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Abstract
Sulfonyl fluorides are valuable synthetic motifs which are currently of high interest due to the popularity of the sulfur (VI)
fluoride exchange (SuFEx) click chemistry concept. Herein, we describe a flow chemistry approach to enable their synthesis
through an electrochemical oxidative coupling of thiols and potassium fluoride. The reaction can be carried out at room
temperature and atmospheric pressure and the yield of the targeted sulfonyl fluoride, by virtue of the short inter-electrode distance
between a graphite anode and a stainless-steel cathode, reached up to 92% in only 5 min residence time compared to 6 to 36 h in
batch. A diverse set of thiols (7 examples) was subsequently converted in flow. Finally, a fully telescoped process was developed
which combines the electrochemical sulfonyl fluoride synthesis with a follow-up SuFEx reaction.
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Introduction

Click chemistry is a popular synthetic concept which enables
the quick and reliable stitching of two molecular building
blocks in high yield and selectivity. The concept has been
coined by K.B. Sharpless [1] and has been widely employed
in drug discovery [2], chemical biology, and material science
as it is amenable to high-throughput experimentation. In gen-
eral, click chemistry is a collection of synthetic methods that
are high yielding, fast, easy to perform and produce little to no
byproducts. One of the most popular click reactions is the
Cu(I)-catalyzed azide-alkyne cycloaddition which yields
triazoles [3]. More recently, a new click reaction was devel-
oped by Sharpless and coworkers, i.e. sulfur (VI) fluoride

exchange (SuFEx) which employs sulfonyl fluorides as stable
and robust reagents [4].

Key to the success of the click chemistry concept is the
access to a broad array of structurally diverse click reagents
in large quantities [5]. It is general belief that flow chemistry
can be particularly helpful in realizing this objective. As an
example, the synthesis of azides has been reported by many
research groups and has been successfully coupled with the
follow-up Cu(I)-catalyzed azide-alkyne cycloaddition
(CuAAC) [6–10]. The combination of these two steps leads
to a significant time reduction and keeps the total inventory of
hazardous azides low, thus effectively reducing the safety
risks associated with these reagents [11]. Moreover, the use
of superheated reaction conditions in combination with
copper-based capillaries allows to further reduce the reaction
time effectively [12]. Removal of the homogeneous Cu(I)-
catalyst can also be achieved in flow leading to almost pure
triazole compounds, which meet the stringent product purity
requirements needed in the pharmaceutical industry [13, 14].

While the CuAAC has served as a benchmark reaction for
flow chemistry in the past two decades, SuFEx has received
much less scrutiny. Recently, our group developed an electro-
chemical approach to access the key sulfonyl fluoride starting
materials [15]. The method involves an anodic oxidation pro-
cess and uses widely available thiols or disulfides and KF as a
cheap, safe and widely available fluorine source. Biphasic
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reaction conditions (acetonitrile/1MHCl) are required and the
reaction was carried out in batch. However, preliminary stud-
ies showed that the use of flow chemistry was of great benefit
[16–20]. The reaction time could be reduced to the minute
range in flow and no mass transfer limitations were observed.
The reduced reaction time can be attributed to (i) the increased
electrode surface-to-volume ratio, (ii) a high interfacial area
between the organic and aqueous phase, and (iii) intensified
mass transport due to multiphase fluid patterns.

In this manuscript, we provide a full investigation of all
re levant process parameters in the f low-enabled

electrochemical oxidative coupling of thiols and fluoride
yielding sulfonyl fluorides. Moreover, we have for the first
time coupled the sulfonyl fluoride synthesis with a subsequent
SuFEx click reaction in flow, which represents a particularly
useful strategy to handle the most volatile sulfonyl fluoride
reagents.

