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Abstract
In 2016, Beeler et al. defined the double Roman domination as a variation of Roman
domination. Sometime later, in 2021, Ahangar et al. introduced the concept of [k]-
Roman domination in graphs and settled some results on the triple Roman domination
case. In 2022, Amjadi et al. studied the quadruple version of this Roman-domination-
type problem. Given any labeling of the vertices of a graph, AN (v) stands for the set
of neighbors of a vertex v having a positive label. In this paper we continue the study
of the [k]-Roman domination functions ([k]-RDF) in graphs which coincides with the
previous versions when 2 ≤ k ≤ 4. Namely, f is a [k]-RDF if f (N [v]) ≥ k+|AN (v)|
for all v. We prove that the associate decision problem is NP-complete even when
restricted to star convex and comb convex bipartite graphs and we also give sharp
bounds and exact values for several classes of graphs.
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1 Introduction

In this paper we deal with a variant of the well-known concept of Roman domination
in graphs. Roman domination in graphs was initially introduced by Cockayne et al.
[9] related to a historic defensive strategy to defend the Roman Empire decreed by
the Emperor Constantine I The Great (see [17]). Namely, under a sudden attack, each
undefended place in the Empire must have a strong neighbor in which 2 legions are
deployed, in such away that the stronger city could send a legion to defend the attacked
one, without leaving undefended its own place.

Formally, a Roman dominating function (RDF) in a finite graph G = (V , E) is a
labelling f of the vertices of the graph with labels {0, 1, 2} in such a way that every
single vertex labelled with 0 must have an adjacent vertex labelled with 2. The Roman
domination number of the graph, γR(G), is the minimumweight (the sum of all vertex
labels) of an RDF. An RDF f having minimum weight, w( f ) = ∑

f (v), is called
a γR(G)-function. More than two hundred papers have followed the original work
by Cockayne et al. developing a wide study of Roman domination and several of its
variations. Any labelling f of the vertices of a graph may be expressed as an ordered
vertex partition f = (V0, V1, . . . , Vp) where Vj = {v ∈ V : f (v) = j}.

Many of these variations consist of either increasing the effectivity of the defensive
strategy under single attacks or simultaneous attacks [1, 7] or defending both edges
and vertices [2] and so on.

The open neighborhood (resp. closed neigborhood) of a vertex u in a graph, N (u)

(resp. N [u]), is the set of adjacent vertices to u (resp. the set of adjacent vertices to u,

including the vertex itself). That is to say, N [u] = N (u) ∪ {u}. Given a labelling f of
the vertices of a graph G, we call the active neighborhood of u, and it is denoted by
AN (u), the set {w ∈ N (u) : f (w) > 0}. Similarly, AN [u] = AN (u) ∪ {u}.

In 2016, Beeler et al. [7] introduced the double Roman domination that improves the
defensive strategy by labelling the vertices with labels {0, 1, 2, 3} such that the weight
of the closed neighborhood of any vertex u is at least 2 + |AN (u)|. This condition is
equivalent to requiring that each city could be defended by at least two legions located
in it, or in its neighboring cities so that the latter are not left unprotected.

In 2021, Ouldrabah and Volkmann [14] studied upper bounds of the double Roman
domination number and approach the relation of this parameter with the matching
number of a graph. Gao et al. [10] investigate the double Roman domination number
of generalized Petersen graphs, given an answer to a question posed by Beeler in its
germinal paper.

Besides, a wide range of variations of this problem have attracted a lot of attention
of the researchers. In 2019, A. Ahangar et al. [3] published a paper regarding to the
total version of Roman {2}-domination in trees. Later, in 2022, A. Ahangar et al. [5]
studied further results on the {2}-Roman domination in graphs and the relation with
other domination-type parameters like domination or total domination.
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Since the work by Beeler, two more variations have been developed. The triple
Roman domination, by Ahangar et al. [4] and the quadruple Roman domination in
graphs, by Amjadi et al. [6, 13].

We started this work with the aim of proving a set of results for the general case
in order to avoid an unfruitful spread of works dealing with a number of similar
constructions. During the time that this paper was under revision, we became aware
of the publication of a paper by N. Khalili et al. [12] in which, independently, they
established a similar study for the [k]-Roman domination problem. We also thank the
anonymous referee that pointed out this fact. Hence, to avoid any confusion, we will
refer to that paper by Khalili et al. for the case of overlapping contents.

Broadly speaking, the [k]-Roman domination is a way of modeling a defensive
system similar to that formalized by Roman domination, with a greater degree of
robustness but whose cost does not increase as much in proportion to the protection it
provides. That is why it is interesting to study the general case that allows choosing in
each situation, according to need, the value of k that provides the best balance between
reliability, robustness and network protection at the lowest possible cost.

