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Abstract
Paleolithic lithic assemblages are usually dominated by flakes and display a high degree of morphological variability. When 
analyzing Paleolithic lithic assemblages, it is common to classify flakes into categories based on their morphological and 
technological features, which are linked to the position of the flake in the reduction sequence and how removals are organized 
in a given production method. For the analysis of Middle Paleolithic lithic assemblages, two categories of flakes are com-
monly identified: core–edge flakes and pseudo-Levallois points. A third type, core–edge flakes with a limited back, is also 
commonly found in the archaeological literature, providing an alternative category whose definition does not match the two 
previous types but shares many of their morphological and technological features. The present study addresses whether these 
three flakes constitute discrete categories based on their morphological and technological attributes. 2D and 3D geometric 
morphometrics are employed on an experimental set composed of the three categories of flakes to quantify morphological 
variation. Machine learning models and principal components biplots are used to test the discreteness of the categories. The 
results indicate that geometric morphometrics succeed in capturing the morphological and technological features that char-
acterize each type of product. Pseudo-Levallois points have the highest discreteness of the three technological products, and 
while some degree of mixture exists between core edge flakes and core edge flakes with a limited back, they are also highly 
distinguishable. We conclude that the three categories are discrete and can be employed in technological lists of products 
for the analysis of lithic assemblages and that geometric morphometrics is useful for testing for the validity of categories. 
When testing these technological categories, we stress the need for well-defined and shared lithic analytical units to correctly 
identify and interpret the technical steps and decisions made by prehistoric knappers and to properly compare similarities and 
differences between stone tool assemblages. These are key aspects for current research in which open datasets are becoming 
more and more common and used to build interpretative techno-cultural models on large geographical scales. Now more 
than ever, lithic specialists are aware of the need to overcome differences in taxonomies between different school traditions.
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Introduction

Lithic artifacts regularly constitute the most important 
and abundant remains found on Paleolithic sites. When 
analyzing lithic assemblages, in addition to taking metric 
measurements and noting attributes, it is common to clas-
sify unmodified flakes according to their morphologies 
and technological features. This is a crucial part of lithic 
analysis because it classifies flakes into technological cat-
egories in the sense that the retained features and mor-
phology are indicative of the production method by which 
they were generated. These technological products usually 
reflect different knapping strategies, stages of reduction, 
and variations in the organization of removals and surface 
exploitation. Well-known examples of technological clas-
sifications of flakes include bipolar/on anvil flakes (Cal-
lahan, 1996; Hayden, 1980), overshot flakes (Cotterell & 
Kamminga, 1987), bifacial-thinning flakes (Raab et al., 
1979), byproducts of blade production, such as core tablets 
or crested blades (Pelegrin, 1995; Shea, 2013a), Kombewa 
flakes (Tixier & Turq, 1999; Tixier et al., 1980), and lat-
eral tranchet blows (Bourguignon, 1992). While the use of 
technological categories is common and helps increase the 
resolution of lithic analysis, it is important to bear in mind 
that lithic artifacts are characterized by a high degree of 
morphological variability, which, in many cases, results 
in overlapping features. Consequently, several categories 
remain underused because of this high morphological vari-
ability, their overlapping features, and their similar roles in 
the volumetric management of the core along the reduction 
process.

The Middle Paleolithic in western Europe is charac-
terized by the diversification of an increase in knapping 
methods, resulting in what are generally flake-dominated 
assemblages (Delagnes & Meignen, 2006; Kuhn, 2013). 
For the analysis of Middle Paleolithic lithic assemblages, 
lists of technological products are common and generally 
reflect individual knapping methods, the organization of 
flake removals, and their morphology (Duran & Abelanet, 
2004; Duran & Soler, 2006; Geneste, 1988; Shea, 2013b). 
These technological lists are usually dominated by cat-
egories of technological products related to Levallois and 
discoidal knapping methods (Boëda, 1993, 1995a; Boëda 
et al., 1990), which constitute an important part of Mid-
dle Paleolithic lithic variability. Various discoidal and 
Levallois products have been identified and first appear 
approximately at 400 ka, in a vast area from eastern Asia 
to the Atlantic Coast of western Europe through Siberia 
and Central Asia, the Levant, eastern and central Europe 
(see bibliography in Romagnoli et al., 2022), and Africa 
(Adler et al., 2014; Blinkhorn et al., 2021). The identifica-
tion of discoidal and Levallois products therefore appears 

widespread in lithic analysis across various research 
schools and is designed to create a comparable dataset, 
explore specific technological adaptations in different 
ecological contexts, and discuss long-term techno-cultural 
traditions and technological change. One special category 
of such products is backed flakes that exhibit remnants 
of the core on one of their lateral edges. Backed flakes 
are usually classified into two technological categories: 
“core–edge flakes” (éclats débordants) and “pseudo-Lev-
allois points.” A third category, “core–edge flakes with a 
limited back” (éclats débordants à dos limité), has also 
been defined (Liliane Meignen, 1993; Lilliane Meignen, 
1996; Pasty et al., 2004), although its use is not wide-
spread (Duran & Abelanet, 2004; Duran & Soler, 2006; 
Geneste, 1988; Shea, 2013b). One reason for this may be 
their overlapping features, including morphology, and a 
similar role in core reduction compared to classic core 
edge flakes. This usually results in their absorption into 
the group of core edge flakes when technological lists of 
products are employed.

The present study aims to evaluate whether “core–edge 
flakes with a limited back” represent a discrete technological 
category that can be easily separated from classic core–edge 
flakes and pseudo-Levallois points based on their morpho-
logical features. While this may seem a pleonastic technical 
exercise, refining stone tool taxonomy allows researchers 
to better describe lithic technology, which is the basis for 
documenting patterns of tool production, transport, main-
tenance, use, discard, and reuse. This is equally important 
for exploring differences in how past human groups adapted 
their technical knowledge and skills to resource constraints, 
economic strategies, and social dynamics. Furthermore, an 
improved and comprehensive use of technological types and 
sub-types within core trimming elements is fundamental 
to generating reliable comparisons between archaeologi-
cal assemblages. Finally, core–edge flakes are present in 
multiple Palaeolithic techno-complexes, particularly those 
based around centripetal and recurrent reduction strategies. 
As such, better classifying types and sub-types within this 
technological category will be of use in lithic studies for 
multiple periods and regions. In addition to evaluating the 
discreteness of this specific artifact type, the present study 
also explores a workflow for testing lithic categories and 
compares the effectiveness of using data derived from 2 and 
3D geometric morphometrics.

