
Bulletin of the Iranian Mathematical Society (2024) 50:13
https://doi.org/10.1007/s41980-023-00849-6

ORIG INAL PAPER

Strong Edge Geodetic Problem on Complete Multipartite
Graphs and Some Extremal Graphs for the Problem

Sandi Klavžar1,2,3 · Eva Zmazek1

Received: 9 June 2023 / Revised: 17 November 2023 / Accepted: 10 December 2023 /
Published online: 31 January 2024
© The Author(s) 2024

Abstract
A set of vertices X of a graph G is a strong edge geodetic set if, to any pair of vertices
from X , we can assign one (or zero) shortest path between them, such that every
edge of G is contained in at least one on these paths. The cardinality of a smallest
strong edge geodetic set of G is the strong edge geodetic number sge(G) of G. In this
paper, the strong edge geodetic number of complete multipartite graphs is determined.
Graphs G with sge(G) = n(G) are characterized and sge is determined for Cartesian
products Pn � Km . The latter result in particular corrects an error from the literature.

Keywords Strong edge geodetic problem · Complete multipartite graph ·
Edge-coloring · Cartesian product of graphs

Mathematics Subject Classification 05C12 · 05C70

1 Introduction

Covering vertices or edges of a graph by the smallest number of paths is a fundamental
optimization problemand appears in the literature in several variations depending upon
the properties one requires from the paths. In the isometric path cover problem (alias
geodetic cover problem), the aim is to cover all the vertices by a minimum number of
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shortest paths [4, 5, 10, 11, 15, 21]. In the path cover problem, we want to cover all
the vertices by a minimum number of vertex disjoint paths [6, 7, 20]. Dual concepts
have also been studied as, for instance, the k-path covers which are sets S of vertices
of a graph G, such that every path of order k in G contains at least one vertex from
S; see [2, 3, 9]. In the edge version of the isometric path cover problem, we want to
cover all the edges by a minimum number of shortest paths [1, 22, 23]. In this paper,
we are interested in the strong edge geodetic problem introduced in [17] as follows.

Let G = (V (G), E(G)) be a graph. A set of vertices X ⊆ V (G) is a strong edge
geodetic set if, to any pair of vertices u and v from X , we can assign a shortest u, v-path
Puv , such that every edge xy ∈ E(G) is contained in at least one on the paths Puv .
The cardinality of a smallest strong edge geodetic set of G is the strong edge geodetic
number sge(G) of G. Such a set is briefly called a sge(G)-set.

In the seminal paper [17], it was proved, among other results, that the strong edge
geodetic problem isNP-complete. In [8], it was further proved that there is no approx-
imation of the strong edge geodetic number with an approximation factor better that
781/780. Several additional results on the strong edge geodetic number were reported
in [25, 26]. In the latter paper, the strong edge geodetic number was determined for
Cartesian products Pn � Pk , where k ∈ {2, 3, 4}.

The vertex version of the strong edge geodetic problem is known as the strong
geodetic problem and was studied for the first time in [16, 18]. The strong geodetic
problem is also NP-complete and remains such even when restricted to bipartite
graphs and multipartite graphs [13]. Moreover, determining whether a given set X is
a strong geodetic set is NP-hard [8] as well.

The stronggeodetic number of complete bipartite (resp.mutipartite) graphs received
a lot of attention. First, in [13], the problem was solved for balanced complete bipar-
tite graphs Kn,n . Subsequently, using different approaches, a formula for the strong
geodetic number of arbitrary complete bipartite graphs was derived in [14] and in
[12]. In [14], a lower bound for the strong geodetic number of a complete multipartite
graph was given and it was conjectured that the strong geodetic number remainsNP-
complete on complete multipartite graphs. In [8], this conjecture was disproved by
developing a polynomial algorithm for the strong geodetic number of complete muti-
partite graphs. In this direction, we emphasize that in [19], an O(|E(G)| · |V (G)|2)
algorithm for computing the strong geodetic number of an outerplanar graph G was
developed. Several additional interesting results on the strong geodetic problem were
presented in [24]. Among other results, relations between the strong geodetic number
and the connectivity and the diameter were established, and graphs with the strong
geodetic number equal to 2, |V (G)| − 1, and |V (G)| were characterized.

