Strong Edge Geodetic Problem on Complete Multipartite Graphs and Some Extremal Graphs for the Problem

Sandi Klavžar ${ }^{1,2,3}$ © \cdot Eva Zmazek ${ }^{1}$

Received: 9 June 2023 / Revised: 17 November 2023 / Accepted: 10 December 2023 /
Published online: 31 January 2024
© The Author(s) 2024

Abstract

A set of vertices X of a graph G is a strong edge geodetic set if, to any pair of vertices from X, we can assign one (or zero) shortest path between them, such that every edge of G is contained in at least one on these paths. The cardinality of a smallest strong edge geodetic set of G is the strong edge geodetic number $\operatorname{sg}_{e}(G)$ of G. In this paper, the strong edge geodetic number of complete multipartite graphs is determined. Graphs G with $\operatorname{sg}_{\mathrm{e}}(G)=n(G)$ are characterized and sg_{e} is determined for Cartesian products $P_{n} \square K_{m}$. The latter result in particular corrects an error from the literature.

Keywords Strong edge geodetic problem • Complete multipartite graph . Edge-coloring • Cartesian product of graphs

Mathematics Subject Classification 05C12 - 05C70

1 Introduction

Covering vertices or edges of a graph by the smallest number of paths is a fundamental optimization problem and appears in the literature in several variations depending upon the properties one requires from the paths. In the isometric path cover problem (alias geodetic cover problem), the aim is to cover all the vertices by a minimum number of

[^0]shortest paths $[4,5,10,11,15,21]$. In the path cover problem, we want to cover all the vertices by a minimum number of vertex disjoint paths [6, 7, 20]. Dual concepts have also been studied as, for instance, the k-path covers which are sets S of vertices of a graph G, such that every path of order k in G contains at least one vertex from S; see $[2,3,9]$. In the edge version of the isometric path cover problem, we want to cover all the edges by a minimum number of shortest paths [1, 22, 23]. In this paper, we are interested in the strong edge geodetic problem introduced in [17] as follows.

Let $G=(V(G), E(G))$ be a graph. A set of vertices $X \subseteq V(G)$ is a strong edge geodetic set if, to any pair of vertices u and v from X, we can assign a shortest u, v-path $P_{u v}$, such that every edge $x y \in E(G)$ is contained in at least one on the paths $P_{u v}$. The cardinality of a smallest strong edge geodetic set of G is the strong edge geodetic number $\operatorname{sg}_{\mathrm{e}}(G)$ of G. Such a set is briefly called a $\mathrm{sg}_{\mathrm{e}}(G)$-set.

In the seminal paper [17], it was proved, among other results, that the strong edge geodetic problem is $\mathcal{N} \mathcal{P}$-complete. In [8], it was further proved that there is no approximation of the strong edge geodetic number with an approximation factor better that $781 / 780$. Several additional results on the strong edge geodetic number were reported in [25, 26]. In the latter paper, the strong edge geodetic number was determined for Cartesian products $P_{n} \square P_{k}$, where $k \in\{2,3,4\}$.

The vertex version of the strong edge geodetic problem is known as the strong geodetic problem and was studied for the first time in [16, 18]. The strong geodetic problem is also $\mathcal{N P}$-complete and remains such even when restricted to bipartite graphs and multipartite graphs [13]. Moreover, determining whether a given set X is a strong geodetic set is $\mathcal{N} \mathcal{P}$-hard [8] as well.

The strong geodetic number of complete bipartite (resp. mutipartite) graphs received a lot of attention. First, in [13], the problem was solved for balanced complete bipartite graphs $K_{n, n}$. Subsequently, using different approaches, a formula for the strong geodetic number of arbitrary complete bipartite graphs was derived in [14] and in [12]. In [14], a lower bound for the strong geodetic number of a complete multipartite graph was given and it was conjectured that the strong geodetic number remains $\mathcal{N P}$ complete on complete multipartite graphs. In [8], this conjecture was disproved by developing a polynomial algorithm for the strong geodetic number of complete mutipartite graphs. In this direction, we emphasize that in [19], an $O\left(|E(G)| \cdot|V(G)|^{2}\right)$ algorithm for computing the strong geodetic number of an outerplanar graph G was developed. Several additional interesting results on the strong geodetic problem were presented in [24]. Among other results, relations between the strong geodetic number and the connectivity and the diameter were established, and graphs with the strong geodetic number equal to $2,|V(G)|-1$, and $|V(G)|$ were characterized.

Motivated by the efforts to determine the strong geodetic number of complete bipartite graphs, we determine in Sect. 2 the strong edge geodetic number of complete bipartite graphs, and using this result, we then determine the strong edge geodetic number of arbitrary complete multipartite graphs. In Sect. 3, we characterize graphs G with $\operatorname{sg}_{\mathrm{e}}(G)=n(G)$ and discuss the graphs with $\operatorname{sg}_{\mathrm{e}}(G)=n(G)-1$. In particular, we observe that Cartesian products $P_{2} \square K_{n}$ belong to this family of graphs. This corrects [25, Theorem 13] where it is wrongly stated that $\mathrm{sg}_{\mathrm{e}}\left(P_{2} \square K_{n}\right)=2 n-2$. We then proceed by determining $\operatorname{sg}_{\mathrm{e}}\left(P_{m} \square K_{n}\right)$ for all $m, n \geq 2$.

