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Abstract
The long-standing debate concerning the integrity of the cultural taxonomies employed
by archaeologists has recently been revived by renewed theoretical attention and the
application of new methodological tools. The analyses presented here test the integrity
of the cultural taxonomic division between Middle and Later Stone Age assemblages in
eastern Africa using an extensive dataset of archaeological assemblages. Application of
a penalized logistic regression procedure embedded within a permutation test allows for
evaluation of the existing Middle and Later Stone Age division against numerous
alternative divisions of the data. Results suggest that the existing division is valid
based on any routinely employed statistical criterion, but that is not the single best
division of the data. These results invite questions about what archaeologists seek to
achieve via cultural taxonomy and about the analytical methods that should be
employed when attempting revise existing nomenclature.
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Introduction

A number of recent papers have revived long-standing debates concerning the validity
of the cultural taxonomies adopted by archaeologists (e.g. Riede et al. 2020; Reynolds
and Riede 2019a; Sauer and Riede 2019; Ivanovaite et al. 2020). Although the
foregoing papers focus on the Late Upper Palaeolithic of Europe, they form the latest
instalment of a debate that is as old as archaeology itself and has at various points
encompassed all periods and regions (e.g. Bishop and Clark 1967; Dunnell 1971; Clark
and Lindly 1991; Bisson 2000; O'Brien and Lyman 2002; Shea 2014, 2020). Of
particular relevance to the current paper is the fact that Shea (2019) notes a clear
parallel between the problems identified by Reynolds and Riede (2019a) for the
European Upper Palaeolithic and those encountered in the analysis of eastern African
archaeological material (Will et al. 2019; Shea 2020).

Debates on the validity of cultural taxonomy have a long history in African
archaeology (e.g. Goodwin and Van Riet Lowe 1929; Bishop and Clark 1967; Shea
2020), with the added complication that most early classificatory schemes involved a
‘bastardisation of European terminology’ (Goodwin and Van Riet Lowe 1929:97) that
was poorly suited to the African evidence. Indeed, Goodwin (1958:33) reflected that
prior to the establishment of a purpose-built African terminology ‘we had been trying to
describe giraffe in terms of camel, or eland in terms of elk’. The inadequacy of
European terminology prompted the establishment of a bipartite division of
(southern) African material into Earlier and Later Stone Ages, ratified at the 24th
annual meeting of the South African Association for the Advancement of Science in
Pretoria, 1926 (Goodwin 1926). Continuing research by Goodwin and Van Riet Lowe
(Goodwin 1928; Goodwin and Van Riet Lowe 1929) soon led them to recognize that
the inclusion of a third period—the Middle Stone Age—was ‘essential to cover the
facts observed’ (Goodwin 1946:74). This tripartite division subsequently became the
norm throughout sub-Saharan Africa.

From the outset, it was recognized that there were varied regional and chronological
facies within each of the major ‘Ages’, that certain industries could be regarded as
transitional between them, and that the differences between them were quantitative
rather than qualitative. Goodwin (1946:74) was careful to note that ‘the three periods
overlap to some extent… we only reach each new “Age” as the new technique becomes
dominant’; delegates at the Third Pan-African Congress on Prehistory in 1955 resolved
that ‘more elasticity’ was required in the use of the three Ages (Cole 1955:204) and
adopted two intermediate stages between them (Cole 1955; Clark 1957). As the three
Ages came to be used over a greater extent of the continent, it became clear that they
could not be used as chronological markers and that ‘time connotations must be
separated from cultural concepts’ (Bishop and Clark 1967:866); transitions from one
Age to another could be protracted and did not occur simultaneously—nor even
necessarily follow the same trajectories—in different geographical areas (Scerri et al.
2021).

The Burg Wartenstein symposium of 1965 was highly critical of the typology
developed by Goodwin and Van Riet Lowe, and even more critical of its rather lax
subsequent use; indeed, Isaac’s proposal that ‘the terms “Earlier”, “Middle”, and
“Later” Stone Age in Africa should be abolished for all formal usage’ was agreed
unanimously (Bishop and Clark 1967:867). Kleindienst (1967) noted that publications
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of indicative assemblages with adequate descriptions were scarce and that as such
prehistorians had tended to use ‘the same terms but with different definitions, different
connotations, and at different levels of abstraction’ (Kleindienst 1967:828); her exten-
sive lexicon makes such problems abundantly clear. Although the Burg Wartenstein
delegates advocated the abandonment of the three Ages, the major issue for archaeol-
ogists over the subsequent decades was that no concrete suggestions had been made as
to what would replace them (Sampson 1974; Parkington 1993; Underhill 2011). As
such, the three Ages have retained their dominance over the African record; Clark’s
(1969) mode system provides a useful accompaniment, and Shea’s (2020) EAST
typology may yet have significant impact, but of the assemblages analysed below, all
are designated by their excavators as either Middle or Later Stone Age.

Goodwin and Van Riet Lowe’s (1929) distinction between Middle and Later Stone
Age implements rests upon differences in the preparation of the striking platform and in
the nature of the resultant flakes. MSA flakes are marked by faceted striking platforms
and convergent edges, unlike the flat striking platforms and parallel edges of the LSA.
The essentially triangular MSA flake is therefore ‘eminently suitable for use as a point,
and, indeed, the typical implement throughout the Middle Stone Age is the worked
point in a variety of forms’ (Goodwin and Van Riet Lowe 1929:98). These basic
distinctions persist; contemporary researchers stress decreases in prepared core tech-
nologies and retouched points together with increases in the production of backed
pieces, prismatic blades and bladelets, and bipolar reduction as signalling the transition
from the MSA to the LSA (Gossa et al. 2012; Pleurdeau et al. 2014; Masao 2015; Lahr
and Foley 2016; Leplongeon et al. 2017; Shipton et al. 2018; Tryon 2019).

