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Turkey

4 Department of Mathematics, Atilim University, 06836 Incek, Ankara, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41980-021-00605-8&domain=pdf
http://orcid.org/0000-0003-0872-5017


1650 Bulletin of the Iranian Mathematical Society (2022) 48:1649–1665

1 Introduction

Classical univariate orthogonal polynomials (of a continuous variable) can be intro-
duced and characterized by different ways. One possible approach is to present them
as solution of a second-order differential equation of hypergeometric type [29]

a(x)z′′(x) + b(x)z′(x) + μnz(x) = 0, (1.1)

where a(x) and b(x) are polynomials of degree at most two and one, respectively, and
μn is a constant, usually referred as eigenvalue. The hypergeometric property means
that if z(x) is a solution of (1.1), then any derivative of z(x) is solution of an equation
of the same type. The characterization problem has been analyzed by several authors
[9]. As it is well known, the Favard theorem [31] links orthogonality and three-term
recurrence relation which in the univariate situation reads as

xpn(x) = rn pn+1(x) + sn pn(x) + tn pn−1(x), tn �= 0.

Classical univariate orthogonal polynomials (of a continuous variable and orthogo-
nal with respect a positive weight function) are essentially the Jacobi, Laguerre and
Hermite polynomials, which can be expressed in terms of hypergeometric functions.
Moreover, the differential equation (1.1) can be discretized in several forms, giving
rise to classical orthogonal polynomials of a discrete variable and classical orthogonal
polynomials on nonuniform lattices [29]. All of them can be expressed in terms of
hypergeometric series [14].

There are also several approaches in the multivariate context. Some authors have
focused the analysis on the partial differential equation [15], but it is possible to
introduce multivariate analogues of classical orthogonal polynomials from another
approaches [2,32–34]. A systematic analysis of the orthogonal polynomial solutions
of some partial differential equations has been done by Suetin [30]. Let �n be the
set of polynomials of total degree n in the multivariate case. There are three main
concepts on the partial differential equation to be considered:

1. Admissible: It might exist a sequence of eigenvalues {μn} (n = 0, 1, . . . ) such
that for each nonnegative integer n there are exactly n + 1 linearly independent
solutions in �n and the equation has not non-trivial solutions in �k for k < n;

2. Hypergeometric: If y(x1, . . . , xn) is solution of the partial differential equation,
then

∂r1+r2+···+rn

∂xr11 ∂xr22 · · · ∂xrnn y(x1, . . . , xn)

is solution of an equation of the same type.
3. Potentially self-adjoint: From the partial differential equation, it is possible to

introduce an operator D. The operator (and therefore the equation) is potentially
self-adjoint in a domain � if there exists a positive real function r in this domain
such that the operator rD is self-adjoint in the domain �.
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Potentially self-adjoint second-order partial differential equations have been deeply
analyzed by Suetin [30] (see Chapter V). The concept of hypergeometric was intro-
duced by Lyskova [17,18] with the name basic class. Admissible equations go back
to the works of Krall and Sheffer [15]. In recent works [5], all these conditions have
been imposed to the partial differential equations obtaining the algebraic and differ-
ential properties (as well as the weight functions) of orthogonal polynomial solutions
of bivariate second-order linear partial differential equations which are admissible,
potentially self-adjoint and of hypergeometric type. This analysis has been performed
also for the discrete case [4] as well as for their q-analogues [6]. Furthermore, Lee
[16] characterized centrally symmetric orthogonal polynomials satisfying an admis-
sible partial differential equation of the form

A
∂2

∂x2
u(x, y) + 2B

∂2

∂x∂ y
u(x, y) + C

∂2

∂ y2
u(x, y) + D

∂

∂x
u(x, y) + E

∂

∂ y
u(x, y)

=
(
ax2 + d1x + e1y + f1

)
uxx + (2axy + d2x + e2y + f2) uxy

+
(
ay2 + d3x + e3y + f3

)
uyy + (gx + h1) ux + (gy + h2) uy = μnu,

where μn = an (n − 1) + gn. Lee [16] shows that these centrally symmetric orthog-
onal polynomials are either the product of Hermite polynomials which are solutions
of the partial differential equation [15]

uxx + uyy − xux − yuy = −nu,

or the circle polynomials which are solutions of the partial differential equation [15]

(
x2 − 1

)
uxx + 2xyuxy +

(
y2 − 1

)
uyy + gxux + gyuy = n (n + g − 1) u.