We conclude the introduction by giving some definitions needed. The order of a graph G is denoted by $n(G)$. A vertex u of a graph G is universal if $\operatorname{deg}_{G}(u)=$ $n(G)-1$. The Cartesian product $G \square H$ of graphs G and H is the graph with the vertex set $V(G) \times V(H)$, vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ being adjacent if either $g=g^{\prime}$ and $h h^{\prime} \in E(H)$, or $h=h^{\prime}$ and $g g^{\prime} \in E(G)$. As usual, $\chi^{\prime}(G)$ is the chromatic index of G. For a positive integer n, the set $\{1, \ldots, n\}$ will be dented by $[n]$.

If U is a strong edge geodetic set, then we will denote by \widehat{U} the set of associated paths with endpoints from U which cover all the edges of G. Clearly, \widehat{U} is not unique, but unless stated otherwise, we will assume that \widehat{U} has been selected and is fixed.

2 Complete Multipartite Graphs

In this section, we determine the strong edge geodetic number of complete multipartite graphs. To do so, we first prove the corresponding result for complete bipartite graphs which reads as follows.

Theorem 2.1 If $n \geq m \geq 2$, then the following holds.
(i) If n is even, then

$$
\operatorname{sg}_{\mathrm{e}}\left(K_{n, m}\right)= \begin{cases}n+1 ; & n=m \\ n ; & n \geq m+1\end{cases}
$$

(ii) If n is odd, then

$$
\operatorname{sg}_{\mathrm{e}}\left(K_{n, m}\right)= \begin{cases}n+2 ; & n=m \\ n+1 ; & n=m+1 \\ n ; & n \geq m+2\end{cases}
$$

In the rest of the section, we assume that $n \geq m \geq 2$ and that the bipartition of $K_{n, m}$ is (X, Y), where $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ and $Y=\left\{y_{0}, \ldots, y_{m-1}\right\}$.

Lemma 2.2 If U is a strong edge geodetic set of $K_{n, m}$, then $X \subseteq U$ or $Y \subseteq U$.
Proof Let U be a strong edge geodetic set of the graph $K_{n, m}$. Suppose on the contrary that there exist vertices $x_{i} \in X \backslash U$ and $y_{j} \in Y \backslash U$. Because diam $\left(K_{n, m}\right)=2$ and $x_{i} y_{j}$ is an edge of $K_{n, m}$, none of the shortest paths with endpoints from U can cover the edge $x_{i} y_{j}$, that is, U cannot be a strong edge geodetic set.

Lemma 2.3 If U is a strong edge geodetic set of $K_{n, m}$ and $Y \subseteq U$, then $|U| \geq n+1$.
Proof Suppose U is a strong edge geodetic set of $K_{n, m}$, where $U=Y \cup X^{\prime}$ with $X^{\prime} \subseteq X$ and $\left|X^{\prime}\right|=k, 0 \leq k \leq n$. Consider an arbitrary vertex $y_{j} \in Y$. There are exactly $n-k$ edges between y_{j} and $X \backslash X^{\prime}$. Because the shortest paths that cover these edges have both of their endpoints in Y, it has to hold $m-1 \geq n-k$. This in turn implies that $|U|=|Y|+\left|X^{\prime}\right|=m+k \geq n+1$.

Corollary 2.4 If $n \geq m \geq 2$, then $\operatorname{sg}_{\mathrm{e}}\left(K_{n, m}\right) \geq n$. Moreover, if $m=n$, then $\operatorname{sg}_{\mathrm{e}}\left(K_{n, n}\right) \geq n+1$.

Proof If $m=n$, then the second assertion of the corollary follows immediately from Lemmas 2.2 and 2.3. Suppose now that $n>m$ and let U be a smallest strong edge geodetic set of $K_{n, m}$, so that $|U|=\operatorname{sg}_{\mathrm{e}}\left(K_{n, m}\right)$. Then, $X \subseteq U$ or $Y \subseteq U$ by Lemma 2.2. If $X \subseteq U$, then $\operatorname{sg}_{\mathrm{e}}\left(K_{n, m}\right)=|U| \geq|X|=n$. And, if $Y \subseteq U$, then $\operatorname{sg}_{\mathrm{e}}\left(K_{n, m}\right) \geq n+1$ follows by Lemma 2.3.

We have thus established the lower bound for the case when n is even. For n odd, we proceed as follows.

Lemma 2.5 Let U be a strong edge geodetic set of $K_{n, m}$. If n is odd and $X \subseteq U$, then $|U| \geq \frac{2 n}{n+1}+m$.

Proof Let U be a strong edge geodetic set of $K_{n, m}$, where $U=X \cup Y^{\prime}$ with $Y^{\prime} \subseteq Y$ and $\left|Y^{\prime}\right|=k$. For each edge $x y$, where $x \in X$ and $y \in Y^{\prime}$, we put the shortest path $x y$ to \widehat{U}. The edges between vertices from X and $Y \backslash Y^{\prime}$ must be covered by the shortest paths of length 2 with both of their endpoints in X. For each pair of vertices from X, we can put only one shortest path to \widehat{U}, so we can only put $\binom{n}{2}$ shortest paths to \widehat{U} to cover the $n \cdot(m-k)$ edges between the vertices from X and the vertices from $Y \backslash Y^{\prime}$. Moreover, because the degree of every vertex from $Y \backslash Y^{\prime}$ is n, which we have assumed to be odd, each vertex from $Y \backslash Y^{\prime}$ must be the central vertex of at least $(n+1) / 2$ shortest paths from \widehat{U}. Since U is a strong edge geodetic set this implies that $\binom{n}{2} \geq(m-k) \cdot \frac{n+1}{2}$. This inequality rewrites to $k \geq m-n(n-1) /(n+1)$ which in turn implies that $|U|=n+k \geq n+m-n(n-1) /(n+1)=\frac{2 n}{n+1}+m$.

