Skip to main content
Log in

Insulin-sensitizing agents for infertility treatment in woman with polycystic ovary syndrome: a narrative review of current clinical practice

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Purpose

Polycystic ovary syndrome (PCOS) is an endocrine, metabolic, and reproductive disorder which, according to the Rotterdam criteria, affects up to 24% of women of childbearing age. Although the prevalence of infertility in this subpopulation of women is high, the optimal treatment has not been fully established yet. Insulin resistance is considered to be an important mechanism involved in the development of PCOS; hence, the aim of this narrative review is to present an overview of the current pharmacological insulin-sensitizing treatment modalities for infertile women with PCOS.

Methods

A MEDLINE and PubMed search for the years 1990–2023 was performed using a combination of keywords. Clinical trials with insulin sensitizers used for infertility treatment as well as analyses of systematic reviews and meta-analyses were evaluated. When deemed necessary, additional articles referenced in the retrieved papers were included in this narrative review.

Results

Several insulin-sensitizing compounds and various therapeutical protocols are available for infertility treatment of women with PCOS. Metformin is the most common adjuvant medication to induce ovulation in infertile women with PCOS and is more frequently administered in combination with clomiphene citrate than on its own. Recently, inositol and glucagon-like peptide-1 (GLP-1) receptor agonists have emerged as possible options for infertility treatment in PCOS.

Conclusion

The future of medical treatment of PCOS women with infertility lies in a personalized pharmacological approach, which involves various compounds with different mechanisms of action that could modify ovarian function and endometrial receptivity, ultimately leading to better overall reproductive outcomes in these women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81:19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004

    Article  Google Scholar 

  2. Conway G, Dewailly D, Diamanti-Kandarakis E et al (2014) The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol 171:P1–P29. https://doi.org/10.1530/EJE-14-0253

    Article  CAS  PubMed  Google Scholar 

  3. Stevanovic D, Bozic-Antic I, Stanojlovic O et al (2019) Health-related quality of life questionnaire for polycystic ovary syndrome (PCOSQ-50): a psychometric study with the Serbian version. Women Health 59:1015–1025. https://doi.org/10.1080/03630242.2019.1587664

    Article  PubMed  Google Scholar 

  4. Patel S (2018) Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J Steroid Biochem Mol Biol 182:27–36. https://doi.org/10.1016/j.jsbmb.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  5. Panidis D, Tziomalos K, Misichronis G et al (2012) Insulin resistance and endocrine characteristics of the different phenotypes of polycystic ovary syndrome: a prospective study. Hum Reprod 27:541–549. https://doi.org/10.1093/humrep/der418

    Article  CAS  PubMed  Google Scholar 

  6. Panidis D, Macut D, Tziomalos K et al (2013) Prevalence of metabolic syndrome in women with polycystic ovary syndrome. Clin Endocrinol 78:586–592. https://doi.org/10.1111/cen.12008

    Article  Google Scholar 

  7. Macut D, Tziomalos K, Božić-Antić I et al (2016) Non-alcoholic fatty liver disease is associated with insulin resistance and lipid accumulation product in women with polycystic ovary syndrome. Hum Reprod 31:1347–1353. https://doi.org/10.1093/humrep/dew076

    Article  CAS  PubMed  Google Scholar 

  8. Macut D, Bjekić-Macut J, Rahelić D, Doknić M (2017) Insulin and the polycystic ovary syndrome. Diabetes Res Clin Pract 130:163–170. https://doi.org/10.1016/j.diabres.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  9. Soldat-Stanković V, Popović-Pejičić S, Stanković S et al (2022) The effect of metformin and myoinositol on metabolic outcomes in women with polycystic ovary syndrome: role of body mass and adiponectin in a randomized controlled trial. J Endocrinol Investig 45:583–595. https://doi.org/10.1007/s40618-021-01691-5

    Article  CAS  Google Scholar 

  10. Homburg R (2004) Management of infertility and prevention of ovarian hyperstimulation in women with polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 18:773–788. https://doi.org/10.1016/j.bpobgyn.2004.05.006

