437
TX − 0.0623 IA − 0.0022 MS 0.0458
NC − 0.0551 AL 0.0027 OK 0.0527
IL − 0.0538 HI 0.0137 MN 0.0563
TN − 0.0503 GA 0.0181 FL 0.0568
PA − 0.0475 KY 0.0203 KS 0.0603
WV − 0.0466 ID 0.0217 NV 0.0628
RI − 0.0458 MO 0.0239 IN 0.0813
CO − 0.0386 AR 0.0244 MI 0.1047

NY 0.1345

http://redistrict.science
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In the computed solution, the urban area of West Valley and Salt Lake City is 
assigned to a single urban district, as is Provo and its surrounding conurbation 
(Fig. 4b).

The automated districting of Arizona showcases an emergent property of our 
algorithm that human-drawn maps have not displayed, namely that districts can 
be embedded within one another, such as a small densely populated urban district 
encircled by a large sparsely populated rural district (i.e. shaped like a doughnut). 
Rather than crack Tucson across three districts (Fig. 4c), the algorithm settled on a 
doughnut structure (Fig. 4d).

An interesting case of convergence between human and algorithm is the case of 
Nebraska (Fig. 4e). Our algorithm followed in the footsteps of those who districted 
Nebraska (Fig.  4f), capturing the same transition from fully urban (east) to fully 
rural (west). However, the smooth radiating boundaries surrounding the capital, 
Omaha, are more compact (optimised) in the automated solution.

One question is which solution potential voters prefer. From the 15–17th of 
November 2017, we collected data from 367 self-identified US citizens (using our 
website http://redis trict .scien ce) who indicated whether they preferred our algo-
rithmic solution or the actual districting for their state. Participants were asked to 
select their location using a list of valid US states, then they were shown two images 
depicting the relevant maps (their own state’s and the one produced by our algo-
rithm) and they had to select which they preferred. The vast majority of respondents 

Fig. 3  Actual and computed district maps for Iowa (a, b) and North Carolina (c, d). Computed solutions 
are shown in green to the right of the actual congressional districts. Darker areas on the map (census 
tracts) are more densely populated

http://redistrict.science
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Fig. 4  Actual and computed district maps for Utah (a, b), Arizona (c, d), and Nebraska (e, f). Computed 
solutions are shown in green to the right of the actual congressional districts. Darker areas on the map 
(census tracts) are more densely populated
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preferred the computational solution (90.7% overall; 91.1% when IP address loca-
tion and state matched) with the pattern holding across states.

Discussion

In summary, we applied our novel weighted k-means algorithm to US Census 
Bureau data to redistrict the USA’s 435 congressional districts and compared the 
computed solutions to actual districts. The results confirmed our prediction that 
larger states would tend to show greater improvement, suggesting that the complex-
ity of the districting task may overwhelm humans’ ability to find optimal solutions. 
One startling conclusion is that some of what we view as purposeful gerrymander-
ing may reflect human cognitive limitations. At this juncture, this conclusion is more 
a provocative conjecture than an established finding. Further work is needed to eval-
uate how human cognitive biases and limitations may contribute to gerrymandering.

In light of our results, we advocate a division of labour between human and 
machine. Stakeholders should openly debate and justify the districting criteria. Once 
the criteria are determined by humans, it should be left to the computers to draw the 
lines given humans’ cognitive limitations and potential partisan bias. We offer one 
of many potential solutions. The computer code, like ours used in these simulations, 
should be open source (to allow for replication and scrutiny) and straightforward to 
provide confidence in its operation.

Political, ethical, scholarly, and legal debate should play a central role in deter-
mining the optimisation criteria. For example, instead of choosing the mean pair-
wise distance between constituents, we could have used travel time to capture the 
effects of geographical barriers, such as rivers. Even a measure as simple as travel 
time raises a number of ideological considerations that should be debated, such as 
the mode of transportation (e.g. public, on foot, or by automobile) to adopt. Other 
factors could be included in the criteria, such as respecting municipal boundaries, 
historic communities, the racial composition of districts, partisan affiliation, etc. For 
our demonstration, we chose perhaps the simplest reasonable criteria, but in applica-
tion the choice of criteria would ideally involve other factors after lengthy debate 
involving a number of stakeholders. These debates should elevate democratic dis-
course by focusing minds on principles and values, as opposed to how to draw maps 
for partisan advantage.