To test the discreteness of core–edge flakes categories, an 
experimental sample of backed flakes produced by discoidal 
and recurrent centripetal Levallois reduction is classified, 
following their technological definitions. Geometric mor-
phometrics on 3D meshes are employed to quantify the mor-
phological variability of the experimental assemblage. To 
test for the discreteness of these categories, machine learning 
algorithms are employed to classify the flakes according to 
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their technological category. Our hypothesis is that, although 
some degree of overlap is expected due to the high degree 
of morphological variability among lithic artifacts, machine 
learning models should easily differentiate the abovemen-
tioned categories. Testing this hypothesis would support the 
use of these backed flake categories in the classification of 
lithic assemblages. The creation of datasets based on the 
same analytical units and criteria will enable more accurate 
and reliable comparisons between stone tool assemblages, 
improving the definition of working hypotheses and inter-
pretative models for technological, adaptive, and behavioral 
changes in prehistory (Romagnoli et al., 2022).

Methods

Experimental Assemblage

The present study uses an experimental assemblage compris-
ing eight knapping sequences. Seven cores were knapped 
on Bergerac flint (Fernandes et al., 2012), and two cores 
were knapped on Miocene chert from south of Madrid (M. 
Á. Bustillo et al., 2012; M. A. Bustillo & Pérez-Jiménez, 
2005). Three cores were knapped following the discoid 
“sensu stricto” concept, which strongly corresponds to 
Boëda’s original technological definition of the knapping 
system (Boëda, 1993, 1995b), and five experimental cores 
were knapped following the Levallois recurrent centripetal 
system (Boëda, 1993, 1994, 1995b; Lenoir & Turq, 1995).

Six technological characteristics define the Levallois 
concept (Boëda, 1993, 1994): (1) the volume of the core is 
conceived as two convex asymmetric surfaces and (2) these 
two surfaces are hierarchical and not interchangeable. They 
maintain their roles as striking platforms and debitage (or 
exploitation) surfaces, respectively, throughout the entire 
reduction process. (3) The distal and lateral convexities of 
the debitage surface are maintained to obtain predetermined 
flakes. (4) The fracture plane of the predetermined prod-
ucts is parallel to the intersection between both surfaces. 
(5) The striking platform is perpendicular to the overhang 
(the core edge, at the intersection between the two core sur-
faces). (6) The technique employed during the knapping 
process is direct hard-hammer percussion. Depending on 
the organization of the debitage surface Levallois cores 
are usually classified into the preferential method (where 
a single predetermined Levallois flake is obtained from the 
debitage surface) or recurrent methods (where several pre-
determined flakes are produced from the debitage surface), 
with removals being either unidirectional, bidirectional, or 
centripetal (Boëda, 1995b; Boëda et al., 1990; Delagnes, 
1995; Delagnes & Meignen, 2006).

According to (Boëda, 1993, 1995a, 1995b), there are 
six technological criteria that define the discoid “sensu 

stricto” method: (1) the volume of the core is conceived as 
two oblique asymmetric convex surfaces delimited by an 
intersecting plane; (2) these two surfaces are not hierarchi-
cal, being possible to alternate between the roles of strik-
ing platforms and exploitation surfaces; (3) the peripheral 
convexity of the debitage surface is managed to control 
lateral and distal extractions, thus allowing for a degree of 
predetermination; (4) the surfaces of the striking platforms 
are oriented in such a way that the core edge is perpendic-
ular to the predetermined products; (5) the fracture planes 
of the products are secant; and (6) the technique employed 
is direct hard-hammer percussion.

A total of 139 unretouched backed flakes (independent 
of the type of termination) were obtained from the differ-
ent experimental reduction sequences, 70 from discoidal 
reduction sequences and 69 from Levallois recurrent cen-
tripetal reduction sequences. The following criteria were 
monitored for the classification of backed flakes (Fig. 1).

Core–edge flakes/éclat débordants (Beyries & Boëda, 
1983; Boëda, 1993; Boëda et al., 1990) have a cutting 
edge opposite and usually (although not always) parallel 
to an abrupt margin. This abrupt margin, or backed edge 
(dos), commonly results from the removal of a portion of 
the periphery of the core and can be plain, bear the scars 
from previous removals, be cortical, or present a mix of 
the three. Classic “core–edge flakes” (Boëda, 1993; Boëda 
et al., 1990), which are sometimes referred as “core–edge 
flakes with non-limited back”/ “éclat débordant à dos 
non limité” (Duran, 2005; Duran & Soler, 2006) have a 
morphological axis that follows the axis of percussion, 
although it may deviate slightly (Beyries & Boëda, 1983).

“Core–edge flakes with a limited back”/“éclats débor-
dants à dos limité” share with core–edge flakes the mor-
phological feature of having a cutting edge opposite a 
back. However, the main difference resides in a morpho-
logical axis clearly offset in respect to the axis of percus-
sion (Meignen, 1993, 1996; Pasty et al., 2004). Because 
of this deviation from the axis of percussion, the backed 
edge is usually not completely parallel, nor does it span 
the entire length of the sharp edge.

Pseudo-Levallois points (Boëda, 1993; Boëda et al., 
1990; Bordes, 1953, 1961; Slimak, 2003) are backed prod-
ucts in which the edge opposite to the back has a conver-
gent morphology. This morphology is usually the result 
of the convergence of two or more previous removals. As 
with core–edge flakes, the back usually results from the 
removal of one of the lateral edges of the core and can be 
plain, retain the scars from previous removals, or more 
rarely be cortical. Pseudo-Levallois points share with core 
edge flakes with a limited back the deviation of symmetry 
from the axis of percussion, but they are clearly differenti-
able due to their triangular off-axis morphology.
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Table 1 presents the distribution of backed flake types, 
following the previously established definitions. Due to the 
centripetal character of the knapping methods employed to 
generate the experimental assemblage, most of the backed 
flakes fall within the definition of core–edge flakes with 
a limited back (66.91%). Cortex distribution according to 
backed flake category (Fig. 2) shows that slightly (~ 25%) 
or non-cortical products dominate among the three catego-
ries, adding up to more than 65% in the three groups (90% 
core–edge flakes, 68.82% core–edge flakes with a limited 
back, and 87.5% pseudo-Levallois points).

Geometric Morphometrics

All flakes were scanned with an Academia 20 structured 
light surface scanner (Creaform 3D) at a 0.2-mm resolu-
tion. Flakes were scanned in two parts, automatically aligned 
(or manually aligned in the case automatic alignment fail-
ure) and exported in STL format. Cloudcompare 2.11.3 
(https:// www. danie lgm. net/ cc/) free software was employed 
to perform additional cleaning, mesh sampling, surface 

reconstruction and transformation into PLY files. Finally, 
all files were decimated to a quality of 50,000 faces using 
the Rvcg R package (Schlager, 2017a). The present work 
compares the use of 2D and 3D geometric morphometrics 
to test the limits of their application.