    Article  PubMed  Google Scholar 

  11. Balen AH, Rutherford AJ (2007) Managing anovulatory infertility and polycystic ovary syndrome. BMJ 335:663–666. https://doi.org/10.1136/bmj.39335.462303.80

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gadalla MA, Norman RJ, Tay CT et al (2020) Medical and surgical treatment of reproductive outcomes in polycystic ovary syndrome: an overview of systematic reviews. Int J Fertil Steril 13:257–270. https://doi.org/10.22074/ijfs.2020.5608

    Article  PubMed  Google Scholar 

  13. Diamanti-Kandarakis E (2012) Infertility treatment in PCOS—is metformin in from the cold? Nat Rev Endocrinol 8:328–330. https://doi.org/10.1038/nrendo.2012.69

    Article  PubMed  Google Scholar 

  14. Tsiami AP, Goulis DG, Sotiriadis AI, Kolibianakis EM (2021) Higher ovulation rate with letrozole as compared with clomiphene citrate in infertile women with polycystic ovary syndrome: a systematic review and meta-analysis. Hormones (Athens) 20:449–461. https://doi.org/10.1007/s42000-021-00289-z

    Article  PubMed  Google Scholar 

  15. Moghetti P, Tosi F (2021) Insulin resistance and PCOS: chicken or egg? J Endocrinol Investig 44:233–244. https://doi.org/10.1007/s40618-020-01351-0

    Article  CAS  Google Scholar 

  16. Fleming R (2006) The use of insulin sensitising agents in ovulation induction in women with Polycystic Ovary Syndrome. Hormones (Athens) 5:171–178. https://doi.org/10.14310/horm.2002.11181

    Article  PubMed  Google Scholar 

  17. Dunaif A, Thomas A (2001) Current concepts in the polycystic ovary syndrome. Annu Rev Med 52:401–419. https://doi.org/10.1146/annurev.med.52.1.401

    Article  CAS  PubMed  Google Scholar 

  18. Kim JY, Tfayli H, Michaliszyn SF, Arslanian S (2018) Impaired lipolysis, diminished fat oxidation, and metabolic inflexibility in obese girls with polycystic ovary syndrome. J Clin Endocrinol Metab 103:546–554. https://doi.org/10.1210/jc.2017-01958

    Article  PubMed  Google Scholar 

  19. Rudnicka E, Suchta K, Grymowicz M et al (2021) Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci 22:3789. https://doi.org/10.3390/ijms22073789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown J, Farquhar C, Beck J et al (2009) Clomiphene and anti-oestrogens for ovulation induction in PCOS. Cochrane Database Syst Rev 4:CD002249. https://doi.org/10.1002/14651858.CD002249.pub4

    Article  Google Scholar 

  21. Vatier C, Christin-Maitre S, Vigouroux C (2022) Role of insulin resistance on fertility – focus on polycystic ovary syndrome. Ann Endocrinol (Paris) 83:199–202. https://doi.org/10.1016/j.ando.2022.04.004

    Article  PubMed  Google Scholar 

  22. Liu Y, Li J, Yan Z et al (2021) Improvement of insulin sensitivity increases pregnancy rate in infertile PCOS women: a systemic review. Front Endocrinol (Lausanne) 12:657889

    Article  PubMed  Google Scholar 

  23. Dunaif A, Segal KR, Shelley DR et al (1992) Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 41:1257–1266. https://doi.org/10.2337/diab.41.10.1257

    Article  CAS  PubMed  Google Scholar 

  24. Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98:2133–2223. https://doi.org/10.1152/physrev.00063.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diamanti-Kandarakis E, Papavassiliou AG (2006) Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med 12:324–332. https://doi.org/10.1016/j.molmed.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  26. Tremellen K, Pearce K (2012) Dysbiosis of gut microbiota (DOGMA) – a novel theory for the development of polycystic ovarian syndrome. Med Hypotheses 79:104–112. https://doi.org/10.1016/j.mehy.2012.04.016