These polynomials satisfy the property un(−x,−y) = (−1)nun(x, y).
Many special functions of mathematical physics, such as associated Legendre

functions [8], Hermite functions [11,31], ultraspherical functions [11,31], appear as
solutions of a regular or singular Sturm–Liouville problems. These functions satisfy
a symmetry property as ψn(−x) = (−1)nψn(x) and they have many applications in
engineering and physics [8,28].

On the other hand, the very classical second-order linear differential equation
(1.1) has been symmetrically extended [19–22] in the following way. Let ψn(−x) =
(−1)nψn(x) be a sequence of symmetric functions satisfying the equation

K (x)ψ ′′
n (x) + L(x)ψ ′

n(x) + (μnM(x) + Q(x) + κnO(x))ψn(x) = 0, (1.2)

where μn is a sequence of constants and

κn = 1 − (−1)n

2
. (1.3)
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Under certain conditions on K (x), L(x), (M(x) > 0), Q(x), and O(x) it is possible
to obtain the orthogonality weight function for the solutions of the latter equation.

In [20], for such an equation, a basic class of symmetric orthogonal polynomi-
als with four free parameters whose special sub-cases are four main sequences of
symmetric orthogonal polynomials such as the generalized ultraspherical polynomi-
als [10,11], generalized Hermite polynomials [11,31] and two other sequences of
symmetric polynomials, which are finitely orthogonal on (−∞,∞), is introduced
and its standard properties, such as orthogonality relation, three-term recurrence
relation and so on, have been investigated. In [21,22], using the extended Sturm–
Liouville theorem for symmetric functions, two basic classes of symmetric orthogonal
functions with five parameters and six parameters are obtained for second-order
differential equations in the special forms of (1.2). Furthermore, using a general-
ization of Sturm–Liouville problems in discrete spaces, a basic class of symmetric
orthogonal polynomials of a discrete variable with four free parameters, which gen-
eralizes all classical discrete symmetric orthogonal polynomials, is introduced in
[23,24]. For some other papers, we refer [3,25–27]. By the motivation of these
papers in the univariate case, we consider now the bivariate case. In this direction,
in bivariate case we consider a class of partial differential equations that shall be
shown to have symmetric solutions, using the Sturm–Liouville theorem to prove their
orthogonality.

The main aim of this work is to present a symmetric generalization of previ-
ous works obtaining a new class of partial differential equations having symmetric
orthogonal solutions. For this class, conditions on the equation to be admissible
are given and the general case is analyzed in detail. We would like to notice
that, to the best of our knowledge, this type of partial differential equation has
not been considered before in the literature, as providing orthogonal polynomial
solutions of it. The interest of having these new orthogonal polynomial fami-
lies is not only theoretical. Since they do satisfy a partial differential equation it
might be possible to consider orthogonal polynomial expansions of related par-
tial differential equations by considering, e.g., the so-called Navima algorithm
[7,13], to get numerical approximations for the solutions to other partial differential
equations.

The structure of this work is as follows. In Sect. 2, the new symmetric gen-
eralization to the bivariate case is presented, and orthogonality of the polynomial
solutions is derived. Section 3 is devoted to analyze the conditions to have an
admissible partial differential equation. Under these conditions several properties are
obtained, namely: the three-term recurrence relations of the orthogonal polynomial
solutions, the domain of orthogonality, as well as the explicit form of the monic
orthogonal polynomial solutions, which are solutions of an admissible and poten-
tially self-adjoint linear second-order partial differential equation of hypergeometric
type.