Motivated by the efforts to determine the strong geodetic number of complete
bipartite graphs, we determine in Sect. 2 the strong edge geodetic number of complete
bipartite graphs, and using this result, we then determine the strong edge geodetic
number of arbitrary complete multipartite graphs. In Sect. 3, we characterize graphs
G with sge(G) = n(G) and discuss the graphs with sge(G) = n(G)−1. In particular,
we observe that Cartesian products P2 � Kn belong to this family of graphs. This
corrects [25, Theorem 13] where it is wrongly stated that sge(P2 � Kn) = 2n−2. We
then proceed by determining sge(Pm � Kn) for all m, n ≥ 2.
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We conclude the introduction by giving some definitions needed. The order of a
graph G is denoted by n(G). A vertex u of a graph G is universal if degG(u) =
n(G) − 1. The Cartesian product G � H of graphs G and H is the graph with the
vertex set V (G) × V (H), vertices (g, h) and (g′, h′) being adjacent if either g = g′
and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). As usual, χ ′(G) is the chromatic index
of G. For a positive integer n, the set {1, . . . , n} will be dented by [n].

If U is a strong edge geodetic set, then we will denote by ̂U the set of associated
paths with endpoints fromU which cover all the edges of G. Clearly, ̂U is not unique,
but unless stated otherwise, we will assume that ̂U has been selected and is fixed.

2 Complete Multipartite Graphs

In this section, we determine the strong edge geodetic number of complete multipartite
graphs. To do so, we first prove the corresponding result for complete bipartite graphs
which reads as follows.

Theorem 2.1 If n ≥ m ≥ 2, then the following holds.

(i) If n is even, then

sge(Kn,m) =
{

n + 1; n = m,

n; n ≥ m + 1.

(ii) If n is odd, then

sge(Kn,m) =

⎧

⎪

⎨

⎪

⎩

n + 2; n = m,

n + 1; n = m + 1,

n; n ≥ m + 2.

In the rest of the section, we assume that n ≥ m ≥ 2 and that the bipartition of
Kn,m is (X ,Y ), where X = {x0, . . . , xn−1} and Y = {y0, . . . , ym−1}.
Lemma 2.2 If U is a strong edge geodetic set of Kn,m, then X ⊆ U or Y ⊆ U.

Proof LetU be a strong edge geodetic set of the graph Kn,m . Suppose on the contrary
that there exist vertices xi ∈ X\U and y j ∈ Y\U . Because diam(Kn,m) = 2 and xi y j
is an edge of Kn,m , none of the shortest paths with endpoints from U can cover the
edge xi y j , that is, U cannot be a strong edge geodetic set. ��
Lemma 2.3 If U is a strong edge geodetic set of Kn,m and Y ⊆ U, then |U | ≥ n + 1.

Proof Suppose U is a strong edge geodetic set of Kn,m , where U = Y ∪ X ′ with
X ′ ⊆ X and |X ′| = k, 0 ≤ k ≤ n. Consider an arbitrary vertex y j ∈ Y . There are
exactly n− k edges between y j and X\X ′. Because the shortest paths that cover these
edges have both of their endpoints in Y , it has to hold m − 1 ≥ n − k. This in turn
implies that |U | = |Y | + |X ′| = m + k ≥ n + 1. ��
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Corollary 2.4 If n ≥ m ≥ 2, then sge(Kn,m) ≥ n. Moreover, if m = n, then
sge(Kn,n) ≥ n + 1.

Proof If m = n, then the second assertion of the corollary follows immediately from
Lemmas 2.2 and 2.3. Suppose now that n > m and let U be a smallest strong edge
geodetic set of Kn,m , so that |U | = sge(Kn,m). Then, X ⊆ U or Y ⊆ U by Lemma 2.2.
If X ⊆ U , then sge(Kn,m) = |U | ≥ |X | = n. And, if Y ⊆ U , then sge(Kn,m) ≥ n+1
follows by Lemma 2.3. ��

We have thus established the lower bound for the case when n is even. For n odd,
we proceed as follows.

Lemma 2.5 Let U be a strong edge geodetic set of Kn,m. If n is odd and X ⊆ U, then
|U | ≥ 2n

n+1 + m.