    Article  PubMed  Google Scholar 

  27. Parker J, O’Brien C, Hawrelak J (2022) A narrative review of the role of gastrointestinal dysbiosis in the pathogenesis of polycystic ovary syndrome. Obstet Gynecol Sci 65:14–28. https://doi.org/10.5468/ogs.21185

    Article  PubMed  PubMed Central  Google Scholar 

  28. Penzias A, Bendikson K, Butts S et al (2017) Role of metformin for ovulation induction in infertile patients with polycystic ovary syndrome (PCOS): a guideline. Fertil Steril 108:426–441. https://doi.org/10.1016/j.fertnstert.2017.06.026

    Article  CAS  Google Scholar 

  29. Palomba S, Falbo A, Russo T et al (2010) Systemic and local effects of metformin administration in patients with polycystic ovary syndrome (PCOS): relationship to the ovulatory response. Hum Reprod 25:1005–1013. https://doi.org/10.1093/humrep/dep466

    Article  CAS  PubMed  Google Scholar 

  30. Rice S, Elia A, Jawad Z et al (2013) Metformin inhibits follicle-stimulating hormone (FSH) action in human granulosa cells: relevance to polycystic ovary syndrome. J Clin Endocrinol Metab 98:E1491–E1500. https://doi.org/10.1210/jc.2013-1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan L, Wu H, Huang W et al (2021) The function of metformin in endometrial receptivity (ER) of patients with polycyclic ovary syndrome (PCOS): a systematic review and meta-analysis. Reprod Biol Endocrinol 19:89. https://doi.org/10.1186/s12958-021-00772-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishihara S, Fukuda J, Ezoe K et al (2020) Does the endometrial thickness on the day of the trigger affect the pregnancy outcomes after fresh cleaved embryo transfer in the clomiphene citrate-based minimal stimulation cycle? Reprod Med Biol 19:151–157. https://doi.org/10.1002/rmb2.12315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chi RA, Wang T, Adams N et al (2020) Human endometrial transcriptome and progesterone receptor cistrome reveal important pathways and epithelial regulators. J Clin Endocrinol Metab 105:e1419–e1439. https://doi.org/10.1210/clinem/dgz117

    Article  PubMed  Google Scholar 

  34. Hu M, Zhang Y, Li X et al (2020) Alterations of endometrial epithelial–mesenchymal transition and MAPK signalling components in women with PCOS are partially modulated by metformin in vitro. Mol Hum Reprod 26:312–326. https://doi.org/10.1093/molehr/gaaa023

    Article  CAS  PubMed  Google Scholar 

  35. Hu M, Zhang Y, Li X et al (2021) TLR4-associated IRF-7 and NFκB signaling act as a molecular link between androgen and metformin activities and cytokine synthesis in the PCOS endometrium. J Clin Endocrinol Metab 106:e1022–e1040. https://doi.org/10.1210/clinem/dgaa951

    Article  Google Scholar 

  36. Gellersen B, Brosens JJ (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 35:851–905. https://doi.org/10.1210/er.2014-1045

    Article  CAS  PubMed  Google Scholar 

  37. Xiong F, Xiao J, Bai Y et al (2019) Metformin inhibits estradiol and progesterone-induced decidualization of endometrial stromal cells by regulating expression of progesterone receptor, cytokines and matrix metalloproteinases. Biomed Pharmacother 109:1578–1585. https://doi.org/10.1016/j.biopha.2018.10.128

    Article  CAS  PubMed  Google Scholar 

  38. Schulte MMB, Tsai J, Moley KH (2015) Obesity and PCOS: the effect of metabolic derangements on endometrial receptivity at the time of implantation. Reprod Sci 22:6–14. https://doi.org/10.1177/1933719114561552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Cui P, Jiang H-Y et al (2015) Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action. Am J Transl Res 7:574–586

    PubMed  PubMed Central  Google Scholar 

  40. Zhai J, Liu C, Tian Z et al (2012) Effects of metformin on the expression of GLUT4 in endometrium of obese women with polycystic ovary syndrome. Biol Reprod 87:29. https://doi.org/10.1095/biolreprod.112.099788