2 Bivariate Symmetric Orthogonal Solutions

Let us consider the following second-order linear partial differential equation
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K (x, y)
∂2

∂x2
u(x, y) + 2L(x, y)

∂2

∂x∂ y
u(x, y) + M(x, y)

∂2

∂ y2
u(x, y)

+ Q(x, y)
∂

∂x
u(x, y) + O(x, y)

∂

∂ y
u(x, y)

+ [μnϕ(x, y) + S(x, y) + κnT (x, y)] u(x, y) = 0, (2.1)

where κn is defined in (1.3). We shall impose that for each n = 0, 1, 2, . . . the
latter equation has symmetric polynomial solutions un(x, y) of total degree n so that
un(−x,−y) = (−1)nun(x, y). Then,

K (−x,−y) = K (x, y), L(−x,−y) = L(x, y), M(−x,−y) = M(x, y),

ϕ(−x,−y) = ϕ(x, y), S(−x,−y) = S(x, y), T (−x,−y) = T (x, y),

Q(−x,−y) = −Q(x, y), O(−x,−y) = −O(x, y).

Following [30], let us define the linear operator

Ds = K (x, y)
∂2

∂x2
+ 2L(x, y)

∂2

∂x∂ y
+ M(x, y)

∂2

∂ y2
+ Q(x, y)

∂

∂x
+ O(x, y)

∂

∂ y
.

(2.2)

If the operator (2.2) is self-adjoint, then

Q(x, y) = ∂

∂x
K (x, y) + ∂

∂ y
L(x, y), O(x, y) = ∂

∂x
L(x, y) + ∂

∂ y
M(x, y).

Let us assume that (2.2) is not self-adjoint and there exists a function �(x, y) such
that �Ds is self-adjoint in a certain domain �. Then,

�(x, y)Q(x, y) = ∂

∂x
[�(x, y)K (x, y)] + ∂

∂ y
[�(x, y)L(x, y)],

�(x, y)O(x, y) = ∂

∂x
[�(x, y)L(x, y)] + ∂

∂ y
[�(x, y)M(x, y)].

Hence,

K (x, y)
∂

∂x
�(x, y) + L(x, y)

∂

∂ y
�(x, y) = �(x, y)

(
Q(x, y) − ∂

∂x
K (x, y) − ∂

∂ y
L(x, y)

)
,

L(x, y)
∂

∂x
�(x, y) + M(x, y)

∂

∂ y
�(x, y) = �(x, y)

(
O(x, y) − ∂

∂x
L(x, y) − ∂

∂ y
M(x, y)

)
.

Let

ζ(x, y) = K (x, y)M(x, y) − L2(x, y), η(x, y) = M(x, y)φ(x, y) − L(x, y)θ(x, y),

τ (x, y) = K (x, y)θ(x, y) − L(x, y)φ(x, y),
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where

φ(x, y) = Q(x, y) − ∂

∂x
K (x, y) − ∂

∂ y
L(x, y) = K (x, y)

�(x, y)

∂

∂x
�(x, y) + L(x, y)

�(x, y)

∂

∂ y
�(x, y),

θ(x, y) = O(x, y) − ∂

∂x
L(x, y) − ∂

∂ y
M(x, y) = L(x, y)

�(x, y)

∂

∂x
�(x, y) + M(x, y)

�(x, y)

∂

∂ y
�(x, y).

Under these conditions (2.1) is potentially self-adjoint in a domain � if

∂

∂x

(
τ(x, y)

ζ(x, y)

)
= ∂

∂ y

(
η(x, y)

ζ(x, y)

)
(2.3)

holds true. Since

1

�(x, y)

∂

∂x
�(x, y) = η(x, y)

ζ(x, y)
,

1

�(x, y)

∂

∂ y
�(x, y) = τ(x, y)

ζ(x, y)
,

we obtain

�(x, y) = exp

[∫ y

y0

τ(x, y)

ζ(x, y)
dy +

∫ x

x0

η(x, y0)

ζ(x, y0)
dx + c

]
. (2.4)

Since K , L , and M are even polynomials and Q, O are odd polynomials, we have

{
φ(−x,−y) = −φ(x, y), θ(−x,−y) = −θ(x, y), ζ(−x,−y) = ζ(x, y),

η(−x,−y) = −η(x, y), τ (−x,−y) = −τ(x, y).
(2.5)

Thus, we have the following symmetry relation for the function �(x, y) defined in
(2.4):

�(−x,−y) = �(x, y).