Scheme 1 Electrochemical
oxidative coupling of thiophenol
and KF in flow as a benchmark
reaction. The reaction conditions
displayed are the optimized
parameters

Fig. 1 Electrochemical flow
reactor used for the multiphase
sulfonyl fluoride synthesis
through oxidative coupling of
thiols and potassium fluoride
(Courtesy of Bart van Overbeeke/
TU Eindhoven)

Table 1 Evaluation of different cathode materials in the
electrochemical sulfonyl fluoride synthesis in flow

Entry Counter electrode (cathode) Yield (%)b

1 Stainless steel 92

2 Copper 38

3 Graphite 55

4 Nickel 46

[a] Reaction conditions: 0.1 M thiophenol, 0.6 M pyridine, 0.5 M KF,
3.30 V, 1 M HCl/CH3CN (1:1 v/v), total flow rate 150 μL/min, residence
time 5 min, graphite anode. [b] GC-yield using GC-FID using an internal
standard calibration method (biphenyl)

Table 2 Influence of the solvent system on the electrochemical sulfonyl
fluoride synthesis in flow

Entry Aqueous solvent Organic solvent Yield (%)b

1 H2O CH3CN 78

2 0.5 M H2SO4 CH3CN –

3 0.6 M HCl CH3CN 81

4 0.8 M HCl CH3CN 84

5 1.0 M HCl CH3CN 92

6 1.0 M HCl THF 39

7 1.0 M HCl CH3OH 33

8 1.2 M HCl CH3CN 62

9 1.4 M HCl CH3CN 50

[a] Reaction conditions: 0.1 M thiophenol, 0.6 M pyridine, 0.5 M KF,
3.30 V, inorganic solvent/organic solvent (1:1 v/v), total flow rate 150 μL/
min, residence time 5 min, graphite anode and stainless steel cathode [b]
GC-yield using GC-FID with internal standard (biphenyl)
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Results and discussion

Initial experiments were carried out with thiophenol as the
benchmark substrate and KF as the fluoride source
(Scheme 1). It should be noted that all experiments described
in this paper are carried out in a home-built electrochemical
flow reactor (Fig. 1) [21]. At the cathode, hydrogen is gener-
ated as a benign and high value byproduct. In such a scenario,
electrodes with a low hydrogen overpotential are typically
preferred, e.g. platinum, copper or stainless steel [22]. From
our previous experiments in batch, we found that a graphite
anode and a stainless steel cathode worked optimal and this
proved to be also the case in our flow experiments (Table 1,
Entry 1). Other electrode materials as cathode, such as copper,
graphite or nickel, did not lead to any improvement (Table 1,
Entries 2–4).

Next, we investigated the influence of the solvent system
(Table 2). As the organic phase, acetonitrile was selected as

the optimal solvent. Lower yields for the target product were
obtained in other common organic solvents, such as THF or
methanol (Table 2, Entries 6–7). The presence of acid provid-
ed in general higher yields compared to non-acidic reaction
mixtures (Table 2, Entry 1). However, the presence of sulfuric
acid proved to be detrimental for the reaction as no product
formation was observed (Table 2, Entry 2).

Next, we investigated the influence of the fluoride source
on the reaction outcome (Table 3). As shown in our previous
work [15], the reaction worked well with alkali fluorides but
also with Selectfluor. The use of Selectfluor was not further
considered due to low atom efficiency and its higher price
compared to alkali fluorides. The reaction worked best with
5 equivalents of KF (Table 3, Entry 4). While only one equiv-
alent is needed for the reaction, the remaining 4 equivalents
served as a cheap supporting electrolyte. Increasing the

Table 3 Amount of fluoride needed for the electrochemical sulfonyl
fluoride synthesis in flow

Entry Fluoride source Yield (%)b

1 0.1 M KF 23

2 0.3 M KF 71

3 0.5 M KF 92

4 0.5 M NaF –

5 0.5 M CsF 67

6 0.7 M KF 65

7 0.9 M KF 54

[a] Reaction conditions: 0.1 M thiophenol, 0.6 M pyridine, 3.30 V, 1 M
HCl / CH3CN (1:1 v/v), total flow rate 150 μL/min, residence time 5 min,
graphite anode and stainless steel cathode. [b] GC-yield using GC-FID
with internal standard (biphenyl)

