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Abstract
Let M be a real hypersurface of a complex projective space. For any operator B on
M and any nonnull real number k, we can define two tensor fields of type (1,2) on
M , B(k)

F and B(k)
T . We will classify real hypersurfaces in complex projective space

for which B(k)
F and B(k)

T either take values in the maximal holomorphic distribution D
or are parallel to the structure vector field ξ , in the particular case of B = A, where
A denotes the shape operator of M . We also introduce the concept of A(k)

F and A(k)
T

being D-recurrent and classify real hypersurfaces such that either A(k)
F or A(k)

T are
D-recurrent.

Keywords kth Generalized Tanaka–Webster connection · Complex projective space ·
Real hypersurface · Shape operator · Lie derivative

Mathematics Subject Classification 53C15 · 53B25

1 Introduction

Consider the complex projective space CPm , m ≥ 2, endowed with the Kaehlerian
structure (J , g), where J denotes the complex structure and g the Fubini-Study metric
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of constant holomorphic sectional curvature 4 on CPm . Let M be a connected real
hypersurface in CPm without boundary. Denote also by g the induced metric on M
and by N a local unit normal vector field on M . The Reeb (or structure) vector field
on M is defined by ξ = −J N . Let ∇ be the Levi-Civita connection on M and A
the shape operator associated to N . For any vector field X tangent to M write J X =
φX + η(X)N , where φX is the tangential component of J X and η(X) = g(X , ξ).
Then (φ, ξ, η, g) defines an almost contact metric structure on M [1].

The existence of such a structure allows us to define, for any nonnull real number
k, the so-called kth Generalized Tanaka–Webster connection on M , ∇̂(k) [2, 3], given
by

∇̂(k)
X Y = ∇XY + g(φAX ,Y )ξ − η(Y )φAX − kη(X)φY

for any X ,Y tangent to M .
This connection on M is a metric one and any element of the almost contact metric

structure is parallel for such a connection. If A satisfies φA+ Aφ = 2kφ, M becomes
a contact manifold and this connection coincides with the Tanaka–Webster connection
on M , [14–16].

The tensor field of type (1, 2) obtained as the difference of both connections is called
the kth Cho tensor on M (see [6, Proposition 7.10]) and it is given by F (k)(X ,Y ) =
g(φAX ,Y )ξ − η(Y )φAX − kη(X)φY , for any X ,Y tangent to M . From this, for
any X tangent to M and any nonnull real number k, we define the kth Cho operator
corresponding to X , as F (k)

X Y = F (k)(X ,Y ) for any Y tangent to M .

The torsion of the connection ∇̂(k) is given by T (k)(X ,Y ) = F (k)
X Y − F (k)

Y X for
any X ,Y tangent to M , [2]. Thus we define the kth torsion operator associated to X ,
for any nonnull real number k and any X tangent to M , by T (k)

X Y = T̂ (k)(X ,Y ), for
any Y tangent to M .

If L denotes the Lie derivative on M , we now that it is given by LXY = ∇XY −
∇Y X , for any X ,Y tangent to M . If we consider the kth Generalized Tanaka–Webster
connection we can also define on M a differential operator of first order, that we call
the derivative of Lie type associated to such a connection, L(k), given by

L(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X = LXY + T (k)

X Y

for any X ,Y tangent to M .
Best known real hypersurfaces in CPm are called Hopf and satisfy that the Reeb

vector field ξ is an eigenvector of the shape operator, that is, Aξ = αξ , for a certain
function α on M , called the Reeb curvature of M . The distribution on M given by
D = Ker(η) is φ-invariant and called the maximal holomorphic distribution on M .

Takagi classified homogeneous real hypersurfaces in complex projective space (see
[11–13]). Kimura [4], proved that Takagi’s real hypersurfaces are the unique ones that
are Hopf and have constant principal curvatures for A in CPm . Takagi’s list contains
the following 6 types of real hypersurfaces
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• Type (A1), geodesic hyperspheres of radius r , 0 < r < π
2 , with 2 distinct constant

principal curvatures, 2 cot(2r) with eigenspace R[ξ ] and cot(r) with eigenspace
D.

• Type (A2), tubes of radius r , 0 < r < π
2 , over totally geodesic complex projective

spacesCPn , 0 < n < m−1,with 3 distinct constant principal curvatures, 2 cot(2r)
with eigenspace R[ξ ], cot(r) and − tan(r). The corresponding eigenspaces of
cot(r) and − tan(r) are complementary and φ-invariant distributions in D.

• Type (B), tubes of radius r , 0 < r < π
4 , over the complex quadric Qm−1, with 3

distinct constant principal curvatures, 2 cot(2r) with eigenspace R[ξ ], cot(r − π
4 )

and− tan(r − π
4 )whose corresponding eigenspaces are complementary and equal

dimensional distributions in D such that φVcot(r− π
4 ) = V− tan(r− π

4 ).