Under these conditions, it is possible to write (2.1) in self-adjoint form as

∂

∂x

[
�(x, y)K (x, y)

∂

∂x
u(x, y) + �(x, y)L(x, y)

∂

∂ y
u(x, y)

]

+ ∂

∂ y

[
�(x, y)L(x, y)

∂

∂x
u(x, y) + �(x, y)M(x, y)

∂

∂ y
u(x, y)

]

+ �(x, y) [μnϕ(x, y) + S(x, y) + κnT (x, y)] u(x, y) = 0. (2.6)

Let us write (2.6) for u(x, y) = un(x, y):

∂

∂x

[
�(x, y)K (x, y)

∂

∂x
un(x, y) + �(x, y)L(x, y)

∂

∂ y
un(x, y)

]

+ ∂

∂ y

[
�(x, y)L(x, y)

∂

∂x
un(x, y) + �(x, y)M(x, y)

∂

∂ y
un(x, y)

]

+�(x, y) [μnϕ(x, y) + S(x, y) + κnT (x, y)] un(x, y) = 0, (2.7)
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and for u(x, y) = um(x, y):

∂

∂x

[
�(x, y)K (x, y)

∂

∂x
um(x, y) + �(x, y)L(x, y)

∂

∂ y
um(x, y)

]

+ ∂

∂ y

[
�(x, y)L(x, y)

∂

∂x
um(x, y) + �(x, y)M(x, y)

∂

∂ y
um(x, y)

]

+�(x, y) [μmϕ(x, y) + S(x, y) + κmT (x, y)] um(x, y) = 0. (2.8)

If we multiply (2.7) by um(x, y) and (2.8) by un(x, y), and then substract them, we
obtain

∂

∂x

{
�(x, y)K (x, y)

[
um(x, y)

∂

∂x
un(x, y) − un(x, y)

∂

∂x
um(x, y)

]

+ �(x, y)L(x, y)

[
um(x, y)

∂

∂ y
un(x, y) − un(x, y)

∂

∂ y
um(x, y)

]}

+ ∂

∂ y

{
�(x, y)L(x, y)

[
um(x, y)

∂

∂x
un(x, y) − un(x, y)

∂

∂x
um(x, y)

]

+ �(x, y)M(x, y)

[
um(x, y)

∂

∂ y
un(x, y) − un(x, y)

∂

∂ y
um(x, y)

]}

+�(x, y)(μn − μm)ϕ(x, y)un(x, y)um(x, y)

− (−1)m − (−1)n

2
�(x, y)T (x, y)un(x, y)um(x, y) = 0. (2.9)

If we take integral on both sides, we have

∫∫

�

∂

∂x

{
�(x, y)K (x, y)

[
um(x, y)

∂

∂x
un(x, y) − un(x, y)

∂

∂x
um(x, y)

]

+ �(x, y)L(x, y)

[
um(x, y)

∂

∂ y
un(x, y) − un(x, y)

∂

∂ y
um(x, y)

]}
dxdy

+
∫∫

�

∂

∂ y

{
�(x, y)L(x, y)

[
um(x, y)

∂

∂x
un(x, y) − un(x, y)

∂

∂x
um(x, y)

]

+ �(x, y)M(x, y)

[
um(x, y)

∂

∂ y
un(x, y) − un(x, y)

∂

∂ y
um(x, y)

]}
dxdy

− (−1)m − (−1)n

2

∫∫

�

�(x, y)T (x, y)un(x, y)um(x, y)dxdy

= (μm − μn)

∫∫

�

�(x, y)ϕ(x, y)un(x, y)um(x, y)dxdy. (2.10)

Remark 2.1 Based on the analysis of Suetin [30] on potentially self-adjoint second-
order partial differential equations, in the case ϕ(x, y) = 1, S(x, y) = T (x, y) = 0
of the partial differential equation (2.1), if the main differential operator is admissible
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and potentially self-adjoint in a simply connected domain �, there exists a weight
function �(x, y) of this operator in the domain � and the solutions of the equation
are orthogonal with respect to this weight function on the domain �. For the general
equation (2.1), the calculations above show that if the equation is potentially self-
adjoint, the function �(x, y) is determined up to a constant factor and if the left side
of (2.10) vanishes, for μn �= μm the eigenfunctions of the Eq. (2.1) are orthogonal
with respect to the weight function w(x, y) = �(x, y)ϕ(x, y), which is positive (for
ϕ(x, y) > 0) and even function on �.