Corollary 2.6 If $n \geq 3$ is odd, then $\operatorname{sg}_{\mathrm{e}}\left(K_{n, n}\right) \geq n+2$ and $\mathrm{sg}_{\mathrm{e}}\left(K_{n, n-1}\right) \geq n+1$.
Proof Let U be a smallest strong edge geodetic set of $K_{n, n}$. By Lemma 2.5

$$
|U| \geq n+\frac{2 n}{n+1}
$$

As $|U|$ is an integer and $2 n /(n+1)>1$ for $n \geq 2$, we get $|U|=\operatorname{sg}_{\mathrm{e}}\left(K_{n, n}\right) \geq n+2$.
Let now U be a smallest strong edge geodetic set of $K_{n, n-1}$. By Lemma 2.2, we have $X \subseteq U$ or $Y \subseteq U$. In the latter case, Lemma 2.3 gives $\operatorname{sg}_{\mathrm{e}}\left(K_{n, n-1}\right) \geq n+1$. Assume second that $X \subseteq U$. Then, Lemma 2.5 gives

$$
|U| \geq \frac{2 n}{n+1}+(n-1)=n+\frac{n-1}{n+1}
$$

Since $\frac{n-1}{n+1}>0$ for $n \geq 2$ and since $|U|$ is an integer, also in this case, we get $\operatorname{sg}_{\mathrm{e}}\left(K_{n, n-1}\right) \geq n+1$.

So far, we have proved the lower bound for all the cases of Theorem 2.1. In the following, we will construct in each case a strong edge geodetic set of the required cardinality.

Fig. 1 Shortest paths from \widehat{U} that cover edges incident to y_{2}

Case 1: n is even.
We first consider $K_{n, n}$ and prove that

$$
\begin{equation*}
\operatorname{sg}_{\mathrm{e}}\left(K_{n, n}\right) \leq n+1 . \tag{1}
\end{equation*}
$$

We claim that $U=X \cup\left\{y_{n-1}\right\}$ is a strong edge geodetic set of $K_{n, n}$. For every $0 \leq i \leq n-1$, add the shortest path $x_{i} y_{n-1}$ to \widehat{U} to cover the edge $x_{i} y_{n-1}$. Then, all the other edges must be covered by shortest paths of the form $x_{i} y_{j} x_{k}$, where $i \neq k$. To do so, we use edge-colorings of K_{n}. It is well known that $\chi^{\prime}\left(K_{n}\right)=n-1$ for even n. Let $V\left(K_{n}\right)=\{0,1, \ldots, n-1\}$. Then, an edge-coloring c of K_{n} using $n-1$ colors can be defined as follows: if $i, j \in\{0,1, \ldots, n-2\}, i \neq j$, then let $c(i j)=(i+j)$ $\bmod (n-1)$, and for for $i \in\{0,1, \ldots, n-2\}$ let $c(i(n-1))=2 i \bmod (n-1)$.

In the covering of $K_{n, n}$ that we are constructing, we put the shortest path $x_{i} y_{j} x_{k}$ to \widehat{U} if and only if $c(i k)=j$. See Fig. 1, where this construction is illustrated for the case $n=6$ and the edges incident to y_{2}. In K_{6}, we have $c(02)=c(15)=c(34)=2$; hence, the paths $x_{0} y_{2} x_{2}, x_{1} y_{2} x_{5}$, and $x_{3} y_{2} x_{4}$ belong to \widehat{U}.

Using this construction, a pair of vertices x_{i} and x_{k} is never used twice, and for each vertex $y \in Y \backslash\left\{y_{n-1}\right\}$, the shortest paths in \widehat{U} have pairwise different endpoints. Since in c every color is used exactly $n / 2$ times, the shortest paths from \widehat{U} passing through y_{j} cover all the edges incident with y_{j}. This proves (1).

Consider now $K_{n, m}$, where $m \leq n-1$ (and n is even). We need to show that $\operatorname{sg}_{\mathrm{e}}\left(K_{n, m}\right) \leq n$. For this sake, we claim that X is a strong edge geodetic set. Indeed, use the above edge-coloring c of K_{n} and for each $y_{i} \in Y, i \in\{0, \ldots, m-1\}$, put all the shortest paths $x_{j} y_{i} x_{k}$ to \widehat{U} for which $c(j k)=i$. By the above argument, X is indeed a strong edge geodetic set, and hence, $\operatorname{sg}_{\mathrm{e}}\left(K_{n, m}\right) \leq n$ in this subcase.

Case 2: n is odd.
We first consider $K_{n, n}$ and prove that $\mathrm{sg}_{\mathrm{e}}\left(K_{n, n}\right) \leq n+2$. For this purpose, consider the set $U=X \cup\left\{y_{n-2}, y_{n-1}\right\}$. The subgraph of $K_{n, n}$ induced by the set of vertices $V\left(K_{n, n}\right) \backslash\left\{x_{n-1}, y_{n-1}\right\}$ is isomorphic to $K_{n-1, n-1}$. As $n-1$ is even, we can cover its edges by the paths as described in Case 1 to derive (1). Recall that for this covering, the vertices x_{0}, \ldots, x_{n-1} and y_{n-2} are used. To cover the edges $y_{n-1} x_{i}, 0 \leq i \leq n-1$, add the shortest paths $y_{n-1} x_{i}$ to \widehat{U}. Finally, to cover the remaining yet uncovered edges, that is, the edges $x_{n-1} y_{i}$, where $i \in\{0, \ldots, n-2\}$, put the shortest paths $x_{n-1} y_{i} x_{i}$ to \widehat{U}.