Table 4 Importance of the Phase Transfer Catalyst in the
electrochemical sulfonyl fluoride synthesis in flow

Entry Phase Transfer Catalyst Yield (%)b

1 0.1 M pyridine 60

2 0.2 M pyridine 67

3 0.3 M pyridine 78

4 0.4 M pyridine 83

5 0.5 M pyridine 87

6 0.6 M pyridine 92

7 0.6 M n-Bu4NBr 35

8 0.6 M n-Bu4NCl 66

9 0.7 M pyridine 91

10 0.8 M pyridine 85

[a] Reaction conditions: 0.1 M thiophenol, 0.5 M KF, 3.30 V, 1 M HCl /
CH3CN (1:1 v/v), total flow rate 150 μL/min, residence time 5 min,
graphite anode and stainless steel cathode. [b] GC-yield using GC-FID
with internal standard (biphenyl)

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
0

10

20

30

40

50

60

70

80

90

100

)
%(

dleiY

Potential (V)

100 200 300 400 500 600 700 800

30

40

50

60

70

80

90

100

)
%(

dleiY

Current (mA)

Fig. 2 Electrochemical sulfonyl fluoride synthesis in flow. (top)
Potentiostatic reaction conditions, (bottom) galvanostatic reaction
conditions. GC-yield using GC-FID with internal standard (biphenyl)
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amount of KF did not lead to further improvements (Table 3,
Entries 6–7).

The electrochemical oxidative coupling of thiols and po-
tassium fluoride requires the addition of pyridine to obtain
high yields. It is possible that pyridine functions either as an
electronmediator [23] or a as phase transfer catalyst. From our
mechanistic investigations [15], we believe that at least pyri-
dine functions partly as a phase transfer catalyst (Table 4).
Screening the concentration of pyridine, we found that the
best results were obtained with 0.6–0.7 M pyridine (Table 4,
Entries 6 and 9). Other phase transfer catalysts, such as
tetrabutyl ammonium bromide and chloride were less effec-
tive (Table 4, Entries 7–8).

Electrochemical transformations can be carried out either
potentiostatic (constant potential) or galvanostatic (constant
current). Under both scenarios, excellent yields could be ob-
tained in flow as can been seen from Fig. 2. However, the
highest yield and the most stable operation was observed un-
der potentiostatic reaction conditions with GC yields up to
92%. Galvanostatic reactions provide a constant current and
thus the reaction rate is constant until complete conversion is
obtained. In contrast, potentiostatic operation keeps the cell
potential constant and is of high interest to obtain high and
tunable reaction selectivity [24]. While galvanostatic opera-
tion is preferred in batch, potentiostatic reaction conditions in
flow are in our experience equally fast [25, 26]. We believe
this has to do with the fact that the conversion increases along
the channel length and thus a constant supply of electrons is
maintained the entire time. Indeed, during a four-hour stability
test, we saw that the current remained constant between 400
and 500 mA (Fig. 3). This is in contrast with batch
potentiostatic experiments where the supply of electrons de-
creases when the conversion increases (less product needs to
be converted, thus higher potential and lower current). This
leads to slower reaction rates towards the end of the reaction
and thus full conversion is harder to reach. In batch, this is
often solved by adding large amounts of supporting
electrolyte.

While the reaction required 24–36 h in batch to reach full
conversion [15], the reaction can be completed in only 5 min
in flow (Figs. 4 and 5). Such intensified reaction conditions
can be attributed to the short diffusion distances to the elec-
trode surface, the intensified mass transport due to multiphase
flow patterns and the increased interfacial area.