3 The Class of Admissible Partial Differential Equations

Let us assume that K , L and M are polynomials of total degree 4, Q and O are
polynomials of total degree 3, and ϕ and T are polynomials of total degree 2, S is
identically zero, such that the symmetry conditions (2.5) hold true:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (x, y) = k0x
4 + k1x

3y + k2x
2y2 + k3xy

3 + k4y
4 + k5x

2 + k6xy + k7y
2 + k8,

L(x, y) = l0x
4 + l1x

3y + l2x
2y2 + l3xy

3 + l4y
4 + l5x

2 + l6xy + l7y
2 + l8,

M(x, y) = m0x
4 + m1x

3y + m2x
2y2 + m3xy

3 + m4y
4 + m5x

2 + m6xy + m7y
2 + m8,

Q(x, y) = q0x
3 + q1x

2y + q2xy
2 + q3y

3 + q4x + q5y,

O(x, y) = o0x
3 + o1x

2y + o2xy
2 + o3y

3 + o4x + o5y,

ϕ(x, y) = ϕ0x
2 + ϕ1xy + ϕ2y

2 + ϕ3, S(x, y) = 0,

T (x, y) = t0x
2 + t1xy + t2y

2 + t3.

In this section, we shall give conditions on the coefficients of the above polynomials to
(2.1) be an admissible partial differential equation, that is, a partial differential equation
having n + 1 linearly independent polynomial solutions for each nonnegative integer
n.

Let x = (x, y) ∈ R2. For each nonnegative integer n, let xn be the column vector of
the monomials xn−k yk , whose elements are arranged in graded lexicographical order
[12, p. 32]

xn = (
xn−k yk

)
, k = 0, 1, . . . , n. (3.1)

In this way,

x1 =
(
x
y

)
, x2 =

⎛
⎝
x2

xy
y2

⎞
⎠ , . . . .

Let �2
n be the space of all polynomials in two variables x = (x, y) of total degree at

most n. Then, any element of �2
n can be expressed as finite sums of terms of the form

ckxn−k yk , where ck are real constants.
If we apply the partial differential operator to xn defined in (3.1), we obtain

μn = − 1

ϕ0
(nq0 + n (n − 1) k0 + κnt0) (3.2)
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under the restrictions

l0 = m0 = o0 = m1 = k3 = q3 = k4 = l4 = 0,

k0 = k1 = k2 = l1 = l2 = l3 = m2 = m3 = m4,

q0 = q1 = q2 = o1 = o2 = o3,

t0 = t1 = t2 , ϕ0 = ϕ1 = ϕ2.

If we impose that the partial differential equation has a monic solution, that is

P1(x, y) =
(
x
y

)
, P2(x, y) =

⎛
⎝
x2 + �1
xy + �2

y2 + �3

⎞
⎠ ,

P3(x, y) =

⎛
⎜⎜⎝

x3 + �4x
x2y + �5x + �6y
xy2 + �7x + �8y

y3 + �9y

⎞
⎟⎟⎠ , . . . ,

then the following conditions appear:

o4 = q5 = 0, m6 = m5, l7 = l5, k7 = k6, q4 = o5 = q0ϕ3

ϕ0
,

k8 = ϕ3(k5ϕ0 − k0ϕ3)

ϕ2
0

, l8 = l5ϕ3

ϕ0
, k6 = k5 − k0ϕ3

ϕ0
,

l6 = l5 + k0ϕ3

ϕ0
, m7 = m5 + k0ϕ3

ϕ0
, m8 = m5ϕ3

ϕ0
, t3 = ϕ3t0

ϕ0
.