    Article  CAS  PubMed  Google Scholar 

  41. Ohara M, Yoshida-Komiya H, Ono-Okutsu M et al (2021) Metformin reduces androgen receptor and upregulates homeobox A10 expression in uterine endometrium in women with polycystic ovary syndrome. Reprod Biol Endocrinol 19:77. https://doi.org/10.1186/s12958-021-00765-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ito-Yamaguchi A, Suganuma R, Kumagami A et al (2015) Effects of metformin on endocrine, metabolic milieus and endometrial expression of androgen receptor in patients with polycystic ovary syndrome. Gynecol Endocrinol 31:44–47. https://doi.org/10.3109/09513590.2014.951321

    Article  CAS  PubMed  Google Scholar 

  43. Bevilacqua A, Bizzarri M (2018) Inositols in insulin signaling and glucose metabolism. Int J Endocrinol 2018:e1968450. https://doi.org/10.1155/2018/1968450

    Article  CAS  Google Scholar 

  44. Laganà AS, Garzon S, Casarin J et al (2018) Inositol in polycystic ovary syndrome: restoring fertility through a pathophysiology-based approach. Trends Endocrinol Metab 29:768–780. https://doi.org/10.1016/j.tem.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  45. Pundir J, Charles D, Sabatini L et al (2019) Overview of systematic reviews of non-pharmacological interventions in women with polycystic ovary syndrome. Hum Reprod Update 25:243–256. https://doi.org/10.1093/humupd/dmy045

    Article  CAS  PubMed  Google Scholar 

  46. Saltiel AR, Sorbara-Cazan LR (1987) Inositol glycan mimics the action of insulin on glucose utilization in rat adipocytes. Biochem Biophys Res Commun 149:1084–1092. https://doi.org/10.1016/0006-291X(87)90519-5

    Article  CAS  PubMed  Google Scholar 

  47. Genazzani AD (2016) Inositol as putative integrative treatment for PCOS. Reprod BioMed Online 33:770–780. https://doi.org/10.1016/j.rbmo.2016.08.024

    Article  CAS  PubMed  Google Scholar 

  48. Chiu TTY, Rogers MS, Law ELK et al (2002) Follicular fluid and serum concentrations of myo-inositol in patients undergoing IVF: relationship with oocyte quality. Hum Reprod 17:1591–1596. https://doi.org/10.1093/humrep/17.6.1591

    Article  CAS  PubMed  Google Scholar 

  49. Kachhawa G, Senthil Kumar KV, Kulshrestha V et al (2022) Efficacy of myo-inositol and d-chiro-inositol combination on menstrual cycle regulation and improving insulin resistance in young women with polycystic ovary syndrome: a randomized open-label study. Int J Gynaecol Obstet 158:278–284. https://doi.org/10.1002/ijgo.13971

    Article  CAS  PubMed  Google Scholar 

  50. Mitrašinović-Brulić M, Buljan M, Suljević D (2021) Association of LH/FSH ratio with menstrual cycle regularity and clinical features of patients with polycystic ovary syndrome. Middle East Fertil Soc J 26:40. https://doi.org/10.1186/s43043-021-00085-0

    Article  Google Scholar 

  51. Sacchi S, Marinaro F, Tondelli D et al (2016) Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol. Reprod Biol Endocrinol 14:52. https://doi.org/10.1186/s12958-016-0189-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cabrera-Cruz H, Oróstica L, Plaza-Parrochia F et al (2020) The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab 318:E237–E248. https://doi.org/10.1152/ajpendo.00162.2019

    Article  CAS  PubMed  Google Scholar 

  53. Dodd JM, Grivell RM, Deussen AR, Hague WM (2018) Metformin for women who are overweight or obese during pregnancy for improving maternal and infant outcomes. Cochrane Database Syst Rev 7:CD010564. https://doi.org/10.1002/14651858.CD010564.pub2