Next, we investigated the scalability of our flow protocol.
Since electrochemical transformations are surface reactions,
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Fig. 3 Stability test (4 h operation time) for the reaction (conditions are those from Scheme 1) with a 5 min residence time. GC-yield using GC-FID with
internal standard (biphenyl)
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Fig. 4 Influence of the residence time on the electro-oxidative
fluorination of thiophenol to benzenesulfonyl fluoride. GC-yield using
GC-FID with internal standard (biphenyl)
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scale-up in batch can be regarded as very challenging.
Typically, the electrode size is increased and larger amounts
of supporting electrolyte are required to cope with the increase
in Ohmic drop. Therefore, nearly all industrial electrochemi-
cal processes are carried out as flow processes in narrow-gap
cells (inter-electrode gap = 0.5–10 mm) which are numbered-
up depending on the targeted throughput [16]. As can be seen

from Fig. 5, the GC and isolated yields remained constant
from 2 mmol to 10 mmol scale, showing proof that the reac-
tion is scalable but also provides stable output for longer pe-
riods of time.

With the optimal reaction conditions in hand, we com-
menced evaluating the flow protocol for the conversion of a
diverse set of thiols (Scheme 2). In most scenarios, the yields
were comparable with the batch protocol. It should be noted
that no individual optimization was carried out, this explains
that in some cases a slightly lower yield was obtained com-
pared to individually optimized batch examples. Nevertheless,
the results shown in Scheme 2 show clearly that the batch
protocols can be seamlessly translated to flow.

Some of the corresponding sulfonyl fluorides presented in
Scheme 2 are volatile and therefore difficult to isolate on small
scale. Immediate conversion of these compounds in a follow-
up SuFEx-type transformation is therefore recommended. In
flow, this can be easily achieved by combining the individual
steps in a single, uninterrupted flow protocol [27]. Hereto, the
sulfonyl fluoride product (92% GC yield, 82% isolated yield)
exiting the electrochemical reactor is first quenched with a
saturated NaHCO3 solution as the SuFEx reaction requires
to be carried out at neutral pH (Scheme 3). Sampling points
were added in our design to verify the yield of the sulfonyl
fluoride (Scheme 3, Sampling point 1) and the pH (Scheme 3,
Sampling point 2). Next, the neutralized reaction stream was
merged with a reagent stream containing phenol and a stream
containing additional Cs2CO3. Within 30 s, we observed a

Fig. 5 Scale-up test (2 mmol to 10 mmol scale) for the reaction with
5 min residence time. Conditions, see Scheme 1. Yields reported are
those of isolated products

Scheme 2 Flow synthesis of
sulfonyl fluorides and comparison
with the batch protocol. Reaction
conditions in flow: 0.1 M thiol,
0.6 M pyridine, 0.5 MKF, 3.30 V,
1 M HCl/ CH3CN (1:1 v/v), total
flow rate 150 μL/min, residence
time 5 min; Reaction conditions
in batch: 2 mmol thiol, 10 mmol
KF, 8 mmol pyridine, 10 mL
CH3CN, 10 mL 1 M HCl, 3.20 V.
Yields reported are those of
isolated products
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clean conversion to the corresponding phenyl sulfonate deriv-
ative (73% isolated yield) using this telescoped flow process.
Moreover, this example highlights the clear advantage of com-
bining the reagent synthesis and the subsequent SuFEx click
reaction in a telescoped fashion in terms of isolation, time and
labor reduction. Further, we believe this process should be
amenable to applications in high throughput experimentation
[28, 29].

In conclusion, a continuous-flow protocol for the electro-
chemical oxidative coupling of thiols and KF to prepare sul-
fonyl fluorides was developed. The flow protocol leads to
significant shorter reaction times (5 min in flow vs. 6–36 h
in batch) and proves to be scalable (up to 10 mmol).
Moreover, the flow sulfonyl fluoride synthesis can be readily
telescoped into a SuFEx follow up reaction, without the need
for intermediate purification. Ultimately, we believe that this
flow protocol will be useful for those in academia and indus-
try, interested in SuFEx click chemistry.
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