Proof Let U be a strong edge geodetic set of Kn,m , where U = X ∪ Y ′ with Y ′ ⊆ Y
and |Y ′| = k. For each edge xy, where x ∈ X and y ∈ Y ′, we put the shortest path xy
to ̂U . The edges between vertices from X and Y\Y ′ must be covered by the shortest
paths of length 2 with both of their endpoints in X . For each pair of vertices from
X , we can put only one shortest path to ̂U , so we can only put

(n
2

)

shortest paths
to ̂U to cover the n · (m − k) edges between the vertices from X and the vertices
from Y\Y ′. Moreover, because the degree of every vertex from Y\Y ′ is n, which we
have assumed to be odd, each vertex from Y\Y ′ must be the central vertex of at least
(n + 1)/2 shortest paths from ̂U . Since U is a strong edge geodetic set this implies
that

(n
2

) ≥ (m − k) · n+1
2 . This inequality rewrites to k ≥ m − n(n− 1)/(n+ 1) which

in turn implies that |U | = n + k ≥ n + m − n(n − 1)/(n + 1) = 2n
n+1 + m. ��

Corollary 2.6 If n ≥ 3 is odd, then sge(Kn,n) ≥ n + 2 and sge(Kn,n−1) ≥ n + 1.

Proof Let U be a smallest strong edge geodetic set of Kn,n . By Lemma 2.5

|U | ≥ n + 2n

n + 1
.

As |U | is an integer and 2n/(n + 1) > 1 for n ≥ 2, we get |U | = sge(Kn,n) ≥ n + 2.
Let now U be a smallest strong edge geodetic set of Kn,n−1. By Lemma 2.2, we

have X ⊆ U or Y ⊆ U . In the latter case, Lemma 2.3 gives sge(Kn,n−1) ≥ n + 1.
Assume second that X ⊆ U . Then, Lemma 2.5 gives

|U | ≥ 2n

n + 1
+ (n − 1) = n + n − 1

n + 1
.

Since n−1
n+1 > 0 for n ≥ 2 and since |U | is an integer, also in this case, we get

sge(Kn,n−1) ≥ n + 1. ��
So far, we have proved the lower bound for all the cases of Theorem 2.1. In the

following, we will construct in each case a strong edge geodetic set of the required
cardinality.
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x0 x1 x2 x3 x4 x5

y2

Fig. 1 Shortest paths from ̂U that cover edges incident to y2

Case 1: n is even.
We first consider Kn,n and prove that

sge(Kn,n) ≤ n + 1 . (1)

We claim that U = X ∪ {yn−1} is a strong edge geodetic set of Kn,n . For every
0 ≤ i ≤ n − 1, add the shortest path xi yn−1 to ̂U to cover the edge xi yn−1. Then, all
the other edges must be covered by shortest paths of the form xi y j xk , where i 
= k.
To do so, we use edge-colorings of Kn . It is well known that χ ′(Kn) = n− 1 for even
n. Let V (Kn) = {0, 1, . . . , n − 1}. Then, an edge-coloring c of Kn using n − 1 colors
can be defined as follows: if i, j ∈ {0, 1, . . . , n − 2}, i 
= j , then let c(i j) = (i + j)
mod (n − 1), and for for i ∈ {0, 1, . . . , n − 2} let c(i(n − 1)) = 2i mod (n − 1).

In the covering of Kn,n that we are constructing, we put the shortest path xi y j xk
to ̂U if and only if c(ik) = j . See Fig. 1, where this construction is illustrated for the
case n = 6 and the edges incident to y2. In K6, we have c(02) = c(15) = c(34) = 2;
hence, the paths x0y2x2, x1y2x5, and x3y2x4 belong to ̂U .

Using this construction, a pair of vertices xi and xk is never used twice, and for
each vertex y ∈ Y\{yn−1}, the shortest paths in ̂U have pairwise different endpoints.
Since in c every color is used exactly n/2 times, the shortest paths from ̂U passing
through y j cover all the edges incident with y j . This proves (1).

Consider now Kn,m , where m ≤ n − 1 (and n is even). We need to show that
sge(Kn,m) ≤ n. For this sake, we claim that X is a strong edge geodetic set. Indeed,
use the above edge-coloring c of Kn and for each yi ∈ Y , i ∈ {0, . . . ,m − 1}, put
all the shortest paths x j yi xk to ̂U for which c( jk) = i . By the above argument, X is
indeed a strong edge geodetic set, and hence, sge(Kn,m) ≤ n in this subcase.