    Article  PubMed  Google Scholar 

  54. Legro RS, Barnhart HX, Schlaff WD et al (2007) Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med 356:551–566. https://doi.org/10.1056/NEJMoa063971

    Article  CAS  PubMed  Google Scholar 

  55. Abu Hashim H, Foda O, Ghayaty E (2015) Combined metformin-clomiphene in clomiphene-resistant polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Acta Obstet Gynecol Scand 94:921–930. https://doi.org/10.1111/aogs.12673

    Article  CAS  PubMed  Google Scholar 

  56. Morley LC, Tang T, Yasmin E et al (2017) Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev 11:CD003053. https://doi.org/10.1002/14651858.CD003053.pub6

    Article  PubMed  Google Scholar 

  57. Al-Ruthia YS, Al-Mandeel H, AlSanawi H et al (2017) Ovulation induction by metformin among obese versus non-obese women with polycystic ovary syndrome. Saudi Pharm J 25:795–800. https://doi.org/10.1016/j.jsps.2016.12.001

    Article  PubMed  Google Scholar 

  58. Morin-Papunen L, Rantala AS, Unkila-Kallio L et al (2012) Metformin improves pregnancy and live-birth rates in women with polycystic ovary syndrome (PCOS): a multicenter, double-blind, placebo-controlled randomized trial. J Clin Endocrinol Metab 97:1492–1500. https://doi.org/10.1210/jc.2011-3061

    Article  CAS  PubMed  Google Scholar 

  59. Weerakiet S, Sophonsritsuk A, Lertvikool S et al (2011) Randomized controlled trial of different doses of metformin for ovulation induction in infertile women with polycystic ovary syndrome. J Obstet Gynaecol Res 37:1229–1237. https://doi.org/10.1111/j.1447-0756.2010.01507.x

    Article  CAS  PubMed  Google Scholar 

  60. Sharpe A, Morley LC, Tang T et al (2019) Metformin for ovulation induction (excluding gonadotrophins) in women with polycystic ovary syndrome. Cochrane Database Syst Rev 12:CD013505. https://doi.org/10.1002/14651858.CD013505

    Article  PubMed  Google Scholar 

  61. Magzoub R, Kheirelseid EAH, Perks C, Lewis S (2022) Does metformin improve reproduction outcomes for non-obese, infertile women with polycystic ovary syndrome? Meta-analysis and systematic review. Eur J Obstet Gynecol Reprod Biol 271:38–62. https://doi.org/10.1016/j.ejogrb.2022.01.025

    Article  CAS  PubMed  Google Scholar 

  62. Papaleo E, Unfer V, Baillargeon J-P et al (2007) Myo-inositol in patients with polycystic ovary syndrome: a novel method for ovulation induction. Gynecol Endocrinol 23:700–703. https://doi.org/10.1080/09513590701672405

    Article  CAS  PubMed  Google Scholar 

  63. Regidor P-A, Schindler AE, Lesoine B, Druckman R (2018) Management of women with PCOS using myo-inositol and folic acid. New clinical data and review of the literature. Horm Mol Biol Clin Invest 34. https://doi.org/10.1515/hmbci-2017-0067

  64. Greff D, Juhász AE, Váncsa S et al (2023) Inositol is an effective and safe treatment in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Reprod Biol Endocrinol 21:10. https://doi.org/10.1186/s12958-023-01055-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nordio M, Basciani S, Camajani E (2019) The 40:1 myo-inositol/D-chiro-inositol plasma ratio is able to restore ovulation in PCOS patients: comparison with other ratios. Eur Rev Med Pharmacol Sci 23:5512–5521. https://doi.org/10.26355/eurrev_201906_18223

    Article  CAS  PubMed  Google Scholar 

  66. Pourghasem S, Bazarganipour F, Taghavi SA, Kutenaee MA (2019) The effectiveness of inositol and metformin on infertile polycystic ovary syndrome women with resistant to letrozole. Arch Gynecol Obstet 299:1193–1199. https://doi.org/10.1007/s00404-019-05064-5