• Type (C), tubes of radius r , 0 < r < π
4 , over the Segre embedding ofCP1×CPn ,

where 2n + 1 = m and m ≥ 5, with 5 distinct constant principal curvatures,
2 cot(2r) with eigenspace R[ξ ], cot(r − π

4 ) with multiplicity 2, cot(r − π
2 ) =

− tan(r)withmultiplicitym−3, cot(r− 3π
4 ), with multiplicity 2 and cot(r−π) =

cot(r) with multiplicity m − 3. Moreover φVcot(r− π
4 ) = Vcot(r− 3π

4 ) and V− tan(r)

and Vcot(r) are φ-invariant.
• Type (D), tubes of radius r , 0 < r < π

4 , over thePlucker embeddingof the complex
GrassmannianmanifoldG(2, 5) inCP9, with the same principal curvatures as type
(C), 2 cot(2r) with eigenspace R[ξ ], and the other 4 principal curvatures have the
same multiplicity 4 and their eigenspaces have the same behaviour with respect to
φ as in type (C).

• Type (E), tubes of radius r , 0 < r < π
4 , over the canonical embedding of the Her-

mitian symmetric space SO(10)/U (5) inCP15. They also have the same principal
curvatures as type (C), 2 cot(2r)with eigenspaceR[ξ ], cot(r− π

4 ) and cot(r− 3π
4 )

have multiplicities equal to 6 and − tan(r) and cot(r) have multiplicities equal to
8. Their corresponding eigenspaces have the same behaviour with respect to φ as
in type (C).

We will call type (A) real hypersurfaces to both types (A1) or (A2).
Ruled real hypersurfaces in CPm were introduced by Kimura [5]. The maximal

holomorphic distributionD of such real hypersurfaces is integrable with integral man-
ifolds CPm−1. Equivalently, g(AD,D) = 0. Kimura gave some minimal examples of
this kind of real hypersurfaces.

Let B be a symmetric operator on M . Then we can define on M a couple of tensor
fields of type (1,2), for any nonnull real number k, B(k)

F and B(k)
T , given, respectively,

by

B(k)
F (X ,Y ) = ((∇̂(k)

X − ∇X )B)Y = F (k)
X BY − BF (k)

X Y = [F (k)
X , B]Y (1.1)

and

B(k)
T (X ,Y ) = ((L(k)

X − LX )B)Y = T (k)
X BY − BT (k)

X Y = [T (k)
X , B]Y (1.2)

for any X ,Y tangent to M .
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In [10] we considered the case A = B in (1.1), and proved non-existence of real
hypersurfaces in CPm , m ≥ 3, such that A(k)

F = 0, for any nonnull real number
k. A similar result for A = B in (1.2) was obtained in [9]. Such conditions imply
commutativity of A and either F (k)

X or T (k)
X , for any X tangent to M , respectively.

In this paper we want to generalize such results. Then, we will consider the condi-
tions g(A(k)

F (X ,Y ), ξ) = 0, (respectively, g(A(k)
F (X ,Y ), Z) = 0) for any X ,Y tangent

to M (respectively, for any X ,Y tangent to M , Z ∈ D), obtaining the following

Theorem 1.1 Let M be a real hypersurface in CPm, m ≥ 3, and k a nonnull real
number. Then g(A(k)

F (X ,Y ), ξ) = 0 for any X ,Y tangent to M if and only if M is
locally congruent to a ruled real hypersurface such that g(Aξ, ξ) = −k.

And

Theorem 1.2 Let M be a real hypersurface inCPm, m ≥ 3, and k a nonnull constant.
Then g(A(k)

F (X ,Y ), Z) = 0 for any X ,Y tangent to M, Z ∈ D, if and only if M is
locally congruent to a real hypersurface of type (A)

Similar conditions for A(k)
T give us the following results

Theorem 1.3 There does not exist any real hypersurface M inCPm, m ≥ 3, such that
g(A(k)

T (X ,Y ), ξ) = 0, for any X ,Y tangent to M and any nonnull real number k.

And

Theorem 1.4 Let M be a real hypersurface in CPm,m ≥ 3 and k a nonnull real
number. Then g(A(k)

T (X ,Y ), Z) = 0, for any X ,Y tangent to M, Z ∈ D, if and only
if M is locally congruent to a real hypersurface of type (A).

On the other hand, we will say that A is (∇̂(k),∇)-recurrent if ((∇̂(k)
X −∇X )A)Y =

ω(X)AY , for any X ,Y tangent to M , where ω is a nonnull 1-form on M . This is
equivalent to have A(k)

F (X ,Y ) = ω(X)AY .

Similarly, we will say that A is (L(k),L)-recurrent if ((L(k)
X −LX )A)Y = δ(X)AY ,

for any X ,Y tangent to M and a nonnull 1-form δ on M . This is equivalent to have
A(k)
T (X ,Y ) = δ(X)AY .
If we consider D − (∇̂(k),∇)-recurrency or D − (L(k),L)-recurrency (the same

conditions as above for X ,Y ∈ D) we obtain

Theorem 1.5 Let M be a real hypersurface in CPm, m ≥ 3, and k a nonnull real
number. Then A(k)

F (X ,Y ) = ω(X)AY , for any X ,Y ∈ D and a nonnull 1-form ω on
M if and only if M is locally congruent either to a real hypersurface of type (A) or to
a ruled real hypersurface.

and

Theorem 1.6 There does not exist any real hypersurface M inCPm, m ≥ 3, such that
A(k)
T (X ,Y ) = δ(X)AY , for any X ,Y ∈ D, and a nonnull 1-form δ on M, k being a

nonnull real number.
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2 Preliminaries

Anymathematical object in the sequel will be considered of classC∞ unless otherwise
stated. Let M be a connected real hypersurface without boundary inCPm,m ≥ 2, and
N a locally defined normal unit vector field on M . Let∇ be the Levi-Civita connection
on M and (J , g) the Kaehlerian structure of CPm .