Case 2: n is odd.
We first consider Kn,n and prove that sge(Kn,n) ≤ n + 2. For this purpose, consider
the set U = X ∪ {yn−2, yn−1}. The subgraph of Kn,n induced by the set of vertices
V (Kn,n)\{xn−1, yn−1} is isomorphic to Kn−1,n−1. As n − 1 is even, we can cover its
edges by the paths as described in Case 1 to derive (1). Recall that for this covering, the
vertices x0, . . . , xn−1 and yn−2 are used. To cover the edges yn−1xi , 0 ≤ i ≤ n−1, add
the shortest paths yn−1xi to ̂U . Finally, to cover the remaining yet uncovered edges,
that is, the edges xn−1yi , where i ∈ {0, . . . , n − 2}, put the shortest paths xn−1yi xi to
̂U .
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We next show that sge(Kn,n−1) ≤ n + 1. In this subcase, set U = X ∪ {yn−2}.
Then, as in the above subcase, cover the edges of the subgraph of Kn,n−1 induced by
the set of vertices V (Kn,n−1)\{xn−1} as described in Case 1 to derive (1). After that,
to cover the edges xn−1yi , where i ∈ {0, . . . , n − 2} we add to ̂U the shortest paths
xn−1yi xi .

Consider finally Kn,m , wherem ≤ n−2. In this case, X is a strong edge geodetic set.
For this sake, note that by the second subcase of Case 1, we know that {x0, . . . , xn−2} is
a strong edge geodetic set of the subgraph of Kn,m induced by the set V (Kn,m)\{xn−1}.
To cover the remaining not yet covered edges xn−1yi , where i ∈ {0, . . . ,m − 1} we
add to ̂U the shortest paths xn−1yi xi . From here, it is clear that X is a strong edge
geodetic set of Kn,m and we conclude that in this subcase sge(Kn,m) ≤ n.

We have thus established all the upper bounds which completes the proof of The-
orem 2.1. Using it, we can in turn determine the strong edge geodetic number of
complete multipartite graphs as follows.

Theorem 2.7 If k ≥ 2 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk, then the following holds.

(i) If n1 is even, then

sge(Kn1,...,nk ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

k
∑

j=2
n j + 1; n2 ∈ {n1, n1 + 1},

k
∑

j=2
n j ; otherwise;

(ii) If n1 is odd, then

sge(Kn1,...,nk ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

k
∑

j=2
n j + 2; n2 = n1,

k
∑

j=2
n j ; otherwise.

Proof Let k ≥ 2 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk , and set G = Kn1,...,nk for the rest of
the proof. Let Xi , i ∈ [k], be the partition sets of G, where |Xi | = ni . Let U be an
arbitrary (smallest) strong edge geodetic set of G. If i 
= j , then, by Lemma 2.2, we
see that Xi ⊆ U or X j ⊆ U . If follows that U contains k − 1 of the partite sets.

Let W = ∪k
i=2Xi . Then, it remains to cover the edges between X1 and each of the

Xi , i ≥ 2. More precisely, we need to cover the edges in induced subgraphs Kn1,ni ,
i ≥ 2, where the partite sets of cardinality ni are already included. Clearly, no shortest
path ofG has length greater than 2 and a shortest path of length 2 has both endpoints in
the same set of the partition. Hence, an edge of Kn1,ni can be covered only by vertices
in X1 ∪ Xi , for every 2 ≤ i ≤ k.

Assume first that n2 ≥ n1+2. Then, by Theorem 2.1 and its proof, we infer that X2
is a strong edge geodetic set of Kn1,n2 with minimum cardinality. Furthermore, since if
k > 2, for every 2 < i ≤ k, we have ni ≥ n2 ≥ n1+2, again by Theorem 2.1, we have
that Xi is a strong edge geodetic set of Kn1,ni with minimum cardinality. Therefore,
W is a is a strong edge geodetic set of G with minimum cardinality no matter whether
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n1 is even or odd. Moreover, we get the same conclusion if n1 is odd and n2 = n1 +1.
Assume next that n1 is odd and n2 = n1. Then, Theorem 2.1(ii) implies that the union
of X2 and two vertices of X1, say u and w is a strong edge geodetic set of Kn1,n2 with
minimumcardinality. In this case,we conclude thatW∪{u, v} is a strong edge geodetic
set of G with minimum cardinality. The cases when n1 is even and n2 ∈ {n1, n1 + 1}
are treated similarly. ��

3 Graph with Large Strong Edge Geodetic Sets

In this section, we first characterize graphs G with sge(G) = n(G). After that, we
consider graphsG with sge(G) = n(G)−1 and determine sge(Pn � Km). In particular,
sge(P2 � Km) = 2m − 1, which corrects a result from [25].