So, in this paper we continue with the natural generalization of these variations
of Roman domination. A function f : V → {0, 1, . . . , k + 1} such that f (N [u]) ≥
k+|AN (u)| for all vertex u with f (u) < k is called a [k]-Roman dominating function
and it is denoted by [k]-RDF. We say that a vertex u is [k]-Roman dominated if
f (N [u]) ≥ k + |AN (u)| holds. The minimum weight of a [k]-RDF in the graph G is
the [k]-Roman domination number ([k]-RDN) of G, denoted by γ[kR](G). A [k]-RDF
having minimum possible weight is called a γ[kR](G)-Roman dominating function,
for short a γ[kR](G)-RDF.

From now on, we only consider simple, undirected and finite graphs G = (V , E)

without loops or multiedges. The symbols δ(G),�(G) stand for, respectively, the
minimum and the maximum degree among all the vertices in V . A vertex with degree
equal to 1 is called a leaf and a vertex which is adjacent to exactly one leaf (resp. sev-
eral leaves) is called a weak support vertex (resp. strong support vertex). As usually,
we denote by Pn,Cn, Kn the path, the cycle and the complete graph with n vertices,
respectively. We denote the diameter of the graph G by Diam(G), which is the maxi-
mumdistance between a pair of vertices ofG. A tree with exactly two non-leaf vertices
is called a bi-star or a double star, Ds,t , where the non leaves vertices are adjacent to,
respectively, 1 ≤ s ≤ t leaves. An star (comb) convex bipartite graph G = (A, B, E)

with associated star tree (comb tree) T = (A, F) is a bipartite graph with vertex
classes A, B such that NG(y) ⊆ A induces a subtree in T . Given two graphs G, H we
denote by G ∨ H the graph obtained from the disjoint union of G and H by adding
the edges joining each vertex of G with every vertex of H .

A dominating set (resp. total dominating set) in a graph is a subset D ⊆ V such that
any vertex belonging to V \D (resp. V ) has a neighbor in D. The domination (resp.
total domination) number, γ (G) (resp. γt (G)), of a graph is the size of a smallest
dominating set (resp. total dominating set) in G.

It is possible to deduce a first upper bound from the fact that the function that labels
each vertex of an isolated-vertex free graph G with a 	 k+1

2 
 is a [k]-RDF.We sincerely
thank the referee for pointing out that it is possible to characterize all graphs reaching
this limit.
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Proposition 1.1 If G is a connected graph of order n ≥ 2, then γ[kR](G) ≤ 	 k+1
2 
n

with equality if and only if G = K2 and k is odd.

Proof First of all, let f be the function that labels each vertex of G with a 	 k+1
2 
.

Since f is a [k]-RDF the inequality holds. If G = K2 and k is odd, then clearly
γ[kR](K2) = k + 1 = 	 k+1

2 
n. Conversely, assume that γ[kR](G) = 	 k+1
2 
n. If k = 1,

then it follows from the bound γR(G) ≤ 4n
5 for n ≥ 3 (see [8]) that n = 2 and so

G = K2. Therefore, in what follows we may suppose that k ≥ 2. Assume first that
n ≥ 3. If G has a strong support vertex, say v, then the function that labels v with a
k + 1, each leaf adjacent to v with a 0 and each other vertex of G with a 	 k+1

2 
 is a
[k]-RDF of G of weight less than 	 k+1

2 
n, which is a contradiction. If G has a weak
support vertex, say v, and u is the leaf adjacent to v, then the function that labels u
with a k, v with a 0 and each other vertex of G with a 	 k+1

2 
 is a [k]-RDF of G of
weight less than 	 k+1

2 
n, again a contradiction. Hence we can assume that δ(G) ≥ 2.
Let v be a vertex with minimum degree δ(G). If k is even, then the function that labels
v with a 0 and each other vertex of G with a 	 k+1

2 
 is a [k]-RDF of G of weight less
than 	 k+1

2 
n which is a contradiction. If k is odd, then the function that labels v with
a 1 and each other vertex of G with a 	 k+1

2 
 is a [k]-RDF of G of weight less than
	 k+1

2 
n which is a contradiction. It follows that n = 2 and G = K2. Then we have
γ[kR](K2) = k + 1 = 	 k+1

2 
n and this implies that k is odd.
Next, we remember a fact already showed in [12]. ��

Observation 1.2 [12] If G is an ntc graph, there exists a [k]-RDF such that no vertex
needs to have a 1 label.

2 Bounds

In general, it is not easy to calculate the exact value of the [k]-RDN, even for some
particular families of graphs. So, in this section we are going to present several upper
and lower bounds for the [k]-RDN that permit us to estimate it with as much precision
as possible.

Aswemay study this parameter for individual connected components, we focus our
attention only on non-trivial connected (ntc) graphs. Through the following results,
we prove upper bounds on the [k]-RDN improving the one given by Proposition 1.1.