For any vector field X tangent to M , we write J X = φX + η(X)N , where φX
denotes the tangential component of J X , and−J N = ξ . Then (φ, ξ, η, g) is an almost
contact metric structure on M (see [1]). Therefore,

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX , φY ) = g(X ,Y ) − η(X)η(Y ) (2.1)

for any tangent vectors X ,Y to M . From (2.1) we get

φξ = 0, η(X) = g(X , ξ).

From the parallelism of J we obtain

(∇Xφ)Y = η(Y )AX − g(AX ,Y )ξ and ∇Xξ = φAX

for any X ,Y tangent to M , where A denotes the shape operator of the immersion. As
CPm has holomorphic sectional curvature 4, the equations of Gauss and Codazzi are
given, respectively, by

R(X ,Y )Z = g(Y , Z)X − g(X , Z)Y + g(φY , Z)φX − g(φX , Z)φY

−2g(φX ,Y )φZ + g(AY , Z)AX − g(AX , Z)AY ,

and

(∇X A)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX ,Y )ξ

for any tangent vectors X ,Y , Z to M , where R is the curvature tensor of M .
In the sequel the following result owed to Maeda [7], is needed.

Theorem 2.1 Let M be a Hopf real hypersurface in CPm, m ≥ 2. Then α = g(Aξ, ξ)

is constant and if W is a vector field which belongs to D such that AW = λW, then
2λ − α �= 0 and AφW = μφW, where μ = αλ+2

2λ−α
.

We will also need the following theorem proved by Okumura [8]

Theorem 2.2 Let M be a real hypersurface in CPm, m ≥ 2. Then φA = Aφ if and
only if M is locally congruent to a real hypersurface of type (A).
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3 Proofs of Theorems 1.1 and 1.2

Let us suppose that g(A(k)
F (X ,Y ), ξ) = 0 for any X ,Y tangent to M . This yields

g(g(φAX , AY )ξ − η(AY )φAX − kη(X)φAY − g(φAX ,Y )Aξ + η(Y )AφAX +
kη(X)AφY , ξ) = 0, for any X ,Y tangent to M . Therefore

g(AφAX ,Y ) − g(Aξ, ξ)g(φAX ,Y ) + η(Y )g(AφAX , ξ) + kη(X)g(AφY , ξ) = 0

(3.1)

for any X ,Y tangent to M .
Let us suppose that M is Hopf, that is, Aξ = αξ . Then (3.1) gives g(AφAX ,Y ) −

αg(φAX ,Y ) = 0, for any X ,Y tangent to M . Thus AφAX = αφAX , for any X
tangent to M . If we choose X ∈ D such that AX = λX , from Theorem 2.1 we should
have AφX = μφX , μ = αλ+2

2λ−α
. Then λμ = λα and either λ = 0 or μ = α.

If we suppose that in D there exists a principal curvature λ �= 0, μ = α yields
αλ + 2 = 2αλ − α2. That is, αλ = α2 + 2. This implies that α �= 0 and then
λ = α2+2

α
. As μ = α, we also have λ �= μ and all the principal curvatures are

constant. Therefore Aφ �= φA and M cannot be of type (A). If there is not a vector
field Y ∈ D such that AY = 0, the unique principal curvatures on D are α and α2+2

α
.

Looking at Takagi’s list, this is impossible.
Therefore, the unique principal curvature in D is λ = 0. But then, μ = − 2

α
must

be equal to 0 too, which is also impossible.
Then we must suppose that M is non Hopf. So we can write Aξ = αξ +βU , where

U is a unit vector field in D and β is a function on M that does not vanish at least
on a neighborhood of a point p ∈ M . We will make all the calculations on such a
neighborhood.

If we take Y = ξ in (3.1) we get 2g(AφAξ, X) = 0 for any X tangent to M . That
is, βg(AφU , X) = 0 for any X tangent to M , which yields

AφU = 0. (3.2)

Taking X = ξ in (3.1) we obtain g(AφAξ,Y ) − αg(φAξ,Y ) + kg(AφY , ξ) = 0,
for any Y tangent to M . Then, from (3.2), −αβg(φU ,Y ) − kβg(φU ,Y ) = 0. As
β �= 0, if we take Y = φU we have

α = −k. (3.3)

If now we take Y = φU in (3.1) it follows −αg(AX ,U ) − kη(X)g(AU , ξ) = 0,
for any X tangent to M . That is, −αg(AU , X) − kβη(X) = 0. From (3.3) we get
kg(AU , X) − kβη(X) = 0, for any X tangent to M . Thus

AU = βξ. (3.4)

From (3.2) and (3.4) we have that DU = {X ∈ D|g(X ,U ) = g(X , φU ) = 0} is
A-invariant. Take X ,Y ∈ DU in (3.1). Then g(AφAX ,Y ) − αg(φAX ,Y ) = 0. From
(3.3) this yields
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AφAX + kφAX = 0 (3.5)

for any X ∈ DU . We can also write the equation above (3.5) as −g(AφAY , X) +
αg(AφY , X) = 0, for any X ,Y ∈ DU . From (3.3) we obtain

− AφAX − k AφX = 0 (3.6)

for any X ∈ DU . Adding (3.5) and (3.6) we have k(φA− Aφ)X = 0 for any X ∈ DU

and, as k �= 0, we get

φAX = AφX

for any X ∈ DU . Therefore, if X ∈ DU satisfies AX = λX , we obtain AφX = λφX .
Moreover, from (3.5) it follows λ2 + kλ = 0 and either λ = 0 or λ = −k.