2D geometric morphometrics were done using screen-
shots (Cignoni et al., 2008) of the upper view of each flake 
orientated along the technological axis. One thin-plate 
spline (tps) was generated using tpsUtil v.1.82, and the 
tpsDig v.2.32 (Rohlf, 2015) outline tool was employed to 
automatically trace the perimeter of each flake. Each outline 
was resampled to 100 equidistant landmarks (Fig. 3) using 
Morpho v.2.11 (Schlager, 2017a).

The protocol for digitalizing 3D landmarks on flakes is 
based on previous studies (Archer et al., 2018, 2021). This 
included the positioning of a total of three fixed landmarks, 
85 curve semi-landmarks, and 420 surface semi-landmarks 
(Bookstein, 1997a, 1997b; Gunz & Mitteroecker, 2013; 
Gunz et al., 2005; Mitteroecker & Gunz, 2009). This resulted 
in a total of 508 landmarks and semi-landmarks. The three 
fixed landmarks correspond to both laterals of the platform 
and the percussion point. The 85 curve semi-landmarks 
correspond to the internal and exterior curve outlines of 
the platform (15 semi-landmarks each) and the edge of the 
flake (55 semi-landmarks). Sixty surface semi-landmarks 
correspond to the platform surface. The dorsal and ventral 
surfaces of the flakes are defined by 180 semi-landmarks 
each. The workflow for digitalizing landmarks and semi-
landmarks included the creation of a template/atlas on an 
arbitrary selected flake (Fig. 4: top). After this, landmarks 
and semi-landmarks were positioned in each specimen and 
relaxed to minimize bending energy (Fig. 4: bottom; (Book-
stein, 1997a, 1997b). A complete workflow of landmark and 

Fig. 1  Backed artifact classification types from the experimental assemblage and their classification

Table 1  Classification of backed flakes from the experimental assem-
blage

Strategy Category Count Percent

Discoid Core–edge flake 11 7.91
Discoid Core–edge with limited back 47 33.81
Discoid Pseudo-Levallois point 12 8.63
Levallois Core–edge flake 19 13.67
Levallois Core–edge with limited back 46 33.09
Levallois Pseudo-Levallois point 4 2.88

https://www.danielgm.net/cc/
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Fig. 2  Distribution of cortex according to backed flake category

Fig. 3  Example of the positioning of 100 equidistant landmarks along the perimeter of a core edge flake and the mean shape of the sample
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semi-landmark digitalization and relaxation to minimize 
bending energy was created in Viewbox Version 4.1.0.12 
(http:// www. dhal. com/ viewb ox. htm), and the resulting point 
coordinates were exported into.xlsx files.

Procrustes superimposition (Kendall, 1984; Mitteroe-
cker & Gunz, 2009; O’Higgins, 2000) was performed using 
the Morpho v.2.11 package (Schlager, 2017a) on RStudio 
IDE (R Core Team, 2019; RStudio Team, 2019). Morpho 
package v.2.11 provides results from principal component 
analysis (PCA) allowing to reduce the dimensionality of the 
data (James et al., 2013; Pearson, 1901). There are multiple 

reasons to use dimensionality reduction when dealing with 
high-dimension data on classification: to avoid having more 
predictors than observations (p > n), avoid collinearity of 
predictors, reduce the dimensions of the feature space, and 
avoid overfitting due to an excessive number of degrees of 
freedom (simple structure with lower number of variables). 
Principal component analysis achieves dimensionality 
reduction by identifying the linear combinations that best 
represent the predictors on an unsupervised manner. The 
principal components (PCs) of a PCA aim to capture as high 
a variance as possible for the complete data (James et al., 

Fig. 4  Top: template/atlas for a randomly selected flake with the defined landmarks, curves, and surfaces. Bottom: landmark positioning after 
sliding to minimize bending energy on a pseudo-Levallois point. Fixed landmarks are indicated in red

http://www.dhal.com/viewbox.htm
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2013), and PCs that capture the highest variance need not 
necessarily be the best for classification.

Debate exists on how many PCs from geometric mor-
phometrics should be selected for classificatory analysis 
(Schlager, 2017b). Including all PCs up to an arbitrary per-
centage of variance can result in non-meaningful (noise) PCs 
pulling the classificatory analysis. This can be considered 
as a type of overfitting since the classification is not being 
driven by meaningful morphological trends. An alternative 
is to select PCs capturing a minimum percentage of vari-
ance. However, stone tools are notorious for their wide mor-
phological variability, and increasing sample size results in 
diminishing variance captured by each PC. Usually the first 
two to three PCs will reflect ratios of elongation and width 
to thickness, while other meaningful PCs for classification 
(such as the angle between the internal or external surface of 
a flake) might be concealed in lower ranking PCs.

The problem of selecting a minimum variance is 
approached in two steps. A first round of models is trained 
using all PCs that represent up to 95% of variance. The 
threshold of 95% of variance is arbitrarily selected because 
it balances retaining most of the dataset variance with a 
reduced number of variables. This provides the most mean-
ingful PCs for classification according to the best model. 
The effect on morphology of these meaningful PC was visu-
ally evaluated. PCs explaining little variance and with little 
effect on shape change are excluded. Based on this evalua-
tion, the second and final round of models were trained using 
PCs which captured more than 3% of variance.

The identification of best PCs for classification is per-
formed automatically by the machine learning models 
using the caret v.6.0.92 package (M. Kuhn, 2008). Morpho 
package v.2.11 additionally provides visualization of shape 
change according to PC. A previous work on the same data-
set (Bustos-Pérez et al., 2022) performed PCA using the 
package stats v.4.2.2 (Venables & Ripley, 2002). The pre-
sent work uses the PCA integrated in the Morpho v.2.11 
(Schlager, 2017a). As a result of this, variance captured 
by PCs and their interpretation differs regarding previous 
analysis.

Machine Learning and Resampling Techniques

Different machine learning models treat the provided data 
differently. As a result, different models have different 
strengths and weaknesses. No universal model exists for all 
problems. Thus, testing several models is an important step 
in machine learning. It allows the performance of different 
models to be compared, the best model to be identified for a 
given task, and provides a general overview of the difficulty 
or ease of the problem. It can also serve as indication of 
possible underlying problems with the data (e.g., overfit-
ting or unbalanced datasets). Machine learning is a quickly 

developing field where a high number of available models 
exist. The present work tests ten machine learning models 
for the classification of flake categories. These models cover 
some of the most commonly employed algorithms (Jamal 
et al., 2018) and provide an extensive analysis for the clas-
sification of backed flake categories.

• Linear discriminant analysis (LDA): reduces dimen-
sionality in an attempt to maximize the separation 
between classes, while decision boundaries divide the 
predictor range into regions (Fisher, 1936; James et al., 
2013).

