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Abstract
We found power-law behavior in the distribution of traffic on road segments in urban 
traffic simulations using digitized map of Kobe city in Japan as an example of an 
actual road network. As a comparison, we performed simulations using an artificial 
random road network and Manhattan-type road network. Similar power-law behav-
ior was confirmed in the former, but not the latter. The behavior appeared robustly 
with or without traffic congestion, which suggests that its origin is not the interaction 
between vehicles. The power-law exponent was fitted using least squares method 
and obtained as −1.1 for Kobe city and the random road network, with optimization 
to avoid traffic congestion. The result did not change with the use of a different ori-
gin and destination distribution. From these results, one of the reasons that caused 
the power-law behavior was considered to be the randomness of the road network 
connection and edge lengths, whose fluctuations are obvious both in Kobe city and 
the random road network, unlike the grid network.

Keywords Traffic flow · Zipf’s law

Introduction

Traffic models for a straight single lane have been established, whereas models on 
city-scale networks of connected roads have not reached the same level. Various 
urban traffic simulations have already been conducted that attempt to improve the 
flow of urban traffic, and it is simultaneously necessary to comprehend and con-
trol the behavior of simulation models because they are comprised of a very large 
number of parameters and conditions, as is the case for most social simulation mod-
els. Simulations that attempt many cases using high-performance computers shall 
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provide novel measures to establish comprehensive models of social phenomena so 
that they can eventually be designed and controlled.

Power-law behavior, so-called Zipf’s law, is observed in various phenomena both 
in society and nature, for example, language [1], income [2], population [3], hits on 
webpages [4] and earthquakes [5]. Such behavior is not expected from naive statisti-
cal law of large numbers and analytical exponential function; therefore, the Zipf-
like power-law behavior is regarded as a significant and useful characterization of 
each phenomenon. Empirically, some roads have fixed small or large traffic volume, 
which resembles income or population disparity. This suggests that the population 
distribution of roads versus traffic volume (hereafter called traffic distribution) obeys 
a power-law in the same manner as income or population distribution.

In this paper, we report that a power-law actually appears in the traffic distribu-
tion of an urban traffic simulation performed using a digitized map of Kobe city in 
Japan as an example of an actual road network. By performing other simulations 
using artificially generated road networks, we conclude that the road network struc-
ture is one of the causes of the power-law appearance.

Kobe city traffic simulations

To perform urban traffic simulations, we used the traffic simulator called SUMO 
(Simulation of Urban MObility [6]) with a digitized road network of actual Kobe 
city which works in SUMO. The road network is shown in Fig. 1, and was obtained 
and edited in [7] from a digital road map provided by Zenrin Co., Ltd. The network 
includes highways, national roads, city roads with different speed limits, 100, 60 and 
30 km/h, respectively. The SUMO default traffic signal pattern was used.

We assumed 17,500 vehicles during six hours of simulation time, which is equiv-
alent to assuming that 70,000 vehicles appeared in 24 h. The road map was divided 
into six areas to generate non-uniform OD distribution, as shown in Fig. 1. To imi-
tate the background traffic flow that travels across Kobe city from outside the city, 
the origin and destination (OD) distribution was set to be higher between area 1 
(red) and area 4 (cyan) than it was between any other pair of areas; 8750 vehicles 
between area 1 and area 4, and 250 vehicles between other areas. The OD was ran-
domized and uniformly distributed within each area. Simulations using these condi-
tions were verified in [8] to have similar behavior to the empirical features of actual 
traffic.

Using an OD set, a script called “duarouter.py” included in the SUMO pack-
age, generated the shortest route with respect to time from its origin to destination, 
without considering traffic congestion. Shown as “none” in Fig. 2, the number of 
vehicles simulated in this initial routing continuously increased until the simulation 
ended as a result of severe congestion, which corresponds to a non-equilibrium state 
in which a constant fraction of entered vehicles never arrive at the destination until 
the simulation ends.