We next show that $\operatorname{sg}_{\mathrm{e}}\left(K_{n, n-1}\right) \leq n+1$. In this subcase, set $U=X \cup\left\{y_{n-2}\right\}$. Then, as in the above subcase, cover the edges of the subgraph of $K_{n, n-1}$ induced by the set of vertices $V\left(K_{n, n-1}\right) \backslash\left\{x_{n-1}\right\}$ as described in Case 1 to derive (1). After that, to cover the edges $x_{n-1} y_{i}$, where $i \in\{0, \ldots, n-2\}$ we add to \widehat{U} the shortest paths $x_{n-1} y_{i} x_{i}$.

Consider finally $K_{n, m}$, where $m \leq n-2$. In this case, X is a strong edge geodetic set. For this sake, note that by the second subcase of Case 1, we know that $\left\{x_{0}, \ldots, x_{n-2}\right\}$ is a strong edge geodetic set of the subgraph of $K_{n, m}$ induced by the set $V\left(K_{n, m}\right) \backslash\left\{x_{n-1}\right\}$. To cover the remaining not yet covered edges $x_{n-1} y_{i}$, where $i \in\{0, \ldots, m-1\}$ we add to \widehat{U} the shortest paths $x_{n-1} y_{i} x_{i}$. From here, it is clear that X is a strong edge geodetic set of $K_{n, m}$ and we conclude that in this subcase $\operatorname{sg}_{\mathrm{e}}\left(K_{n, m}\right) \leq n$.

We have thus established all the upper bounds which completes the proof of Theorem 2.1. Using it, we can in turn determine the strong edge geodetic number of complete multipartite graphs as follows.

Theorem 2.7 If $k \geq 2$ and $2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$, then the following holds.
(i) If n_{1} is even, then

$$
\operatorname{sg}_{\mathrm{e}}\left(K_{n_{1}, \ldots, n_{k}}\right)= \begin{cases}\sum_{j=2}^{k} n_{j}+1 ; & n_{2} \in\left\{n_{1}, n_{1}+1\right\} \\ \sum_{j=2}^{k} n_{j} ; & \text { otherwise }\end{cases}
$$

(ii) If n_{1} is odd, then

$$
\operatorname{sg}_{\mathrm{e}}\left(K_{n_{1}, \ldots, n_{k}}\right)= \begin{cases}\sum_{j=2}^{k} n_{j}+2 ; & n_{2}=n_{1} \\ \sum_{j=2}^{k} n_{j} ; & \text { otherwise }\end{cases}
$$

Proof Let $k \geq 2$ and $2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$, and set $G=K_{n_{1}, \ldots, n_{k}}$ for the rest of the proof. Let $X_{i}, i \in[k]$, be the partition sets of G, where $\left|X_{i}\right|=n_{i}$. Let U be an arbitrary (smallest) strong edge geodetic set of G. If $i \neq j$, then, by Lemma 2.2, we see that $X_{i} \subseteq U$ or $X_{j} \subseteq U$. If follows that U contains $k-1$ of the partite sets.

Let $W=\cup_{i=2}^{k} X_{i}$. Then, it remains to cover the edges between X_{1} and each of the $X_{i}, i \geq 2$. More precisely, we need to cover the edges in induced subgraphs $K_{n_{1}, n_{i}}$, $i \geq 2$, where the partite sets of cardinality n_{i} are already included. Clearly, no shortest path of G has length greater than 2 and a shortest path of length 2 has both endpoints in the same set of the partition. Hence, an edge of $K_{n_{1}, n_{i}}$ can be covered only by vertices in $X_{1} \cup X_{i}$, for every $2 \leq i \leq k$.

Assume first that $n_{2} \geq n_{1}+2$. Then, by Theorem 2.1 and its proof, we infer that X_{2} is a strong edge geodetic set of $K_{n_{1}, n_{2}}$ with minimum cardinality. Furthermore, since if $k>2$, for every $2<i \leq k$, we have $n_{i} \geq n_{2} \geq n_{1}+2$, again by Theorem 2.1, we have that X_{i} is a strong edge geodetic set of $K_{n_{1}, n_{i}}$ with minimum cardinality. Therefore, W is a is a strong edge geodetic set of G with minimum cardinality no matter whether
n_{1} is even or odd. Moreover, we get the same conclusion if n_{1} is odd and $n_{2}=n_{1}+1$. Assume next that n_{1} is odd and $n_{2}=n_{1}$. Then, Theorem 2.1(ii) implies that the union of X_{2} and two vertices of X_{1}, say u and w is a strong edge geodetic set of $K_{n_{1}, n_{2}}$ with minimum cardinality. In this case, we conclude that $W \cup\{u, v\}$ is a strong edge geodetic set of G with minimum cardinality. The cases when n_{1} is even and $n_{2} \in\left\{n_{1}, n_{1}+1\right\}$ are treated similarly.

3 Graph with Large Strong Edge Geodetic Sets

In this section, we first characterize graphs G with $\operatorname{sg}_{\mathrm{e}}(G)=n(G)$. After that, we consider graphs G with $\operatorname{sg}_{\mathrm{e}}(G)=n(G)-1$ and determine $\operatorname{sg}_{\mathrm{e}}\left(P_{n} \square K_{m}\right)$. In particular, $\operatorname{sg}_{\mathrm{e}}\left(P_{2} \square K_{m}\right)=2 m-1$, which corrects a result from [25].