• K-nearest neighbor (KNN): classifies cases by assigning 
the class of similar known cases. The “k” in KNN refer-
ences the number of cases (neighbors) to consider when 
assigning a class, and it must be found by testing different 
values. Given that KNN uses distance metrics to compute 
nearest neighbors and that each variable is in different 
scales, it is necessary to scale and center the data prior 
to fitting the model (Cover & Hart, 1967; Lantz, 2019).

• Logistic regression: essentially adapts the multiple lin-
ear regression by raising Euler’s constant to its output 
in the numerator (plus one in the case of the denomina-
tor). This results in probability values ranging from 0 
to 1which allows obtaining predictions for categorical 
outcomes (Cramer, 2004; Walker & Duncan, 1967).

• Decision tree with C5.0 algorithm: uses recursive par-
titioning to divide a dataset into homogeneous groups. 
The C5.0 algorithm uses entropy (measure of degree of 
mixture between classes) to determine feature values on 
which to perform the partitioning. The C5.0 algorithm 
is an improvement on decision trees for classification (J. 
R. Quinlan, 1996; J. Ross Quinlan, 2014).

• Random forest: uses an ensemble of decision trees. 
Each tree is grown from a random sample of the varia-
bles, allowing for each tree to grow differently and better 
reflect the complexity of the data and provide additional 
diversity. Finally, the ensemble of trees casts a vote to 
generate predictions (Breiman, 2001).

• Gradient boosting machine (GBM): uses a sequen-
tial ensemble of decision trees. After training an initial 
decision tree, GBM trains subsequent trees on a resa-
mpled dataset were the weight of observations difficult 
to classify is increased based in a gradient (Greenwell 
et al., 2019; Ridgeway, 2007). The subsequent trained 
trees complement decisions and allow for the detection 
of learning deficiencies and increase model accuracy 
(Friedman, 2001, 2002).

• Supported vector machines (SVM): fits hyperplanes 
into a multidimensional space with the objective of cre-
ating homogeneous partitions. The fitting of the hyper-
planes is done in order to obtain the maximum margin 
of separation between classes. The maximum margin 
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of separation is reached by minimizing the cost (value 
applied for each incorrect classification). SVM’s can use 
different kernels to transform data into linearly separable 
cases. The kernel selected for the transformations needs 
to be specified and plays a key role in the training of 
a SVM model (Cortes & Vapnik, 1995; Frey & Slate, 
1991). The present study tests SVM’s with linear, radial, 
and polynomial kernels.

• Naïve Bayes: computes class probabilities using Bayes’ 
rule (Weihs et al., 2005).

As mentioned above, 66.91% of flakes fall into the defi-
nition of core–edge flakes with a limited back, resulting in 
an unbalanced dataset. To counter the unbalanced nature 
of the experimental dataset, up-sampling was undertaken 
for the two minority classes, and down-sampling was 
undertaken for the majority class. Up-sampling categories 
in a dataset can be considered inappropriate for training 
machine learning models (Calder et al., 2022; McPher-
ron et al., 2022) because it increases the overfit (sam-
ples used in the test set to evaluate the model are likely 
to have already been used in the training set). However, 
here, the up-sampling of the two minority groups increases 
the discreteness of these groups but does not affect the 
potential overlap with the majority class (core–edge flakes 
with limited backs). On the other hand, down-sampling 

results in missing information because some of the data 
are removed.

Random up- and down-sampling is conducted to obtain 
a balanced dataset and train the models. After each random 
sampling, each model is evaluated using a k-fold cross val-
idation using 10 folds and 50 cycles. Each fold consisted 
of 7 flakes, with the exception of the last fold, which had 
6 flakes. Because model performance metrics depend on 
random up- and down-sampling, this process is repeated 
30 times, extracting model performance metrics each time, 
and averaging the values. The model with the best perfor-
mance metrics is then trained again with thirty cycles of 
up- and down-sampling. The reported variable importance 
and confusion matrix from which model metric perfor-
mance are extracted are obtained from these additional 
cycles of down- and up-sampling.

Results

PCA and Machine Learning Model Performance

Results from the PCA on the 2D data show that the nine first 
principal components account for 95% of the variance in the 
dataset, with PC1 accounting for 39.33% of variance and 
PC9 for 0.98% of variance (Fig. 5). For the 3D data the 22 

Fig. 5  Proportion of variance for the first PC which add up to 95% of variance in the 2D and 3D data
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first principal components account for 95% of variance, with 
PC1 accounting for 31.32% and PC22 accounting for 0.3% 
of variance (Fig. 5). This represents a substantial reduction 
in dimensionality from the original number of variables of 

the 2D data (200 original variables) and the 3D data (1524 
original variables) and is lower than the sample size (139).

Figure 6 presents the accuracy values for each model after 
their respective 30 cycles of random up- and down-sampling. 

Fig. 6  Box and violin plots of model accuracy after each 30 cycles of random up- and down-sampling according to type of data (2D and 3D 
data) and number of variables employed (up to 95% of variance, or capturing more than 3% of variance)
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These results are sorted according to the use of all variables 
up to 95% of variance, or only variables capturing more than 
3% of variance.

Regarding the number of variables employed, important 
differences can be observed (Fig. 6). Models trained on 3D 
data presented a more general decrease on accuracy than 
models trained on 2D data. For both types of data (2D and 
3D), tree-based machine learning models (C5.0 Tree, ran-
dom forest and GBM) were the least affected when a limited 
number of variables was used. Contrary to this, the preci-
sion of the SVM models is strongly affected when a reduced 
number of variables is employed. SVM’s using linear and 
polynomial kernels presented lower accuracy values when 
the number of variables is reduced. This is especially note-
worthy in the case of the 3D data, since when variables sum-
ming 95% of variance are employed the SVM with polyno-
mial kernel presents the highest accuracy values. However, 
when the number of variables is limited, the random forest 
presents the highest precision values. In general, models 
trained on 3D data presented higher overall precision met-
rics (independently of the number of variables employed for 
training the machine learning models).

In the case of the 2D data with a limited number of vari-
ables, the random forest model had the highest average value 
for general accuracy (0.785), closely followed by the deci-
sion tree (0.771) and the GBM (0.771). The LDA had the 
lowest average value for accuracy (0.496), followed by the 
SVM with linear kernel (0.497).

For the 3D data with limited number of variables, again 
the random forest presented the highest average value for 
general accuracy (0.828), followed by the GBM model 
(0.783). The LDA model had the lowest average value for 
accuracy (0.658), followed by logistic regression model 
(0.681).