Let us suppose that there exists Y ∈ DU such that AY = −kY and AφY = −kφY .
The Codazzi equation yields (∇Y A)φY − (∇φY A)Y = −2ξ . Therefore, −k∇YφY −
A∇YφY + k∇φY Y + A∇φY Y = −2ξ . Its scalar product with ξ gives kg(φY , φAY )−
g(∇YφY ,−kξ + βU ) − kg(Y , φAφY ) + g(∇φY Y ,−kξ + βU ) = −2. This yields
βg([φY ,Y ],U )− k2 − kg(φY , φAY ) +kg(AφY , φY )+ kg(Y , φAφY ) = −2. Thus

g([φY ,Y ],U ) = − 2

β
. (3.7)

Its scalar product with U implies −kg(∇YφY ,U ) − g(∇YφY , βξ) +
kg(∇φY Y ,U ) + g(∇φY Y , βξ) = 0. That is, kg([φY ,Y ],U ) + βg(φY , φAY ) −
βg(Y , φAφY ) = 0. Then

g([φY ,Y ],U ) = 2β. (3.8)

From (3.7) and (3.8) β = − 1
β
would give β2 = −1, which is impossible.

We conclude that the unique principal curvature in DU is 0 and M is ruled. The
converse is straightforward and we finish the proof of Theorem 1.1.

In order to prove Theorem 1.2 let us suppose that g(A(k)
F (X ,Y ), Z) = 0 for any

X ,Y tangent to M , Z ∈ D. This implies

−η(AY )g(φAX , Z) − kη(X)g(φAY , Z) − g(φAX , Y )η(AZ) + η(Y )g(AφAX , Z)

+kη(X)g(AφY , Z) = 0 (3.9)

for any X ,Y tangent to M , Z ∈ D.
Let us suppose that M is Hopf and Aξ = αξ . Taking X = ξ in (3.9) we get

−kg(φAY , Z) + kg(AφY , Z) = 0 for any Y tangent to M , Z ∈ D. As k �= 0, this
means that (Aφ − φA)X = 0 for any X ∈ D. From Theorem 2.2, M must be locally
congruent to a real hypersurface of type (A).

If M is non Hopf we will write Aξ = αξ + βU with the same conditions as in
the proof of Theorem 1.1. Taking X = Y = ξ in (3.9) we have −αβg(φU , Z) −
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kβg(φU , Z) + βg(AφU , Z) = 0 for any Z ∈ D. This gives, bearing in mind that
β �= 0,

AφU = (α + k)φU . (3.10)

If in (3.9) we put Y = ξ we get −αg(φAX , Z) − kβη(X)g(φU , Z) +
g(AφAX , Z) = 0, for any X tangent to M , Z ∈ D. If Z = φU , we obtain
−αg(AU , X) − kβη(X) + (α + k)g(AU , X) = 0, for any X tangent to M . This
implies k AU = kβξ . As k �= 0 we obtain

AU = βξ. (3.11)

If we take Y = ξ , X = φU in (3.9) we have α(α+k)g(U , Z)−(α+k)g(AU , Z) =
0, for any Z ∈ D. From (3.11) we get α(α + k)g(U , Z) = 0 for any Z ∈ D. Taking
Z = U we obtain α(α + k) = 0.

Let us suppose that α = −k. Then (3.10) and (3.11) imply Aξ = −kξ +βU , AU =
βξ , AφU = 0. If we introduce X ,Y ∈ DU in (3.9) we have−g(φAX ,Y )g(Aξ, Z) =
0, for any Z ∈ D. If Z = U we get g(φAX ,Y ) = 0 for any X ,Y ∈ DU . Now, if we
take φY instead of Y it follows g(AX ,Y ) = 0 for any X ,Y ∈ DU and

AX = 0 (3.12)

for any X ∈ DU . From (3.10), (3.11), (3.12) and the fact that α = −k, M should be
ruled. But taking X = ξ , Y = U in (3.10) we have kβg(φU , Z) = 0 for any Z ∈ D,
which is impossible.

Suppose then that α = 0. Therefore, Aξ = βU , AU = βξ and AφU = kφU . Take
X = ξ , Y ∈ DU in (3.9). Then −kg(φAY , Z) + kg(AφY , Z) = 0, for any Y ∈ DU ,
Z ∈ D. This yields AφY = φAY for any Y ∈ DU . As DU is A-invariant, if Y ∈ DU

satisfies AY = λY , AφY = λφY . If we take Y = ξ , X ∈ DU in (3.9) we obtain
g(AφAX , Z) = 0 for any X ∈ DU , Z ∈ D. Therefore, AφAX = 0 for any X ∈ DU .
That is, if Y ∈ DU satisfies AY = λY we obtain λ = 0. Therefore AZ = 0 for any
Z ∈ DU . For such a Z Codazzi equation gives (∇Z A)ξ − (∇ξ A)Z = −φZ . Then
∇Z (βU )− AφAZ + A∇ξ Z = −φZ . This implies Z(β)U +β∇ZU + A∇ξ Z = −φZ
and its scalar product withU implies Z(β) − βg(Z , φAξ) = 0. We have proved that