    Article  CAS  PubMed  Google Scholar 

  67. DeFronzo RA, Inzucchi S, Abdul-Ghani M, Nissen SE (2019) Pioglitazone: the forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc Dis Res 16:133–143. https://doi.org/10.1177/1479164118825376

    Article  CAS  PubMed  Google Scholar 

  68. Glueck CJ, Moreira A, Goldenberg N et al (2003) Pioglitazone and metformin in obese women with polycystic ovary syndrome not optimally responsive to metformin. Hum Reprod 18:1618–1625. https://doi.org/10.1093/humrep/deg343

    Article  CAS  PubMed  Google Scholar 

  69. Hosseiny ZS, Nikpour P, Bakhtiary A et al (2019) Evaluation of osteopontin gene expression in endometrium of diabetic rat models treated with metformin and pioglitazone. Int J Fertil Steril 12:293–297. https://doi.org/10.22074/ijfs.2019.5471

    Article  CAS  PubMed  Google Scholar 

  70. Apparao KBC, Murray MJ, Fritz MA et al (2001) Osteopontin and its receptor αvβ3 integrin are coexpressed in the human endometrium during the menstrual cycle but regulated differentially. J Clin Endocrinol Metab 86:4991–5000. https://doi.org/10.1210/jcem.86.10.7906

    Article  CAS  PubMed  Google Scholar 

  71. Pawelczak M, Rosenthal J, Milla S et al (2014) Evaluation of the pro-inflammatory cytokine tumor necrosis factor-α in adolescents with polycystic ovary syndrome. J Pediatr Adolesc Gynecol 27:356–359. https://doi.org/10.1016/j.jpag.2014.01.104

    Article  PubMed  PubMed Central  Google Scholar 

  72. Paravati R, De Mello N, Onyido EK et al (2020) Differential regulation of osteopontin and CD44 correlates with infertility status in PCOS patients. J Mol Med 98:1713–1725. https://doi.org/10.1007/s00109-020-01985-w

    Article  CAS  PubMed  Google Scholar 

  73. Arlt W, Auchus RJ, Miller WL (2001) Thiazolidinediones but not metformin directly inhibit the steroidogenic enzymes P450c17 and 3β-hydroxysteroid dehydrogenase. J Biol Chem 276:16767–16771. https://doi.org/10.1074/jbc.M100040200

    Article  CAS  PubMed  Google Scholar 

  74. Brettenthaler N, De Geyter C, Huber PR, Keller U (2004) Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 89:3835–3840. https://doi.org/10.1210/jc.2003-031737

    Article  CAS  PubMed  Google Scholar 

  75. Xu Y, Wu Y, Huang Q (2017) Comparison of the effect between pioglitazone and metformin in treating patients with PCOS:a meta-analysis. Arch Gynecol Obstet 296:661–677. https://doi.org/10.1007/s00404-017-4480-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ramlau-Hansen CH, Thulstrup AM, Nohr EA et al (2007) Subfecundity in overweight and obese couples. Hum Reprod 22:1634–1637. https://doi.org/10.1093/humrep/dem035

    Article  CAS  PubMed  Google Scholar 

  77. van der Steeg JW, Steures P, Eijkemans MJC et al (2008) Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women. Hum Reprod 23:324–328. https://doi.org/10.1093/humrep/dem371

    Article  PubMed  Google Scholar 

  78. Yildiz BO, Bozdag G, Yapici Z et al (2012) Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod 27:3067–3073. https://doi.org/10.1093/humrep/des232

    Article  PubMed  Google Scholar 

  79. Grandl G, Novikoff A, DiMarchi R et al (2019) Gut peptide agonism in the treatment of obesity and diabetes. In: Comprehensive physiology. John Wiley & Sons, Ltd, pp 99–124

    Chapter  Google Scholar 

  80. Moffett RC, Naughton V (2020) Emerging role of GIP and related gut hormones in fertility and PCOS. Peptides 125:170233. https://doi.org/10.1016/j.peptides.2019.170233

