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Abstract
In the present paper,we propose a newapproach on ‘distributed systems’: the processes
are represented through total orders and the communications are characterized by
means of biorders. The resulting distributed systems capture situations met in various
fields (such as computer science, economics and decision theory). We investigate
questions associated to the numerical representability of order structures, relating
concepts of economics and computing to each other. The concept of ‘quasi-finite
partial orders’ is introduced as a finite family of chains with a communication between
them. The representability of this kind of structure is studied, achieving a construction
method for a finite (continuous) Richter–Peleg multi-utility representation.

Keywords Distributed systems · Biorders · Partial orders · Representability

Mathematics Subject Classification 06A06 · 06D05

1 Introduction andMotivation

In the present paper, we focus on an ordered structure known as distributed system.
Although this concept belongs primarily to the field of computer science, its mathe-
matical structure is common to many areas.

The representability issue appears too in a wide range of fields, such as economics
and decision making [1, 2, 9, 12, 20, 28, 32, 34], computing [21, 26, 27, 29, 35,
38], and mathematical psychology [13–15, 31]. This interest on the representability of
relations is usually due tomaximization problems (in economics and decisionmaking),
the need to control non-linear processes that are being executed (computer science),
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the convenience of transform qualitative scales into quantitative ones (mathematical
psychology), etc.

Hence, one of the goals of the present work is to bring to the computer field knowl-
edge from other areas (order theory and decision theory in mathematics or economics,
for instance) that may be helpful when dealing with distributed systems. For this pur-
pose, first, we redefine the concepts of a distributed system. For that, we shall use
the concept of biorder. This study was started in Ref. [16] for the particular case of
distributed systems of two processes. However, in order to formalize completely the
concept of distributed system, a further study is needed, linking biorders between n
totally ordered sets.

The idea of a biorder was studied by Guttman (see Guttman Scales in Ref. [24])
and by Riguet under the name of Ferrers relation [37]. However, the concept was
introduced for first time by André Ducamp and Jean-Claude Falmagne in 1969 in
[15], and studied in depth in 1984 by Jean-Paul Doignon, André Ducamp and Jean-
Claude Falmagne in Ref. [13]. It is defined as follows:

A biorder R from A to X is a binary relation, with R⊆ A × X , satisfying that for
every a, b ∈ A and x, y ∈ X (a R x) ∧ (b R y) implies (a R y) ∨ (b R x).

The concept of biorder can also be found just as a Ferrers relation [2, 13], that is,
as a relation R on a single set X such that for any x, y, z, t ∈ X it holds that x R y
with z R t implies that x R t or z R y. Other kind of relations such as interval orders
[2, 5, 6, 9, 22, 23, 39, 41] (i.e., the more restrictive case of a semiorder [11, 17, 18,
28]), may be considered particular cases of biorders [2, 13].

In the present paper, we focus on biorders defined between disjoint totally ordered
sets (see Fig. 1), and we use them in order to redefine the concept of distributed system
[21, 27, 29, 35].

In a distributed system, distinct computers are connected to each other in order to
achieve a common goal, this is known as distributed computing.

These computers communicate with each other through messages that are sent and
received. Each computer has its own internal (physical) clock, so that it is possible to
assign a number (a time) to each event of the process. Thus, from amathematical point
of view, each computer (or process) is a totally ordered set (i.e., a chain) which can be
represented through its local time. Hence, without a precise clock synchronization, it
is not possible to capture the causality relation between events of distinct processes.
Moreover, if an event b holds later (with respect to the time) than a, it does not imply
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Fig. 2 The vertical arrows
represent the sequence of events
of each process, i.e., the
direction of the time. The dashed
arrows represent the sending of
messages, from the sender to the
receiver. Here, the causal
ordering of messages is not
satisfied
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that a causally affects b. On the contrary, if a causally affects b, then b must hold
later (with respect to an idyllic global time) than a. Finally, in these structures, the
property called causal ordering of messages is usually1 satisfied: if a computer i sends
two messages m1 and then m2 (so, such that m1 has been sent before m2) to the same
computer j (i �= j), thenmessagem1 must be received beforemessagem2 (see Fig. 2).
[26, 27]

The concept of a distributed system is usually defined as Lamport did [27]:

Definition 1.1 An event (illustrated by a point in Figs. 1 and 3) is a uniquely identified
runtime instance of an atomic action of interest. It is an occurrence at a point in
time, i.e., a happening at a cut of the timeline, which itself does not take any time. A
process (illustrated by a vertical line in Figs. 1 and 3) is a sequence of totally ordered
events, i.e., for any event a and b in a process, either a comes before b or b comes
before a. A distributed system consists of a collection of distinct processes which are
spatially separated, andwhich communicatewith one another by exchangingmessages
(illustrated by red arrows in Fig. 1 andwavy arrows in Fig. 3). It is assumed that sending
or receiving a message is an event.

Since each process consists of a sequence of events, each process is a totally ordered
set, and the communication through messages between the processes will be defined
by means of biorders.

Moreover, this communication between processes defines a causal relation known
as ‘causal precedence’ or ‘happened before’ relation [21, 27, 29, 35] (common in
causality too [33], but now related to the theory of relativity, see also [10, 25]). This
causal relation was defined by Leslie Lamport in [27] as follows (see also [26]):

Definition 1.2 The causal precedence (denoted by →) on the set of events of a dis-
tributed system is the smallest relation satisfying the following three conditions:

1. If a and b are events in the same process, and a comes before b, then a → b.
2. If a is the sending of a message by one process and b is the receipt of the same

message by another process, then a → b.
3. If a → b and b → c then a → c.

1 Here, we say usually since it is a common property which is not implicit in Definition 1.1.
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Fig. 3 Illustration of a distributed system, taken from the paper [27] of Leslie Lamport

If a → b, then it is said that a causally precedes b.

This definition was introduced by Leslie Lamport in 1978 (see [27]) and it has been
used until nowadays. In the present paper, we shall introduce a new definition of the
concept through orderings. Graphically, a → b implies that there is a path of causality
from event a to event b (moving in the direction of the arrows, see Figs. 1 or 3), i.e.,
b is reachable from a.

Two distinct events a and b are concurrent if a � b and b � a, that is, if they
in no way can causally affect each other, so in that case it is not known which event
happened first. It is assumed that → is irreflexive (a � a for any event a), so, in case
there are no cycles, → is a strict partial ordering on the set of all events in the system.

Finally, we shall focus too on finite Richter–Pelegmulti-utility representations. The
construction of these (continuous) representations for a given preorder may be a hard
problem. For this purpose, the study of the (continuous, in case the sets are endowed
with topologies) representability of biorders defined between totally preordered sets
seems a right approach in order to achieve a (continuous and finite) Richter–Peleg
multi-utility representation of the corresponding causal precedence or happened before
relation. This idea consists in using (continuous) representations of distributed systems
in order to represent (continuously) the corresponding causal precedence relation.

The structure of the paper goes as follows:
After this introduction, a section of preliminaries is included. Next, in Sect. 3, a

new definition (and its motivation) of a distributed system is introduced, so that then
the representability problem is studied in Sect. 4, achieving an aggregation result for
the case of line communications. In this section, it is shown how to construct weak
representations of distributed systems with line communications starting from pairs
of functions that represent each biorder. Finally, in Sect. 5, we focus on quasi-finite
partial orders as an interesting family of partial orders. For this kind of orderings, we
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also include a technique in order to construct a finite (and continuous) Richter–Peleg
multi-utility.