From now on, we consider a γ[kR]-RDF f = (V0,∅, V2, . . . , Vk+1) of V . The
following bound was also proved by Khalili et al. [12] but we present a similar version
of the result in which we add some information about the structure of the extremal
graphs that achieve the bound.

Proposition 2.1 [12] Let G be an ntc-graph of order n and maximum degree �. Then

γ[kR](G) ≤ kn − k� + 1.

If the equality holds and v is a vertex with maximum degree of V , then Diam(G) ≤
4, |N (h)\N [v]| ≤ 1 for all h ∈ N (v) and the set of vertices V \N [v] induces an
edgeless subgraph of G.
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Proof Let us consider a vertex v ∈ V of maximum degree � and let us define the
function f : V −→ {0, 1, . . . , k + 1} as follows: f (v) = k + 1, f (w) = 0 for all
w ∈ N (v) and f (x) = k for the remaining vertices. It is straightforward to see that f
is a [k]-RDF, and hence

γ[kR](G) ≤ f (V ) = k + 1 + k(n − � − 1) = kn − k� + 1.

Let us consider an ntc-graph G such that γ[kR](G) = kn − k� + 1 and let v be
a vertex of maximum degree. If � = n − 1, we are done. Therefore, let us assume
that � ≤ n − 2 and let us denote by H = N [v] and W = V \H , which implies that
W �= ∅.

We have to discuss two particular situations.

(a) If there is an edge w1w2 joining two vertices ofW , then we define the following
function.

g(z) =
⎧
⎨

⎩

k + 1 z ∈ {v,w1},
0 z ∈ N (v) ∪ {w2},
k otherwise.

(b) If there is a vertex h j ∈ H with |N (h j ) ∩ W | ≥ 2, then we define the following
function.

g(z) =

⎧
⎪⎪⎨

⎪⎪⎩

k + 1 z ∈ {v, h j },
0 z ∈ N (v) − h j ,

0 z ∈ N (h j ) ∩ W ,

k otherwise.

In both cases, it is straightforward to see that g is a [k]-RDF and

g(V ) ≤ 2(k + 1) + k(n − 1 − � − 2) = kn − k� + 2 − k < γ[kR](G),

which is a contradiction. So, the result holds. ��
It is worth noting that the latter upper bound is sharp. For example, the bound is

matched when G is any graph with a universal vertex.

Proposition 2.2 Let G be an ntc-graph with n ≥ 4 vertices, maximum degree � ≤
n − 2, minimum degree δ ≥ 2 and girth g(G) ≥ 4. Then

γ[kR](G) ≤ kn − k�.

Proof Consider a vertex v ∈ V of maximum degree d(v) = � and let us define the
function f : V −→ {0, 1, 2, . . . , k + 1} as follows f (v) = k, f (z) = 0, for all
z ∈ N (v) and f (z) = k, for all z /∈ N [v].

As δ ≥ 2, every neighbor of v must have at least one neighbor in G that does not
belong to N (v) because the girth is at least four. Therefore, the function f that we
have just defined is a [k]-RDF and hence,
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γ[kR](G) ≤ f (V ) = k + k(n − � − 1) = kn − k�.

��
The upper bound given by Proposition 2.2 is attained, for example, if G is the cycle

with 4 vertices and k is even. Let us go a step forward and improve this bound.

Proposition 2.3 Let G be an ntc-graph with n ≥ 4 vertices, maximum degree � ≤
n − 2, minimun degree δ ≥ 2 and girth g(G) ≥ 5. Then,

γ[kR](G) ≤ k +
⌈
k + 1

2

⌉

(n − 1 − �).

Proof Consider a vertex u ∈ V (G) with maximum degree, d(u) = � and let us
define the function f : V −→ {0, 1, . . . , k+1} such that f (u) = k, f (z) = 0, for all
z ∈ N (u) and f (v) = ⌈

k+1
2

⌉
, for every vertex v ∈ V −N [u]. Taking into account that

δ ≥ 2, every neighbor of u must have at least another neighbor in G not belonging to
N (u), because the girth is at least 5. Summing up, f is a [k]-RDF and therefore,

γ[kR](G) ≤ w( f ) = k +
⌈
k + 1

2

⌉

(n − 1 − �).

��
It is straightforward to check that the latter bound matches the exact value for the

C5 cycle when k is an odd integer. Next, we try to improve these bounds for regular
graphs.

Proposition 2.4 Let G be an r-regular ntc-graph with r ≥ 2 and girth g(G) ≥ 7.
Then,

γ[kR](G) ≤ kr +
⌈
k + 1

2

⌉

(n − 1 − r2).

Proof Let v be a vertex of the graph G. Let us denote by N0 = {v}, N1 = N (v) and
N2 = N (N1)\N0. Clearly, |N0| = 1, |N1| = r and |N2| = r(r − 1).