Z(β) = 0 (3.13)

for any Z ∈ DU .
On the other hand, (∇U A)ξ−(∇ξ A)U = −φU impliesU (β)U+β∇UU−ξ(β)ξ−

βφAξ + A∇ξU = −φU . Its scalar product with ξ gives −βg(U , φAU ) − ξ(β) +
βg(∇ξU ,U ) = 0. That is,

ξ(β) = 0 (3.14)
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and its scalar product with U yields U (β) − β2g(U , φU ) = 0. Thus

U (β) = 0. (3.15)

Also (∇φU A)ξ −(∇ξ A)φU = U yields (φU )(β)U +β∇φUU +k AU −k∇ξφU +
A∇ξφU = U . Its scalar product with ξ implies 3kβ + βg(∇ξφU ,U ) = 0. Then

g(∇ξφU ,U ) = −3k (3.16)

and its scalar product with U gives (φU )(β) − kg(∇ξφU ,U ) − βg(Aξ,U ) = 1.
Therefore, from (3.16),

(φU )(β) = −3k2 + β2 + 1. (3.17)

From (3.13), (3.14), (3.15) and (3.17) we obtain grad(β) = γφU , where γ =
−3k2 + β2 + 1. As g(∇X grad(β),Y ) = g(∇Y grad(β), X), for any X ,Y tangent to
M , we get X(γ )g(φU ,Y ) + γ g(∇XφU ,Y ) = Y (γ )g(φU , X) + γ g(∇YφU , X). If
X = ξ we obtain γ g(∇ξφU ,Y ) = γ g(∇YφU , ξ) = −γ g(U , AY ) for any Y tangent
to M . If now Y = U it follows γ g(∇ξφU ,U ) = 0. From (3.16) we get −3kγ = 0.
Thus γ = 0 and β is constant.

Then (∇φU A)U − (∇U A)φU = 2ξ yields βφAφU − A∇φUU − k∇UφU +
A∇UφU = 2ξ . Its scalar product with ξ gives kg(U , AU ) + βg(∇UφU ,U ) = 2.
Therefore,

βg(∇UφU ,U ) = 2 (3.18)

and its scalar product with U implies −βk + βg(U , φAφU ) − kg(∇UφU ,U ) = 0.
That is, −2βk = kg(∇UφU ,U ). Then

g(∇UφU ,U ) = −2β. (3.19)

From (3.18) and (3.19) we have −β2 = 1, which is impossible and this finishes the
proof of Theorem 1.2.

4 Proofs of Theorems 1.3 and 1.4

If we suppose that g(A(k)
T (X ,Y ), ξ) = 0 for any X ,Y tangent to M we obtain

g(φAX , AY ) − g(φA2Y , X) − g(Aξ, ξ)g(φAX ,Y ) + η(Y )g(φAX , Aξ)

+kη(X)g(φY , Aξ) + g(Aξ, ξ)g(φAY , X) − η(X)g(φAY , Aξ)

−kη(Y )g(φX , Aξ) = 0 (4.1)

for any X ,Y tangent to M .
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Let us suppose that M is Hopf, Aξ = αξ , and take X ,Y ∈ D in (4.1). Then
g(φAX , AY )−g(φA2Y , X)−αg(φAX ,Y )+αg(φAY , X) = 0. Therefore,we obtain
AφAX + A2φX −αφAX −αAφX = 0 for any X ∈ D. If X ∈ D satisfies AX = λX ,
from Theorem 2.1 we know that AφX = μφX . Thus λμ + μ2 − αλ − αμ = 0. That
is, (λ+μ)μ− (λ+μ)α = 0, or (λ+μ)(μ−α) = 0. If λ+μ = 0, as μ = αλ+2

2λ−α
, we

obtain 2λ2 + 2 = 0, which is impossible. Therefore μ = α and then, as in the proof
of Theorem 1.1, this case is not possible.

Therefore M must be non Hopf. We continue writing Aξ = αξ +βU as in Sect. 3.
Taking X = ξ in (4.1) we obtain βg(φU , AY ) − αβg(φU ,Y ) + kg(φY , Aξ) −

g(φAY , Aξ) = 0, for any Y tangent to M . This gives βAφU − αβφU − kβφU +
βAφU = 0. Then 2AφU − (α + k)φU = 0 and

AφU =
(

α + k

2

)
φU . (4.2)

If now we take Y = ξ in (4.1) it follows 2 g(φAX , Aξ) − g(φA2ξ, X) +
αg(φAξ, X) − kg(φX , Aξ) = 0, for any X tangent to M . Then −2βg(AφU , X) −
g(φA(αξ + βU ), X) + αβg(φU , X) + kβg(φU , X) = 0, for any X tangent to M .
From (4.2) we get −αg(φAξ, X) − βg(φAU , X) = 0, for any X tangent to M .
Therefore, −αβφU − βφAU = 0, or φAU = −αφU . Applying φ we obtain

AU = βξ − αU . (4.3)

Take X = φU in (4.1). Then g(φAφU , AY ) − g(A2Y ,U ) − αg(φAφU ,Y ) +
η(Y )g(φAφU , Aξ) +αg(AY ,U ) + kη(Y )g(U , Aξ) = 0, for any Y tangent to M .
From (4.2)we get−(α+k