Let G be a graph and uv ∈ E(G). We say that a vertex v is a dominant neighbor of
u if N [u] ⊆ N [v], where N [u] = {u} ∪ {x : ux ∈ E(G)} is the closed neighborhood
of a vertex u. Vertices u and v of a graph G are twins if N [u] = N [v]. Note that twins
are necessarily adjacent and that if u and v are twins, then u is a dominant neighbor
of v and v is a dominant neighbor of u.

The following lemma seems to be of independent interest.

Lemma 3.1 Let G be a graph and U ⊆ V (G) be a strong edge geodetic set. If v is a
dominant neighbor of u, then u ∈ U. In particular, if u and v are twin vertices, then
u ∈ U and v ∈ U.

Proof Let uv ∈ E(G) and N [u] ⊆ N [v]. If P is a shortest path in G which contains
the edge uv, then one of the endpoints of P must be u, for otherwise P would not be
shortest. If further u and v are twins, then also N [v] ⊆ N [u] and thus also v ∈ U . ��
Proposition 3.2 Let G be a graph. Then, sge(G) = n(G) if and only if every vertex of
G has a dominant neighbor.

Proof If every vertex of G has a dominant neighbor, then every vertex lies in every
strong edge geodetic set by Lemma 3.1. Hence, sge(G) = n(G).

Assume now that a vertex u ∈ V (G) does not admit a dominant neighbor.We claim
thatU = V (G)\{u} is a strong edge geodetic set of G. Let v be an arbitrary neighbor
of u. Since N [u] � N [v], there exists a vertex w ∈ N [u]\N [v]. To cover the edge
uv, put the shortest path wuv to ̂U . Proceed analogously for every neigbor v′ of u,
where if the edge v′u has been already covered before, do nothing. In this way, all
edges incident with u are covered. Let next xy be an arbitrary edge from E(G) where
{x, y} ∩ {u} = ∅. Then add to ̂U the shortest path xy. Clearly, the paths added so far
to ̂U cover all the edges of G and we conclude that sge(G) < n(G). ��

Proposition 3.2 implies several results from [25] as for instance [25, Theorem 8]
which asserts that if a graph G contains at least two universal vertices, then sge(G) =
n(G).

A vertex u of a graph G is simplicial if N (u) induces a clique of G. If u is a
simplicial vertex and v its arbitrary neighbor, then N [u] ⊆ N [v]. Denoting by s(G)

the number of simplicial vertices of G Lemma 3.1 thus implies:
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Corollary 3.3 If G is a graph, then sge(G) ≥ s(G).

Since in Kn every vertex is simplicial, Corollary 3.3 implies that sge(Kn) = n. We
can also deduce this fact from Lemma 3.1 by observing that each pair of vertices of
Kn are twins.

Lemma 3.1 implies also the following.

Corollary 3.4 If a graph G contains a universal vertex, then sge(G) ≥ n(G) − 1.
Moreover, if there is only one universal vertex, then sge(G) = n(G) − 1.

Proof Let w be a universal vertex of G. Then, w is a dominant neighbor of every
vertex u ∈ V (G)\{w}, and hence, Lemma 3.1 implies that V (G)\{w} ⊆ U for every
strong edge geodetic set U of G. Thus, sge(G) ≥ n(G) − 1. In the case when w is a
unique universal vertex of G, then with the same arguments as we had in the last part
of the proof of Proposition 3.2, we infer that V (G)\{w} is a strong edge geodetic set.
Hence, sge(G) ≤ n(G)− 1 when G has a unique universal vertex, so that in this case,
sge(G) = n(G) − 1. ��

The second assertion of Corollary 3.4 was earlier presented as [25, Theorem 5].
Moreover, in [25, Theorem 5], it was also claimed that sge(P2 � Km) = 2m−2. It can
be checked that the result is not true and that instead the Cartesian products P2 � Km

also belong to the family of graphs G for which sge(G) ≥ n(G) − 1. More generally,
we have the following result.

Theorem 3.5 If m ≥ 3 and n ≥ 2, then

sge(Pn � Km) =

⎧

⎪

⎨

⎪

⎩

mk; n = k2,

mk + (m − 1); n = k2 + h, 1 ≤ h ≤ k,

mk + m; n = k2 + h, k + 1 ≤ h ≤ 2k.