    Article  CAS  PubMed  Google Scholar 

  81. Cena H, Chiovato L, Nappi RE (2020) Obesity, polycystic ovary syndrome, and infertility: a new avenue for GLP-1 receptor agonists. J Clin Endocrinol Metab 105:e2695–e2709. https://doi.org/10.1210/clinem/dgaa285

    Article  PubMed  PubMed Central  Google Scholar 

  82. Abdalla MA, Deshmukh H, Atkin S, Sathyapalan T (2021) The potential role of incretin-based therapies for polycystic ovary syndrome: a narrative review of the current evidence. Ther Adv Endocrinol Metab 12:2042018821989238. https://doi.org/10.1177/2042018821989238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bednarz K, Kowalczyk K, Cwynar M et al (2022) The role of Glp-1 receptor agonists in insulin resistance with concomitant obesity treatment in polycystic ovary syndrome. Int J Mol Sci 23:4334. https://doi.org/10.3390/ijms23084334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nylander M, Frøssing S, Clausen HV et al (2017) Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: a randomized clinical trial. Reprod BioMed Online 35:121–127. https://doi.org/10.1016/j.rbmo.2017.03.023

    Article  CAS  PubMed  Google Scholar 

  85. Salamun V, Jensterle M, Janez A, Vrtacnik Bokal E (2018) Liraglutide increases IVF pregnancy rates in obese PCOS women with poor response to first-line reproductive treatments: a pilot randomized study. Eur J Endocrinol 179:1–11. https://doi.org/10.1530/EJE-18-0175

    Article  CAS  PubMed  Google Scholar 

  86. Pugliese G, de Alteriis G, Muscogiuri G et al (2023) Liraglutide and polycystic ovary syndrome: is it only a matter of body weight? J Endocrinol Investig 46:1761–1774. https://doi.org/10.1007/s40618-023-02084-6

    Article  CAS  Google Scholar 

  87. Liu X, Zhang Y, Zheng S et al (2017) Efficacy of exenatide on weight loss, metabolic parameters and pregnancy in overweight/obese polycystic ovary syndrome. Clin Endocrinol 87:767–774. https://doi.org/10.1111/cen.13454

    Article  CAS  Google Scholar 

  88. Graham DL, Madkour HS, Noble BL et al (2021) Long-term functional alterations following prenatal GLP-1R activation. Neurotoxicol Teratol 87:106984. https://doi.org/10.1016/j.ntt.2021.106984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nuako A, Tu L, Campoverde Reyes KJ et al (2023) Pharmacologic treatment of obesity in reproductive aged women. Curr Obstet Gynecol Rep 12:138–146. https://doi.org/10.1007/s13669-023-00350-1

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kaur V, Dimitriadis GK, Pérez-Pevida B et al (2021) Mechanisms of action of duodenal mucosal resurfacing in insulin resistant women with polycystic ovary syndrome. Metabolism 125:154908. https://doi.org/10.1016/j.metabol.2021.154908

    Article  CAS  PubMed  Google Scholar 

  91. Lee R, Mathew CJ, Jose MT et al (2020) A review of the impact of bariatric surgery in women with polycystic ovary syndrome. Cureus 12:e10811. https://doi.org/10.7759/cureus.10811

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.S. and D.M. conceived and designed the study. M.A., A.R., D.M., R.S., J.B-M., S.L., and G.M. performed initial and final literature searches and analyses. The initial manuscript draft was prepared by R.S. and M.A. and subsequently revised by D.M., A.R., J.B-M., S.L., O.K-V., and GM. The final submitted version was approved by all the authors.

Corresponding author

Correspondence to Djuro Macut.

Ethics declarations

Ethics approval

Ethical approval was deemed unnecessary for this review study.

Consent to participate

Not applicable as this study is a review.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sparić, R., Andjić, M., Rakić, A. et al. Insulin-sensitizing agents for infertility treatment in woman with polycystic ovary syndrome: a narrative review of current clinical practice. Hormones 23, 49–58 (2024). https://doi.org/10.1007/s42000-023-00494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-023-00494-y

Keywords

Navigation