Tables 2 and 3 present performance metrics of the random 
forest model on 2D data and on 3D data for the classification 

of the three products. The prevalence/no information ratio 
was kept constant at 0.33 for all three categories as a result 
of random up- and down-sampling to obtain balanced data-
sets. General performance metrics values (F1 and balance 
accuracy) of pseudo-Levallois points were similar for mod-
els trained on the 2D and 3D data. General performance 
metrics for the identification of core edge flakes and core 
edge flakes with a limited back did increase when 3D data 
was employed instead of 2D data.

Feature Importance

Figure 7 presents average variable importance for the three 
products after 30 cycles of up- and down-sampling and 
k-fold cross-validation when PC summing up to 95% of 
variance are employed. The random forest trained on 2D 
data consider four sets of principal components important 
in terms of classification. The SVM with polynomial kernel 
trained on 3D data considers five sets of principal compo-
nents in terms of classification.

PC2 (29.38% of variance) is considered the most impor-
tant variable for discrimination when using the 2D data, 
followed by PC1 (39.33% of variance), PC5 (3.38% of vari-
ance) and PC3 (9.12% of variance). Figure 8 presents shape 
change according to these PCs. PC1 and PC2 capture the 
elongation of flakes along an asymmetric axis, but with 
different orientation. Positive values of PC1 or PC2 result 
in wider flakes. PC3 captures variance of flakes where the 
proximal part is much wider than the distal portion of the 
flake. PC5 appears to capture pointed extremes resulting 
from concave delineations of the middle portion of the lat-
erals. This might be representing the presence of convergent 
extremes at either end of the flake.

In the case of 3D data (Fig. 9), PC5 (5.5% of vari-
ance) is considered the most important variable for dis-
crimination, followed by PC1 (31.32% of variance), PC6 

Table 2  Performance metrics 
of random forest for backed 
artifacts using 2D data and 
limited number of variables

Class Sensitivity Specificity Precision F1 Prevalence Balanced 
accuracy

Core–edge flake 0.760 0.847 0.760 0.736 0.333 0.804
Limited back 0.607 0.898 0.607 0.670 0.333 0.752
ps-Lev. point 0.950 0.914 0.950 0.895 0.333 0.932

Table 3  Performance metrics 
of random forest for backed 
artifacts using 3D data and 
limited number of variables

Class Sensitivity Specificity Precision F1 Prevalence Balanced 
accuracy

Core–edge flake 0.849 0.888 0.792 0.819 0.333 0.869
Limited back 0.662 0.909 0.785 0.719 0.333 0.786
ps-Lev. point 0.936 0.926 0.864 0.898 0.333 0.931
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(5.06% of variance), PC11 (1.45% of variance), and PC3 
(8.82% of variance). PC11 presented an average impor-
tance value of 59.68. However, the low variance cap-
tured by this PC (1.45), and visual evaluation of shape 
change, indicate that its effect is minimum and should be 
excluded from analysis.

PC5 is driven by the interaction of platform depth and 
flake thickness. Increasing values of PC5 result in flakes 
with platforms much wider than deep, with the width 
of the platform finding their continuation in one of the 
abrupt laterals. Increasing PC5 values also result in thin-
ner flakes. The negative space of PC5 captures flakes with 
platforms much more deep than wide and thicker flakes. 
PC1 largely captures elongation along with platform size 
and thickness. Positive PC1 values result in very wide 
flakes with a reduced length and bigger platforms. This 
increase in width is slightly accompanied with an increase 
in thickness. Negative space values result in thin elongated 
flakes with a distal convergent edge and small platforms. 
Positive values of PC6 represent the convergence of one of 
the distal laterals into a pointed end. The negative space of 
PC6 results in flakes with a wide proximal portion which 

becomes narrower in the towards the distal part of the 
flake. PC3 represents transversal flake morphology and 
the relationship between thickness, width and asymmetry. 
Increasing values of PC3 result in thicker and narrower 
flakes with a marked asymmetry which results from a thick 
back located at the left lateral.

The combination of variance captured by each PC 
(Fig. 5), importance of a PC for classification (Fig. 7), 
and visualization of shape change according to PC (Figs. 8 
and 9) indicate that a threshold of 3% variance captured is 
adequate for the present dataset. PC 5 of the 2D data pre-
sents an example of feature to be included in the analysis: 
despite capturing little more than 3% of variance (Fig. 5), 
it is considered important by the random forest as a clas-
sification feature (Fig. 7), and it does have an effect on 
sample shape (Fig. 8). PC11 of the 3D data presents an 
opposite example, were a variable should be excluded 
from the training of the final models. While it is consid-
ered an important variable for classification by the SVM 
with polynomial kernel, the low variance captured (1.45%) 
and the little effect on shape change prevent its inclusion 
into the final set of machine learning models.

Fig. 7  Average feature importance after 30 cycles of up- and down-sampling using PC summing 95% of variance
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Group Discreteness Through Confusion Matrix 
and PCA Biplots

The confusion matrixes of final models trained with limited 
number of variables (Fig. 10) illustrate the directionality of 
confusion between the predicted and true values of classi-
fied technological products for the 2D and 3D data. In both 
types of data pseudo-Levallois points have the best iden-
tification, in accordance with the reported sensitivity and 
specificity. In general, it is very difficult to mistake pseudo-
Levallois points for any of the two considered technological 
products. Wrongly considering a pseudo-Levallois point as 
a core–edge flake is very unlikely for the 2D data (2.4) and 

minimal for the model on 3D data (1.59). Although mistak-
ing a pseudo-Levallois point for a core–edge flake with a 
limited back is slightly more common for both types of data, 
there is still a very low confusion value.

Core–edge flakes and core–edge flakes with a limited 
back offer slightly higher frequencies of misidentifica-
tions, although they maintain high values for sensitivity 
and specificity for both types of data. For the random forest 
model based on the 2D data, it is more common to mislabel 
core–edge flakes with a limited back as core edge flakes 
(28.18) than the reverse (17.81).

In the case of the random forest based on 3D data, the 
confusion between both categories diminishes slightly 

Fig. 8  Visualization of shape change according to PC for the 2D data. Differences towards mean shape have been magnified by a factor of three
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(20.78 and 13.3). In general, the 3D data better identi-
fies core–edge flakes with a limited back and core–edge 
flakes than the model based on the 2D data. This greater 
precision is the result of a lower frequency in the incor-
rect identification of core edge flakes with a limited back 
as core–edge flakes. The incorrect identification of backed 
flakes as pseudo-Levallois points is slightly more common 
when 2D data is employed. Their incorrect identification 
as pseudo-Levallois flakes is minimal in the case of the 3D 
data, although this incorrect identification has a higher fre-
quency in core–edge flakes with a limited back (4.82) than 
in core–edge flakes (1.59) (Figs. 11, 12, and 13).