Consider the function f : V −→ {0, 1, . . . , k + 1} defined in the following way
f (v) = 0, f (z) = k, for all z ∈ N1, f (z) = 0, for all z ∈ N2 and f (z) = ⌈

k+1
2

⌉

for the remaining vertices. Since r , k ≥ 2 then v is [k]-Roman dominated by the
vertices in N (v). Besides, since r ≥ 2 and g ≥ 7 then each vertex in N2 is [k]-Roman
dominated by N1 and V \(N0 ∪ N1 ∪ N2). Clearly, f is a [k]-RDF and therefore

γ[kR](G) ≤ w( f ) = kr +
⌈
k + 1

2

⌉

(n − 1 − r − r(r − 1))

= kr +
⌈
k + 1

2

⌉
(
n − 1 − r2

)
.

��
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In this case, if we consider k = 7 and the graph G = C7, then the bounds given
by Proposition 1.1 and by Propositions 2.1, 2.2, 2.3 and 2.4 are {28, 36, 35, 23, 22},
respectively. It is easy to check that the last bound is the exact value of γ[7R](C7).

We also show a similar result for non-regular graphs.

Proposition 2.5 Let G be an ntc-graph with minimun degree δ ≥ 3 and girth g(G) ≥
7. Then

γ[kR](G) ≤ k − 1 + 2� +
⌈
k + 1

2

⌉

(n − 1 − 3�).

Proof Let us consider a vertex v ∈ V with d(v) = � and let us denote by N0 =
{v}, N1 = N (v), and N2 = N (N1)\N0. As g(G) ≥ 7 and δ(G) ≥ 3, then each
vertex in N2 has, at least, two neighbors in V \(N0 ∪ N1 ∪ N2). Let f be the function
f : V −→ {0, 1, . . . , k + 1} defined as follows f (v) = k − 1, f (z) = 2, for all
z ∈ N1, f (z) = 0, for all z ∈ N2 and f (z) = ⌈

k+1
2

⌉
for the remaining vertices. Taking

into account that g(G) ≥ 7, each vertex in V \(N0 ∪ N1 ∪ N2) has a neighbor in this
set and, therefore, f is a [k]-RDF. Then,

γ[kR](G) ≤ f (V ) = k − 1 + 2� + ⌈
k+1
2

⌉
(n − 1 − � − |N2|)

≤ k − 1 + 2� + ⌈
k+1
2

⌉
(n − 1 − 3�),

because |N2| ≥ 2�. �

Proposition 2.6 Let G be an ntc-graph with order n, maximum degree� and minimun
degree δ. Then

γ[kR](G) ≤
⌊
n(k + 1)

δ + 1

(

1 + ln
k(δ + 1)

k + 1

)⌋

.

Proof Let 0 < p < 1 be a fixed positive real number. Given a fixed subset of vertices
M ⊆ V , let us consider the value of p as the probability that a vertex v belongs to M,

for any v ∈ V . Let us denote by W = N [M]c.
Since 0 < p < 1 we have that,

P[v ∈ W ] = P[v ∈ Mc ∩ N (M)c]
= (1 − p)(1 − p)d(v) ≤ (1 − p)d(v)+1 ≤ (1 − p)δ+1.

It is straightforward to see that the forecasted value for the size ofM is E[|M |] = np
and, analogously, E[|W |] ≤ n(1 − p)δ+1.

Next, consider the labelling of the vertices of G given by the function defined as
follows,

f (x) =
⎧
⎨

⎩

k + 1, if v ∈ M,

0, if v ∈ N (M)\M,

k, if v /∈ N [M].
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which is a [k]-RDF.
We may estimate the awaited value of f (V ) to be

E[ f (V )] = (k + 1)E[|M |] + kE[|W |] ≤ (k + 1)np + kn(1 − p)δ+1.

It is worth noting that 1 − p < e−p whenever 0 < p < 1 and hence

E[ f (V )] ≤ (k + 1)np + kne−p(δ+1).

Among all possible values of the integer p, the one that lead us to the minimum
value of E[ f (V )] must satisfy

(k + 1) n − kn(δ + 1)e−p(δ+1) = 0,

which implies that

e−p(δ+1) = k + 1

k(δ + 1)
.

We can easily deduce the optimum value of p from this expression,

p = 1

δ + 1
ln

k(δ + 1)

k + 1

and finally,

γ[kR](G) ≤ (k + 1)n
1

δ + 1
ln

k(δ + 1)

k + 1
+ kn

k + 1

k(δ + 1)

= n(k + 1)

δ + 1

(

1 + ln
k(δ + 1)

k + 1

)

and the result holds. ��
Proposition 2.7 Let G be an ntc-graph of order n ≥ 2 and maximum degree � ≥ k.
Then,

γ[kR](G) ≥
⌈

(k + 1)n

�(G) + 1

⌉

.