2 ) g(AU ,Y )−g(A2U ,Y )+α(α+k
2 )g(U ,Y )−β(α+k

2 )η(Y )+
αg(AU ,Y ) + kβη(Y ) = 0, for any Y tangent to M . Therefore, (α − (α+k

2 ))AU −
A2U + α(α+k

2 )U + β(k − (α+k
2 ))ξ = 0. This and (4.3) yield

αk − α2 − β2 = 0. (4.4)

If now we take Y = φU in (4.1) we have g(φAX , AφU ) − g(φA2φU , X) −
αg(AX ,U )−kη(X)g(U , Aξ)+αg(φAφU , X)−βg(φAφU ,U )η(X) = 0, for any X
tangent toM . This yields ((α+k

2 )−α)AU+(α+k
2 )((α+k

2 )−α)U+β((α+k
2 )−α)ξ = 0,

that is, ( k−α
2 )AU +( k+α

2 )( k−α
2 )U −β( k−α

2 )ξ = 0. If α = k, from (4.4), β = 0, which
is impossible. Therefore, k �= α and we get

AU = βξ −
(

α + k

2

)
U . (4.5)

From(4.3) and (4.5),α = α+k
2 , and then,α = k, thatwehave seen that is impossible,

finishing the proof of Theorem 1.3.
Suppose now that g(A(k)

T (X ,Y ), Z) = 0 for any X ,Y tangent to M , Z ∈ D. This
implies
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−η(AY )g(φAX , Z) − kη(X)g(φAY , Z) + η(X)g(φA2Y , Z) + kη(AY )g(φX , Z)

−g(φAX , Y )g(Aξ, Z) + η(Y )g(φAX , AZ) + kη(X)g(φY , AZ) + g(φAY , X)g(Aξ, Z)

−η(X)g(φAY , AZ) − kη(Y )g(φX , AZ) = 0 (4.6)

for any X ,Y tangent to M , Z ∈ D.
Let us suppose that M is Hopf with Aξ = αξ . Take X = ξ , Y ∈ D in (4.6). Then

we get −kg(φAY , Z) + g(φA2Y , Z) − kg(φY , AZ) − g(φAY , AZ) = 0, for any
Y , Z ∈ D. Therefore,

− kφAY + φA2Y + k AφY − AφAY = 0 (4.7)

for any Y ∈ D. If we interchange Y and Z we also obtain

k AφY − A2φY − kφAY + AφAY = 0 (4.8)

for any Y ∈ D. If such a Y satisfies AY = λY , from (4.7) and Theorem 2.1 we obtain

(λ − μ)(λ − k) = 0 (4.9)

where μ = αλ+2
2λ−α

. From (4.8) we also get

(k − μ)(μ − λ) = 0. (4.10)

From (4.9) and (4.10) either λ = μ for any principal curvature in D, and in this
case, from Theorem 2.2, M is locally congruent to a real hypersurface of type (A) or
there exists λ such that μ �= λ. Then λ = μ = k, which is impossible.

Suppose now that M is non Hopf and write Aξ as before. Take X = Y = ξ in (4.6).
Then−αg(φAξ, Z)−kg(φAξ, Z)+g(φA2ξ, Z)+g(φAξ, AZ)−g(φAξ, AZ) = 0.
Therefore, −(α + k)βg(φU , Z) + g(φA(αξ + βU ), Z) = 0, for any Z ∈ D. This
yields −kβg(φU , Z) + βg(φAU , Z) = 0, for any Z ∈ D. Then φAU = kφU , and
applying φ we get

AU = βξ + kU . (4.11)

Take now X = ξ , Y = φU in (4.6). We obtain−kg(φAφU , Z)+ g(φA2φU , Z)−
g(Aξ,U )g(Aξ, Z) − kg(AU , Z) − g(φAφU , AZ) = 0, for any Z ∈ D. If we take
Z = U we get kg(AφU , φU ) − g(A2φU , φU ) − β2 − k2 + g(AφU , φAU ) = 0.
That is,

2kg(AφU , φU ) = g(AφU , AφU ) + β2 + k2. (4.12)

If we take X = U , Y = φU in (4.6) we have −g(φAU , φU )g(Aξ, Z) +
g(φAφU ,U )g(Aξ, Z) = 0, for any Z ∈ D. From (4.11) it follows −kg(Aξ, Z) −
g(AφU , φU )g(Aξ, Z) = 0, for any Z ∈ D. If Z = U we get g(AφU , φU ) = −k,
and from (4.12) g(AφU , AφU ) + β2 + 3k2 = 0, which is impossible, finishing the
proof of Theorem 1.4.

123



55 Page 12 of 17 Bulletin of the Iranian Mathematical Society (2023) 49 :55

5 Proofs of Theorems 1.5 and 1.6

If we suppose that A(k)
F (X ,Y ) = ω(X)AY for any X ,Y ∈ D we get

g(φAX , AY )ξ − η(AY )φAX − g(φAX ,Y )Aξ = ω(X)AY (5.1)

for any X ,Y ∈ D.
Let us suppose that M is Hopf and that Aξ = αξ . Then (5.1) becomes

g(φAX , AY )ξ − αg(φAX ,Y )ξ = ω(X)AY (5.2)

for any X ,Y ∈ D. The scalar product of (5.2) and ξ gives g(φAX , AY ) −
αg(φAX ,Y ) = 0, for any X ,Y ∈ D. Therefore, we have