Although we focused on US districting, similar issues arise in other democracies. 
For example, the UK is currently reviewing the boundaries for its parliamentary 
constituencies. Our work suggests that, even though the UK uses politically neutral 
commissions to guide the redistricting process, the results could disadvantage cer-
tain voters due to the cognitive limitations of those drawing the maps.

Our algorithm is only one possible solution to open and automated district-
ing. The algorithm selected could be the one that best performs according to an 
objective criteria. Different algorithms will provide qualitatively different geome-
tries, which itself could inform selection. For example, the shortest splitline algo-
rithm recursively splits a state into districts restricting itself to north–south and 
east–west straight lines. The balanced k-means algorithm [7] is very similar to 
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our own algorithm. It minimises the standard k-means loss function plus an addi-
tional weighted term that takes into account the number of members (i.e. people) 
in each cluster (i.e. district). The range of possible geometries in balanced k-means 
is between those of the shortest splitline algorithm and our weighted k-means. Bal-
anced k-means will create district boundaries that are lines (at any angle, not just 
north–south and east–west) to partition the space into a Voronoi diagram. In con-
trast, our algorithm, which weights distance by cluster, can form districts within dis-
tricts (see Fig. 4) and borders can be curved (see Fig. 4). No matter the choice of 
algorithm, clustering is an NP-hard problem such that the optimal solution is not 
guaranteed unless all possible assignments are considered [19], which is computa-
tionally impossible in most cases. In practice, random restart with different initial 
conditions and other optimisation techniques can provide high-quality solutions.

We believe this automated, yet inclusive and open, approach to redistricting is 
preferable to the current system in the USA for which the populace’s only remedy 
is the court system, which has proven ineffective in this arena. The law and case 
history for gerrymandering in the USA is complex and we will not feign to provide 
an adequate review here. However, two key points are (a) courts are reactive and 
proceed slowly relative to the pace of election cycles (i.e. before any action would 
be taken, disenfranchisement would have already occurred); (b) the Supreme Court 
of the United States has never struck down a politically gerrymandered district [17]. 
However, recently, courts have taken a more active role in addressing cases of ger-
rymandering. After centuries of gerrymandering complaints, for the first time, the 
Supreme Court has agreed to hear a case concerning whether Wisconsin’s partisan 
gerrymandering is in breach of the First Amendment and the Voting Rights Act [17]. 
Likewise, recent verdicts concerning districting in North Carolina and Pennsylvania 
highlight a growing consensus that politicians should not have a freehand in drawing 
maps for partisan advantage.

In such legal cases, the concept of voting efficiency, along with comparison to 
randomly generated maps [9], has prominently featured [25]. The basic concept is 
that votes for the losing party in a district are “wasted” (related to cracking) as well 
as votes for the winning party over what is needed to secure victory (related to pack-
ing). Formal measures of efficiency can be readily calculated and compared [25]. 
Although these measures have their place in illustrating disparities, we find it prefer-
able to focus on optimising core principles and values, rather than rarify the status 
quo and reduce voters to partisan apparatchiks whose preferences and turnout ten-
dencies are treated as fixed across election cycles, which they are not.

In contrast to voter efficiency approaches, an algorithm like ours will naturally 
lead to cases where groups “self-gerrymander”, such as when like-minded com-
munities form in densely populated areas [8, 21]. However, it is debatable whether 
these votes are truly wasted. Representatives for these relatively homogeneous com-
munities may have a stronger voice and feel emboldened to advocate for issues that 
are important to their community, even when these positions may not be popular on 
the national stage. After all, almost by definition, every important social movement, 
such as the Civil Rights movement or campaigns for LGBT equality, is not popu-
lar at inception. Nevertheless, concepts like voter efficiency could be included in 
the optimisation criteria for algorithms like ours. When faced with complex issues 
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as to what is fair, the best solution may be the division of labour what we advo-
cate: humans formalise objective criteria through open discourse and the computers 
search for an optimal solution unburdened by human limitations.
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