Let G be a graph and $u v \in E(G)$. We say that a vertex v is a dominant neighbor of u if $N[u] \subseteq N[v]$, where $N[u]=\{u\} \cup\{x: u x \in E(G)\}$ is the closed neighborhood of a vertex u. Vertices u and v of a graph G are twins if $N[u]=N[v]$. Note that twins are necessarily adjacent and that if u and v are twins, then u is a dominant neighbor of v and v is a dominant neighbor of u.

The following lemma seems to be of independent interest.
Lemma 3.1 Let G be a graph and $U \subseteq V(G)$ be a strong edge geodetic set. If v is a dominant neighbor of u, then $u \in U$. In particular, if u and v are twin vertices, then $u \in U$ and $v \in U$.

Proof Let $u v \in E(G)$ and $N[u] \subseteq N[v]$. If P is a shortest path in G which contains the edge $u v$, then one of the endpoints of P must be u, for otherwise P would not be shortest. If further u and v are twins, then also $N[v] \subseteq N[u]$ and thus also $v \in U$.

Proposition 3.2 Let G be a graph. Then, $\operatorname{sg}_{\mathrm{e}}(G)=n(G)$ if and only if every vertex of G has a dominant neighbor.

Proof If every vertex of G has a dominant neighbor, then every vertex lies in every strong edge geodetic set by Lemma 3.1. Hence, $\mathrm{sg}_{\mathrm{e}}(G)=n(G)$.

Assume now that a vertex $u \in V(G)$ does not admit a dominant neighbor. We claim that $U=V(G) \backslash\{u\}$ is a strong edge geodetic set of G. Let v be an arbitrary neighbor of u. Since $N[u] \nsubseteq N[v]$, there exists a vertex $w \in N[u] \backslash N[v]$. To cover the edge $u v$, put the shortest path $w u v$ to \widehat{U}. Proceed analogously for every neigbor v^{\prime} of u, where if the edge $v^{\prime} u$ has been already covered before, do nothing. In this way, all edges incident with u are covered. Let next $x y$ be an arbitrary edge from $E(G)$ where $\{x, y\} \cap\{u\}=\emptyset$. Then add to \widehat{U} the shortest path $x y$. Clearly, the paths added so far to \widehat{U} cover all the edges of G and we conclude that $\operatorname{sg}_{\mathrm{e}}(G)<n(G)$.

Proposition 3.2 implies several results from [25] as for instance [25, Theorem 8] which asserts that if a graph G contains at least two universal vertices, then $\operatorname{sg}_{\mathrm{e}}(G)=$ $n(G)$.

A vertex u of a graph G is simplicial if $N(u)$ induces a clique of G. If u is a simplicial vertex and v its arbitrary neighbor, then $N[u] \subseteq N[v]$. Denoting by $s(G)$ the number of simplicial vertices of G Lemma 3.1 thus implies:

Corollary 3.3 If G is a graph, then $\operatorname{sg}_{\mathrm{e}}(G) \geq s(G)$.
Since in K_{n} every vertex is simplicial, Corollary 3.3 implies that $\operatorname{sg}_{\mathrm{e}}\left(K_{n}\right)=n$. We can also deduce this fact from Lemma 3.1 by observing that each pair of vertices of K_{n} are twins.

Lemma 3.1 implies also the following.
Corollary 3.4 If a graph G contains a universal vertex, then $\operatorname{sg}_{\mathrm{e}}(G) \geq n(G)-1$. Moreover, if there is only one universal vertex, then $\mathrm{sg}_{\mathrm{e}}(G)=n(G)-1$.

Proof Let w be a universal vertex of G. Then, w is a dominant neighbor of every vertex $u \in V(G) \backslash\{w\}$, and hence, Lemma 3.1 implies that $V(G) \backslash\{w\} \subseteq U$ for every strong edge geodetic set U of G. Thus, $\operatorname{sg}_{\mathrm{e}}(G) \geq n(G)-1$. In the case when w is a unique universal vertex of G, then with the same arguments as we had in the last part of the proof of Proposition 3.2, we infer that $V(G) \backslash\{w\}$ is a strong edge geodetic set. Hence, $\operatorname{sg}_{\mathrm{e}}(G) \leq n(G)-1$ when G has a unique universal vertex, so that in this case, $\operatorname{sg}_{\mathrm{e}}(G)=n(G)-1$.

The second assertion of Corollary 3.4 was earlier presented as [25, Theorem 5]. Moreover, in [25, Theorem 5], it was also claimed that $\operatorname{sg}_{\mathrm{e}}\left(P_{2} \square K_{m}\right)=2 m-2$. It can be checked that the result is not true and that instead the Cartesian products $P_{2} \square K_{m}$ also belong to the family of graphs G for which $\operatorname{sg}_{\mathrm{e}}(G) \geq n(G)-1$. More generally, we have the following result.

Theorem 3.5 If $m \geq 3$ and $n \geq 2$, then

$$
\operatorname{sg}_{\mathrm{e}}\left(P_{n} \square K_{m}\right)= \begin{cases}m k ; & n=k^{2}, \\ m k+(m-1) ; & n=k^{2}+h, 1 \leq h \leq k, \\ m k+m ; & n=k^{2}+h, k+1 \leq h \leq 2 k\end{cases}
$$

Proof Set $V\left(K_{m}\right)=[m]$ and $V\left(P_{n}\right)=[n]$ where $i(i+1) \in E\left(P_{n}\right)$ for $i \in[n-1]$. If $y \in V\left(K_{m}\right)$, then we will denote by P_{n}^{y} the subgraph of $P_{n} \square K_{m}$ induced by the vertices $(i, y), i \in[n] . P_{n}^{y}$ is also called a P_{n}-layer of $P_{n} \square K_{m}$ and is isomorphic to P_{n}. Throughout the proof, we will use the fact that in a shortest path of $P_{n} \square K_{m}$, there is at most one edge between two distinct P_{n}-layers.