AφAX − αφAX = 0 (5.3)

for any X ∈ D, and interchanging X and Y we also get

− AφAX + αAφX = 0 (5.4)

for any X ∈ D. From (5.3) and (5.4) it follows α(φA − Aφ)X = 0 for any X ∈ D.
Let us suppose that α = 0. Then, from (5.3) we obtain AφAX = 0 for any X ∈ D and
if we suppose that AX = λX , from Theorem 2.1, λ( 2

2λ ) = 0, which is impossible.
Therefore, φA − Aφ = 0, and from Theorem 2.2, M must be locally congruent to a
real hypersurface of type (A). In this case (5.3) gives A2φX − αAφX = 0 for any
X ∈ D and also φA2X − αφAX = 0. Thus μ(μ − α) = λ(λ − α) = 0. We have now
that either μ = 0 or μ = α and, at the same time, either λ = 0 or λ = α. These four
possibilities give contradictions and M must be non Hopf.

As in previous sections we write Aξ = αξ + βU . Then (5.1) looks like

g(φAX , AY )ξ − βg(U ,Y )φAX − g(φAX ,Y )Aξ = ω(X)AY (5.5)

for any X ,Y ∈ D. Taking Y = U in (5.5) we get g(φAX , AU )ξ − βφAX −
g(φAX ,U )Aξ = ω(X)AU . Its scalar product with U yields −2βg(φAX ,U ) =
ω(X)g(AU ,U ) for any X ∈ D. If, in particular, X = U we obtain

ω(U )g(AU ,U ) − 2βg(AU , φU ) = 0. (5.6)

Taking the scalar product of (5.5) and φU we have −βg(U ,Y )g(AX ,U ) =
ω(X)g(AY , φU ), for any X ,Y ∈ D. If X = Y = U it follows

βg(AU ,U ) + ω(U )g(AU , φU ) = 0. (5.7)

The linear system given by (5.6) and (5.7) satisfies (ω(U ))2 + 2β2 �= 0, and
therefore

g(AU ,U ) = g(AU , φU ) = 0. (5.8)

123



Bulletin of the Iranian Mathematical Society (2023) 49 :55 Page 13 of 17 55

Taking X ∈ DU in (5.5) and its scalar product with φU we obtain
−βg(U ,Y )g(AU , X) = ω(X)g(AY , φU ) for any X ∈ DU , Y ∈ D. Bearing in
mind (5.8), if Y = U and X ∈ DU we get −βg(AU , X) = 0, for any X ∈ DU . As
β �= 0, it follows

g(AU , X) = 0 (5.9)

for any X ∈ DU . Now (5.8) and (5.9) yield

AU = βξ. (5.10)

The scalar product of (5.5) and U gives βg(U ,Y )g(AφU , X) − βg(φAX ,Y ) =
ω(X)g(AY ,U ) = 0, for any X ,Y ∈ D. Taking Y = U we have 2βg(AφU , X) = 0,
for any X ∈ D. Thus

AφU = 0. (5.11)

Take now X ,Y ∈ DU in (5.5). Then, g(φAX , AY )ξ −g(φAX ,Y )Aξ = ω(X)AY ,
and its scalar product withU yields βg(AX , φY ) = 0, for any X ,Y ∈ DU . Therefore,
AX = 0, for any X ∈ DU . This, (5.10) and (5.11) imply that M is locally congruent
to a ruled real hypersurface, finishing the proof of Theorem 1.5.

If now A(k)
T (X ,Y ) = δ(X)AY , for any X ,Y ∈ D, we obtain

g(φAX , AY )ξ − η(AY )φAX − g(φA2Y , X)ξ + kη(AY )φX

−g(φAX , AY )Aξ + g(φAY , AX)Aξ = δ(X)AY (5.12)

for any X ,Y ∈ D.
If we suppose that M is Hopf, Aξ = αξ , and take the scalar product of (5.12) and

ξ , we get

g(φAX , AY ) − g(φA2Y , X) − αg(φAX ,Y ) + αg(φAY , X) = 0 (5.13)

for any X ,Y ∈ D. Then (5.13) yields

AφAX + A2φX − αφAX − αAφX = 0 (5.14)

for any X ∈ D and, interchanging X and Y ,

− AφAX − φA2X + αAφX + αφAX = 0 (5.15)

for any X ∈ D. From (5.14) and (5.15) we have A2φX−φA2X = 0, for any X ∈ D. If
we suppose that AX = λX , from Theorem 2.1, AφX = μφX and μ2 = λ2. If −λ =
μ = αλ+2

2λ−α
, it yields αλ − 2λ2 = αλ + 2. Therefore, λ2 + 1 = 0, which is impossible.

Therefore λ = μ and φA = Aφ. In this case (5.14) becomes 2A2φX − 2αAφX = 0
and then μ(μ − α) = 0. In the same way, (5.15) implies −2φA2X + 2αφAX = 0
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and λ(α − λ) = 0. The four possibilities that we obtain imply contradictions and M
must be non Hopf. Write as usual Aξ = αξ + βU .