Proof Set V (Km) = [m] and V (Pn) = [n] where i(i + 1) ∈ E(Pn) for i ∈ [n − 1].
If y ∈ V (Km), then we will denote by Py

n the subgraph of Pn � Km induced by the
vertices (i, y), i ∈ [n]. Py

n is also called a Pn-layer of Pn � Km and is isomorphic
to Pn . Throughout the proof, we will use the fact that in a shortest path of Pn � Km ,
there is at most one edge between two distinct Pn-layers.

Consider first the case n = k2, where k ∈ N. In this case, we claim that U1 =
⋃k

i=1
⋃m

j=1{(i2, j)} is a strong edge geodetic set of Pn � Km . To cover all the edges

of Pn � Km , we proceed as follows. For every j ∈ [m], put to ̂U1 the unique shortest
path between the vertices (1, j) and (k2, j). For every pair y1, y2 ∈ V (Km), y1 < y2,
we put the following shortest paths to ̂U1.

• For every i ∈ [k], put to ̂U1 the unique shortest path (of length 1) between the
vertices (i2, y1) and (i2, y2).

• For every 2 ≤ i ≤ k, and for every l ∈ [i − 1], put to ̂U1 the shortest path between
the vertices (l2, y1) and (i2, y2) that contains the edge ((i −1)2+ l, y1)((i −1)2+
l, y2), and the shortest path between the vertices (l2, y2) and (i2, y1) that passes
through the edge (i(i − 1) + l, y1)(i(i − 1) + l, y2). See Fig. 2 for an example,
where the vertices from U1 are drawn in black.
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Fig. 2 Shortest paths for n = 16 and (y1, y2, i, l) ∈ {(m − 1,m, 2, 1), (m − 1,m, 3, 2), (1, 2, 3, 1),
(1,m, 4, 3)}
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Fig. 3 Shortest paths for n = 19 and (y1, y2, i) ∈ {(1, 2, 3), (2,m − 1, 2), (m − 1,m, 1)}

The shortest paths from ̂U1 cover all the edges of Pn � Km , and hence, we can
conclude that sge(Pn � Km) ≤ mk when n = k2.

Assume next that n = k2 + h, where h ∈ [k]. Then, we claim that the set U2 =
U1 ∪ ⋃m

j=2{(n, j)} is a strong edge geodetic set of Pn � Km .

• First, put all the shortest paths from ̂U1 to ̂U2.
• For every pair y1, y2 ∈ V (Km), where y1 < y2, and for every i ∈ [h], put to ̂U2
the shortest path between the vertices (i2, y1) and (n, y2) that contains the edge
(k2 + i, y1)(k2 + i, y2). See Fig. 3 for an example, where the vertices fromU2 are
again drawn in black.

• For every y ∈ {2, . . . ,m}, put to ̂U2 the unique shortest path between the vertices
(1, y) and (n, y). Note that all the edges from P1

n are already covered by the
shortest path from ̂U2 between vertices (h2, 1) and (n, 2).

Since the shortest paths from ̂U2 cover all the edges of Pn � Km , we can conclude
that sge(Pn � Km) ≤ mk + (m − 1), when n = k2 + h and h ∈ [k].

Assume finally that n = k2 + h, where k + 1 ≤ h ≤ 2k. In this case, we claim
that U3 = U1 ∪ ⋃m

j=1{(n, j)} is a strong edge geodetic set of Pn � Km and proceed
as follows.

• Put all the shortest paths from ̂U1 to ̂U3.
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Fig. 4 Shortest paths for n = 22 and (y1, y2, i) ∈ {(1, 2, 3), (m − 1,m, 2)}

• For every pair y1, y2 ∈ V (Km), where y1 < y2, do the following. For every
i ∈ [k], put to ̂U3 the shortest path between vertices (i2, y1) and (n, y2) that
contains the edge (k2 + i, y1)(k2 + i, y2). Moreover, for every i ∈ [h − k], also
add the shortest path between the vertices (n, y1) and (i2, y2) that contains the
edge (k(k + 1) + i, y1)(k(k + 1) + i, y2). In Fig. 4, examples are drawn with the
vertices from U3 again in black.

• For every j ∈ [m], put to ̂U3 the unique shortest path between the vertices (1, j)
and (n, j).

Since the shortest paths from ̂U3 cover all the edges of Pn � Km , we get the upper
bound sge(Pn � Km) ≤ mk + m when n = k2 + h with k + 1 ≤ h ≤ 2k.