2 Notation and Preliminaries

From now on A, B and X as well as X1, . . . , Xn will denote non-empty (maybe
infinite) sets. When we speak of continuity of a real-valued mapping defined on a set
S, we assume that some topology τS is given on S.

Definition 2.1 A binary relation R from A to X is a subset of the Cartesian product
A× X . In particular, in the case that A = X , the binary relationR is said to be defined
on X , and it is a subset of the Cartesian product X × X . Given two elements a ∈ A
and x ∈ X , we will use notation a R x to express that the pair (x, y) belongs to R.
Associated to a binary relation R from A to X , its negation is the binary relation Rc

from A to X given by (a, x) ∈Rc ⇐⇒ (a, x) /∈R for every a ∈ A and x ∈ X .
Given two binary relationsR andR′ on a set X , it is said thatR′ extends or refines

R if x R y implies x R′ y, that is, ifR is contained inR′ .

The transitive closure of a binary relationR on a set X is the transitive relationR+
on set X such that R+ contains R and R+ is minimal.

The transitive reduction of a binary relation R on a set X is, in case it exists, the
smallest relation having the transitive closure of R as its transitive closure.

Given a binary relation R on X , if two elements x, y ∈ X cannot be compared,
that is, ¬(x R y) as well as ¬(y R x), then it is denoted by x �� y. We shall denote
xI y whenever xRy as well as yRx .

Sometimes (depending on the ordering or when different relations are mixed) the
standard notation is different. We also include it here.

Definition 2.2 A preorder � on X is a binary relation on X which is reflexive and
transitive. An antisymmetric preorder is said to be an order. A total preorder � on
a set X is a preorder such that if x, y ∈ X then [x � y] ∨ [y � x]. A total order is
also called a linear order, and a totally ordered set (X ,�) is also said to be a chain.
Usually, an order that fails to be total is also said to be a partial order and it is also
denoted by. A subset Y of a partially preordered set (X ,�) is said to be an antichain
if x �� y for any x, y ∈ Y .

If � is a preorder on X , then the associated asymmetric relation or strict preorder
is denoted by ≺ and the associated equivalence relation by ∼ and these are defined,
respectively, by [x ≺ y ⇐⇒ (x � y) ∧ ¬(y � x)] and [x ∼ y ⇐⇒ (x �
y) ∧ (y � x)]. In the case of a finite partial order (also known as poset), it is quite
common to denote � by � and ≺ by �, respectively. The asymmetric part of a linear
order (respectively, of a total preorder) is said to be a strict linear order (respectively,
a strict total preorder).

Definition 2.3 A preorder � on X is said to be near-complete if width(X ,�) = n <

∞. That is, if all antichains have cardinalities less or equal than n (for some n ∈ N)
as well as there is—at least—one antichain which cardinality is n.
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Definition 2.4 A binary relation ≺ from A to X is a biorder if it is Ferrers, that is, if
for every a, b ∈ A and x, y ∈ X the following condition holds:
(a ≺ x) ∧ (b ≺ y) ⇒ (a ≺ y) ∨ (b ≺ x).

Related to ≺ we shall use the binary relation � from X to A given by x � a ⇐⇒
¬(a ≺ x), a ∈ A, x ∈ X . It is also common to use � from A to X given by
a � x ⇐⇒ ¬(a ≺ x), a ∈ A, x ∈ X .

Definition 2.5 Associated to a biorder ≺ defined from A to X , we shall consider two
new binary relations [12, 13]. These binary relations are said to be the traces of ≺.
They are defined on A and X , respectively, and denoted by ≺∗, ≺∗∗. They are defined
as follows:

First, a ≺∗ b ⇐⇒ a ≺ z � b for some z ∈ X (a, b ∈ A), and, similarly,
x ≺∗∗ y ⇐⇒ x � c ≺ y for some c ∈ A (x, y ∈ X).

Remark 2.6 In the case of interval orders (so A = X ), the binary relations denoted by
≺∗ and ≺∗∗ coincide with the “left trace” and “right trace” of the interval order. The
names “left trace” and “right trace” have been used in the case of biorders too [8],
and other notations such as ≺A and ≺X or ≺l and ≺r can be found in literature [8, 13,
31].

Remark 2.7 We set a �∗ b ⇐⇒ ¬(b ≺∗ a), a ∼∗ b ⇐⇒ a �∗ b �∗ a,
x �∗∗ y ⇐⇒ ¬(y ≺∗∗ x) and x ∼∗∗ y ⇐⇒ x �∗∗ y �∗∗ x .

These weak relations can be characterized as follows [2, 5, 13]:

a �∗ b ⇐⇒ {b ≺ x ⇒ a ≺ x}, for any x ∈ X .

x �∗∗ y ⇐⇒ {a ≺ x ⇒ a ≺ y}, for any a ∈ A.

As a matter of fact, both the binary relations �∗ and �∗∗ are total preorders on A
and on X , respectively, if and only if the relation ≺ is a biorder [13]. Hence, in that
case the indifference relations ∼∗ and ∼∗∗ are in fact equivalence relations so, it is
possible to define the quotient set A/ ∼∗ and X/ ∼∗∗ [9, 13].

Next Definition 2.11 introduces the notion of representability2 for total preorders
and biorders. The goal of a representation is to convert a qualitative preference into a
quantitative one, comparing real numbers instead of elements of a set.

Definition 2.8 Given a preorder � on X , a real function u : X → R is said to be
isotonic or increasing if for every x, y ∈ X the implication x � y ⇒ u(x) ≤ u(y)
holds true. In addition, if it also holds true that x ≺ y implies u(x) < u(y), then u is
said to be a Richter–Peleg utility representation.

A (not necessarily total) preorder � on a set X is said to have a multi-utility rep-
resentation [20] if there exists a family U of isotonic real functions such that for all
points x, y ∈ X the equivalence {x � y ⇔ ∀u ∈ U (u(x) ≤ u(y))} holds.

This kind of representation always exists for every preorder � on X (see Propo-
sition 1 in [20]). It is also interesting to search for a continuous multi-utility

2 Other notions of representability appear for instance in [2, 13, 17, 31].
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representation of a preorder � when the set X is endowed with a topology τ (cf.,
for instance, [1, 20]), as well as for multi-utility representations through a finite num-
ber of functions.

When all the functions of the family U are order-preserving for the preorder� (i.e.,
for all u ∈ U , and x, y ∈ X , x ≺ y implies that u(x) < u(y)), then the representation
is called Richter–Peleg multi-utility representation [30].

In case of a poset, we shall use too the following concept3.

Definition 2.9 Let (X ,�) be a finite partially ordered set with |X | = n. We shall
say that a Richter–Peleg multi-utility representation U is bijectivewhen each function
u ∈ U is a bijection from X to {1, . . . , n}.
Remark 2.10 The number of functions needed for a Richter–Peleg multi-utility coin-
cides with the dimension of the partial order [40].

Definition 2.11 A total preorder� on X is called representable if there is a real-valued
function u : X → R that is order-preserving, so that, for every x, y ∈ X , it holds that
[x � y ⇐⇒ u(x) ≤ u(y)]. The map u is said to be an order-monomorphism (also
known as a utility function for �).

A biorder ≺ from A to X is said to be representable (as well as realizable with
respect to <) if there exist two real-valued functions u : A → R, v : X → R such that
a ≺ x ⇐⇒ u(a) < v(x) (a ∈ A, x ∈ X ). In this case it is also said that the pair
(u, v) represents ≺.

Although we will work with this definition of representability for biorders (realiz-
able with respect to <), in Sect. 4 the following definition (introduced in [13]) is also
needed:

A biorder ≺ from A to X is said to be representable with respect to ≤ (as well
as realizable with respect to ≤) if there exist two real-valued functions u : A → R,
v : X → R such that a ≺ x ⇐⇒ u(a) ≤ v(x) (a ∈ A, x ∈ X ). In this case we shall
say that the pair (u, v) represents ≺ with respect to ≤.

Definition 2.12 Let ≺ be an asymmetric relation from a topological space (A, τA) to
(X , τX ). The relation ≺ is said to be τA-continuous if the strict contour set L≺(x) =
{a ∈ A : a ≺ x} is a τA-open set, for every x ∈ X . Dually, it is said to be τX -
continuous if the strict contour set U≺(a) = {x ∈ X : a ≺ x} is a τX -open set, for
every a ∈ A. We shall say that the relation is bicontinuous if it is both τA-continuous
and τX -continuous.

In particular, in the case of a single set X (that is, A = X ) endowed with a single
topology τ (so, τ = τA = τX ), the binary relation≺ is said to beupper semi-continuous
if the strict contour set L≺(x) = {y ∈ X : y ≺ x} is τ -open, for every x ∈ X . Dually, it
is said to be lower semi-continuous if the strict contour setU≺(x) = {y ∈ X : x ≺ y}
is τ -open, for every x ∈ X . We shall say that the relation is τ -continuous if it is both
upper and lower semi-continuous.

3 A similar term already exists in computer science under the name of random structures (see [38]).
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Definition 2.13 A biorder ≺ from A to X is said to be continuously representable
on (A, τA) if it admits a representation (u, v) such that the function u : A → R

is continuous when A is given the topology τA and the real line is given its usual
topology. Dually, ≺ is said to be continuously representable on (X , τX ) if it admits a
representation (u, v) such that the function v : X → R is continuous when X is given
the topology τX and the real line is given its usual topology. We say that the biorder is
continuously representable if it admits a representation (u, v) such that both functions
u and v are continuous [3].

An example of a biorder (also related to the traces and the continuity of the rep-
resentation) may be found in [16]. Let us recall now some characterizations of the
representability, for total preorders and biorders.

Definition 2.14 A total preorder � defined on X is said to be perfectly separable if
there exists a countable subset D ⊆ X such that for every x, y ∈ X with x ≺ y there
exists d ∈ D such that x � d � y.

Let ≺ be a biorder from A to X . A subset M of A ∪ X is said to be strictly dense
(see [2, 13]) if for all a ∈ A and x ∈ X , a ≺ x implies the existence of an element
m ∈ M such that either m ∈ X and a ≺ m �∗∗ x , or m ∈ A and a �∗ m ≺ x .

Remark 2.15 Notice that if the number of classes defined by the equivalence relation
∼∗ (or ∼∗∗) of the trace �∗ (resp. �∗∗) on A (resp. X ) is countable, then the biorder
has a trivial strictly dense subset made by means of the representatives of classes A/

∼∗ (resp. X/ ∼∗∗).

The following result is well known [9, 13].

Theorem 2.16 Let A and X be two non-empty sets.

(a) A total preorder � on X is representable if and only if it is perfectly separable.
(b) A biorder ≺ from A to X is representable if and only if there exists a countable

strictly dense subset.

A similar study on representability of interval orders, semiorders (see also [11])
and total preorders but now in the extended real line R̄ appears in [17].

Given a biorder ≺ from A to X , it is possible to define the corresponding quotient
sets as well as a new relation (see [2]) ≺̂ from A/ ∼∗ to X/ ∼∗∗ by

â ≺̂ x̂ ⇐⇒ a ≺ x, for any â ∈ A/ ∼∗, x̂ ∈ X/ ∼∗∗ .

It is known (see [2]) that this relation ≺̂ is well defined and that it is actually a
biorder: the quotient biorder. It also holds true that â ≺̂∗

̂b ⇐⇒ a ≺∗ b, and
x̂ ≺̂∗∗ ŷ ⇐⇒ x ≺∗∗ y, for any â,̂b ∈ A/ ∼∗ and for any x̂, ŷ ∈ X/ ∼∗∗. Thus, any
representation (̂u, v̂) of ≺̂ has the additional property that û and v̂ also represent the
traces ≺̂∗ and ≺̂∗∗, respectively.

Moreover, any representation (̂u, v̂) of ≺̂ delivers also a representation of ≺ just
defining u(a) = û(̂a) and v(x) = v̂(̂x) (for any a ∈ A and x ∈ X ). Therefore, if ≺̂ is
representable then ≺ is representable, too. The converse is also true as the following
lemma shows [2]:
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Lemma 2.17 Let ≺ be a biorder from A to X and let ≺̂ be the corresponding quotient
biorder from A/ ∼∗ to X/ ∼∗∗. Assume that ≺ admits a representation (u, v). Then,
≺̂ is also representable.

The following definition was introduced by Nakamura in [31] and, as it is shown in
Corollary 2.19 (see also [31] or Remark 1 in [8]), it is equivalent to the aforementioned
order-denseness condition named ‘strictly dense’.

Definition 2.18 Let≺ be a biorder from A to X . A pair of subsets A∗ ⊆ A and X∗ ⊆ X
is said to be jointly dense for≺ if for all a ∈ A and x ∈ X , a ≺ x implies the existence
of two elements a∗ ∈ A∗ and x∗ ∈ X∗ such that a �∗ a∗ ≺ x∗ �∗∗ x .

Next corollary is well known [2, 8, 12, 31]:

Corollary 2.19 Let ≺ be a biorder from A to X. The following statements are equiva-
lent:

(i) The biorder has a pair of jointly dense and countable subsets.
(ii) The biorder has a countable strictly dense subset.
(iii) The biorder is representable.
(iv) The biorder is representable through a pair of functions (u, v) with the additional

condition that u represents the trace �∗ and v the trace �∗∗.

3 A NewDefinition for Distributed System

In the following pages, we introduce a new definition for the concept of a distributed
systemwith n processes (the original definitions of these concepts—an event, a process
and a distributed system—have been introduced in Sect. 1). But first, we redefine the
concepts of causal precedence and communication.

Since in the following pages many relations are going to appear, for the sake of
clarity, from now, we shall use the symbol P in order to refer to a biorder relation,
whereas we shall use the symbol � for total preorders (also for the traces associated
to a biorder).

Definition 3.1 Let {(Xk,≺k)}k∈K be a finite family of strict partially ordered and
disjoint sets (i.e., Xi ∩ X j = ∅, ∀ i �= j) and {Pi j }i �= j a family of relations from Xi

to X j (for any i �= j, i, j ∈ K ). The causal precedence corresponding to {≺k}k∈K ∪
{Pi j }i �= j on X = ⋃

k∈K
Xk is the transitive closure of the union (

⋃

k∈K
≺k)

⋃

(
⋃

i �= j
{Pi j }).

This relation shall be denoted by →:

⎧

⎨

⎩

(

⋃

k∈K
≺k

)

⋃

⎛

⎝

⋃

i �= j

{Pi j
}

⎞

⎠

⎫

⎬

⎭

+
=→ .

Remark 3.2 Notice that, with the definition above, the absence of cycles is not guar-
anteed, as it is shown the Fig. 4. The existence of this cycles implies an error in the
computing, known as deadlock [26].
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Fig. 4 A cycle in a distributed
system: a deadlock
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•

•

•
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If there is no cycle, then the transitive closure is a strict partial order. In the present
paper, we will assume that there is no error or deadlock in the distributed system, that
is, we shall assume that the causal precedence is a strict partial order.