Consider first the case $n=k^{2}$, where $k \in \mathbb{N}$. In this case, we claim that $U_{1}=$ $\bigcup_{i=1}^{k} \bigcup_{j=1}^{m}\left\{\left(i^{2}, j\right)\right\}$ is a strong edge geodetic set of $P_{n} \square K_{m}$. To cover all the edges of $P_{n} \square K_{m}$, we proceed as follows. For every $j \in[m]$, put to $\widehat{U_{1}}$ the unique shortest path between the vertices $(1, j)$ and $\left(k^{2}, j\right)$. For every pair $y_{1}, y_{2} \in V\left(K_{m}\right), y_{1}<y_{2}$, we put the following shortest paths to $\widehat{U_{1}}$.

- For every $i \in[k]$, put to $\widehat{U_{1}}$ the unique shortest path (of length 1) between the vertices $\left(i^{2}, y_{1}\right)$ and $\left(i^{2}, y_{2}\right)$.
- For every $2 \leq i \leq k$, and for every $l \in[i-1]$, put to $\widehat{U_{1}}$ the shortest path between the vertices $\left(l^{2}, y_{1}\right)$ and $\left(i^{2}, y_{2}\right)$ that contains the edge $\left((i-1)^{2}+l, y_{1}\right)\left((i-1)^{2}+\right.$ $\left.l, y_{2}\right)$, and the shortest path between the vertices $\left(l^{2}, y_{2}\right)$ and $\left(i^{2}, y_{1}\right)$ that passes through the edge $\left(i(i-1)+l, y_{1}\right)\left(i(i-1)+l, y_{2}\right)$. See Fig. 2 for an example, where the vertices from U_{1} are drawn in black.

Fig. 2 Shortest paths for $n=16$ and $\left(y_{1}, y_{2}, i, l\right) \in\{(m-1, m, 2,1),(m-1, m, 3,2),(1,2,3,1)$, (1, $m, 4,3$) \}

Fig. 3 Shortest paths for $n=19$ and $\left(y_{1}, y_{2}, i\right) \in\{(1,2,3),(2, m-1,2),(m-1, m, 1)\}$

The shortest paths from $\widehat{U_{1}}$ cover all the edges of $P_{n} \square K_{m}$, and hence, we can conclude that $\operatorname{sg}_{\mathrm{e}}\left(P_{n} \square K_{m}\right) \leq m k$ when $n=k^{2}$.

Assume next that $n=k^{2}+h$, where $h \in[k]$. Then, we claim that the set $U_{2}=$ $U_{1} \cup \bigcup_{j=2}^{m}\{(n, j)\}$ is a strong edge geodetic set of $P_{n} \square K_{m}$.

- First, put all the shortest paths from $\widehat{U_{1}}$ to $\widehat{U_{2}}$.
- For every pair $y_{1}, y_{2} \in V\left(K_{m}\right)$, where $y_{1}<y_{2}$, and for every $i \in[h]$, put to $\widehat{U_{2}}$ the shortest path between the vertices $\left(i^{2}, y_{1}\right)$ and $\left(n, y_{2}\right)$ that contains the edge $\left(k^{2}+i, y_{1}\right)\left(k^{2}+i, y_{2}\right)$. See Fig. 3 for an example, where the vertices from U_{2} are again drawn in black.
- For every $y \in\{2, \ldots, m\}$, put to $\widehat{U_{2}}$ the unique shortest path between the vertices $(1, y)$ and (n, y). Note that all the edges from P_{n}^{1} are already covered by the shortest path from $\widehat{U_{2}}$ between vertices $\left(h^{2}, 1\right)$ and $(n, 2)$.
Since the shortest paths from $\widehat{U_{2}}$ cover all the edges of $P_{n} \square K_{m}$, we can conclude that $\operatorname{sg}_{\mathrm{e}}\left(P_{n} \square K_{m}\right) \leq m k+(m-1)$, when $n=k^{2}+h$ and $h \in[k]$.

Assume finally that $n=k^{2}+h$, where $k+1 \leq h \leq 2 k$. In this case, we claim that $U_{3}=U_{1} \cup \bigcup_{j=1}^{m}\{(n, j)\}$ is a strong edge geodetic set of $P_{n} \square K_{m}$ and proceed as follows.

- Put all the shortest paths from $\widehat{U_{1}}$ to $\widehat{U_{3}}$.

Fig. 4 Shortest paths for $n=22$ and $\left(y_{1}, y_{2}, i\right) \in\{(1,2,3),(m-1, m, 2)\}$

- For every pair $y_{1}, y_{2} \in V\left(K_{m}\right)$, where $y_{1}<y_{2}$, do the following. For every $i \in[k]$, put to $\widehat{U_{3}}$ the shortest path between vertices $\left(i^{2}, y_{1}\right)$ and $\left(n, y_{2}\right)$ that contains the edge $\left(k^{2}+i, y_{1}\right)\left(k^{2}+i, y_{2}\right)$. Moreover, for every $i \in[h-k]$, also add the shortest path between the vertices $\left(n, y_{1}\right)$ and $\left(i^{2}, y_{2}\right)$ that contains the edge $\left(k(k+1)+i, y_{1}\right)\left(k(k+1)+i, y_{2}\right)$. In Fig. 4, examples are drawn with the vertices from U_{3} again in black.
- For every $j \in[m]$, put to $\widehat{U_{3}}$ the unique shortest path between the vertices $(1, j)$ and (n, j).
Since the shortest paths from $\widehat{U_{3}}$ cover all the edges of $P_{n} \square K_{m}$, we get the upper bound $\operatorname{sg}_{\mathrm{e}}\left(P_{n} \square K_{m}\right) \leq m k+m$ when $n=k^{2}+h$ with $k+1 \leq h \leq 2 k$.