In the second part of the proof, we need to demonstrate that the obtained upper
bounds are sharp, that is, there exist no smaller strong edge geodetic sets as the one
constructed above. Let U be a arbitrary strong edge geodetic set of Pn � Km .

Assume first that n = k2 for some k ∈ N. Then, we need to show that |U | ≥ mk.
If for every vertex y ∈ Km , the set U has at least k vertices in the Py

n -layer, then
clearly |U | ≥ mk. Assume, therefore, that for some yi ∈ V (Km), the Pyi

n - layer
contains k − l, l ≥ 1, vertices from U . Since |V (Pyi

n ) ∩U | = k − l, for every vertex
y ∈ V (Km), y 
= yi , the strong edge geodetic set U has to have at least x vertices
from Py

n , where (k − l)x ≥ k2, to cover all the edges between Pyi
n and Py

n . Because
x ≥ k2/(k − l) = k + kl/(k − l) ≥ k + kl/k = k + l, we get

|U | ≥ k − l + (m − 1)(k + l) = mk + (m − 2)l ≥ mk + 1,

where the last assertion follows, sincem ≥ 3 and l ≥ 1. We conclude that in any case,
|U | ≥ mk.

Assume second that n = k2 + h, where 1 ≤ h ≤ k. Now, we need to prove that
sge(Pn � Km) ≥ m(k + 1) − 1. If, for every vertex y ∈ Km , the set U has at least
k + 1 vertices in Py

n , then clearly |U | ≥ m(k + 1) and we are done. Assume therefore
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that for some yi ∈ V (Km), the set U has (k + 1) − l, l ≥ 1, vertices from Pyi
n . Since

|V (Pyi
n )∩U | ≤ k + 1− l, for every vertex y ∈ V (Km), y 
= yi , the setU has to have

at least x vertices from Py
n , where (k + 1 − l)x ≥ k2 + h has to hold to cover all the

edges between Pyi
n and Py

n . Because x is an integer, we can compute as follows:

x ≥
⌈

k2 + h

k + 1 − l

⌉

=
⌈

k(k + h/k)

k + 1 − l

⌉

=
⌈

k(k + 1 − l) + k(h/k − 1 + l)

k + 1 − l

⌉

= k +
⌈

k(h/k − 1 + l)

k + 1 − l

⌉

.

Because l ≥ 1 and therefore 1/(k + 1 − �) ≥ 1/k, we also have

x ≥ k +
⌈

k(h/k − 1 + l)

k

⌉

= k + l − 1 +
⌈

h

k

⌉

.

Since h ∈ [k], we have ⌈

h/k
⌉ = 1 and therefore x ≥ k + l. Altogether

|U | ≥ k + 1 − l + (m − 1)(k + l) = mk + (m − 2)l + 1

≥ mk + (m − 2) + 1 = m(k + 1) − 1

which we wanted to show.
The remaining case is when n = k2 + h, where k + 1 ≤ h ≤ 2k. Now, we need

to prove that sge(Pn � Km) ≥ m(k + 1). If for every vertex y ∈ Km , the set U has
at least k + 1 vertices from Py

n , then clearly |U | ≥ m(k + 1). Assume therefore that
for some yi ∈ V (Km), the set U has (k + 1) − l, l ≥ 1, vertices from Pyi

n . Therefore,
|V (Pyi

n ) ∩ U | ≤ k + 1 − l, and hence, for every vertex y ∈ V (Km), y 
= yi , the set
U has to have at least x vertices from Py

n , where (k + 1 − l)x ≥ k2 + h has to hold
to cover all the edges between Pyi

n and Py
n . Because x is an integer and l ≥ 1, we can

similarly as in the previous case estimate that

x ≥ k + l − 1 + ⌈

h/k
⌉

.

Because h is an integer between k + 1 and 2k, we have
⌈

h/k
⌉ = 2, and therefore,

x ≥ k + l + 1. Altogether, we see that

|U | ≥ k + 1 − l + (m − 1)(k + l + 1) = m(k + 1) + (m − 2)l

≥ m(k + 1) + 1 ,

where the last assertion holds, since m ≥ 3 and l ≥ 1. ��
The following special case of Theorem 3.5 has been reported earlier in [25, Theo-

rem 14].

Corollary 3.6 If k ≥ 2 and m ≥ 3, then sge(Pk2 � Km) = mk.
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