To make vehicles avoid congested roads, a script called “duaiterate.py” 
included in the SUMO package generated a better route based on the travel time 
calculated using the previous simulation result. By applying these optimized 
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Fig. 1  Road network of Kobe city, sourced from [8]. Six separated areas are shown in different colors

Fig. 2  Number of running vehicles vs. simulation time. The initial route (solid curve with black circles) 
shows a continuous increase of running vehicles, which represents an unrealistic scenario in which most 
vehicles do not reach the destination within the simulation time. By iterating six times, the time evolution 
converged into a flat shape, except for the beginning of the simulation, which we assess to be an equilib-
rium state and a realistic scenario



496 Journal of Computational Social Science (2018) 1:493–500

1 3

routes, shown as “1” in Fig. 2, a greater fraction of vehicles than that in the previ-
ous simulation reached their destination, which is a more realistic scenario. By 
repeating these iterations, the time evolution converged into a flat shape with 
constant simulated vehicles shown as “6” in Fig.  2, which represents an equi-
librium state in which the same number of vehicles that entered the simulation 
reached the destination and disappeared. We assess that this equilibrium state is 
sufficiently realistic because all vehicles are considered to reach the destination 
within a finite time. The appropriate number of iterations was obtained as six 
because the time evolution after five and six iterations obeyed an almost identical 
flat shape.

For each simulation, the number of vehicles, N
V

 , that passed each road was 
recorded. The number of roads, N

R
 , were accumulated using logarithmic bin-

ning and divided by bin width �N
V

 to obtain N
R
∕�N

V
 as a normalization. Fig-

ure  3(left) shows the result of plotting them with respect to N
V

 , which we call 
traffic distribution. Clearly, a power-law distribution appeared across the entire 
region. The traffic distribution after six iterations is also shown in Fig. 3(right). 
The power-law behavior remained, with a smooth cutoff appearing at the right 
end of the distribution.

The appearance of the power-law without any iterations implies that this 
behavior was independent of traffic congestions; the shortest path from the origin 
to destination simply caused the power-law distribution. Additionally, the power-
law exponent was fitted using the least squares method for the fitting region 
10

0
−10

2 and was obtained as −1.4 without iterations and −1.1 with iterations. It 
increased after the iterations, which implies that the traffic distribution became 
closer to a uniform distribution as a result of the iterations.

Fig. 3  Left: traffic distribution in Kobe city derived from routes with the shortest travel time, without 
considering traffic congestion. The x-axis is the number of vehicles that went through each road seg-
ment, whereas the y-axis is the number of roads per unit vehicle. Right: same as left, but after six itera-
tions. The distribution was re-binned so that any apparent bin widths were the same when plotted on a 
logarithmic scale. To normalize the bin contents, N

R
 were divided by their widths �N

V
 . Error bars are 

given but are almost invisible, except for the right end of the distribution in the right panel. The errors 
were obtained as the standard errors of five simulations with different random ODs. In each panel, the 
power-law line is drawn with the same exponent obtained from the best least square fit to enable visual 
comparison
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Results of the artificial condition and networks

To determine the condition that caused the power-law distribution, simulations 
were performed using two additional road networks and compared with the Kobe 
city simulation. The first road network, shown in Fig. 4(left), was a randomly gen-
erated by executing the “netgenerate” command included in the SUMO package. 
The parameters of the command were set as shown in Table  1. The second road 
network, shown in Fig. 4(right), was a grid network, which was also generated using 
the aforementioned command. A grid of 50 × 50 square blocks was arranged, with 
sides of 100 m. These two road networks are hereafter called the random network 
and grid network, respectively. No traffic signals were set in either map.

To compare simulations among the three maps using a common condition, a uni-
form OD distribution was used across the entire map. Uniformity was with respect 
to edges. To provide conditions similar to those of the Kobe city simulation, the 

Fig. 4  Left: random road network. Right: grid road network

Table 1  Random parameters Parameter Value

rand.iterations 15,000
rand.bidi-probability 1.0
rand.max-distance 1000.0
rand.min-distance 50.0
rand.min-angle 1.5
rand.num-tries 3
rand.connectivity 0.95
rand.neightbor-dist1,2,3,4,5 Default
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simulation time was fixed to six hours, and one vehicle was inserted every one sec-
ond of the simulation time for simplicity; therefore, 21,600 vehicles were simulated 
using each map, which is a similar value to the total vehicle number 17,500 used 
in the previous section. The OD distribution was generated by a script called “ran-
domtrips.py”, included in the SUMO package.