In the second part of the proof, we need to demonstrate that the obtained upper bounds are sharp, that is, there exist no smaller strong edge geodetic sets as the one constructed above. Let U be a arbitrary strong edge geodetic set of $P_{n} \square K_{m}$.

Assume first that $n=k^{2}$ for some $k \in \mathbb{N}$. Then, we need to show that $|U| \geq m k$. If for every vertex $y \in K_{m}$, the set U has at least k vertices in the P_{n}^{y}-layer, then clearly $|U| \geq m k$. Assume, therefore, that for some $y_{i} \in V\left(K_{m}\right)$, the $P_{n}^{y_{i}}$ - layer contains $k-l, l \geq 1$, vertices from U. Since $\left|V\left(P_{n}^{y_{i}}\right) \cap U\right|=k-l$, for every vertex $y \in V\left(K_{m}\right), y \neq y_{i}$, the strong edge geodetic set U has to have at least x vertices from P_{n}^{y}, where $(k-l) x \geq k^{2}$, to cover all the edges between $P_{n}^{y_{i}}$ and P_{n}^{y}. Because $x \geq k^{2} /(k-l)=k+k l /(k-l) \geq k+k l / k=k+l$, we get

$$
|U| \geq k-l+(m-1)(k+l)=m k+(m-2) l \geq m k+1,
$$

where the last assertion follows, since $m \geq 3$ and $l \geq 1$. We conclude that in any case, $|U| \geq m k$.

Assume second that $n=k^{2}+h$, where $1 \leq h \leq k$. Now, we need to prove that $\operatorname{sg}_{\mathrm{e}}\left(P_{n} \square K_{m}\right) \geq m(k+1)-1$. If, for every vertex $y \in K_{m}$, the set U has at least $k+1$ vertices in P_{n}^{y}, then clearly $|U| \geq m(k+1)$ and we are done. Assume therefore
that for some $y_{i} \in V\left(K_{m}\right)$, the set U has $(k+1)-l, l \geq 1$, vertices from $P_{n}^{y_{i}}$. Since $\left|V\left(P_{n}^{y_{i}}\right) \cap U\right| \leq k+1-l$, for every vertex $y \in V\left(K_{m}\right), y \neq y_{i}$, the set U has to have at least x vertices from P_{n}^{y}, where $(k+1-l) x \geq k^{2}+h$ has to hold to cover all the edges between $P_{n}^{y_{i}}$ and P_{n}^{y}. Because x is an integer, we can compute as follows:

$$
\begin{aligned}
x & \geq\left\lceil\frac{k^{2}+h}{k+1-l}\right\rceil=\left\lceil\frac{k(k+h / k)}{k+1-l}\right\rceil=\left\lceil\frac{k(k+1-l)+k(h / k-1+l)}{k+1-l}\right\rceil \\
& =k+\left\lceil\frac{k(h / k-1+l)}{k+1-l}\right\rceil .
\end{aligned}
$$

Because $l \geq 1$ and therefore $1 /(k+1-\ell) \geq 1 / k$, we also have

$$
x \geq k+\left\lceil\frac{k(h / k-1+l)}{k}\right\rceil=k+l-1+\left\lceil\frac{h}{k}\right\rceil \text {. }
$$

Since $h \in[k]$, we have $\lceil h / k\rceil=1$ and therefore $x \geq k+l$. Altogether

$$
\begin{aligned}
|U| & \geq k+1-l+(m-1)(k+l)=m k+(m-2) l+1 \\
& \geq m k+(m-2)+1=m(k+1)-1
\end{aligned}
$$

which we wanted to show.
The remaining case is when $n=k^{2}+h$, where $k+1 \leq h \leq 2 k$. Now, we need to prove that $\operatorname{sg}_{\mathrm{e}}\left(P_{n} \square K_{m}\right) \geq m(k+1)$. If for every vertex $y \in K_{m}$, the set U has at least $k+1$ vertices from P_{n}^{y}, then clearly $|U| \geq m(k+1)$. Assume therefore that for some $y_{i} \in V\left(K_{m}\right)$, the set U has $(k+1)-l, l \geq 1$, vertices from $P_{n}^{y_{i}}$. Therefore, $\left|V\left(P_{n}^{y_{i}}\right) \cap U\right| \leq k+1-l$, and hence, for every vertex $y \in V\left(K_{m}\right), y \neq y_{i}$, the set U has to have at least x vertices from P_{n}^{y}, where $(k+1-l) x \geq k^{2}+h$ has to hold to cover all the edges between $P_{n}^{y_{i}}$ and P_{n}^{y}. Because x is an integer and $l \geq 1$, we can similarly as in the previous case estimate that

$$
x \geq k+l-1+\lceil h / k\rceil
$$

Because h is an integer between $k+1$ and $2 k$, we have $\lceil h / k\rceil=2$, and therefore, $x \geq k+l+1$. Altogether, we see that

$$
\begin{aligned}
|U| & \geq k+1-l+(m-1)(k+l+1)=m(k+1)+(m-2) l \\
& \geq m(k+1)+1,
\end{aligned}
$$

where the last assertion holds, since $m \geq 3$ and $l \geq 1$.
The following special case of Theorem 3.5 has been reported earlier in [25, Theorem 14].