Although the primary distinction between MSA and LSA assemblages has been
established on the basis of changes in lithic technology, increases in frequency of a
number of other elements of material culture have also been aligned with this transition
(e.g. Tryon 2019). Ground stone tools appear during transitional sequences at Mumba,
Nasera, and Kisese II (Mehlman 1989; Tryon et al. 2018; Tryon 2019), while bone tools
demonstrate erratic early appearances (e.g. Pante et al. 2020) before increasing in fre-
quency during the LSA (e.g. Langley et al. 2016; Shipton et al. 2018). The use of ochre is
associated with the earliest MSA at Olorgesailie (Brooks et al. 2018) but becomes
widespread only in the late MSA and LSA (Tryon 2019; D'Errico et al. 2020). Finally,
the appearance of disk beads made from ostrich eggshell may be a true marker of the
transition, with the earliest examples found in eastern Africa around 50 ka at Mumba and
Magubike (Gliganic et al. 2012; Miller & Willoughby 2014). The earliest examples of
engraved ostrich eggshell in eastern Africa date to ~43 ka at Goda Buticha and are
associated with an MSA industry (Assefa et al. 2018). The transition between MSA and
LSA has therefore been identified across a range of material classes, but the ubiquity of
stone tools, and their durability in the archaeological record, provides a robust means to
examine change through time that is less impacted by patterns of selective preservation.

In eastern Africa, the MSA first appears ~300ka at Olorgesailie (Brooks et al. 2018)
and persists until the end of MIS 3, ~30ka (e.g. Ossendorf et al. 2019); the eastern
African LSA first appears ~67ka at Panga ya Saidi and persists into the Holocene
(Shipton et al. 2018). The chronological overlap between the two industrial complexes
is therefore substantial, and it should be noted that individual ‘LSA’ technologies are
by no means absent from MSA assemblages (Blinkhorn and Grove 2018), whilst some
important MSA technologies persist within the LSA (e.g. Ranhorn and Tryon 2018;
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Shipton et al. 2018). Mirroring Goodwin’s (1946) cautions concerning the lack of
clear-cut divisions, Ranhorn and Tryon et al. (2018) suggest that proportional rather
than categorical differences may be critical, while Grove and Blinkhorn (2020) find that
the use of co-occurring constellations of technologies rather than individual fossiles
directeurs allows for robust discrimination between industrial complexes. Using ma-
chine learning algorithms, Grove and Blinkhorn (2020) demonstrate that the co-
occurrence of Levallois flakes, retouched points, core tools, and scrapers is indicative
of the MSA, whilst an alternative constellation of blades, backed pieces, and bipolar
reduction signals the LSA.

The three Ages thus remain dominant but disputed, and as Robertshaw (1990:8)
wryly notes, discussions of typology and nomenclature in African archaeology have
‘often generated a great deal of heat but very little light’. The analyses reported below
statistically test the validity of the division between assemblages labelled MSA and
LSA using a combination of weighted binary logistic regression and permutation
analysis. Whilst the primary aim is to assess the integrity of this particular division
within the Stone Age of eastern Africa, the subsidiary aim is to provide a blueprint for
the kind of analysis that might be used to test cultural taxonomic integrity in other
periods and regions.

Methods

Data

The archaeological database used is that documented in Grove and Blinkhorn (2020),
with the exception that the putative LSA assemblage from Nasera levels 4 and 5 is
omitted. In the neural network study of Grove and Blinkhorn (2020) that sought to
distinguish between LSA and MSA assemblages in eastern Africa, Nasera 4/5 was the
only assemblage misclassified. Recent radiocarbon dates on ostrich egg shell beads
obtained from stratigraphic positions above and below this assemblage by Ranhorn and
Tryon et al. (2018) suggest that it is somewhat older than originally suggested by
Mehlman (1989), and whilst chronological age is certainly not a valid proxy for
industrial affiliation, both Ranhorn and Tryon et al. (2018) and Grove and Blinkhorn
(2020) argue that this assemblage’s LSA status is questionable. Further to this, when
employing the typology used by Grove and Blinkhorn (2020), this assemblage is
identical to Mumba UV 38, which is unequivocally MSA. The database employed
below thus consists of 91 assemblages (LSA n = 30; MSA n = 61) evaluated on the
basis of the presence or absence of 16 technologies (see Grove and Blinkhorn 2020 and
Supplementary Materials for further details).

The 16 technologies used in the database were Backed Pieces, Bipolar Technology,
Blade Technology, Borer, Burin, Centripetal Technology, Core Tool, Denticulate,
Levallois Blade Technology, Levallois Flake Technology, Levallois Point Technology,
Notch, Platform Core, Point Technology, RT Bifacial, and Scraper. These technologies
were chosen following a comprehensive search of the literature and were amalgamated
from various synonymous terms used in the literature by previous authors. The terms
employed encompass the full breadth of terminology used to describe stone tool
assemblages for Late Pleistocene eastern Africa. Although previous researchers have

Journal of Paleolithic Archaeology (2021) 4: 14Page 414 of 2 4



in some cases employed different designations to refer to indistinguishable artefact
forms (e.g. radial core as opposed to discoidal core), the amalgamation of such terms
into a reduced taxonomy of 16 technologies goes a long way towards obviating this
problem. The database utilizes existing classifications employed by the researchers who
excavated or analysed a given assemblage; this is the case both for the designation of
technocomplexes (i.e. ‘MSA’ or ‘LSA’) and for distinctions between multiple assem-
blages from the same site (e.g. Panga ya Saidi 5 or Panga ya Saidi 6). Although there
may be differences in excavation and analytical techniques that lead to different
concepts of what constitutes a distinct assemblage, the designations provided in the
published literature provide the logical starting point for any subsequent analysis.
Further details, including a comprehensive breakdown of synonymous terms, can be
found in the Supplementary Materials. The locations of the assemblages used in the
analyses are shown in Fig. 1.

Whilst the analyses presented below focus on differences in the technologies
comprising LSA and MSA assemblages, it should be noted that differences in artefact
size and in raw material use have also been suggested to distinguish between these two
industrial complexes. Decreases in artefact size from the MSA to the LSA have been
previously noted (e.g. Leakey et al. 1972; Eren et al. 2013; Tryon and Faith 2016;
Shipton et al. 2018), with Pargeter and Shea (2019) stressing the significance of
miniaturization as a trend through time. Decreases in artefact size have also been
identified in sequences at individual sites (e.g. Shipton et al. 2018). In terms of raw
material use, an increasing focus on more fine-grained materials and those that appear
in smaller clast sizes has been documented (e.g. Leakey et al. 1972; Shipton et al.
2018). Nonetheless, the analyses of Grove and Blinkhorn (2020) demonstrate that
technological shifts alone afford considerable discriminatory power; as the analyses
presented below rely only on technological differentiation, they can be regarded as
conservative in terms of their assessment of the integrity of the LSA/MSA division.

The basic hypothesis to be tested is that the division of these 91 assemblages into
two classes—labelled LSA and MSA—is statistically valid in the sense that a model
that distinguishes between these two classes can be obtained with a deviance lower than
that obtained via alternative divisions of the data. This hypothesis can in fact be
formulated and tested in both weak and strong forms. The weak form employs a
standard p-value, such that validity is claimed when, for example, the probability of
obtaining a deviance as low as that obtained for the LSA/MSA division in a permu-
tation sample is less than one in twenty (equating to α = 0.05). The null hypothesis in
this case is that the LSA/MSA division is invalid because it leads to a model deviance
that could have occurred at random with a relatively high probability. The strong form
of the hypothesis is that the LSA/MSA division is valid in that it leads to a model
deviance that is lower than that obtained via any other possible division of the data. In
this case, the null hypothesis is simply that the LSA/MSA division is invalid because it
is not the single best division of the data.

General statistical practice regards the strong hypothesis as overly conservative, and
there are computational obstacles to testing this hypothesis precisely as stated. An exact
permutation test would be required to assess the deviance of every other possible
division in the data, and this is computationally intractable (including the split into LSA
and MSA, there are 291 ≈ 2.48 × 1027 possible divisions of the data). This is a common
problem for permutation analyses, however, and a truly random sample of several
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thousand permutations is normally regarded as sufficient (e.g. Ernst 2004). Since both
weak and strong hypotheses can be assessed via the same permutation test (using alpha
values of 0.05 and 1/(1 + the number of permutations), respectively), the results of both
are discussed below.

Fig. 1 The distribution of archaeological sites from which analysed assemblages derive, plotted on an SRTM
(1 arc-second) DEM obtained from USGS earth explorer (https://earthexplorer.usgs.gov)
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Analyses

Weighted Binary log-F Regression

The analyses are built on the foundation of weighted binary logistic regression (hence-
forth, WBLR), a common statistical method for studying differences between classes.
Weightings are applied both to account for differences in sample size between groups
and—in the permutation study below—to accommodate the fact that there are several
sub-groups of assemblages that appear identical under the typological scheme
employed here. The basic weighting scheme ensures that the sums of weights for the
two groups are equal; the weight for each assemblage in a given group, wg, is given as
wg ¼ N

2 n
−1
g , where ng is the number of assemblages in that group and N is the total

number of assemblages in the analysis. This ensures that ∑w1 = ∑w2 and that ∑w1 +
∑w2 =N. For the example of LSA and MSA classification, LSA assemblages assigned
t h e we i gh t wLSA ¼ 91

2 30
−1≈1:517 and MSA a s s emb l ag e s t h e we i gh t

wMSA ¼ 91
2 61

−1≈0:746.
An additional weighting scheme is developed to account for the fact that certain

groups of assemblages are identical under this typological scheme (see Table 1). Whilst
this is not a problem for the basic WBLR analysis—and the use of this weighting
scheme makes no difference to the results of that analysis—it is problematic for the
permutation analysis that follows; for consistency, this additional weighting scheme is
therefore employed throughout. Where a sub-group of assemblages are identical, that
assemblage type is entered only once into the analyses, with a weighting that reflects
the number of assemblages of that type. For example, Kisese II levels 3, 7, 9, 10, and
11 are identical; this assemblage type is entered once, with a weight five times that of a
single LSA assemblage. Table 1 demonstrates that the 91 assemblages in the analysis
fall into 65 types (20 LSA and 45 MSA); the table also shows a breakdown of the
weighting scheme for these 65 types as used in the initial analysis.

Initial inspection of the data matrix and preliminary standard logistic regression runs
demonstrated that the results suffer from a phenomenon known as ‘separation’ (Albert
and Anderson 1984) or ‘monotone likelihood’ (Bryson and Johnson 1981). This is an
instance of sparse data bias (Greenland et al. 2016) in which, although the likelihood
appears to converge, the coefficients do not; it is immediately signalled by the presence
of one or more coefficients that are effectively infinite (i.e. with an absolute value
limited only by the number of iterations permitted by the analyst when minimizing the
negative log-likelihood). In the current dataset, separation is caused primarily by the
presence of categorical covariates with either very high or very low prevalence (i.e. tool
forms that exist either in most assemblages or in very few assemblages). The output of
standard logistic regression models under separation is essentially meaningless.

The issue of separation has been widely noted by statisticians (e.g. Bryson and
Johnson 1981; Albert and Anderson 1984; Lesaffre and Albert 1989; Kolassa 1997;
Heinze and Schemper 2002; Greenland et al. 2016; Mansournia et al. 2018), and a
number of solutions have been suggested. Most of these focus on the concept of
penalized logistic regression—a form of shrinkage estimation using weakly informative
priors—and many derive from the initial work of Firth (1992, 1993). Though Firth’s
(1993) method has been reasonably widely adopted, it has been criticized on the basis
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Table 1 Assemblages by group number with binary logistic regression weights

Assemblage Type Type weight Industry Industry weight Final weight

Aladi Springs LSA 1 1 LSA 1.517 1.517

Kisese II 10 2 LSA 1.517

Kisese II 3 2 LSA 1.517

Kisese II 7 2 LSA 1.517

Kisese II 9 2 LSA 1.517

Kisese II 11 2 5 LSA 1.517 7.583

Kisese II 4 3 LSA 1.517

Kisese II 5 3 LSA 1.517

Kisese II 6 3 LSA 1.517

Kisese II 8 3 4 LSA 1.517 6.067

Lukenya Hill GvJm16 B 4 1 LSA 1.517 1.517

Lukenya Hill GvJm22 E120 150 5 1 LSA 1.517 1.517

Mumba M III 77 6 1 LSA 1.517 1.517

Munyama Cave 7 1 LSA 1.517 1.517

Panga ya Saidi 5 8 1 LSA 1.517 1.517

Panga ya Saidi 6 9 1 LSA 1.517 1.517

Panga ya Saidi 7.5 10 1 LSA 1.517 1.517

Enkapune ya Muto DBL 11 1 LSA 1.517 1.517

Enkapune ya Muto GG 12 1 LSA 1.517 1.517

Panga ya Saidi 10 13 1 LSA 1.517 1.517

Panga ya Saidi 11 14 1 LSA 1.517 1.517

Panga ya Saidi 12 15 1 LSA 1.517 1.517

Panga ya Saidi 9 16 LSA 1.517

Panga ya Saidi 15 16 2 LSA 1.517 3.033

Naisiusiu 1931 17 LSA 1.517

Naisiusiu 1969 in situ 17 2 LSA 1.517 3.033

Naisiusiu 1972 18 1 LSA 1.517 1.517

Panga ya Saidi 13 19 LSA 1.517

Panga ya Saidi 14 19 2 LSA 1.517 3.033

Panga ya Saidi 16 20 1 LSA 1.517 1.517

Lukenya Hill GvJm46 21 1 MSA 0.746 0.746

Enkapune ya Muto RBL4 22 1 MSA 0.746 0.746

Fincha Habera 8 10 23 1 MSA 0.746 0.746

Fincha Habera 8 11 24 1 MSA 0.746 0.746

Fincha Habera 8 8 25 MSA 0.746

Fincha Habera 8 9 25 MSA 0.746

Fincha Habera 9 25 MSA 0.746

Panga ya Saidi 17 25 4 MSA 0.746 2.984

Goda Buticha 70 110 26 1 MSA 0.746 0.746

Karungu Kisaaka Main 27 MSA 0.746

Karungu A3 Ex 27 MSA 0.746

Karungu Kisaaka ZTG 27 3 MSA 0.746 2.238
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Table 1 (continued)

Assemblage Type Type weight Industry Industry weight Final weight

Kisese II 18 28 MSA 0.746

Kisese II 21 28 2 MSA 0.746 1.492

Kisese II 19 29 MSA 0.746

Kisese II 20 29 2 MSA 0.746 1.492

Laas Geel SU 711 30 1 MSA 0.746 0.746

Lukenya Hill GvJm22 F170 205 31 1 MSA 0.746 0.746

Magubike MSA 32 1 MSA 0.746 0.746

Mochena Borago Lower T 33 1 MSA 0.746 0.746

Mochena Borago R Group 34 1 MSA 0.746 0.746

Mochena Borago S Group 35 1 MSA 0.746 0.746

Mochena Borago Upper T 36 1 MSA 0.746 0.746

Mumba L III 38 37 MSA 0.746

Nasera 12 17 37 MSA 0.746

Mumba U VI A 37 MSA 0.746

Mumba L VI A 37 MSA 0.746

Mumba VI B 37 5 MSA 0.746 3.730

Mumba L V 81 38 1 MSA 0.746 0.746

Mumba L VI 38 39 MSA 0.746

Nasera 6 7 39 2 MSA 0.746 1.492

Mumba MU V 81 40 MSA 0.746

Nasera 8/9 11 40 2 MSA 0.746 1.492

Mumba U V 38 41 1 MSA 0.746 0.746

Rusinga Nyamita 42 1 MSA 0.746 0.746

Shurmai MSA 43 1 MSA 0.746 0.746

Abdur N C S 44 1 MSA 0.746 0.746

Aduma A1 45 1 MSA 0.746 0.746

Aduma A4C 46 1 MSA 0.746 0.746

Aduma A5Ex 47 MSA 0.746

Aduma A5 Ex Surf 47 2 MSA 0.746 1.492

Aduma A8 48 1 MSA 0.746 0.746

Aduma A8AC 49 MSA 0.746

Aduma A8AG 49 2 MSA 0.746 1.492

Aduma A8A Surf 50 1 MSA 0.746 0.746

Aduma A8B 51 1 MSA 0.746 0.746

Aduma VP1/1 52 1 MSA 0.746 0.746

Aduma VP1/3 53 1 MSA 0.746 0.746

Eyasi Shore 77 81 54 1 MSA 0.746 0.746

Eyasi Shore N surface 55 1 MSA 0.746 0.746

Eyasi Shore W in situ 56 1 MSA 0.746 0.746

Eyasi Shore W surf 57 1 MSA 0.746 0.746

Kapedo Tuffs 58 1 MSA 0.746 0.746

Marmonet Drift H4 59 MSA 0.746
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that it artificially shrinks the constant, clouds the interpretation of coefficients and odds
ratios, and fails to account for possible correlations in the prior (Gelman et al. 2008;
Greenland and Mansournia 2015; Rahman and Sultana 2017). The analyses below
therefore employ the log-F method proposed by Greenland and Mansournia (2015),
using a weakly informative prior proportional to the log of the F-distribution. This
method displays all the benefits of Firth’s method whilst minimizing bias; crucially, it
does not include the constant in the calculation of the penalty term (Greenland and
Mansournia 2015; Rahman and Sultana 2017; Mansournia et al. 2018).

Formally, the penalized log-likelihood function to be minimized in log-F regression
is

PL βð Þ ¼ −L βð Þ−P βð Þ ð1Þ

where β is the vector of coefficients (including the constant as the last coefficient). L(β)
is the standard negative weighted log-likelihood,

−L βð Þ ¼ −∑
i
wiyiln πið Þ þ wi 1−yið Þln 1−πið Þ ð2Þ

where w are the weights, y are the values of the dependent variable (0 for LSA or 1 for
MSA), and π are the estimates of the dependent variable produced by the model with
coefficients β. P(β) is the log-F penalty term given by

P βð Þ ¼ ∑
n−1

j¼1

mβ j

2
−mln 1þ eβ j

� � ð3Þ

where n is the number of coefficients in the model (i.e. the length of the vector β) andm
gives the degrees of freedom of the prior. Following the recommendations of Green-
land and Mansournia (Greenland and Mansournia 2015; see also Rahman and Sultana
2017), here m = 1. Note that the penalty is not applied to the nth coefficient (the
constant term), as penalizing the constant can introduce exactly the form of bias for
which Firth regression has been criticized (Greenland and Mansournia 2015). It is
possible to carry out log-F regression via data augmentation for individual analyses

Table 1 (continued)

Assemblage Type Type weight Industry Industry weight Final weight

Marmonet Drift H5 59 2 MSA 0.746 1.492

Omo BNS L3 60 1 MSA 0.746 0.746

Omo BNS<50m 61 1 MSA 0.746 0.746

Panga ya Saidi 18 62 1 MSA 0.746 0.746

Panga ya Saidi 19 63 1 MSA 0.746 0.746

Victoria Cabrera 2 64 1 MSA 0.746 0.746

Victoria Cabrera 2a 65 1 MSA 0.746 0.746

Group weight is the number of identical assemblages in each group, IC weight is the weight for an assemblage
belonging to that industrial complex, and final weight is the product of the two previous weights

Journal of Paleolithic Archaeology (2021) 4: 14Page 1014 of 2 4



(e.g. Discacciati et al. 2015); however, given the nature of the permutation tests
described below, it is computationally more efficient in this case to directly minimize
the result of Eq. (1).