Now, recovering the idea of a distributed system in the spirit of Definition 1.1,
we first mathematically formalize the idea of communication just as a finite relation
between to distinct sets satisfying a ‘bijective’ condition.

Definition 3.3 Let A and B be two disjoint sets. A communication from A to B is a
finite binary relation P ⊆ A × B (i.e., |P| < ∞) such that for any (a, b) ∈ P and
a′ ∈ A, b′ ∈ B the following bijective condition is satisfied:

(a′, b) ∈ P ⇒ a = a′ as well as (a, b′) ∈ P ⇒ b′ = b.

Here, the elements a ∈ A such that (a, b) ∈ P (for some b ∈ B) are said to be the
senders, whereas the elements b ∈ B such that (a, b) ∈ P (for some a ∈ A) are said
to be the receivers.4

Now, we focus on communications between ordered sets.

Definition 3.4 Let (A,�A) and (B,�B) be two disjoint partially ordered sets. We
shall say that a binary relation P is a causal biorder from A to B if P ⊆ A × B and
for any a, c ∈ A, b, d ∈ B it holds that

(aPb) and (cPd) ⇒ (a → d) or (c → b),

where → denotes the corresponding causal precedence of �A ∪ �B ∪ P on A ∪ B.

Example 3.5 Let (A,�A) and (B,�B) be two partially ordered sets as defined in
Fig. 5. Let P and P ′ be two relations from A to B defined by

P = {(a2, b1), (a3, b3)} and P ′ = {(a2, b2), (a3, b3)}.

It is straightforward to see that P is a causal biorder whereas P ′ it is not.
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Fig. 5 Two partially ordered
sets, (A, �A) and (B, �B )

(A,�A)

a2 a3

a1

• •

•

(B,�B)

b2 b3

b1

• •

•

Definition 3.6 Let (A,�A) and (B,�B) be two disjoint partially ordered sets and P
a communication from A to B. We define the relation P from A to B by

aPb ⇐⇒ a �A a′Pb′ �B b, for some a′ ∈ A, b′ ∈ B.

That is, P =�A ◦P◦ �B .

Proposition 3.7 Let (A,�A) and (B,�B) be two disjoint partially ordered sets and
P any relation from A to B. If (A,�A) or (B,�B) is a chain, then:

(i) P is a causal biorder.
(ii) P is a biorder.

In particular, any communication from A to B is a causal biorder.

Proof Let a, x ∈ A and b, y ∈ B be elements such that aPb and xP y. If (A,�A)

is a chain, then a �A x or x �A a is satisfied. Hence, it holds that a �A xP yb or
x �A aPb, thus, a → b or x → b. Therefore, P is a causal biorder. We reason dually
if (B,�B) is a chain.

Let a, b ∈ A and x, y ∈ B be points such that aPx and bP y. Hence, by definition,
there exist a′, b′ ∈ A and x ′, y′ ∈ X such that a �A a′Px ′ �B x and b �A b′P y′ �B

y. If (A,�A) is a chain, we distinguish two cases:

1. If a �A b, then a �A b′P y′ �B y, so aP y.
2. If b �A a, then b �A a′Px ′ �B x , so bPx .

Therefore, P is a biorder. We reason dually in case (B,�B) is a chain. ��
Remark 3.8 (1) By Proposition 3.7, it is clear that a communication P is a causal

biorder as well as P is a biorder.
(2) In order to keep close to the original definition given by Lamport (see Defini-

tion 1.1), where sending or receiving a message is an event, in Definition 3.3 is not
allowed to send a message from a in A to more than one receiver in B. Dually, an
element b in B cannot receive more than one message from A. From a mathemat-
ical point of view, it would be possible to generalize the idea of communication
without restricting it to a finite cardinal, i.e., with |P| = ∞. However, in the present
paper, we shall work just on communications in the sense of Definition 3.3.

Now we are ready to propose a definition of a distributed system of n sets from a
mathematical and theoretical point of view (the original definitions of these concepts—
an event, a process and a distributed system—have been introduced in Sect. 1).

4 We call them senders/receivers in the spirit of Definition 1.1.
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Definition 3.9 Let {(Xi ,�i )}ni=1 be a family of disjoint and totally ordered sets and
P= {Pi j }i �= j (with i, j ∈ {1, . . . , n}) be a family of communications from Xi to X j

(with i �= j). Each totally ordered set is said to be a process. Each element of the
processes is said to be an event. The pair (

⋃n
i=1(Xi ,�i ),P) is said to be a distributed

system.

Remark 3.10 (1) In the previous definition, as it was in the original definition of L.
Lamport (see Ref. [27], in particular page 559 and footnote 2), the messages may
be received out of order (i.e., without satisfying the causal ordering of messages).
Furthermore, with this definition there may be cycles with respect to the causal
relation (see Fig. 4).

(2) Notice that a communicationmay be empty, so that there is no sending ofmessages
in one direction between two processes. In this case, we shall denote Pi j= {∅}.

(3) It can be proved that each total order�i in Xi refines the traces�∗
i j and�∗∗

j i related

to the biorders P i j and P j i (respectively), for any j �= i . Actually, this property
was used in Ref. [16] in order to define the concept of a distributed system of
two processes. However, the use of the communication concept in order to define
a distributed system is closer to reality, since it captures the idea of sending and
receiving messages. Moreover, it derives in the new term of causal biorder, which
seems interesting when dealing with a set endowed with more than one relation.
Hence, Definition 3.9 has been written by means of communications.

Proposition 3.11 Let (A,�A) and (B,�B) be two disjoint totally ordered sets andP1
and P2 two communications from A to B. Let ((A,�A) ∪ (B,�B),P1) and ((A,�A

)∪ (B,�B),P2) be the corresponding distributed systems and →1 and →2 their
causal relations, respectively. If the causal relations concur, i.e., →1=→2, then the
communications are also the same (i.e., P1 = P2) or the causal ordering of messages
is not satisfied.

Proof Let a ∈ A and b ∈ B be such that aP1b. Then, a →1 b, that means a →2 b,
i.e., there exist a1, b1 such that a �A a1P2b1 �B b. Thus, aP1b implies aP2b.

Suppose now that aP2b but ¬(aP2b). Then, there must exist a2 ∈ A, b2 ∈ B such
that a ≺A a2P2b2 �B b or a �A a2P2b2 ≺B b. Assume that a ≺A a2P2b2 �B b
is satisfied (we reason analogously for the dual case), then it holds that a2 →2 b
with a ≺A a2, that is, a2 →1 b with a ≺A a2. Therefore, a2P1b, i.e., a ≺ a2 �A

a3P1b3 �B b for some a3 ∈ A, b3 ∈ B.
Here, we distinguish two cases. If b3 = b, then P1 fails to be a communication

since we have that a3P1b as well as aP1b, with a �= a3. If b3 ≺ b, then the causal
ordering of messages is not satisfied, since we have that a3P1b3 and aP1b as well as
a ≺A a2 and b3 ≺B b (see Fig. 2). This concludes the proof. ��

Now, we introduce the concept of line communication.