Corollary 3.6 If $k \geq 2$ and $m \geq 3$, then $\operatorname{sg}_{\mathrm{e}}\left(P_{k^{2}} \square K_{m}\right)=m k$.

Acknowledgements The authors would like to thank one of the reviewers for a very careful reading and many helpful tips, in particular on how to shorten the proof of Theorem 2.7. This work was supported by the Slovenian Research Agency (ARRS) under Grant Nos. P1-0297, J1-2452, and N1-0285.

Data Availability Our manuscript has no associated data.

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anand, B., Changat, M., Ullas Chandran, S.V.: The edge geodetic number of product graphs. Lect. Notes Comput. Sci. 10743, 143-154 (2018)
2. Brause, C., Krivoš-Belluš, R.: On a relation between k-path partition and k-path vertex cover. Discrete Appl. Math. 223, 28-38 (2017)
3. Brešar, B., Jakovac, M., Katrenič, J., Semanišin, G., Taranenko, A.: On the vertex k-path cover. Discrete Appl. Math. 161, 1943-1949 (2013)
4. Chakraborty, D., Dailly, A., Das, S., Foucaud, F., Gahlawat, H., Kumar Ghosh, S.: Complexity and algorithms for isometric path cover on chordal graphs and beyond. In 33rd International Symposium on Algorithms and Computation (ISAAC). Leibniz International Proceedings in Informatics (LIPIcs), Vol. 248, pp. 12:1-12:17 (2022)
5. Chakraborty, D., Foucaud, F.: Isometric Path Antichain Covers: Beyond Hyperbolic Graphs. arXiv:2301.00278v2 [math.CO] (2023)
6. Chen, Y., Cai, Y., Liu, L., Chen, G., Goebel, R., Lin, G., Su, B., Zhang, A.: Path cover with minimum nontrivial paths and its application in two-machine flow-shop scheduling with a conflict graph. J. Comb. Optim. 43, 571-588 (2022)
7. Ćustić, A., Lendl, S.: The Steiner cycle and path cover problem on interval graphs. J. Comb. Optim. 43, 226-234 (2022)
8. Davot, T., Isenmann, L., Thiebaut, J.: On the approximation hardness of geodetic set and its variants. Lect. Notes Comput. Sci. 13025, 76-88 (2021)
9. Erveš, R., Tepeh, A.: 3-path vertex cover and dissociation number of hexagonal graphs. Appl. Anal. Discrete Math. 16, 132-145 (2022)
10. Fitzpatrick, S.L.: The isometric path number of the Cartesian product of paths. Congr. Numer. 137, 109-119 (1999)
11. Fitzpatrick, S.L., Nowakowski, R.J., Holton, D.A., Caines, I.: Covering hypercubes by isometric paths. Discrete Math. 240, 253-260 (2001)
12. Gledel, V., Iršič, V.: Strong geodetic number of complete bipartite graphs, crown graphs and hypercubes. Bull. Malays. Math. Sci. Soc. 43, 2757-2767 (2020)
13. Iršič, V.: Strong geodetic number of complete bipartite graphs and of graphs with specified diameter. Graphs Comb. 34, 443-456 (2018)
14. Iršič, V., Konvalinka, M.: Strong geodetic problem on complete multipartite graphs. Ars Math. Contemp. 17, 481-491 (2019)
15. Manuel, P.: On the isometric path partition problem. Discuss. Math. Graph Theory 41, 1077-1089 (2021)
16. Manuel, P., Klavžar, S.: Strong geodetic problem in grid-like architectures. Bull. Malays. Math. Sci. Soc. 41, 1671-1680 (2018)
17. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong edge geodetic problem in networks. Open Math. 15, 1225-1235 (2017)
18. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong geodetic problem in networks. Discuss. Math. Graph Theory 40, 307-321 (2020)
19. Mezzini, M.: An $O\left(m n^{2}\right)$ algorithm for computing the strong geodetic number in outerplanar graphs. Discuss. Math. Graph Theory 42, 591-599 (2022)
20. Montazeri, Z., Soltankhah, N.: On the relationship between the zero forcing number and path cover number for some graphs. Bull. Iran. Math. Soc. 46, 767-776 (2020)
21. Pan, J.-J., Chang, G.J.: Isometric path numbers of graphs. Discrete Math. 306, 2091-2096 (2006)
22. Santhakumaran, A.P., John, J.: Edge geodetic number of a graph. J. Discrete Math. Sci. Cryptogr. 10, 415-432 (2007)
23. Santhakumaran, A.P., Ullas Chandran, S.V.: The edge geodetic number and Cartesian product of graphs. Discuss. Math. Graph Theory 30, 55-73 (2010)
24. Wang, Z., Mao, Y., Ge, H., Magnant, C.: Strong geodetic number of graphs and connectivity. Bull. Malays. Math. Sci. Soc. 43, 2443-2453 (2020)
25. Xavier, D.A., Mathew, D., Theresal, S., Varghese, E.V.: Some results on strong edge geodetic problem in graphs. Commun. Math. Appl. 11, 403-413 (2020)
26. Zmazek, E.: Strong edge geodetic problem on grids. Bull. Malays. Math. Sci. Soc. 44, 3705-3724 (2021)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Communicated by Ebrahim Ghorbani.

 Sandi Klavžar
 sandi.klavzar@fmf.uni-lj.si
 Eva Zmazek
 eva.zmazek@fmf.uni-lj.si
 1 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
 2 Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
 3 Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia

