Skip to main content

Advertisement

Log in

Practical and rapid construction of 2-pyridyl ketone library in continuous flow

  • Communications
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

2-Pyridyl ketones widely appear in bioactive molecules, natural products, and are employed as precursors of chiral 2-pyridine alky/aryl alcohols or 2-aminoalkyl pyridine ligands for asymmetric catalysis. Herein, a practical method for the rapid synthesis of 2-pyridyl ketone library in continuous flow is reported, in which the 2-lithiopyridine formed by Br/Li exchange reacts with commercially available esters to obtain 2-pyridyl ketones in a good yield at short reaction time. This protocol functions broadly on a variety of esters and has been applied to the synthesis of TGF-β type 1 receptor inhibitor LY580276 intermediate in an environmentally friendly method. It is rapid, reliable, and cost-efficient to afford diverse kinds of 2-pyridyl ketones in the compound library.

A practical method for therapid synthesis of 2-pyridyl ketones under continuous flow using simple estersand 2-bromopyridine was reported. This procedure iswidely applicable to aromatic esters, alkyl esters, N-Boc amino acidmethyl esters, α-bromoesters and dimethyl oxalate, leading to variousfunctionalized 2-pyridyl ketones with good yields

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3

References

  1. Aldabbagh F (2005) Comprehensive Organic Functional Group Transformations II, vol 3. Elsevier Ltd, Amsterdam

  2. Smith MB, March J (2007) March’s advanced organic chemistry. Wiley, Hoboken

  3. Qiao YT, Mcnally A, Vera S, Erdmann N, Gaunt MJ (2013) Organocatalytic C-H bond arylation of aldehydes to Bis-heteroaryl ketones. J Am Chem Soc 135(10):3772–3775

    Article  CAS  Google Scholar 

  4. Choshi T, Yamada S, Sugino E, Kuwada T, Hibino S (1995) Total synthesis of grossularines-1 and – 2. J Org Chem 60(18):5899–5904

    Article  CAS  Google Scholar 

  5. Barbosa VA, Formagio ASN, Savariz FC, Foglio MA, Spindola HM, de Carvalho JE, Meyer E, Sarragiotto MH (2011) Synthesis and antitumor activity of β-carboline 3-(substituted-carbohydrazide) derivatives. Bioorg Med Chem 19(21):6400–6408

    Article  CAS  PubMed  Google Scholar 

  6. Khanapure SP, Augustyniak ME, Earl RA, Garvey DS, Letts LG, Martino AM, Murty MG, Schwalb DJ, Shumway MJ, Trocha AM, Young DV, Zemtseva IS, Janero DR (2005) 3-[4-(Methylsulfonyl)phenyl]-5-(trifluoromethyl)(2-pyridyl) phenyl ketone as a potent and orally active cyclooxygenase-2 selective inhibitor: Synthesis and biological evaluation. J Med Chem 48(11):3930–3934

    Article  CAS  PubMed  Google Scholar 

  7. Yang H, Huo N, Yang P, Pei H, Lv H, Zhang X (2015) Rhodium catalyzed asymmetric hydrogenation of 2-pyridine ketones. Org Lett 17(17):4144–4147

    Article  CAS  PubMed  Google Scholar 

  8. Nian S, Ling F, Chen J, Wang Z, Shen H, Yi X, Yang Y-F, She Y, Zhong W (2019) Highly enantioselective hydrogenation of non-ortho-substituted 2-pyridyl aryl ketones via iridium-f-diaphos catalysis. Org Lett 21(14):5392–5396

    Article  CAS  PubMed  Google Scholar 

  9. Chen F, He D, Chen L, Chang X, Wang DZ, Xu C, Xing X (2019) Chirality-economy catalysis: Asymmetric transfer hydrogenation of ketones by ru-catalysts of minimal stereogenicity. ACS Catal 9(6):5562–5566

    Article  CAS  Google Scholar 

  10. Shao L, Wang Y-H, Zhang D-Y, Xu J, Hu X-P (2016) Desilylation-activated propargylic transformation: Enantioselective copper-catalyzed [3 + 2] cycloaddition of propargylic esters with β-naphthol or phenol derivatives. Angew Chem Int Ed 55(16):5014–5018

    Article  CAS  Google Scholar 

  11. Hou C-J, Hu X-P (2016) Sterically hindered chiral ferrocenyl P,N,N-Ligands for highly diastereo-/enantioselective ir-catalyzed hydrogenation of α-alkyl-β-ketoesters via dynamic kinetic resolution. Org Lett 18(21):5592–5595

    Article  CAS  PubMed  Google Scholar 

  12. Gilman H, Van Ess PR (1933) Preparation of ketones by the carbonation of organolithium compounds. J Am Chem Soc 55:1258–1261

    Article  CAS  Google Scholar 

  13. Liu C, Achtenhagen M, Szostak M (2016) Chemoselective ketone synthesis by the addition of organometallics to N-acylazetidines. Org Lett 18(10):2375–2378

    Article  CAS  PubMed  Google Scholar 

  14. Demkiw K, Araki H, Elliott EL, Franklin CL, Fukuzumi Y, Hicks F, Hosoi K, Hukui T, Ishimaru Y, O’Brien E, Omori Y, Mineno M, Mizufune H, Sawada N, Sawai Y, Zhu L (2016) A nitrogen-assisted one-pot heteroaryl ketone synthesis from carboxylic acids and heteroaryl halides. J Org Chem 81(8):3447–3456

    Article  CAS  PubMed  Google Scholar 

  15. Yang H, Wang E, Yang P, Lv H, Zhang X (2017) Pyridine-directed asymmetric hydrogenation of 1,1-diarylalkenes. Org Lett 19(19):5062–5065

    Article  CAS  PubMed  Google Scholar 

  16. Funabiki K, Hayakawa A, Inuzuka T (2018) Convenient, functional group-tolerant, transition metal-free synthesis of aryl and heteroaryl trifluoromethyl ketones with the use of methyl trifluoroacetate. Org Biomol Chem 16(6):913–918

    Article  CAS  PubMed  Google Scholar 

  17. Parham WE, Piccirilli RM (1977) Selective halogen-lithium exchange in 2,5-dibromobenzenes and 2,5-dibromopyridine. J Org Chem 42(2):257–260

    Article  CAS  Google Scholar 

  18. Mateos-Gil J, Mondal A, Castineira Reis M, Feringa BL (2020) Synthesis and functionalization of allenes by direct Pd-catalyzed organolithium cross-coupling. Angew Chem Int Ed 59(20):7823–7829

    Article  CAS  Google Scholar 

  19. Stentzel MR, Klumpp DA (2020) Michael addition with an olefinic pyridine: Organometallic nucleophiles and carbon electrophiles. J Org Chem. https://doi.org/10.1021/acs.joc.0c00823

    Article  PubMed  PubMed Central  Google Scholar 

  20. Erdelmeier I, Won J, Park S, Decker J, Buelow G, Baik M-H, Gais H-J (2020) Nickel-catalyzed anionic cross-coupling reaction of lithium sulfonimidoyl alkylidene carbenoids with organolithiums. Chem  Eur J 26(13):2914–2926

    Article  CAS  Google Scholar 

  21. Sans V, Cronin L (2016) Towards dial-a-molecule by integrating continuous flow, analytics and self-optimization. Chem Soc Rev 45(8):2032–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vaccaro L (2020) Green shades in organic synthesis. Eur J Org Chem 2020(28):4273–4283

    Article  CAS  Google Scholar 

  23. Wirth T (2012) Flow chemistry: enabling technology in drug discovery and process research. ChemSusChem 5(2):215–216

    Article  PubMed  Google Scholar 

  24. May SA (2017) Flow chemistry, continuous processing, and continuous manufacturing: a pharmaceutical perspective. J Flow Chem 7(3–4):137–145

    Article  CAS  Google Scholar 

  25. Bogdan AR, Dombrowski AW (2019) Emerging trends in flow chemistry and applications to the pharmaceutical industry. J Med Chem 62(14):6422–6468

    Article  CAS  PubMed  Google Scholar 

  26. Brocklehurst CE, Lehmann H, La Vecchia L (2011) Nitration chemistry in continuous flow using fuming nitric acid in a commercially available flow reactor. Org Process Res Dev 15(6):1447–1453

    Article  CAS  Google Scholar 

  27. Zhang C, Zhang J, Luo G (2016) Kinetic study and intensification of acetyl guaiacol nitration with nitric acid-acetic acid system in a microreactor. J Flow Chem 6(4):309–314

    Article  CAS  Google Scholar 

  28. Chen P, Shen C, Qiu M, Wu J, Bai Y, Su Y (2020) Synthesis of 5-fluoro-2-nitrobenzotrifluoride in a continuous-flow millireactor with a safe and efficient protocol. J Flow Chem 10(1):207–218

    Article  CAS  Google Scholar 

  29. Yu Z, Dong H, Xie X, Liu J, Su W (2016) Continuous-flow diazotization for efficient synthesis of methyl 2-(Chlorosulfonyl)benzoate: An example of inhibiting parallel side reactions. Org Process Res Dev 20(12):2116–2123

    Article  CAS  Google Scholar 

  30. Yu Z, Chen J, Liu J, Wu Z, Su W (2018) Conversion of 2,4,6-trimethylaniline to 3-(Mesitylthio)-1H-1,2,4-triazole using a continuous-flow reactor. Org Process Res Dev 22(12):1828–1834

    Article  CAS  Google Scholar 

  31. Yu Z, Lu G, Chen J, Xie S, Su W (2018) Conversion of 2,4-difluoroaniline to 1,3-difluorobenzene using a continuous-flow reactor. J Flow Chem 8(2):51–57

    Article  CAS  Google Scholar 

  32. Harsanyi A, Conte A, Pichon L, Rabion A, Grenier S, Sandford G (2017) One-step continuous flow synthesis of antifungal WHO essential medicine flucytosine using fluorine. Org Process Res Dev 21(2):273–276

    Article  CAS  Google Scholar 

  33. Salehi Marzijarani N, Snead DR, McMullen JP, Levesque F, Weisel M, Varsolona RJ, Lam Y-h, Liu Z, Naber JR (2019) One-step synthesis of 2-fluoroadenine using hydrogen fluoride pyridine in a continuous flow operation. Org Process Res Dev 23(8):1522–1528

    Article  CAS  Google Scholar 

  34. Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A (2020) Fluoro-substituted methyllithium chemistry: External quenching method using flow microreactors. Angew Chem Int Ed 59(27):10924–10928

    Article  CAS  Google Scholar 

  35. Horn CR, Cerato-Noyerie C (2014) A PdCl2-based hydrogenation catalyst for glass microreactors. J Flow Chem 4(3):110–112

    Article  CAS  Google Scholar 

  36. Barwinski B, Migowski P, Gallou F, Franciò G, Leitner W (2017) Continuous-flow hydrogenation of 4-phenylpyridine to 4-phenylpiperidine with Integrated product isolation using a CO2 switchable system. J Flow Chem 7(2):41–45

    Article  CAS  Google Scholar 

  37. Yu T, Jiao J, Song P, Nie W, Yi C, Zhang Q, Li P (2020) Recent progress in continuous-flow hydrogenation. ChemSusChem 13(11):2876–2893

    Article  CAS  PubMed  Google Scholar 

  38. Bogdan AR, Poe SL, Kubis DC, Broadwater SJ, McQuade DT (2009) The continuous-flow synthesis of ibuprofen. Angew Chem Int Ed 48(45):8547–8550

    Article  CAS  Google Scholar 

  39. Snead DR, Jamison TF (2015) A three-minute synthesis and purification of ibuprofen: Pushing the limits of continuous-flow processing. Angew Chem Int Ed 54(3):983–987

    Article  CAS  Google Scholar 

  40. Lin H, Dai C, Jamison TF, Jensen KF (2017) A rapid total synthesis of ciprofloxacin hydrochloride in continuous flow. Angew Chem Int Ed 56(30):8870–8873

    Article  CAS  Google Scholar 

  41. Tosso NP, Desai BK, De Oliveira E, Wen J, Tomlin J, Gupton BF (2019) A consolidated and continuous synthesis of ciprofloxacin from a vinylogous cyclopropyl amide. J Org Chem 84(6):3370–3376

    Article  CAS  PubMed  Google Scholar 

  42. Zhang P, Russell MG, Jamison TF (2014) Continuous flow total synthesis of rufinamide. Org Process Res Dev 18(11):1567–1570

    Article  CAS  Google Scholar 

  43. Cole KP, Groh JM, Johnson MD, Burcham CL, Campbell BM, Diseroad WD, Heller MR, Howell JR, Kallman NJ, Koenig TM, May SA, Miller RD, Mitchell D, Myers DP, Myers SS, Phillips JL, Polster CS, White TD, Cashman J, Hurley D, Moylan R, Sheehan P, Spencer RD, Desmond K, Desmond P, Gowran O (2017) Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions. Science (Washington, DC) 356(6343):1144-1150

  44. Bogdan AR, Charaschanya M, Dombrowski AW, Wang Y, Djuric SW (2016) High-temperature Boc deprotection in flow and its application in multistep reaction sequences. Org Lett 18(8):1732–1735

    Article  CAS  PubMed  Google Scholar 

  45. Gross U, Koos P, O’Brien M, Polyzos A, Ley SV (2014) A general continuous flow method for palladium catalysed carbonylation reactions using single and multiple tube-in-tube gas-liquid microreactors. Eur J Org Chem 2014(29):6418–6430

    Article  CAS  Google Scholar 

  46. Pagano N, Herath A, Cosford NDP (2011) An automated process for a sequential heterocycle/multicomponent reaction: multistep continuous flow synthesis of 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2(1H)-ones. J Flow Chem 1:28–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li P-F, Buchwald SL (2011) Continuous-flow synthesis of 3,3-disubstituted oxindoles by a palladium-catalyzed α-arylation/alkylation sequence. Angew Chem Int Ed 50(28):6396–6400

    Article  CAS  Google Scholar 

  48. Shu W, Pellegatti L, Oberli MA, Buchwald SL (2011) Continuous-flow synthesis of biaryls enabled by multistep solid-handling in a lithiation/borylation/suzuki-miyaura cross-coupling sequence. Angew Chem Int Ed 50(45):10665–10669

    Article  CAS  Google Scholar 

  49. Tan L-M, Sem Z-Y, Chong W-Y, Liu X, Hendra, Kwan WL, Lee C-LK (2013) Continuous flow sonogashira C-C coupling using a heterogeneous palladium-copper dual reactor. Org Lett 15(1):65–67

    Article  CAS  PubMed  Google Scholar 

  50. Yoshida J-i, Nagaki A, Yamada T (2008) Flash chemistry: fast chemical synthesis by using microreactors. Chem - Eur J 14(25):7450–7459

    Article  CAS  PubMed  Google Scholar 

  51. Nagaki A, Takizawa E, Yoshida J-i (2009) Oxiranyl anion methodology using microflow systems. J Am Chem Soc 131(5):1654–1655

    Article  CAS  PubMed  Google Scholar 

  52. Usutani H, Tomida Y, Nagaki A, Okamoto H, Nokami T, Yoshida J-I (2007) Generation and reactions of o-Bromophenyllithium without benzyne formation using a microreactor. J Am Chem Soc 129(11):3046–3047

    Article  CAS  PubMed  Google Scholar 

  53. Nagaki A, Takabayashi N, Tomida Y, Yoshida J-i (2008) Selective monolithiation of dibromobiaryls using microflow systems. Org Lett 10(18):3937–3940

    Article  CAS  PubMed  Google Scholar 

  54. Liu B, Fan Y, Lv X, Liu X, Yang Y, Jia Y (2013) Generation and reactions of heteroaromatic lithium compounds by using in-line mixer in a continuous flow microreactor system at mild conditions. Org Process Res Dev 17(1):133–137

    Article  CAS  Google Scholar 

  55. Nagaki A, Yamada S, Doi M, Tomida Y, Takabayashi N, Yoshida J-i (2011) Flow microreactor synthesis of disubstituted pyridines from dibromopyridines via Br/Li exchange without using cryogenic conditions. Green Chem 13(5):1110–1113

    Article  CAS  Google Scholar 

  56. Dolman SJ, Nyrop JL, Kuethe JT (2011) Magnetically driven agitation in a tube mixer affords clog-resistant fast mixing independent of linear velocity. J Org Chem 76(3):993–996

    Article  CAS  PubMed  Google Scholar 

  57. Webb D, Jamison TF (2012) Diisobutylaluminum hydride reductions revitalized: A fast, robust, and selective continuous flow system for aldehyde synthesis. Org Lett 14(2):568–571

    Article  CAS  PubMed  Google Scholar 

  58. Sawyer JS, Beight DW, Britt KS, Anderson BD, Campbell RM, Goodson T, Herron DK, Li H-Y, McMillen WT, Mort N, Parsons S, Smith ECR, Wagner JR, Yan L, Zhang F, Yingling JM (2004) Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. Bioorg Med Chem Lett 14(13):3581–3584

    Article  CAS  PubMed  Google Scholar 

  59. Dewang PM, Kim D-K (2010) Synthesis and biological evaluation of 2-pyridyl-substituted pyrazoles and imidazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorg Med Chem Lett 20(14):4228–4232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Shanghai Post-doctoral Excellence Program, Shanghai Sailing Program (20YF1410400), National Natural Science Foundation of China (21572056), the Fundamental Research Funds for the Central Universities, 111 project (B07023), and the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-17C01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueyue Ma or Jinxing Ye.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

ESM 1

(PDF 2.10 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Li, J., Liang, C. et al. Practical and rapid construction of 2-pyridyl ketone library in continuous flow. J Flow Chem 11, 91–98 (2021). https://doi.org/10.1007/s41981-020-00120-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-020-00120-7

Keywords

Navigation