The scalar product of (5.12) and φU gives

− η(AY )g(AX ,U ) + kη(AY )g(X ,U ) = δ(X)g(AY , φU ) (5.16)

for any X ,Y ∈ D. Taking X = φU in (5.16) and Y = U we get −βg(AφU ,U ) =
δ(φU )g(AU , φU ). Thus

(δ(φU ) + β)g(AU , φU ) = 0. (5.17)

If we put Y = φU in (5.16) we obtain

δ(X)g(AφU , φU ) = 0 (5.18)

for any X ∈ D.
Take the scalar product of (5.12) and U . Then it follows

−η(AY )g(φAX ,U ) + kη(AY )g(φX ,U ) − βg(φAX ,Y ) + βg(φAY , X)

= δ(X)g(AY ,U ) (5.19)

for any X ,Y ∈ D. Taking Y = φU in (5.19) we obtain −βg(AX ,U ) +
βg(φAφU , X) = δ(X)g(AφU ,U ). If X = φU it follows −βg(AφU ,U ) +
βg(AφU ,U ) = δ(φU )g(AφU ,U ). That is,

δ(φU )g(AφU ,U ) = 0. (5.20)

Suppose that δ(φU ) = −β. Then, from (5.18), g(AφU , φU ) = 0 and from (5.20),
g(AφU ,U ) = 0. If δ(φU ) �= −β, from (5.17), g(AU , φU ) = 0. Thus we have
proved that always

g(AU , φU ) = 0. (5.21)

If we take X = Y = U in (5.19), bearing in mind (5.21), we obtain

δ(U )g(AU ,U ) = 0. (5.22)

If now we take Y = U in (5.16) we get −βg(AU , X) + kβg(U , X) =
δ(X)g(AU , φU ) = 0, for any X ∈ D. This yields

AU = βξ + kU , (5.23)

and from (5.22) we also have δ(U ) = 0.
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If we take X = U in (5.19) we obtain −βg(φAU ,Y ) + βg(φAY ,U ) = 0 for any
Y ∈ D. This yields AφU = −φAU , and bearing in mind (5.23), we arrive at

AφU = −kφU . (5.24)

From (5.23) and (5.24) we know that DU is A-invariant. Taking Y = U , X ∈ DU

in (5.12) we have −βφAX + kβφX = δ(X)AU , for any X ∈ DU . If we take its
scalar product with ξ we get βδ(X) = 0, for any X ∈ DU . Thus δ(X) = 0 for
such an X , and the above equation implies φAX = kφX for any X ∈ DU . If we
apply φ we obtain AX = kX for any X ∈ DU . For such a vector field AX = kX ,
AφX = kφX . Codazzi equation implies (∇X A)φX − (∇φX A)X = −2ξ . Therefore,
k∇XφX − A∇XφX − k∇φX X + A∇φX X = −2ξ . Its scalar product with U gives
−kg([φX , X ],U ) − g(∇XφX , βξ + kU ) + g(∇φX X , βξ + kU ) = 0. This yields
βg(φX , φAX)−βg(X , φAφX) = 0. Thus 2kβ = 0, which is impossible and finishes
the proof of Theorem 1.6.

Suppose finally that M satisfies A(k)
F (X ,Y ) = ω(X)AY for any X ,Y tangent to

M , From Theorem 1.5 M must be locally congruent to either a real hypersurface of
type (A) or to a ruled real hypersurface. Moreover, M must satisfy

g(φAX , AY )ξ − η(AY )φAX − kη(X)φAY − g(φAX ,Y )Aξ + η(Y )AφAX

+kη(X)AφY = ω(X)AY (5.25)

for any X ,Y tangent to M . Suppose that M is a real hypersurface of type (A) and take
X = ξ in (5.25). We get

− kφAY + k AφY = ω(ξ)AY (5.26)

for any Y tangent to M . As our real hypersurface satisfies Aφ = φA, from (5.26) we
have ω(ξ)AY = 0 for any Y tangent to M . If ω(ξ) �= 0 we should have AY = 0 for
any Y tangent to M . That is, M is totally geodesic, which is impossible. Therefore
ω(ξ) = 0.

Take then Y = ξ in (5.25). We obtain

− αφAX + AφAX = αω(X)ξ (5.27)

for any X tangent to M . Consider X ∈ D and take the scalar product of (5.27) and
Z ∈ D. This gives −αg(φAX , Z) + g(AφAX , Z) = 0, for any X , Z ∈ D. Therefore
−αφAX + AφAX = 0. As Aφ = φA we have −αφAX +φA2X = 0 for any X ∈ D

Suppose that AX = λX . Then −αλ + λ2 = 0, and the unique principal curvatures
in D are α and 0. Thus M has, exactly, two distinct constant principal curvatures and
looking at Takagi’s list M must be locally congruent to a geodesic hypersphere. But
a geodesic hypersphere has not such principal curvatures.

If M is ruled and we take Y = φU in (5.25) it follows −g(φAX , φU )Aξ −
kη(X)AU = ω(X)AφU = 0. Then −g(AX ,U )Aξ − kη(X)AU = 0, for any X
tangent to M . Its scalar product with U implies −βg(AX ,U ) = 0 for any X tangent
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to M . If X = ξ we get β2 = 0, which is impossible. Thus we have obtained the
following

Corollary 5.1 There does not exist any real hypersurface M inCPm, m ≥ 3, such that
A(k)
F (X ,Y ) = ω(X)AY , for a certain nonnull 1-form ω on M, any X ,Y tangent to

M and a nonnull real number k.

Similarly, we have

Corollary 5.2 There does not exist any real hypersurface M inCPm, m ≥ 3, such that
A(k)
T (X ,Y ) = δ(X)AY , for a certain nonnull 1-form δ on M, any X ,Y tangent to M

and a nonnull real number k.
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