Proof We make use of a discharging procedure, similar to the one used in [16] for the
double Roman domination, to prove this result. Let us consider any γ[kR](G)-function
f = (V0,∅, V2, . . . , Vk+1) and let s(v) = f (v) be the initial charge of each vertex
v ∈ V . Next, we apply the discharging procedure defined by means of the following
rule,

R. Every vertex v with s(v) = j sends a charge of
( j − 1)(k + 1)

k(� + 1)
to each vertex in

N (v) ∩ V0, for all 2 ≤ j ≤ k + 1.
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Let us denote by s ′(v) the final charge of vertex v after applying the procedure. Let
j be a positive integer such that 2 ≤ j ≤ k + 1. For every vertex v j with f (v j ) = j
we have that

s ′(v j ) ≥ s(v j ) − d(v j )
( j − 1)(k + 1)

k(� + 1)
≥ j − �( j − 1)(k + 1)

k(� + 1)
.

Let us denote by h( j) = j − �( j − 1)(k + 1)

k(� + 1)
which is a monotone function with

respect to the variable j . Observe that

h(k + 1) = k + 1 − �(k + 1)

� + 1
= k + 1

� + 1
,

h(2) = 2 − �(k + 1)

k(� + 1)
= k� + 2k − �

k(� + 1)
.

As � ≥ k, then (k − 1)(k − �) ≤ 0 and therefore

0 ≥ k2 − (� + 1)k + �

= k2 + k − (k� + 2k − �),

yielding that k� + 2k − � ≥ k(k + 1), which lead us to h(2) ≥ k+1
�+1 .

So, due to the monotony of the function h, we can assure that s ′(v) ≥ k+1
�+1 for all

v with f (v) > 0.
On the other hand, let v0 ∈ V be a vertex with f (v) = 0. As f is a [k]-RDF, we

have that

f (N [v]) = f (N (v)) ≥ |AN (v)| + k. (2.1)

Hence, each vertex v0 ∈ V0 must have some active neighbor w with f (w) ≥ 2. Let us
denote these neighbors by N (v0) ∩ (V \V0) = {w j,1, . . . , w j,p j : f (w j,i ) = j, 2 ≤
j ≤ k + 1}. From expression (2.1) it is deduced that,

f (N [v]) = f (N (v)) =
k+1∑

j=2

j · p j ≥
k+1∑

j=2

p j + k. (2.2)

And so,

s ′(v0) =
k+1∑

j=2

p j
j − 1

k

k + 1

� + 1

= k + 1

k(� + 1)

k+1∑

j=2

p j ( j − 1)
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= k + 1

k(� + 1)

⎛

⎝
k+1∑

j=2

j · p j −
k+1∑

j=2

p j

⎞

⎠

≥ k + 1

k(� + 1)
k = k + 1

� + 1
.

Summing up,

γ[kR](G) =
∑

v∈V
f (v) =

∑

v∈V
s(v) =

∑

v∈V
s ′(v) ≥

∑

v∈V

k + 1

� + 1
≥ (k + 1)n

� + 1
.

As γ[kR](G) is an integer, the result holds. ��
This lower bound is tight, for example, for every graph with an universal vertex or

for the cycle graph C6, for which γ[kR] = 2k + 2. Another proof of the special case
k = 2 can be found in [18].

3 Exact Values

In this section, we deal with the problem of obtaining the exact value of the parameter
[k]-RDN.

We start noting the following fact.

Observation 3.1 γ[kR](G) = k if and only if G = K1.

Proposition 3.2 Let G be an ntc-graph of order n ≥ 2. Then γ[kR](G) = k + 1 if and
only if �(G) = n − 1.

Proof To begin with, let us assume that v ∈ V is a vertex of maximum degree d(v) =
�(G) = n − 1 ≥ 1, which implies that G �= K1 and therefore, by Observation 3.1,
γ[kR](G) ≥ k + 1. Next, we may define the function g(v) = k + 1 and g(z) = 0 for
all z �= v. Clearly, g is a [k]-RDF with weight k + 1 and hence γ[kR](G) ≤ k + 1, as
desired.

On the other hand, let us assume that γ[kR](G) = k+1.Let f be a γ[kR](G)-function
with f = (V0,∅, V2, . . . , Vk+1). For all vertex u ∈ V we have that

k + 1 = γ[kR](G) ≥ f (N [u]) ≥ |AN (u)| + k,

andwe derive that |AN (u)| ≤ 1 for all u ∈ V .So f (w) = k+1 for allw ∈ AN (u) and
for every u ∈ V . As f (V ) = k+1 we may deduce that |Vk+1| = 1 and V0 = V \Vk+1,
and so � = n − 1. �

Proposition 3.3 There are no graphs G such that γ[kR](G) = k + 2, for all k ≥ 3.

Proof Let us assume that γ[kR](G) = k + 2 and let f = (V0,∅, . . . , Vk+1) be a
γ[kR](G)-function. As V1 = ∅ and γ[kR](G) = k + 2, then we have that Vk+1 = ∅. Let
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v ∈ V0. Because Vk+1 = ∅, it follows that |AN (v)| ≥ 2. By definition of a [k]-RDF
we deduce that

k + 2 = γ[kR](G) ≥ f (N [v]) ≥ k + |AN (v)| = k + j ≥ k + 2.

Therefore, j = 2 for all v ∈ V0. Besides, k ≥ 3 implies that γ[kR](G) = k + 2 < 2k
and then |V \V0| = 2. As a consequence, we may assume that V \V0 = {w1, w2}
with w1 ∈ N (w2), v ∈ N (w2) for all v ∈ V0. Hence �(G) = n − 1, which is a
contradiction. �

Given a positive integer n ≥ 2, we denote by Mk(n) the following value:

Mk(n) =
⎧
⎨

⎩

(k + 1)
⌊
n
3

⌋
if n ≡ 0 (mod 3),

(k + 1)
⌊
n
3

⌋ + k if n ≡ 1 (mod 3),
(k + 1)

⌊
n
3

⌋ + (k + 1) if n ≡ 2 (mod 3).

Proposition 3.4 Let n ≥ 2 be a positive integer. Then γ[kR](Pn) = Mk(n).

Proof Let q be an integer such that n = 3m+q,with 0 ≤ q ≤ 2.We consider the stars
K j

1,2, with set of vertices {v j
0 , v

j
1 , v

j
2 } and set of edges {v j

0v
j
1 , v

j
0v

j
2 }, for 1 ≤ j ≤ m.

We denote by Rq the set:

Rq =
⎧
⎨

⎩

∅ if q = 0,
{v3m+1} if q = 1,

V (P2) = {v3m+1, v3m+2} if q = 2.

Following these notations, we can express the path Pn as the ordered set of vertices
and edges

Pn = v1
1v

1
0v

1
2v

2
1v

2
0v

2
2 . . . vm

1 vm
0 vm

2

and, eventually, the vertices of Rq and the necessary edges joining them.
It is straightforward to see that γ[kR](P2) = k + 1 ≥ Mk(2) and γ[kR]({v}) =

k ≥ Mk(1) for any isolated vertex. Moreover, for every 1 ≤ j ≤ m, we have that
γ[kR](K

j
1,2) = k+1 ≥ Mk(3) and the only γ[kR]-function is defined as f j (v

j
0 ) = k+1

and f j (v
j
1 ) = f j (v

j
2 ) = 0.

Now, we define the following function on V (Pn):

f (v) =
⎧
⎨

⎩

k + 1 if v = v
j
0 1 ≤ j ≤ m,

0 if v = v
j
i 1 ≤ j ≤ m, 1 ≤ i ≤ 2

h(v) if v ∈ Rq and h is a γ[kR] -function in Rq for q ≥ 1.

Clearly, the function f is a [k]-RDF in Pn and f (V (Pn)) = Mk(n). Then,

γ[kR](Pn) ≤ Mk(n).
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Now, we have to prove the inequality γ[kR](Pn) ≥ Mk(n).
Let g be a γ[kR](Pn)-function such that no vertex is labelled as 1 under g.We proceed

by induction on the number of vertices n. Note that γ[kR](P2) = k + 1 ≥ Mk(2),
γ[kR](P3) = k + 1 ≥ Mk(3) and, on the other hand, it is not difficult to check that
γ[kR](P4) = 2k + 1 ≥ Mk(4) and γ[kR](P5) = 2k + 2 ≥ Mk(5).

Now, let us considern ≥ 6and suppose thatγ[kR](Pn′) ≥ Mk(n′), for all 2 ≤ n′ < n.
Let V (Pn) = {w1, w2, . . . , wn} be the set of (ordered) vertices of the path Pn . The
following cases are considered,

Case a.- Assume that g|Pn−3 is a [k]-RDF on Pn−3.
If g(wn−1)+ g(wn) ≥ k+1 then we have that g(V (Pn)) ≥ Mk(n−3)+ (k+1) =

Mk(n).

If g(wn−1) + g(wn) = k then g(wn−2) ≥ 2 and therefore, g(wn−2) + g(wn−1) +
g(wn) ≥ k + 1. Hence g(V (Pn)) ≥ Mk(n − 3) + (k + 1) = Mk(n).

Case b.- On the contrary, suppose that g|Pn−3 is not a [k]-RDF on Pn−3.

Since g|Pn−3 is not a [k]-RDF on Pn−3 and g is a [k]-RDF on Pn, we have that
g(wn−3) < k and g(wn−2) ≥ 2.