The above interpretation of the PCs, biplot visualiza-
tion (Figs. 8 and 9), and descriptive statistics of PC values 
(Fig. 14) allow us to evaluate the morphological features 
captured by the 2D and 3D geometric morphometrics and 
the characterization of each type of technological backed 
flake. In general, biplots from 2D data show much more 
overlap than biplots from 3D data (Figs. 11 and 12). The 
higher overlap observed on the PC biplot from the 2D data 
is also observed when a group PCA is performed using the 
most important variables for classification (Fig. 13). Vis-
ual analysis of group PCA biplot from variables of the 3D 
data shows much less overlap between the three categories. 

Fig. 9  Visualization of shape change according to PC of the 3D data. Differences towards mean shape have been magnified by a factor of three
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Fig. 10  Normalized confusion matrix of random forest for the 2D and 3D data when only PC capturing more than 3% of variance are employed 
(ED = Eclat débordant; EDlb = éclat débordant with limited back; p_Lp = pseudo-Levallois point)

Fig. 11  Biplots of PC2, PC1, PC3, and PC5 according to flake category on the 2D data. Ellipses indicate the confidence level at 80%
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While core–edge flakes and pseudo-Levallois points show 
little overlap between each other, core–edge flakes are situ-
ated as an intermediate product, pointing out to their wide 
morphological variability.

For the 2D data, pseudo-Levallois points are charac-
terized by having positive values of PC1 (mean = 0.53; 
SD = 0.116) and PC2 (mean = 0.168; SD = 0.128). These 

generally positive values are indicative of the low elonga-
tion of pseudo-Levallois points. The triangular off-axis 
morphology characteristic of pseudo-Levallois points is 
weakly expressed for the 2D data and is only slightly cap-
tured by PC5 (mean = 0.002; SD = 0.028). On the contrary, 
2D geometric morphometrics is useful to detect features 
of core–edge flakes, although the overlap with core edge 

Fig. 12  Biplots of PC7, PC1, PC3, and PC4 according to flake category on the 2D data. Ellipses indicate the confidence level at 80%

Fig. 13  Biplots of group PCA using the most important features for classification
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flakes with a limited back is very high. In the 2D data core 
edge flakes are characterized by having low values of PC1 
(mean =  − 0.052; SD = 0.111) and PC2 (mean =  − 0.043; 
SD = 0.092) which are indicative of being elongated prod-
ucts. Core edge flakes (mean =  − 0.014, SD = 0.055) and 
pseudo-Levallois points (mean =  − 0.014, SD = 0.079) 
tend to have negative values of PC3. This indicates that, 
in general, neither of the two products had a distal por-
tion narrower than the proximal one. Core–edge flakes 
with a limited back presented slightly positive values of 
PC1 (mean = 0.008; SD = 0.131) and PC2 (mean = 0.011; 
SD = 0.111), indicating that their elongation and asym-
metry falls between core–edge flakes and pseudo-Levallois 
points. Additionally, core–edge flakes with a limited back 
presented slightly positive values of PC3 (mean = 0.007; 

SD = 0.06), indicating that it is more common for these 
types of products to present a narrower distal portion.

For the 3D data, pseudo-Levallois points were character-
ized by high values for PC1 (mean = 0.031; SD = 0.055), 
low values for PC3 (mean = 0.024; SD = 0.09) and nega-
tive values for PC5 (mean =  − 0.046; SD = 0.059). Finally, 
pseudo-Levallois points also exhibit intermediate positive 
values for PC6 (mean = 0.018; SD = 0.05). The combina-
tion of these PCs and their values indicates that the geo-
metric morphometrics is capturing the low elongation 
(PC1), asymmetry (PC3), and to some extent, the triangular 
morphology resulting from the convergence of two edges 
(PC5 and PC6). Core–edge flakes exhibited negative values 
of PC1 (mean =  − 0.078; SD = 0.136), positive values of 
PC5 (mean = 0.024; SD = 0.048) and PC6 (mean = 0.031; 

Fig. 14  Box and violin plots of PC values according to each backed flake category
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SD = 0.055). These PCs capture the elongated nature (PC1) 
of core edge flakes (in comparison to the other two catego-
ries), their lower ratio of length to thickness (PC5) and the 
presence of a distal transverse edge which can result in distal 
pointed portions. Core–edge flakes with a limited back are 
characterized by intermediate values of PC1 (mean = 0.012, 
SD = 0.142), PC3 (mean =  − 0.006, SD = 0.078) and PC5 
(mean = 0.00; SD = 0.061) and slightly negative values of 
PC6 (mean =  − 0.013; SD = 0.058). The combination of 
values from these PC reflects the wide morphological vari-
ability of core–edge flakes with a limited back were the main 
features are a low elongation (PC1), varying ratios of thick-
ness and platform morphology (PC5) and strong variability 
of the upper view (PC6).

Discussion

Our results show that geometric morphometrics, along with 
machine learning models, can easily differentiate between 
core edge flakes, core edge flakes with a limited back, and 
pseudo-Levallois points from discoidal and recurrent cen-
tripetal Levallois reduction sequences. The best model 
trained on the 2D data (random forest) obtained a good gen-
eral average precision value (0.785), while the best model 
trained on the 3D data (also random forest) obtained a high 
general average precision value (0.828). As expected, this 
indicates that when dealing with morphological objects 
whose classification requires several views, more precise 
results will be obtained using 3D data. Despite the differ-
ences in average precision values and performance meas-
ures for each of the categories, 2D geometric morphometrics 
were able to capture some of the morphological features 
which characterize the three categories. Thus, looking to 
methods that can facilitate the proper comparison between 
stone tool assemblages, based on corresponding classifica-
tions, and reducing the margin of error in analyzing the simi-
larities between data samples, 2D geometric morphometrics 
are not suitable for generating lithic taxonomies, at least in 
relation with the three technological categories analyzed in 
this study. Core–edge flakes, core–edge flakes with a limited 
back, and pseudo-Levallois points are relevant categories 
when looking at patterns of core reductions and variability 
within centripetal core knapping methods, whether due to 
raw material constraints or the search for specific tool types.