Definition 3.12 Let (
⋃n

i=1(Xi ,�i ),P) be a distributed system, where P= {Pi j }i �= j

(with i, j ∈ {1, . . . , n}) is the family of communications from Xi to X j (with i �= j).
It is said that P is a line communication if Pi j = {∅} for any j �= i + 1, for each
i = 1, . . . , n − 1.
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(X1, �1) (X2, �2) (X3, �3)

Fig. 6 A distributed system of three processes with line communication

Hence, when the processes are endowed with a line communication, these computers
or processes are ordered in a sequence (i.e., totally ordered) such that each computer
only sends messages to the next one (see Fig. 6).

Proposition 3.13 Let (
⋃n

i=1(Xi ,�i ),P= ⋃

i �= j Pi j ) and (
⋃n

i=1(Xi ,�i ),P ′=
⋃

i �= j P ′
i j ) be two distributed systems with the same processes and both with line

communication. Assume that the causal ordering of messages is always satisfied as
well as there is no cycles (i.e., the→ is a strict partial order). Then, the corresponding
causal precedences coincide (→1=→2) if and only if Pi j=P ′

i j for each i �= j , that
is, if and only if they have the same communications.

Proof ⇒: If the corresponding causal precedences coincide, then they also coincide
when we restrict the relation to a subset Xi ∪ Xi+1 (for any i = 1, . . . , n − 1).
Moreover, since P is a line communication, it holds that →1|Xi∪Xi+1

= (�i ∪ �i+1

∪ Pi i+1)
+, that is, the restriction of the causal relation →1 to Xi ∪ Xi i+1 is just the

causal relation of the distributed system ((Xi ,�i ) ∪ (Xi+1,�i+1),Pi i+1). Dually, it
holds that →2|Xi∪Xi+1

= (�i ∪ �i+1 ∪ P ′
i i+1)

+. Therefore, by Proposition 3.11, the
communications Pi i+1 and P ′

i i+1 also coincide, and that for any i = 1, . . . , n − 1.
⇐: This implication is trivial. ��
Remark 3.14 Notice that the decomposition of a partially ordered set in n disjoint
chains is not unique. Therefore, it may be possible to construct distinct distributed
systems such that the corresponding causal relation coincides with the initial partial
order. In order to show that we include the following example:

Example 3.15 Let� be a partial order defined on X = {a, b, c, d} by {c � b � a, b �
d}. Then, the partial order can be characterized by means of the following distributed
systems (among others) of 2 processes (see Fig. 7):

(1) (X1,�1) = ({a, b, c}, c ≺1 b ≺1 a) and (X2,�2) = ({d}, {∅}), with communi-
cation P12 = {(b, d)}.

(2) (X1,�1) = ({a, c}, c ≺1 a) and (X2,�2) = ({b, d}, b ≺2 d), with communica-
tions P12 = {(c, b)} and P21 = {(b, a)}.

Remark 3.16 Hence, given a preorder, it seems interesting to study the existence and
uniqueness of distributed systems that characterize (through its causal precedence)
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a
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•

•
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d
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•

•

•

•

Fig. 7 A partial order represented through two distinct distributed systems

the preorder with some additional properties such as that the length of the processes
is minimal, or that the number of messages is minimal. For instance, in the example
of Fig. 7, in the first case, the length of the longest process is three and the number of
messages is one,whereas in the second case, these values are two and two, respectively.

4 Representability of Distributed Systems

Since it is possible to add a new process to a distributed system (that is, connecting
another computer to the system, including also the corresponding communication),
it is interesting to study how to create a new representation of the distributed sys-
tem that arise from the union of two distributed systems, but now aggregating the
representations before.

In this paper we do not achieve the answer to this question but, at least, we are able
to construct weak representations of distributed systems with line communications
starting from pairs of functions that represent each biorder.

We shall assume that the causal ordering of messages is satisfied, as well as there
are no cycles. Thus, we assume that our distributed systems are such that the causal
relation → is a strict partial order.

The following definitions introduce the concept of representability for a distributed
system of n processes.

Definition 4.1 Let (
⋃n

i=1(Xi ,�i ),P= ⋃

i �= j Pi j ) be a distributed system. We say
that it is weakly representable if there exists a family {ui }ni=1 (called weak rep-
resentation) of real functions ui : Xi → R such that (ui , u j ) weakly represents
the biorder P i j with respect to < (that is, xi P i j x j ⇒ ui (xi ) < u j (x j ), for
any xi ∈ Xi , x j ∈ X j ) as well as each ui represents the total order �i (i.e.,
x �i y ⇐⇒ ui (x) ≤ ui (y), x, y ∈ Xi ), for any i, j ∈ {1, . . . , n} and i �= j .

If each set Xi is endowed with a topology τi , then we will say that the distributed
system is continuously weakly representable if there exists a continuous weak repre-
sentation.

Remark 4.2 (1) Notice that, for any x ∈ Xi and y ∈ X j such that x → y, it holds that
ui (x) < u j (y), for any i, j ∈ {1, 2, . . . , n}.
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(2) The aforementioned functions ui are known as Lamport clocks (see [27]). In fact,
a Lamport clock is a function C satisfying that a → b implies C(a) < C(b), for
any a, b ∈ X . On the other hand, C(a) < C(b) does not imply a → b.

Definition 4.3 Let (
⋃n

i=1(Xi ,�i ),P= ⋃

i �= j Pi j ) be a distributed system. We say
that it is (finitely) representable if there exists a (finite) family of weak representations
{{uki }ni=1}k∈K such that xi P i j x j iff uki (xi ) < ukj (x j ) for any k ∈ K, for any xi ∈
Xi , x j ∈ X j and i �= j .

If each set Xi is endowed with a topology τi , then we will say that the distributed
system is continuously representable if there exists a continuous representation.

As following Preposition 4.4 shows, the term before is analogous to the Richter–
Peleg multi-utility representation used for preorders. [4, 7, 20, 34, 36]

Proposition 4.4 A distributed system (
⋃n

i=1(Xi ,�i ),P= ⋃

i �= j Pi j ) is (finitely) rep-
resentable if and only if the corresponding causal relation→ is (finitely) Richter–Peleg
multi-utility representable.

Proof Given a representation {{uki }ni=1}k∈K of the distributed system, the family of
functions {wk}k∈K defined by

wk(x) = uki (x) if x ∈ Xi , with k ∈ K,

is a Richter–Peleg multi-utility representation of the strict partial order →.
Dually, starting from a Richter–Peleg multi-utility representation {wk(x)}k∈K of

the causal relation → of a distributed system (
⋃n

i=1(Xi ,�i ),P= ⋃

i �= j Pi j ), then

the following representation {{uki }ni=1}k∈K arises:

uki (x) = wk(x), when x ∈ Xi , with k ∈ K, for each i = 1, . . . , n.

��
Remark 4.5 Notice that the main difference is the domain of the corresponding func-
tions. In the case of distributed systems, the functions are defined on the processes,
whereas in the case of preorders they are defined on the all set (which would be the
union of the processes). This difference may be relevant when dealing with continuity
and topological spaces.

Now we introduce another kind of representation in bijection with the concept of
multi-utility [4, 7, 20, 34, 36], and that it is actually common and known in computing
by vector clock representation (see [29, 35]). Due to that coincidence (and in order to
distinguish it from the definition before), we shall call it by vector representation.

Definition 4.6 Let (
⋃n

i=1(Xi ,�i ),P= ⋃

i �= j Pi j ) be a distributed system. We say
that it is vector representable if there exists a family of weak representations with
respect to ≤ (called vector clocks) {{uki }ni=1}k∈K such that xi P i j x j iff uki (xi ) ≤
ukj (x j ) for any k ∈ K, as well as there exists an index l ∈ K such that uli (xi ) < ulj (x j )
(for any xi ∈ Xi , x j ∈ X j and i �= j).
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Fig. 8 A distributed system. Each process contains just two events. The dashed arrows represent the com-
munication between processes

If each set Xi is endowed with a topology τi , then we will say that the distributed
system is continuously vector representable if there exists a continuous vector repre-
sentation.

Remark 4.7 In computing, these vector clocks are constructed through timestamps
algorithms (see [29, 35]).

The problem of aggregating representations is not trivial. In order to illustrate that,
we include the following example.

Example 4.8 LetP12 andP23 two communications between A = {a, b} (with a ≺A b)
and X = {x, y} (with x ≺X y) and � = {α, β} (with α ≺� β), respectively, defined
as follows:

aP12xP23β, aP12y and bP12y.

Now we define the tuple (u, v, w) by u(a) = 0, u(b) = 1, v(x) = 1, v(y) =
2, w(α) = 1 and w(β) = 2. Then, the pairs (u, v) and (v,w) are representations
of the distributed systems defined on A∪ X and on X ∪�, respectively. However, the
tuple (u, v, w) fails to represent the distributed systemmade up by the three processes:
u(a) = 0 < w(α) = 1 but ¬(a → α) (Fig. 8).

In the following lines, it is shown how to construct weak representations of
distributed systems with line communications starting from pairs of functions that
represent each biorder. For more clearness, before introduce the general case, first we
include here the particular case of a distributed system of three processes with a linear
communication.

Proposition 4.9 Let (
⋃3

i=1(Xi ,�i ),P= ⋃2
i=1 Pi i+1) a distributed system of three

processes with a linear communication such that for every i ∈ {1, 2} the pair (ui , vi )
is a representation of the biorder P i i+1.5 Then, the tuple (u = u1 + uu2 , v = v1 +
u2, w = v2 + vv1) is a weak representation of the distributed system, where uu2 and
vv1 are defined as follows:

uu2(x) = inf{u2(y) : xP12y ; y ∈ X2}; for any x ∈ X1,

5 We may assume, without loss of generality, that the codomain of the utilities is the interval (0, 1) instead
of the all real line.
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vv1(x) = sup{v1(y) : yP23x ; y ∈ X2}; for any x ∈ X3,

on the assumption that inf{∅} = 1 and sup{∅} = 0.

Proof First, notice that since the utilities take values on (0, 1), and taking into account
that inf{∅} = 1 and sup{∅} = 0, the functions uu2 and vv1 are well defined (that is,
the infimum and the supremum always exist).

Let x, y be two elements such that xP12y. Then, it holds true that u1(x) < v1(y) as
well as uu2(x) ≤ u2(y). Therefore, the condition u(x) < v(y) is satisfied. We argue
analogously for a pair of elements x, y such that xP23y.

Since x �1 x ′P12y implies xP12y, the inequalityuu2(x) ≤ uu2(x
′) is also satisfied.

If x �1 x ′ and there is no y ∈ X2 such that x ′P12y, then uu2(x
′) = inf{∅} = 1 so,

again, it holds that uu2(x) ≤ uu2(x
′). Thus, we conclude that uu2(x) ≤ uu2(x

′) is
always satisfied for any x, x ′ ∈ X1 such that x �1 x ′. We argue analogously for a pair
of elements y, y′ ∈ X3 such that y �3 y′. In addition, the functions v1 and u2 also
represent the total order �2, as well as u1 and v2 represent the total orders �1 and
�3, respectively. Hence, we deduce that the functions u = u1 + uu2 , v = v1 + u2 and
w = v2 + vv1 are representations of the total orders �1, �2 and �3, respectively.

Let x, z be now two elements such that xP12yP23z, for some y ∈ X2. Then, since
it holds true that u1(x) < v1(y) ≤ vv1(z) and uu2(x) ≤ u2(y) ≤ v2(z), the condition
u(x) < w(z) is satisfied.

Thus, we conclude that (u = u1 + uu2 , v = v1 + u2, w = v2 + vv1) is a weak
representation of the distributed system. ��

Before generalize the proposition above to n processes, first we introduce the fol-
lowing operators.

Definition 4.10 Let (
⋃2

i=1(Xi ,�i ),P) be a distributed system with a single commu-
nication P from X1 to X2. Let u and v be two (not necessarily strictly) increasing
functions on X1 and X2 (respectively) that take values on (0, 1). Assume that
inf{∅} = 1 and sup{∅} = 0. Then, we define the following two operators:

op(v)(x) = inf{v(y) : xP y}{y∈X2} ; x ∈ X1,

op(u)(x) = sup{u(y) : yPx}{y∈X1} ; x ∈ X2.

We shall call these operators lower operator and upper operator, respectively.

Remark 4.11 (1) Notice that, starting from a function u on X1, op(u) defines a new
function on X2, and not in X1. Dually, starting now from a function v on X2, op(v)

defines a new function on X1, and not in X2.
(2) In fact, since sending and receiving messages is an event, the infimum (of a non-

empty set) is a minimum and the suprema (of a non-empty set) is a maximum.
Otherwise, the infimum of an empty set is the top of the ordered set, that is, 1, and
the supremum is the bottom, i.e., 0.

Proposition 4.12 Let (
⋃2

i=1(Xi ,�i ),P) be a distributed system with a single com-
munication P from X1 to X2. Let u and v be two (not necessarily strictly) increasing
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functions on X1 and X2 (respectively) that take values on (0, 1). Then, the following
properties are satisfied:

(i) op(v) and op(u) are increasing in X1 and X2, respectively.

(ii) The pairs (op(v), v) and (u, op(u)) represent the biorder P with respect to ≤.
(iii) x1 ∼∗ y1 implies op(v)(x1) = op(v)(y1), as well as x2 ∼∗∗ y2 implies

op(v)(x2) = op(v)(y2), for any x1, y1 ∈ X1, x2, y2 ∈ X2.6

Proof (i) If x �1 y, then it holds that yPz implies xPz. Therefore, applying the
definition of the lower operator, it follows that the inequality op(v)(x) ≤ op(v)(y)
is satisfied, that is, op(v) is increasing with respect to �1 on X1. We argue dually
in order to prove that op(u) is increasing with respect to the total order �2 defined
on X2.

(ii) If xP y, then applying the definition of the lower operator, it is clear that the inequal-
ity op(v)(x) ≤ (v)(y) is satisfied. We argue analogously for the pair (u, op(u)).
On the other hand, suppose that op(v)(x) ≤ v(y). Since v takes values on (0, 1),
op(v)(x) = r ∈ (0, 1), which means that (by definition of op(v)) there exists

z ∈ X2 such that xPz with v(z) = r (here take into account Remark 4.11 (2)).
Thus, v(z) = r ≤ v(y) and then, z �2 y. Therefore, we conclude that xP y.
Hence, the pair (op(v), v) represents the biorder with respect to ≤.

(iii) If x1 ∼∗ y1, then x1Pz holds if and only if y1Pz is satisfied, for any z ∈ X2. There-
fore, by the definition of the lower operator, the equality op(v)(x1) = op(v)(y1)
holds true. We argue analogously for the indifference ∼∗∗.