The most important overall measure of fit for a logistic regression model is the
deviance (= −2 × log-likelihood); for the initial regression model, the log-likelihood,
penalized log-likelihood, sample-size corrected Akaike’s Information Criterion (AICc;
Burnham et al. 2011) and the Cox and Snell, Nagelkerke, and count pseudo-R2

statistics are also reported. The Cox and Snell R2 (R2
CS) is appropriate as, like the

deviance, it assesses the fit of the full model relative to that of the null (intercept only)
model (Maddala 1983; Cox and Snell 1989). The R2

C&S , however, has a maximum
attainable value of less than one; Nagelkerke’s (1991) correction (R2

Nag) re-scales it by

the null model likelihood to give it a range of possible values between zero and one.
The count R2 (R2

Co) is simply the number of cases correctly classified divided by the
total number of cases and is useful when assessing the classificatory ability of a model.
For the initial regression model, the values of the individual coefficients and their
likelihood ratio statistics are also reported; likelihood ratio statistics are preferred over
the simpler Wald statistics as they are more reliable when dealing with small sample
sizes (e.g. Agresti 2007:11ff.), particularly when dealing with the results of penalized
logistic regression (Greenland et al. 2016). Whilst the production and assessment of
regression coefficients is not the primary aim of this study, assessing the significance of
the coefficients in relation to the results of Grove and Blinkhorn (2020) on significant
predictors obtained via neural network analyses provides a useful comparison of these
two methods.

Permutation Analysis

In order to assess the validity of LSA/MSA division, a permutation test was performed
to compare this division to a random subset of other possible divisions of the data. Each
permutation was carried out by randomly assigning the 65 assemblage types to two
groups, performing a log-F WBLR on those two groups, and recording the resulting
model deviance. Results of logistic regression can be imprecise and biased towards the
larger group if the smaller group is too small; weighting goes some way to addressing
this problem, but the fact remains that highly imbalanced sample sizes can lead to
meaningless results. To ensure a range of sample sizes for the two groups (whilst
ensuring that the size of neither group became trivially small), the sample size of the
first group one was called from an integer-rounded probability distribution, with the
size of the second group set equal to 65 minus the size of the first group. To minimize
the possible effects of imbalanced sample sizes, two probability distributions were used
in two different permutation exercises:

1. A triangular distribution with a minimum of 15, a maximum of 50, and a mean of
65/2

2. A uniform distribution with a minimum of 15 and a maximum of 50

If low deviances tend to occur more frequently in imbalanced models, 2 would be
expected to produce a greater frequency of lower deviance results. This potential bias
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was further tested by examining correlations between the deviance of a model and the
sample size of the smaller group; if greater sample size discrepancies between the two
groups lead to lower log-F WBLR deviances, these correlations will be positive and
significant.

Prior to each log-F WBLR, weights were adjusted such that the sums of weights for
the two groups were equal to 91/2. Sample sizes for the two groups can therefore vary
from 15 to 50, but sums of weights for the two groups remain identical at 91/2 in each
permutation. The second weighting procedure described above (dividing the dataset
into 65 weighted assemblage types rather than 91 individual assemblages) is particu-
larly important to the results of the permutation test. Without this procedure, identical
assemblages could be permuted into different groups, automatically increasing the
deviance of the resulting log-F WBLR. Assessing model fits to types of assemblages
rather than individual assemblages ensures the results regarding the integrity of the
LSA/MSA split are as conservative as possible. Estimated p-values for the significance
of the LSA/MSA split are given by

bp ¼ 1þ ∑R
i¼1I di≤d*

� �
1þ R

ð4Þ

where R is the number or permutations of the data, di is the deviance of the log-F
WBLR model fitted to the ith permutation, d∗ is the deviance of the original log-F
WBLR model, and I is an indicator function that equals 1 if di ≤ d∗ and 0 otherwise
(Grove and Pearson 2014). R was set to 99,999 permutations, yielding a minimum
attainable p-value of 0.00001. Both the log-F WBLR and permutation procedures were
written as custom scripts in Matlab R2019b (Mathworks, Natick, MA, USA) and are
included as supplementary materials.

Results

Initial Analysis

The initial WBLR model had a deviance of 40.375 and was highly significant (relative
to the null (intercept-only) model, χ2(16,65) = 96.471, p <.001, null deviance =
136.846). The AICc value for the full model was 87.396, relative to 138.909 for the
null model. The pseudo-R2 statistics were R2

C&S ¼ :773, R2
Nag ¼ :881, and R2

Co ¼ :892;

the latter implies that seven of 65 assemblage types were misclassified. Of the seven
misclassified assemblage types, six consisted of single assemblages whilst one
consisted of two assemblages; thus, eight assemblages were misclassified in total,
leading to an overall accuracy for individual assemblages of 83/91 = .912. The
accuracy achieved is lower than the 91/92 = .989 achieved using neural networks by
Grove and Blinkhorn (2020), but this is to be expected as WBLR is a less sophisticated
classification model. The incorrectly classified assemblages were Mumba M III 77 and
Panga ya Saidi 11 (LSA misclassified as MSA) and Lukenya Hill GvJm46, Enkapune
ya Muto RBL4, Mumba L V 81, Marmonet Drift H4, Marmonet Drift H5, and Laas
Geel SU 711 (all MSA misclassified as LSA). A graphical summary of the regression
output is shown in Fig. 2.
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Coefficients for individual technologies and their likelihood ratio statistics are given
in Table 2. Significant coefficients were found for backed pieces, bipolar technology,
blade technology, Levallois flake technology, and point technology. Signs of the
coefficients demonstrate that the former three technologies are associated with LSA
assemblage types whereas the latter three are associated with MSA assemblage types.
These results agree with those of Grove and Blinkhorn (2020), with the exception that
the latter study also suggested the presence of core tools and scrapers as predictors of
MSA assemblages.

Permutation Analysis

The primary goal of this study was to assess the validity of the division of these
assemblage types into the widely adopted categories of LSA and MSA. The results of
the permutation test are shown in Fig. 3. Using the triangular distribution of group
sizes, six of the 99,999 permuted divisions resulted in WBLR models that returned
deviance values less than or equal to that of the LSA/MSA division, yielding bpt =
0.00007. Using the uniform distribution, the equivalent figure was 18 of 99,999,
yielding bpu = 0.00019. The division of these assemblage types into LSA and MSA is
thus highly significant by traditional statistical standards, suggesting that these labels
provide a valid classificatory scheme for this material. More nuanced interpretations of
this result are possible, however, and are discussed in detail below.

Correlations between the sample size of the smallest group and WBLR model
deviance were positive and significant in both cases (triangular, r(99,997) = 0.192, p
< 0.001; uniform, r(99,997) = 0.294, p < 0.001), demonstrating that models with
greater sample size imbalance produce lower deviances. Overall, 3.29% of permutation
models in the triangular analysis and 12.94% of permutation models in the uniform
analysis were more imbalanced than the empirical model. Of the permutation models

Fig. 2 Assemblage frequencies plotted at binned regression scores for LSA and MSA assemblages. A
regression score of less than 0.5 indicates an LSA classification via the logistic regression, with a regression
score of greater than 0.5 indicating an MSA classification; as such, blue (MSA) bars with scores less than 0.5
represent MSA assemblages misclassified as LSA and red (LSA) bars with scores greater than 0.5 represent
LSA assemblages misclassified as MSA
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demonstrating lower deviance than the empirical model, 77.78% were more imbal-
anced than the empirical model when using the uniform distribution, but none were
more imbalanced than the empirical model when using the triangular distribution.
These results suggest that 14 of the permutation models that returned lower deviances
than the empirical model when using the uniform distribution may have done so simply
because they were more imbalanced; overall, however, there were at least ten models
(four generated by the uniform distribution and six by the triangular distribution) that
were better than the empirical model and could not be explained by statistical artefacts.

Table 2 Logistic regression coefficients for individual technologies and associated likelihood ratio statistics; *
denotes significance at α = 0.05

Technology B log(L) χ2 p

Backed pieces −2.955 −24.042 7.709 0.005*

Bipolar technology −2.474 −22.847 5.320 0.021*

Blade technology −1.961 −22.164 3.953 0.047*

Borers 0.135 −20.297 0.219 0.640

Burins 0.473 −20.515 0.655 0.418

Centripetal technology 0.532 −20.586 0.798 0.372

Core tools 1.779 −21.511 2.646 0.104

Denticulates −0.415 −20.284 0.193 0.661

Levallois blade technology 0.221 −20.195 0.016 0.900

Levallois flake technology 2.099 −24.558 8.741 0.003*

Levallois point technology −0.486 −20.450 0.524 0.469

Notches 0.901 −20.863 1.351 0.245

Platform cores −1.425 −21.716 3.057 0.080

Point technology 3.053 −28.517 16.658 0.000*

Bifacial retouch 0.982 −20.420 0.464 0.496

Scrapers 1.165 −21.083 1.791 0.181

{Constant} 1.855 −21.590 2.804 0.094

Log-likelihoods given are those for reduced models in which each technology in turn is omitted.

Fig. 3 Results of permutation tests using (a) a triangular distribution and (b) a uniform distribution for group
sample size. Red squares show permutations producing WBLR model deviances less than or equal to the
empirical model deviance; blue squares show permutations producing WBLR model deviances greater than
the empirical model deviance
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Discussion

The results of the weighted binary logistic regression reported above agree substan-
tively with those of Grove and Blinkhorn (2020) in that backed pieces, blades, and
bipolar reduction are seen as indicative of LSA assemblages whilst Levallois flakes and
points are seen as indicative of MSA assemblages. Grove and Blinkhorn (2020) also
found core tools and scrapers to be indicative of the MSA; in the current study, both are
found to be more associated with the MSA than the LSA, but not significantly so. In
relation to scrapers, it is worth noting Tryon’s (2019:267) finding that end scrapers are
found more often in LSA contexts, with side scrapers more prevalent during the MSA.

These results also broadly agree with the intuitions of previous researchers regarding
the associations of these technologies with the respective industrial complexes. Tech-
nologies that are indicative of each industrial complex, however, also occasionally
appear in the other, recalling Goodwin’s (1946) point that there is considerable overlap
between them and agreeing with Tryon’s (2019) recent description of the eastern
African transition as a prolonged process with varying regional trajectories. It is
therefore important, as per Grove and Blinkhorn (2020), to recognize constellations
of indicative technologies rather than individual tool forms when discussing the
dynamics of the transition.

The analyses undertaken here aimed to assess the validity of the MSA/LSA division,
but did not assess whether each individual assemblage was ‘correctly’ classified to one
of these two industrial complexes; without detailed examination of each and every
assemblage, the policy of adopting the designation provided by the excavators in each
case is clearly the only sensible one to follow. Similarly, the analyses reported here are
dependent upon the excavators’ use of terminology for identification of the different
technologies. Whilst only further archaeological study can robustly re-assign assem-
blages to alternative industrial complexes, statistical results can be informative
concerning which assemblages might be prioritized for re-examination. An experiment
in which each of the eight misclassified assemblages in turn was reclassified and the
models re-calculated—with appropriate changes to all weightings—led to the results
shown in Table 3.

As expected, the above experiment suggests that, were any of the eight misclassified
assemblages reclassified, reductions relative to the original model deviance of 40.375
could be achieved. Most of these reductions are relatively minor, however, and it is
important to note that at this scale the deviance does not necessarily correlate with the
number of assemblages misclassified. Whilst reclassification of Mumba M III 77 would
lead to the greatest reduction in deviance, reclassification of either Lukenya Hill
GvJm46 or Mumba L V 81 would lead to the greatest improvement in the number of
correct assemblage classifications. Any reclassifications could only take place, of
course, after careful archaeological examination of the assemblages in question.

There are numerous cultural, stratigraphic, taphonomic, chronological, and method-
ological factors that might either prompt re-investigation or suggest why a given
assemblage is not fully indicative of the industrial complex to which it is attributed.
To take Mumba as an example, Mehlman’s (1977) excavations (Mehlman 1979, 1989)
were intended to address issues with the original excavations by Kohl-Larsen (Kohl-
Larsen 1943). Nonetheless, he was only able to retrieve relatively limited samples
(Mehlman 1989:78), and many of these remain unstudied (Prendergast et al. 2007).
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Subsequent studies have focused on the transitional nature of Mehlman’s (1989)
Mumba Industry, located primarily in the Bed V horizons of the site, and on more
comprehensive dating of the deposits so as to recognize patterns of change and
innovation (Mabulla 2007; Prendergast et al. 2007; Diez-Martin et al. 2009; Gliganic
et al. 2012; Bushozi et al. 2020). If the Middle Bed III samples recovered by Mehlman
in 1977 are MSA, they would be stratigraphically and chronologically anomalous,
particularly given the results of Gliganic and colleagues (Gliganic et al. 2012; see also
Diez-Martin et al. 2009; Eren et al. 2013) who argue for a relatively early LSA
associated with abundant ostrich eggshell beads beginning in Upper Bed V at 49.1 ±
4.3 ka. A realistic explanation for the effect of the Mumba M III 77 assemblage on the
above analyses, therefore, is that it is a relatively small assemblage that is not fully
indicative of its LSA provenance.