The simulation results for the three maps with five iterations on each are shown 
in Fig. 5. Clearly, a power-law distribution appeared only in Kobe city and the ran-
dom road network. Additionally, in the Kobe city simulation, the modification from 
non-uniform to uniform OD did not affect the results, because we confirmed that a 
smooth cutoff appeared when the number of iterations increased in the Kobe city 
map, as seen in the last section. The exponent was fitted to be −1.4 without itera-
tions and −1.1 with iterations, which is the same value with non-uniform OD.

Summary and discussion

In this paper, we performed an urban traffic simulation using a digitized map of the 
actual Kobe city road network. Power-law behavior appeared in the traffic distribu-
tion when using a relatively realistic OD set with imitated background traffic. When 
applying route iterations, a smooth cutoff appeared at the right end of the traffic 
distribution, while the left half of the distribution kept obeying a power-law with a 
larger exponent than without iterations.

To determine what type of factor caused the power-law, we also performed sim-
ulations with uniform OD distribution over Kobe city, random and grid networks. 
The traffic distribution continued to obey a power-law for Kobe city and the random 
road network, whereas it did not for the grid network. For Kobe city, the power-law 
exponent was fitted to be the same value with different ODs and with or without 
iterations.

The results that showed that the power-law did not appear in the grid map sug-
gest that one of the causes of the power-law behavior is the road network struc-
ture. Additionally, the power-law distribution appeared clearly without any itera-
tions, as shown in Fig. 3, which suggests that choosing the shortest routes in the 
network caused the power-law distribution, while the interactions among vehicles 

Fig. 5  Same as Fig. 3, but for Kobe city (left), random map (middle) and grid map (right). OD is uni-
formly distributed across each entire map, and the results after five iterations are shown. For Kobe city 
and the random map, a power-law distribution appeared, but this was not the case for the grid map. The 
exponents were fitted to be −1.1 both in Kobe city and the random map, after five iterations



499

1 3

Journal of Computational Social Science (2018) 1:493–500 

are not likely to be a reason. Furthermore, the result that the power-law expo-
nent did not change with different ODs implies that the exponent is characterized 
by the statistics of the road network structure. The power-law behavior that we 
observed is expected to be confirmed in actual traffic distributions extracted from 
big data.

In realistic road networks, because of asymmetric length or connection in the 
network, there is always a shortest route from the origin to a destination, unlike 
a grid network that has numerous alternative routes that have exactly the same 
travel distance. It is also natural to consider that there are common road seg-
ments that are frequently included in such shortest routes, such as highways and 
bypasses. With the exception of the grid network, these bypass segments are lim-
ited in number, and gather traffic volumes, which make them appear at the right 
end of the traffic distribution. Conversely, alternative segments that are larger in 
number share the traffic volume and appear at the left end of the traffic distribu-
tion. This inverse proportion shall appear as a power-law in the traffic distribu-
tion, with an exponent similar to −1.0 . To verify this speculation, network analy-
sis is required to determine the shortest paths exhaustively over actual cities and 
artificially generated road networks, which we will perform in future research.

The same power-law exponent with different ODs also implies that the expo-
nent is independent of the simulation scale. The difference between a uniform and 
non-uniform OD distribution in Kobe city was the existence of imitated back-
ground traffic from outside the city. Even for the uniform OD, area 3 in Kobe city 
had background traffic from area 2 and area 4 in Fig. 1, for example, which is a 
similar scenario to an entire map with background traffic. Therefore, consider-
ing a larger amount of background traffic corresponds to considering a smaller 
simulation scale. This resembles the scale-free feature of fractal geometry, which 
also implies that the fractalness of actual road networks caused the power-law. 
Therefore, the comparison of simulations using a planned or self-organized road 
network of actual cities shall be another step in future research to determine the 
origin of the power-law behavior.
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