Several studies have employed machine learning mod-
els based on attribute analysis (Bustos-Pérez et al., 2023; 
González-Molina et al., 2020; Presnyakova et al., 2015) or 
geometric morphometrics (Archer et al., 2021; Bustos-Pérez 
et al., 2022). SVM with polynomial kernel and random forest 
stand out as the most common or accurate models when per-
forming classificatory tasks among lithic artifacts. Previous 
studies have outlined the advantages of SVM’s when dealing 

with the classification of lithic products (Bustos-Pérez et al., 
2022, 2023). Because of their features (hyperplane fitting, 
use of margins to find best separation, and use of a cost 
value for each misclassification) SVM’s seem well suited 
for the classification of lithic artifacts. In the present study, 
for the 3D data SVM with polynomial kernel outperformed 
the rest of the machine learning models. However, when the 
number of variables employed as predictors was restricted, 
its general accuracy was reduced to a value of 0.78, making 
the random forest the model with the best average accuracy. 
Random forest was also selected as the best option when 
dealing with 2D data independent of the number of variables 
employed. Random forest are common in lithic analysis for 
classification tasks (Archer et al., 2021; González-Molina 
et al., 2020). The results from model performance on the 2D 
and 3D data indicate that random forests along with SVM 
with polynomial kernel are good options for classification 
when dealing with the variability observed in lithic artifacts, 
although the number of variables introduced as predictors 
should be taken into account.

When considering each technological product individu-
ally, pseudo-Levallois points stood out as the most clearly 
differentiable of the three categories considered, with per-
formance metrics above 0.9 in PCs derived from both the 2D 
or 3D data. Following pseudo-Levallois points, core–edge 
flakes were the most clearly identifiable technological prod-
ucts, with a notable sensitivity value. The sensitivity values 
for the detection of core–edge flakes were notably higher in 
the case of 3D data (84.9) than the ones obtained from the 
2D data (0.76). The directionality of the confusion matrixes 
shows that the main drawback reducing the identification of 
core–edge flakes is their identification as core–edge flakes 
with a limited back in both types of data. Two underlying 
causes of confusion between core–edge flakes and core–edge 
flakes with a limited back can be considered: an increased 
deviation between the technological and morphological axes 
and an increased angle between the platform and backed 
edge, which results in changing the morphological axis. 
These two factors can occur at the same time or individually, 
blurring the division between products in cases of similarity. 
This overlap is inherent in the morphological variability and 
defining features of both technological products. However, 
despite these overlapping features, a high degree of sepa-
ration between both products is achieved by the machine 
learning model.

This difference in the sensitivity values depending on 
the type of data is also observed in the case of core–edge 
flakes with a limited back. The sensitivity value of the 3D 
data (0.662) was higher than the one obtained from the 2D 
data (0.607). In the present study, core–edge flakes with 
a limited back were the category of interest and on which 
down-sampling was applied, thus preventing overfitting. 
This indicates that geometric morphometrics are capturing 
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the technological features defining each category and that 
they are discrete categories with little overlap. Thus, their 
use (and, more specifically, the use of the core–edge flakes 
with a limited back as a category) for analysis in lists of 
technological products is justifiable.

The present study included all backed flakes from a series 
of experimental recurrent centripetal cores. As a result, 
backed artifacts that fall within the definition of “core–edge 
flakes with a limited back” were the overwhelming majority 
(n = 93, 66.91%). Consequently, it was necessary to use up- 
and down-sampling techniques to obtain balanced datasets 
(Ganganwar, 2012; Kumar & Sheshadri, 2012). The most 
up-sampled product (pseudo-Levallois) is also the one with 
the highest values for identification metrics irrespective of 
the type of data (2D or 3D), probably because of overfitting 
(the model is classifying repeated samples from the training 
set). This overfitting is noteworthy in the case of the 2D data 
were the high level of sensitivity contrasts with the visual 
analysis of biplots obtained from PCA (Fig. 11) or group 
PCA (Fig. 13) where a high level of overlap can be observed. 
Unbalanced data is common in archaeological analysis and 
sampling approaches to overcome this drawback can result 
in overfitting when machine learning models are applied 
(Calder et al., 2022; Domínguez-Rodrigo & Baquedano, 
2018; McPherron et al., 2022). Providing visual evaluation 
through biplots can help determine the extent of overfitting 
and the reliability of performance metrics from machine 
learning models. Further research applying sampling tech-
niques to archaeological problems might consider alternative 
solutions to unbalanced datasets. An alternative is the use 
of down-sampling in combination with leave-one-out cross-
validation (were each case of the downsized dataset serves as 
a single test set). However, this approach also comes with the 
drawback of losing information, which can result in machine 
learning models not capturing the features which character-
izing each class.

Given the strict definition adopted to classify a backed 
artifact as either a core–edge flake or a pseudo-Levallois 
point, their morphological variability is limited, and the 
likelihood of them overlapping is small. This is logical 
given their definitions and can be observed in the biplots 
from 3D data of most important PCs for the classification 
of backed products (Figs. 12 and 13). In the two biplots 
and the group PCA biplot (Figs. 12 and 13), there is lit-
tle overlap of confidence ellipses of core–edge flakes and 
pseudo-Levallois points. Moreover, the confidence ellip-
sis of core–edge flakes with a limited back does seem to 
be intermediate between the other two categories. Thus, 
although up-sampling imposes some limitations, it does not 
seem to affect the overall results regarding backed flake clas-
sification. Core–edge flakes with a limited back were not 
up-sampled, thus avoiding the risk of overfitting their clas-
sification (having an observation on the training set repeated 

in the test set). The results show a very limited misidentifica-
tion of core–edge flakes as pseudo-Levallois points and their 
moderate confusion with core–edge flakes. This indicates 
that core–edge flakes with a limited back are being correctly 
identified despite the probable overfitting in the identifica-
tion of core edge flakes and pseudo-Levallois points.

The present study has compared the use of 2D and 3D 
geometric morphometrics. 2D geometric morphometrics 
have the advantage of being less time consuming, requir-
ing less equipment, and being little affected by camera 
positioning (Cardini & Chiapelli, 2020; Macdonald et al., 
2020). Our research showed that the 2D dataset was not suf-
ficiently useful to discriminate between the lithic backed 
categories and, therefore, not reasonably informative, at 
least for the three technological categories analyzed. Some 
authors considered 2D geometrics a useful tool for lithic 
analysis when performing lithic taxonomic or comparative 
studies. Previous studies using 2D geometric morphomet-
rics aimed at analyzing formal retouched tools (large tanged 
points; and Clovis, Folsom, and Plainview projectile points; 
Buchanan & Collard, 2010; Serwatka & Riede, 2016), test-
ing the relationship between shape and function in informal 
flakes (Borel et al., 2017), and compare similarity of bone 
and stone Acheulean bifaces (Costa, 2010). The cited 2D 
studies were not comparing between 2 and 3D datasets when 
analyzing the same sample, while the present study aimed at 
testing methodological aspects to improve lithic taxonomic 
analysis and refine stone tool technological description and 
interpretation. Furthermore, these studies mainly analyzed 
morphological aspects quantitatively. It seems reasonable 
that, when dealing with bidimensional surfaces, 2D geomet-
ric morphometrics should be valuable. The present research 
has addressed a volumetric problem. Thus, the better per-
formance of 3D geometric morphometrics falls within what 
was expected. In the same line, previous works have outlined 
how, when working with volumetric structures, the use of 
2D geometric morphometrics can result in a lower resolu-
tion of the analysis (Buser et al., 2018; Cardini & Chiapelli, 
2020). The present results indicate the preferable applica-
tion of 3D techniques for the identification of technological 
backed categories related to core reduction strategies, sug-
gesting that more studies are needed to test the best approach 
when dealing with different research questions and techno-
logical categories, including cores, retouched tool-types, 
unretouched items, and shaped elements.