he misclassifications of some other assemblages, such as Lukenya Hill GvJm46 and
Enkapune ya Muto RBL4, may be due to the fact that previously published inventories
rely on partial samples from selected test pits, from depositional contexts that are not
clearly established, or from sparse occupations that may not have resulted in extensive
or indicative lithic accumulations (e.g. Miller & Willoughby 2014; Kelly 1996:271;
Ambrose 1998:384). Ideally, future analyses would consider individually the various
processes that act in combination to generate archaeological samples; in practice this is
rarely possible, but a valid (albeit post hoc) alternative would be to subject those
assemblages that have been misclassified in the above analyses to further investigation
in relation to such processes.

As highlighted above, these analyses and their results depend upon the collation of
data previously published by numerous researchers. The database therefore inevitably
encompasses differences not only in the terminology used to describe individual lithics
but also in the techniques employed in excavation and recording. Excavation by
context, for example—where ‘context’ is defined as a homogenous unit of the matrix,
regardless of its vertical or horizontal extent—leads to a different concept of ‘assem-
blage’ than does excavation by regular, arbitrary spits. Ideally, an assemblage—
however, defined in terms of the sedimentary matrix—would equate to a discrete

Table 3 Statistics obtained by reclassifying the assemblages misclassified by the logistic regression analysis
reported above and re-calculating the model

Assemblage IC log(L) Deviance N MisC AICc Δ Weight Prob

Mumba M III 77 LSA −16.454 32.908 7 75.291 0.000 1.000 0.467

Lukenya Hill GvJm46 MSA −17.339 34.677 5 77.061 1.770 0.413 0.193

Panga ya Saidi 11 LSA −17.676 35.353 6 77.736 2.445 0.294 0.138

Enkapune ya Muto RBL4 MSA −18.065 36.129 7 78.513 3.222 0.200 0.093

Mumba L V 81 MSA −18.674 37.348 5 79.732 4.440 0.109 0.051

Marmonet Drift H4 MSA −19.630 39.260 6 81.644 6.352 0.042 0.020

Marmonet Drift H5 MSA −19.630 39.260 6 81.644 6.352 0.042 0.020

Laas Geel SU 711 MSA −19.670 39.341 8 81.724 6.433 0.040 0.019

IC industrial complex, NMisC number misclassified, Δ AICc difference (i.e. AICci – AICcmin), RL relative
likelihood, Prob relative probability of each model given the data and the set of models considered.
Assemblages are ranked by AICc
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occupation horizon, but of course this is rarely the case. The amalgamation of syno-
nyms into a broad typology of 16 technologies largely removes concerns about the
inconsistent use of terminology for individual lithics, but inconsistencies in the delin-
eation of assemblages remain. Such inconsistencies are unavoidable in a study of this
kind—after all, the material cannot be excavated again—and in the current study, they
do not appear to introduce any systematic bias in terms of the results. For example,
assemblages defined by arbitrary spits (or groups thereof) are no more likely to be
misclassified than those defined by archaeological contexts. This issue does, however,
starkly reveal the fact that the problems facing archaeological taxonomies act at
multiple scales.

The taxonomy of individual lithics has been criticized on the basis that it discretizes
the continuous variation produced either by a reduction continuum or by spatio-
temporal variation in the cultural production of functionally equivalent tools (e.g.
Davidson and Noble 1993; Davidson 2002). The process of dividing excavated
material into assemblages—except in those rare cases where such assemblages are
bracketed by sterile layers—is a second process by which continuous variation is
discretized. Finally, assemblages are categorized by technocomplex, which further
masks the continuity between them. Most archaeological analyses, therefore, depend
on various, cumulative methods of discretization; comparisons between periods or
between regions cannot be accomplished without the application of such methods.
The resulting analyses are often genuinely valuable, but archaeologists must also
remain cognizant of the limitations the underlying methods impose.

The results of the permutation analyses reported above suggest that the LSA/MSA
division is valid based on a standard statistical criterion (i.e. α = 0.05, 0.01, or even
0.001), but that it is not the single best division of the data; thus, the weak form of the
hypothesis is supported, but the strong form is not. The history of archaeology as a
largely descriptive discipline, with quantitative hypothesis testing emerging as a sig-
nificant component long after the establishment of our cultural taxonomies, leads to a
situation in which statistical analyses are being used as post hoc tests of those
taxonomies (see also Ivanovaite et al. 2020). On the one hand, this is regrettable, but
on the other, it is important to stress that the meaning—and therefore the usefulness—
of our taxonomies must emerge from archaeological rather than from statistical rea-
soning. Ideally the two would be complementary, but the complexity and paucity of the
archaeological record often stifle this alliance.

As an example of why archaeological reasoning must take precedence in such cases,
Fig. 4 shows a (purely theoretical) series of assemblages plotted in two dimensions;
these dimensions could be counts of two tool forms, or more realistically the first two
axes of a principal components analysis. The two dashed lines in the figure are both
examples of complete separation in this two-dimensional space; that is, a binary logistic
regression or linear discriminant analysis could perfectly separate the data into two
groups to either side of either of these lines based purely on the two axes shown
(vertical or horizontal divisions would only need one axis to do so). Yet, there are any
number of additional lines that could also achieve such separation; all would be
statistically equivalent, but would any be archaeologically meaningful?

The above is an example of an unsupervised analysis, in which patterns are sought in
the data without prior labelling; a complete overhaul of archaeological cultural taxon-
omy would necessarily be built on the results of such analyses. The WBLR reported
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above is a supervised analysis, in which coefficients are sought that divide the data as
well as possible into categories to which they have been assigned a priori. The
permutation analyses undertaken here exist in the space between supervised and
unsupervised analyses, as each permutation returns the result of a supervised analysis
in which membership of the a priori categories is assigned at random. Archaeology is
currently in a position whereby revision of existing cultural taxonomies is likely to be
more beneficial than building those taxonomies anew from the ground up; as Reynolds
and Riede (2019b:1369) state, ‘there is structure in the archaeological record, and
abandoning taxonomies altogether would limit… the types of questions that we can
ask’. In this context, further exploration of the space between supervised and unsuper-
vised analyses is likely to prove useful.