Subcase b.1.- Assume g(wn−4) �= 0.
In this case, it is easy to check that g(wn−4) + g(wn−3) + g(wn−2) ≥ k + 2 and,

therefore g(wn−4) + g(wn−3) + g(wn−2) + g(wn−1) + g(un) ≥ k + 2 + k = 2k + 2.
Let g′ be the function defined as follows

g′(w) =
⎧
⎨

⎩

0 if w ∈ {wn−2, wn},
k + 1 if w ∈ {wn−3, wn−1},
g(w) otherwise.

.

So, g′ is a [k]-RDF on Pn and g′ ∣∣
Pn−3 is [k]-RDF on Pn−3. Taking into account the

Case a, we have that,

γ[kR](Pn) = g(V (Pn)) ≥ g′(V (Pn)) ≥ Mk(n).

Subcase b.2.- Assume g(wn−4) = 0.
It is clear that g(wn−5) ≥ 2, g(wn−4)+g(wn−3)+g(wn−2) ≥ k+1 and g(wn−1)+

g(wn) ≥ k.
Again, we may define a function g′ in the following way,

g′(w) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if w ∈ {wn−2, wn},
k + 1 if w = wn−1,

k if w = wn−3,

g(w) otherwise.

Then, g′ is a [k]-RDF on Pn and g′ ∣∣
Pn−3 is a [k]-RDF on Pn−3 and, therefore

g (V (Pn)) ≥ g′ (V (Pn)) ≥ Mk(n). ��
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4 Complexity Results

In [4], Ahangar et al. proved that the decision problem associated to the triple Roman
domination problem is NP-complete for chordal and bipartite graphs. Later, Poureidi
and Fathali [15] showed that this problem still remains NP-complete when restricted
to star convex and comb convex bipartite graphs.

Recently, Khalili et al. [12] proved that the [k]-Roman domination decision problem
is NP-complete for bipartite and chordal graphs.

The goal of this section is to generalize the result by Poureide and Fathali to prove
that the [k]-Roman domination decision problem is NP-complete even when restricted
to star convex and comb convex bipartite graphs.

To begin with, we state the decision problem associated to the [k]-Roman domina-
tion problem.

[k]-RDN PROBLEM
Instance: Graph G = (V , E) and a positive integer r .
Question: Does G have a [k]-RDF f with f (V ) ≤ r?

To see that [k]-RDN PROBLEM is NP-complete, we show the equivalence with an
instance of the 3SAT problem, which is a well-known NP-complete problem.

3SAT PROBLEM
Instance: A formula L in 3-conjuctive normal form.
Question: Is L satisfiable?

Let us denote by X = {x1, . . . , xq} a set of q ≥ 3 variables and let C = {c j : j =
1, . . . , p} be a set of p clauses. L = (C; X) is an instance of 3-SAT problem given
that each clause c j contains exactly 3 (positive or negative) instances of variables xi ’s.
That is to say, c j = (c1j , c

2
j , c

3
j ) where each of c

l
j is either a variable xi or the negation

of a variable in X. We denote by x−
i the negation of a variable xi .

Theorem 4.1 [k]-RDN PROBLEM is NP-complete even for star convex bipartite
graphs.

Proof Clearly, the [k]-RDN PROBLEM is a member of NP , since we can check in
polynomial time whether a function f : V → {0, 1, . . . , k+1} is a [k]-RDF of weight
at most r .

We prove that [k]-RDN PROBLEM is still a NP-complete decision problem even
when restricted to star convex bipartite graphs by describing a polynomial transfor-
mation with the 3SAT PROBLEM.

Let L = (X;C) be an arbitrary instance of 3SAT with X = {x1, x2, . . . , xq} and
C = {c1, c2, . . . , cp}. We construct an star convex bipartite graph �(L) = � =
(A, B, E) with an associated tree T = (A, F) and we give a positive integer r such
that, L is satisfiable if and only if � has a [k]-RDF f with f (V�) ≤ r = 2q(k + 1).

First, let us think about a fixed variable xi . We consider the following gadget associ-
ated to xi (see Fig. 1): a vertex xi ; k+1 vertices, namely {yi1, . . . , yik+1}, adjacent to the
vertex xi ; two vertices x

+
i , x−

i adjacent to xi ; and k+1 vertices, namely {zi1, . . . , zik+1},
that are adjacent to both vertices x+

i and x−
i .
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Fig. 1 The auxiliary gadget
associated to each corresponding
variable xi

Fig. 2 An example of the star convex bipartite graph � with q = p = 3

Once we have such a gadget for each vertex xi in �, we add an additional vertex t
to the graph which is adjacent to each vertex in the set {x+

i , x−
i : i = 1, . . . , p} and

which is the center of the associated star graph T .
Finally, we add to � a set of vertices {c1, . . . , cp} corresponding to the clauses.