Sullivan and Rozen (1985) previously called attention 
to the use of technological categories of flakes. Their cri-
tique focuses on the lack of consistency in defining and 
using technological categories of flakes, along with a lack 
of consistency regarding the attributes employed to define 
them. Although their critique concerns flakes from bifacial 
knapping, it represents an important word of caution. The 
present study has shown that the three analyzed categories 
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are well defined in terms of morphological and technological 
features (see also Faivre et al., 2017). These morphologi-
cal and technological features can be captured by geometric 
morphometrics, especially 3D techniques, and employed 
for accurate classifications. Thus, little ambiguity exists in 
the categories employed to classify backed flakes, which 
are connected to two of the main Middle Paleolithic flaking 
strategies (discoidal and recurrent centripetal Levallois).

Meignen (1993, 1996) first proposed the category 
“core–edge flake with a limited back” because better indi-
vidualized and characterized the predominant centripetal 
debitage present at the site of Les Canalettes (Aveyron, 
France). The term has, however, seen limited use since, 
mainly employed when characterizing lithic assemblages 
produced via recurrent centripetal methods (Bernard-
Guelle, 2004; Bourguignon & Meignen, 2010; Duran, 
2005; Duran & Abelanet, 2004; Duran & Soler, 2006). 
The use of the “core–edge flake with a limited back” 
category is usually overlooked (or merged into the core 
edge flake category) when lists of technological products 
are employed for the analysis of Middle Paleolithic lithic 
assemblages (Debénath & Dibble, 1994; Geneste, 1988; 
Shea, 2013b). Although their merger into the core–edge 
flake category is valid for analyzing lithic assemblages, 
differentiating between classic core–edge flakes and 
core–edge flakes with a limited back in lists of techno-
logical products can increase the resolution and enrich 
the analysis of lithic assemblages. This, of course, results 
in a better understanding of the technical choices and 
constraints faced by past groups and may allow for bet-
ter understanding of the relationships between technology 
and raw material, as well as volumetric core management, 
and could contribute to improving comparisons between 
assemblages to avoid simple and overly generic techno-
logical definitions and to avoid merging what are clearly 
different reduction concepts. Such generic definitions 
are often used to discuss human behaviors and cultural 
traditions and even human migrations (Blinkhorn et al., 
2021), but they remain difficult to interpret (Romagnoli 
et al., 2022). They do not always reflect the diversity and 
specificity of the technological choices and constraints 
past human groups faced. A more in-depth analysis of 
variability in the techno-morphological characteristics of 
stone artifacts, in association with other approaches, such 
as refitting and taphonomic analysis (see bibliography in 
Romagnoli & Vaquero, 2019; Romagnoli et al., 2018), 
could also allow archaeologists to better understand the 
processes of assemblage formation and interpret techno-
logical changes throughout human evolution.

Previous researchers have pointed out the morphologi-
cal and technological differences between classic core–edge 
flakes and core–edge flakes with a limited back. Beyries and 
Boëda (1983) originally defined classic core–edge flakes as 

having very similar morphological and percussion axes. 
Meignen (1993, 1996) used the “core–edge flake with a 
limited back” category to classify core edge flakes in which 
the morphological and percussion axes were not aligned. 
Additionally, most of the examples presented (Meignen, 
1996) had the flake back offset from the percussion axis. Sli-
mak (2003) also points out that, as a morphological feature, 
the flake back of core–edge flakes with a limited back will 
be offset in regards the axis of percussion. These features 
of alignment between the flake back and percussion axis 
are captured by PC1 and PC3, with pseudo-Levallois and 
core–edge flakes with a limited back having similar values, 
indicative of an offset backed edge and lower elongation.

Slimak (2003) also indicates that classic core edge flakes 
will be elongated because of percussion running parallel to 
the core edge. Following Slimak (2003), core–edge flakes 
with a limited back will have length/width ratios close to 1 
as a result of percussion encountering ridges perpendicular 
to its direction. Although in the 3D data PC1 is the second 
most important variable for discrimination between backed 
products in the present study, it is clearly capturing the fea-
ture of elongation for the differentiation of classic core–edge 
flakes. Classic core–edge flakes have, on average, negative 
PC1 values (both on the 2D and 3D data), which are indica-
tive of elongation. On the other hand, core–edge flakes with 
a limited back and pseudo-Levallois points are characterized 
by, on average, positive PC1 values, which are indicative of 
similar values for width and length or even being wider than 
they are long.

Ambiguity and overlap between some technological 
categories of flakes are common. Combining quantitative 
methods and techniques has showed to be a useful approach 
to distinguish between backed products extracted during 
discoid and recurrent centripetal Levallois knapping strate-
gies. The present research shows that geometric morpho-
metrics along with machine learning models is an effective 
way also to test for the discreteness of categories, the pos-
sible directionality of confusions between categories and 
to quantify the features which best characterize and define 
each category.

Conclusions

The present work aimed to evaluate whether “core–edge 
flakes with a limited back” are a discrete category that can 
be separated from classic core–edge flakes and pseudo-
Levallois points. These products are defined by a series of 
morphological and technological features (overall shape 
morphology, morphological symmetry, axis of percussion, 
and position and angle of the backed edge). These features 
and their variability can be quantitatively captured by geo-
metric morphometrics and employed in machine learning 



 Journal of Paleolithic Archaeology             (2024) 7:5     5  Page 20 of 23

models to test for the discreteness of the categories. The 
results indicate that, while some overlap exists between clas-
sical core edge flakes and core edge flakes with a limited 
back (pseudo-Levallois points are clearly differentiated), in 
general, they are easily distinguishable. Additionally, geo-
metric morphometrics and machine learning also succeed 
in capturing the PCs directly associated with morphological 
and technological features employed to define each techno-
logical category. However, the precision of machine learning 
models can be affected by the number PCs used as predic-
tors. For the present sample and study, tree-based methods 
seem to be little affected by the reduction of variables. As 
expected, 3D geometric morphometrics better capture the 
features which characterize volumetric implements and 
better classify them. Core–edge flakes with a limited back 
are therefore clearly distinguishable from classic core–edge 
flakes and geometric morphometrics can be employed to 
test for the validity of defined technological categories, the 
directionality of confusions, and the features characterizing 
these categories.
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