The problems of cultural taxonomy discussed here are certainly not limited to
archaeological endeavours. For example, some British architectural styles correspond
broadly to chronological periods, but these styles frequently overlap, and their specific
durations are disputed, even when their labels derive from correspondence to the reigns
of particular monarchs (e.g. Victorian, Edwardian). The differences between Victorian
and Edwardian domestic architecture (fewer storeys, higher ceilings, broader hallways
behind wood-framed porches in the latter) are fewer than their similarities; as such,
much like lithic industries or biological species, they grade into one another when
viewed from a sufficient chronological distance. With the exception of architectural
styles that consciously derive inspiration from previous periods (e.g. Neoclassical),
labels are applied post hoc in much the same way that they are in archaeological
systematics. ‘Edwardian’ architects did not set out to create a distinctly ‘Edwardian’
style as a counterpoint to the previous ‘Victorian’ style; instead, differences can only be
discerned in hindsight by scholars working in later periods. Nonetheless, these labels
act as useful heuristic devices for the discussion of changing architectural styles
through time, serving much the same purpose as our archaeological nomenclature. If
the labels did not exist, the discussion could not proceed, and this would be detrimental

Fig. 4 Theoretical plot of the first two axes of a principal components analysis on a group of archaeological
assemblages. Dashed lines represent two possible examples of complete separation

Journal of Paleolithic Archaeology (2021) 4: 14Page 1814 of 2 4



not only to systematics itself but also to broader understanding. Attempts to simply
abandon existing cultural taxonomies—in archaeology as in any other discipline—are
therefore entirely without value; attempts to revise existing taxonomies must be
grounded in first-hand re-examination and logical assessment of affinities between
large numbers of assemblages (see Shea 2020 for a recent example). Current archae-
ological taxonomy may resemble a ‘house of cards’ (Reynolds and Riede 2019a), but it
would be premature to pull this house down before a new one has been built.

The analyses carried out above examine assemblages at the scale of industrial
complexes and do so by recording the presence or absence of 16 technologies within
each assemblage. This is a relatively common approach to the African Stone Age
record (e.g. Tryon and Faith 2013; Blinkhorn and Grove 2018; Grove and Blinkhorn
2020; Shea 2020) but clearly operates at a very different scale to analyses of, for
example, metric attributes of individual tool forms (e.g. O'Brien et al. 2014; Ivanovaite
et al. 2020). Different questions demand different scales of analysis, and it is often the
case that analyses at finer scales can only proceed by deliberately ignoring patterning at
coarser scales. To employ a biological example, traits that distinguish genus one from
genus two are unlikely to be useful in distinguishing between two species that both
belong to genus two because the attribution of those species to genus two necessarily
implies that they both display those traits. These shared or ‘primitive’ traits are of no
use in pursuing the finer-scale division between species. In much the same way, it may
be feasible to support broad scale archaeological cultural taxonomies (e.g. MSA, LSA)
whilst simultaneously questioning their subdivisions (e.g. Nubian; see Groucutt 2020).

Perhaps the most substantive problem with existing archaeological cultural taxono-
my stems from the way in which it is interpreted and used. This stems from a lasting
culture-historical legacy that equates particular groups of artefacts or artefact types with
particular groups of people; the ‘culture’ of a people is explicitly manifest in the
material culture assemblages those people produce, and the assemblages therefore
indicate the people. In this regard, Kleindienst (2006:17) argues that the Burg
Wartenstein recommendations were ‘fatally flawed’ because ‘those in favour of such
a system could not persuade their colleagues… to leave the “group of prehistoric
people” out of the definition of the “Basic Unit”’ (i.e. the ‘Industry’ as defined in
Bishop and Clark (1967:893)). The idea that ‘cultures’ in this sense are immutable and
inextricably linked to groups of people permits migration and diffusion but ignores
both the ability of hominin actors to flexibly respond to changing circumstances and the
possibility of convergent responses of different temporally or geographically distant
groups to similar circumstances.

A stark alternative to the ‘group of prehistoric people’ perspective sees the produc-
tion of material culture primarily as a functional reaction to ecological circumstances
and provides markedly different interpretations of the same datasets (e.g. Bordes 1961;
Binford and Binford 1966; Bordes and De Sonneville-Bordes 1970; Binford 1973). If a
recurring assemblage of archaeological material is the physical manifestation of a
distinct set of ideas belonging to a distinct group of people, then archaeological
analyses tell us about the spatio-temporal history of that group of people; but if the
same recurring assemblage represents just a subset of a group’s material repertoire, and
if different groups employ the similar subsets when encountering similar circum-
stances, then analyses tell us more about the circumstances these groups encountered
than about their social norms or cultural values. If one adopts the latter position, a
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further difficulty arises in the need to disaggregate those aspects of the assemblage (and
of individual artefact form) that serve a direct subsistence function from those that serve
a social, symbolic, or otherwise cultural function (e.g. Dunnell 1978; Brantingham
2007). Any taxonomy—cultural or otherwise—is constructed in reference to a partic-
ular analytical goal, with results interpreted in relation to a particular theoretical
position.

Conclusions

The analyses presented above sought to test the integrity of the cultural taxonomic
division between MSA and LSA assemblages in eastern Africa by comparing that
division to a large sample of arbitrary divisions of the same data. Results suggest that
the division is valid on the basis of any routinely employed statistical criterion, but that
it is not the single best division of the data. These results invite questions about what
archaeologists seek to achieve via cultural taxonomy and about the analytical methods
that should be employed when attempting to revise existing nomenclature. Quantitative
analyses are necessarily more robust than their purely descriptive counterparts but will
only prove truly useful if their results can be interpreted in archaeologically meaningful
ways. Archaeologists seek information about similarities and differences that charac-
terize assemblages that originated in different periods and regions or that were pro-
duced under different environmental regimes. Such similarities and differences—where
they occur—are often highly complex, existing at different scales and along multiple
axes of variation. The sheer variety of hominin behaviour precludes simple classifica-
tion, but classification is essential to discussion. Archaeological cultural taxonomies are
largely heuristic devices, but they remain valuable, and—at least in the case of the
eastern African MSA and LSA—they map onto important differences in the stone tool
assemblages created by our ancestors.
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