Note that c j = (c1j , c
2
j , c

3
j ) where each of c

l
j is either x

+
i or the negation x−

i , for some
i ∈ {1, ..., q}. The edge c j x

+
i (respectively c j x

−
i ) belongs to E if and only if there

exist l ∈ {1, 2, 3} such that x+
i = clj (respectively x−

i = clj ).
Let us point out that � is a bipartite graph with vertex classes given by A =

{t, xi , zij , cl : 1 ≤ i ≤ q, 1 ≤ j ≤ k + 1, 1 ≤ l ≤ p} and B = {x+
i , x−

i , yij : 1 ≤ i ≤
q, 1 ≤ j ≤ k + 1}. Moreover, � is an star convex bipartite graph with associated star
graph T = (A, F) where t is adjacent to every vertex in A�{t}. (see Fig. 2)

Clearly, we can make the graph � in polynomial time regarding to the size of the
sets of variables and clauses.
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On the one hand, let us assume that L is satisfiable and let us assume that W is an
assignment of state of the variables in X that makes L evaluate as true. Let f be the
function defined as follows. Let f (t) = f (cl) = f (zij ) = f (yij ) = 0; f (xi ) = k + 1
for all 1 ≤ i ≤ q, 1 ≤ j ≤ k + 1, 1 ≤ l ≤ p. Besides, if xi is false under W then
f (x−

i ) = k + 1 and f (x+
i ) = 0. Otherwise, f (x−

i ) = 0 and f (x+
i ) = k + 1. It is

straightforward to check that f is a [k]-Roman domination function of � with weight
w( f ) = 2q(k + 1).

On the other hand, let us assume that there exists a [k]-RDF f = (V0, V1, ..., Vk+1)

of � having weight w( f ) ≤ 2q(k + 1).
First of all, note that {y j

i : i = 1, . . . , q; j = 1, . . . , k + 1} are leaves having xi
as an strong support vertex. Hence, f (xi ) + f (yi1) + . . . + f (yik+1) ≥ k + 1, for all

i = 1, . . . , q. Moreover, {z ji : i = 1, . . . , q; j = 1, . . . , k + 1} are vertices of degree
2 having x+

i and x−
i as the only common neighbors. Therefore f (x+

i ) + f (x−
i ) +

f (zi1) + . . . + f (zik+1) ≥ k + 1, for all i = 1, . . . , q. Then, we have that

f (x+
i ) + f (xi ) + f (x−

i ) +
k+1∑

j=1

f (zij ) +
k+1∑

j=1

f (yij ) ≥ 2(k + 1)

for all i = 1, . . . , q. Since w( f ) ≤ 2q(k + 1) then it implies that f (cl) = f (t) = 0
for all l = 1, . . . , p. Besides, it must be f (xi ) + f (yi1) + . . . + f (yik+1) = k + 1 and
f (x+

i ) + f (x−
i ) + f (zi1) + . . . + f (zik+1) = k + 1, which is only possible if

1. f (xi ) = k + 1 for all i = 1, . . . , q.

2. f (yij ) = f (zij ) = 0 for all i = 1, . . . , q and j = 1, . . . , k + 1.
3. either

(
f (x+

i ) = k + 1 and f (x−
i ) = 0

)
or

(
f (x+

i ) = 0 and f (x−
i ) = k + 1

)
.

Let us consider the truth assignment W that assigns the value true to the variable
xi if and only if f (x+

i ) = k + 1 and f (x−
i ) = 0, and that assigns the value false

otherwise. To finish the proof we only have to show that W satisfies the instance L of
the 3SAT problem.

Let cl be a clause of L = (X;C) such that c j = (c1j , c
2
j , c

3
j ), where each of clj is

either a variable xi or the negation of a variable in X. As f (cl) = 0 and N�(cl) ⊆
{x+

i , x−
i : i = 1, . . . , q}. Then it must exist 1 ≤ i0 ≤ q and 1 ≤ l ≤ 3 such that

1. clj = x+
i0
, f (x+

i0
) = k + 1 and f (x−

io
) = 0 which implies that W assigns the value

true to xi0 and c j is satisfied.
2. clj = x−

i0
, f (x−

i0
) = k + 1 and f (x+

io
) = 0 which implies that W assigns the value

false to xi0 and c j is satisfied.

In any case, the clause c j is satisfied and therefore the boolean formula L so is. That
finishes the proof. ��

Let us note that we can construct a comb convex bipartite graph in a similar way
to the star convex graph considered in the proof of the Theorem 4.1. This lead us to
the following result.

Theorem 4.2 [k]-RDN PROBLEM is NP-complete even for comb convex bipartite
graphs.
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The key of the proof is to add an adequate set of vertices for each variable xi instead
of a single vertex t as we did in the proof. As the reasoning of the proof is analogous,
to avoid repetitions of arguments that are too similar, we leave the details to the reader.
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