��
Remark 4.13 (1) Dealing with a distributed system (

⋃n
i=1(Xi ,�i ),P= ⋃

i �= j Pi j )

of n processes, since—by Proposition 4.12 (i)—op(ui ) and op(ui ) are increasing
in their corresponding sets (Xi−1 and Xi+1, respectively), it is possible to apply
an operator more than once. Therefore, starting from an increasing function ui
in Xi , we shall denote by op2(ui ) the function op(op(ui )) defined in Xi−2. This

notation is generalized to opk(ui ), achieving a function in Xi−k . We shall use the
same notation for the upper operator op. Since the hypothesis of Proposition 4.12
are again satisfied (now for opk(ui ) and opk(ui )), the properties (i) and (i i) are
also true for these iterations.

(2) The fact that the functions u and v are strictly increasing (i.e., they represent the
corresponding total preorder) does not guarantee that op(v) and op(u) are also.

Theorem 4.14 Let (
⋃n

i=1(Xi ,�i ),P= ⋃n−1
i=1 Pi i+1) a distributed system of n pro-

cesses with a line communication such that for every i ∈ {1, . . . , n − 1} the pair
(ui , vi ) is a representation of the biorder P i i+1, with the additional property that ui
and vi represent the total orders �i and �i+1, respectively. Then, (w1, . . . , wn) is a
weak representation of the distributed system, where each function wi is defined on
Xi by a sum of n − 1 functions as follows:

6 Here, ∼∗ and ∼∗∗ denote the equivalence relations associated to the traces �∗ and �∗∗ of the biorder
P , respectively.
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w1 = u1 + ∑n−2
k=1 op

k (uk+1)

w2 = v1 + u2 + ∑n−3
k=1 op

k (uk+2)

w3 = op(v1) + v2 + u3 + ∑n−4
k=1 op

k (uk+3)

.

.

.
.
.
.

.

.

.

w j = ∑ j−2
k=1 op

j−1−k (vk ) + v j−1 + u j + ∑n− j−1
k=1 opk (uk+ j )

.

.

.
.
.
.

.

.

.

wn = vn−1 + ∑n−2
k=1 op

k (vn−1−k )

Proof First, in the following table, we recover the distinct functions defined on each
process: Therefore, then, each functionwi is the sumof all thesen−1 functions defined

X1 X2 X3 · · · Xn−1 Xn
u1 v1 op(v1) · · · opn−3(v1) opn−2(v1)

op(u2) u2 v2 · · · opn−4(v2) opn−3(v2)

op2(u3) op(u3) u3 · · · opn−5(v3) opn−4(v3)

· · · · · · · · · · · · · · · · · ·
opn−2(un−1) opn−3(un−1) opn−4(un−1) · · · un−1 vn−1

on the set Xi . Let us see now that this tuple (w1, . . . , wn) is a weak representation of
the distributed system.

Since—by Proposition 4.12 (i)—all the functions defined on each set Xi (for each
i ∈ {1, . . . , n}) are increasing (with respect to the corresponding total order �i ) and
there is—at least—one which is strictly increasing (ui and/or vi−1), we conclude that
the sum of all of them (denoted by wi ) is a representation of the total order �i .

Finally, taking into account Proposition 4.12 (i i) and that (ui , vi ) is a represen-
tation of the biorder P i i+1 (for each i ∈ {1, . . . , n − 1}) with respect to <, it is
straightforward to check that if xP i i+1y holds then wi (x) < wi+1(y) is satisfied (for
each i ∈ {1, . . . , n − 1} and for any x ∈ Xi , y ∈ Xi+1). Therefore, we conclude that
(w1, . . . , wn) is a weak representation of the distributed system. ��

5 Quasi-finite Partial Orders

In this section, a particular but interesting class of partial orders is studied: quasi-finite
partial orders. This kind of structures includes all those partial orders that can be
understood as a finite family of chains with a communication. The key of this section
is to focus the research on the quotient sets (with respect to the traces of the biorders),
which makes possible a discrete study of the representability, achieving results not
only of the quotient structure but also of the original one. Thus, it is also possible to
apply some techniques on finite posets as those introduced in [19].
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In fact, given a distributed system (
⋃n

i=1(Xi ,�i ),P= ⋃

i �= j Pi j ), we may define
an equivalence relation Ii on Xi by means of the intersection of all the equivalence
relations I∗

i j and I∗∗
j i (for any i �= j) on Xi (i.e., the equivalence relation associated

to the union of all the traces on Xi ) (see Remark 2.7). Then, since the communication
is a finite relation, the cardinal of each quotient set Xi = Xi/Ii is finite, for any
i = 1, . . . , n.

The goal of the present section is the attainment of a method to construct finite
Richter–Peleg multi-utility representations for quasi-finite partial orders, i.e., a repre-
sentation method for distributed systems. For more clarity, Example 5.4 is included
in order to show this procedure.

Let us see how quasi-finite partial orders are defined.

Definition 5.1 We shall say that a partial order on a set is quasi-finite if it is the causal
relation of a distributed system.

Remark 5.2 (1) By definition, quasi-finite partial orders are near-complete.
(2) Given a distributed system (

⋃n
i=1(Xi ,�i ),P= ⋃

i �= j Pi j ), we may be inter-
ested just in the communication P and skip the remaining information, i.e., the
total orders �i . In that case, a finite poset (

⋃n
i=1(Xi/Ii ,�i ),P= ⋃

i �= j Pi j ) is

achieved, where �i is the total order on Xi = Xi/Ii and now the communication
P is restricted to the quotient sets (see Example 11 in [16]).

The following proposition shows how to construct a Richter–Peleg multi-utility
representation of a quasi-finite partial order, just starting from a bijective Richter–
Peleg multi-utility representation (see Definition 2.9) of a finite poset and utilities of
total preorders.

Theorem 5.3 Let � be a quasi-finite partial order on X that coincides with the
causal relation associated to a distributed system (

⋃n
i=1(Xi ,�i ),P= ⋃

i �= j Pi j ).

Let {wi }ni=1 be a family of utilities7 wi : (Xi ,�i ) → (0, 1) and U = {ul}kl=1 a bijec-

tive Richter–Peleg multi-utility representation associated to (
⋃n

i=1(Xi/Ii ,�i ), P).
Then, the family of functions V = {vl}kl=1 defined by

vl(x) = ul(x̄) + wi (x), if x ∈ Xi ,∀x ∈ X

is a Richter–Peleg multi-utility representation of the quasi-finite partial order �.

Proof ⇒: Let x, y be two elements in X such that x ≺ y.
If x and y belong to the same process Xi , then x ≺i y so, wi (x) < wi (y). Since

x ≺i y, it is also true that x �∗
i j y as well as x �∗∗

j i y for any trace defined on Xi .
Therefore, ul(x̄) ≤ ul(ȳ) is satisfied, for any function ul ∈ U . Hence, we conclude
that vl(x) < vl(y) for any vl ∈ V .

If x and y belong to distinct processes, Xi and X j respectively, then it holds that
xP i j y so, ul(x̄) < ul(ȳ) is satisfied for any ul ∈ U . Therefore, since ul(x̄)+1 ≤ ul(ȳ)

7 We may assume, without loss of generality, that the codomain of the utilities is the interval (0, 1) instead
of the all real line.
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(X1,�1)

(X2,�2)

(X3,�3)

Fig. 9 The distributed system of three processes of Example 5.4

and the codomain of the utilities is the interval (0, 1), we conclude that vl(x) < vl(y)
for any v j ∈ V .
⇐:Suppose that vl(x) < vl(y) is satisfied for any vl ∈ V . Since vl(x) = ul(x̄)+wi (x)
(with x ∈ Xi , for any i = 1, . . . , n) and the codomain of the utilities is the interval
(0, 1), vl(x) < vl(y) holds true if and only if ul(x̄) ≤ ul(ȳ) for any ul ∈ U .

Now, we distinguish two cases.8

1. ul(x̄) < ul(ȳ) for any ul ∈ U . In that case, we distinguish again two cases.

(a) x and y belong to the same process Xi . In that case, since ul(x̄) < ul(ȳ) for
any ul ∈ U , there exists a trace�∗

i j or�∗∗
j i on Xi such that x ≺∗

i j y or x ≺∗∗
j i y.

Thus, we conclude that x ≺i y and, hence, x ≺ y.
(b) x and y belong to distinct processes, Xi and X j respectively. In that case, since

ul(x̄) < ul(ȳ) for any ul ∈ U , there exist elements xk1 ∈ Xk1 , . . . , xks ∈ Xks
(for some k1, . . . , ks ∈ {1, . . . , n}) such that x P i k1 xk1 Pk1 k2 · · · Pks−1 ks

xk Pks j y. Thus, we conclude that x ≺ y.

2. ul(x̄) = ul(ȳ) for any ul ∈ U . In that case, x and y belong to the same quotient
class and, therefore, to the same process. Thus, since ul(x̄) = ul(ȳ) for any ul ∈ U
and vl(x) < vl(y) for any vl ∈ V , it holds that wi (x) < wi (y). Then, we conclude
that x ≺i y and, hence, x ≺ y. ��

Example 5.4 Let (X1,�1), (X2,�2) and (X3,�3) be three totally ordered sets (they
may be uncountable, but representable in any case) such that xi = max{(Xi ,�i )} and
yi = min{(Xi ,�i )}, for i = 1, 2, 3. Suppose that there is a communication between
these sets (defined by P12,P13 and P32) as it is shown in Fig. 9, such that y1 P13 z3,
x1 P12 y2 and x3 P32 y2.

8 Here notice that, since U = {ul }kl=1 is bijective Richter–Peleg multi-utility associated to the poset that
arose from the quotient of the traces on the processes, ul0 (x) = ul0 (y) holds true (for some index l0) if
and only if both elements belong to the same class (and so, also to the same process). As a matter of a fact,
since they belong to the same class then it holds that ul (x) = ul (y) not only for that index l0 but also for
any index l.
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Fig. 10 Hasse diagram and the corresponding bijective Richter–Peleg multi-utility {u1, u2} of the quotient
associated to the distributed system of Fig. 9

Ifwe focus on the quotientwe achieve the poset of Fig. 10.Here, it is straightforward
to check that x1 = U≺1(y1) ⊆ X1, y1 = L�1

(y1) ⊆ X1, x2 = X2, x3 = U�3
(z3) ⊆

X3 and y3 = L≺3(z3) ⊆ X3.
Therefore, now, given w1, w2 and w3 three representations (that take values on

(0, 1)) of �1, �2 and �3, respectively, we can easily construct a representation of the
distributed system through these functions and the utilities of the poset, as commented
in Theorem 5.3:

v1(x) = u1(x̄) + wi (x), if x ∈ Xi ,∀x ∈ X ,

v2(x) = u2(x̄) + wi (x), if x ∈ Xi ,∀x ∈ X .

It is straightforward to see that {v1, v2} is also a Richter–Peleg multi-utility of the
causal relation (see Proposition 4.4).

In the theorem before, the functions of the representation are defined through the
sum of two functions. Hence, it is possible to study the continuity of the functions of
the representation by means of the continuity of the other ones.

Theorem 5.5 Let (
⋃n

i=1(Xi ,�i ),P= ⋃

i �= j Pi j ) be a distributed system where each
set Xi is endowed with a topology τi . Let Ii be the equivalence relation on Xi emerged
from the intersection of all the equivalence relations ∼∗

i j and ∼∗∗
j i (for any i �= j ) on

Xi . Assume that the following conditions are satisfied for each i = 1, . . . , n:

(i) The total orders �i are τi -continuous and representable.
(ii) Each class x = {y ∈ Xi : yIi x} is open in Xi , for any x ∈ Xi .

Then, the distributed system is continuously representable.

Proof By Theorem 5.3, we may construct a representation of the distributed system
such that each function vl is defined in Xi by vl(x) = ul(x̄) + wi (x) (as stated in
Theorem 5.3). By hypothesis (i), we may assume that wi is continuous [9], and by
condition (i i) it is straightforward to see that ul is continuous too.Hence, each function
vl is continuous in Xi , for any i = 1, . . . , n. ��
Remark 5.6 The reciprocal of the theorem above is not true (see Example 11 and
Remark 12 of [16]).

From Theorem 5.5 and Proposition 4.4 the following corollary is deduced, which
may be useful if we are focusing on a quasi-finite partially ordered set (X ,�) endowed
with a topology.
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Corollary 5.7 Let� be a quasi-finite partial order on (X , τ ). Assume that there exists a
distributed system (

⋃n
i=1(Xi ,�i ),P) such that the following conditions are satisfied

for each i = 1, . . . , n:

(i) The total orders �i are τi -continuous and representable, where τi = τ|Xi .
(ii) Each class x = {y ∈ Xi : yIi x} is open in Xi , for any x ∈ Xi .
(iii) Any open set U ∈ τi is also open in τ .

Then, there exists a continuous and finite Richter–Peleg multi-utility of the partial
order � on (X , τ ).

6 Further Comments

For a sake of brevity and clearness, in the present paper, we have argued on total
orders and partial orders, however, it can be easily generalized to total preorders and
preorders.

The sections related to representability (and the aggregationproblem)maybe imple-
mented through partial functions, using the idea of partial representability (see [7]).
In order to illustrate this final idea, we include the following result:

Proposition 6.1 Let (X1,�1), (X2,�2) and (X3,�3) be three representable totally
ordered sets and P12 and P23 two communications from X1 to X2 and from X2 to X3,
respectively. Thus, the structure that arise is a distributed system of three processes
with line communication. Assume that each biorder is representable, such that:

xP12y ⇐⇒ u1(x) < v1(y), for any x ∈ X1, y ∈ X2,

yP23z ⇐⇒ v2(y) < w1(z), for any y ∈ X2, z ∈ X3,

as well as the biorderP13 emerged from the compositionP12 ◦P23 (i.e., xP13z ⇐⇒
xP12yP23z, for some y ∈ X2) is representable by (u2, w2) :

xP13z ⇐⇒ u2(x) < w2(z), for any x ∈ X1, z ∈ X3.

(Here, we assume that the functions u1, u2, v1, v2, w1 and w2 takes values on
(0, 1), as well as they also represent the total order of the corresponding set). Then, the
associated causal relation→ is partially representable (see [7]) through the functions
{σ1, σ2, σ3} defined as follows:

σ1(x) =
⎧

⎨

⎩

u1(x) ;x ∈ X1
v1(x) ;x ∈ X2
w1(x) + 1 ; x ∈ X3

σ2(x) =
⎧

⎨

⎩

u1(x) ; x ∈ X1
v2(x) + 1 ; x ∈ X2
w1(x) + 1 ; x ∈ X3

σ3(x) =
⎧

⎨

⎩

u2(x) ; x ∈ X1
∅ ; x ∈ X2
w2(x) ; x ∈ X3
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So that, x → y if and only if σ(x) < σ(y) for some σ ∈ {σi }3i=1 as well as
σi (x) < σi (y) for any i = 1, 2, 3 such that σi is defined on both x and y.
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