Without loss of generality we can assume ϕ0 = 1 and we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (x, y) = (
k0

(
x2 − ϕ3

) + k5
) (

ϕ3 + x2 + xy + y2
)
,

L(x, y) = (
ϕ3 + x2 + xy + y2

)
(k0xy + l5) ,

M(x, y) = (
k0y2 + m5

) (
ϕ3 + x2 + xy + y2

)
,

Q(x, y) = q0x
(
ϕ3 + x2 + xy + y2

)
,

O(x, y) = q0y
(
ϕ3 + x2 + xy + y2

)
,

ϕ(x, y) = x2 + xy + y2 + ϕ3, S(x, y) = 0,

T (x, y) = t0
(
ϕ3 + x2 + xy + y2

)
.

(3.3)

Under these conditions and μn defined in (3.2) the equation (2.1) is admissible, i.e.,
for each nonnegative integer n the equation has precisely n + 1 linearly independent
solutions in the form of polynomials of total degree n and has no non-trivial solutions
in the set of polynomials whose total degree is less than n. Hence,
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ζ(x, y) = (
ϕ3 + x2 + xy + y2

) 2

× (−2k0l5xy − k0ϕ3
(
k0y

2 + m5
) + k0m5x

2 + k5
(
k0y

2 + m5
) − l25

)
,

η(x, y) = (
ϕ3 + x2 + xy + y2

) (
ϕ3

(
k20 y

2(2x + y) + m5(−k0x + k0y + q0x)
)

+l5y
(
ϕ3(3k0 − q0) + k0

(
7x2 + 5xy + 3y2

) − q0
(
x2 + xy + y2

))

+m5x
(
x2(q0 − 5k0) + xy(q0 − 4k0) + y2(q0 − 3k0)

)

−k5(2x + y)
(
k0y

2 + m5
) + l25(2x + y)

)
,

τ (x, y) = (
ϕ3 + x2 + xy + y2

)
((k0xy + l5) (ϕ3(k0x − k0y − q0x)

+x(5k0 − q0)
(
x2 + xy + y2

) + k5(2x + y) + l5(x + 2y)
) − (

k0
(
x2 − ϕ3

) + k5
)

× (
ϕ3y(3k0 − q0) + y(5k0 − q0)

(
x2 + xy + y2

) + l5(2x + y) + m5(x + 2y)
))

.

As a consequence,

τ(x, y)

ζ(x, y)
= − (3k0 − q0) (k0xy + l5) (m5x − l5y)(

k0y2 + m5
) (
2k0l5xy + k0ϕ3

(
k0y2 + m5

) − k0m5x2 − k5
(
k0y2 + m5

) + l25
)

+ y(q0 − 3k0)

k0y2 + m5
− x + 2y

ϕ3 + x2 + xy + y2
,

as well as

η(x, y)

ζ(x, y)
= − (3k0 − q0) (l5y − m5x)

2k0l5xy + k0ϕ3
(
k0y2 + m5

) − k0m5x2 − k5
(
k0y2 + m5

) + l25

− 2x + y

ϕ3 + x2 + xy + y2
.

Under these conditions the equation becomes potentially self-adjoint since (2.3) holds
true. Moreover,

�(x, y) =
(
2k0l5xy + k0ϕ3

(
k0y2 + m5

) − k0m5x2 − k5
(
k0y2 + m5

) + l25
) 1

2

(
q0
k0

−3
)

ϕ3 + x2 + xy + y2
,

so that

w(x, y) = ϕ(x, y)�(x, y)

= (
2k0l5xy + k0ϕ3

(
k0y

2 + m5
) − k0m5x

2 − k5
(
k0y

2 + m5
) + l25

) 1
2

(
q0
k0

−3
)
.

The orthogonality domain is defined by ζ(x, y) ≥ 0. For instance, if we fix m5 = 1,
k5 = 4k0ϕ3, k0 = −1, ϕ3 = −1 (so that k5 = 4), q0 = −7 and l5 = 0, then the
domain � is defined by

x2

3
+ y2 ≤ 1,
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the orthogonality weight function reduces to

w(x, y) = (x2 + 3y2 − 3)2,

and the polynomials become orthogonal with any polynomial of lower total degree,
as it has been shown.

3.1 Three-Term Recurrence Relations for theMonic Orthogonal Polynomial
Solutions

Let us assume that the partial differential equation has a monic symmetric polynomial
solution of the form

Pn = xn + Ĝn,n−2xn−2 + · · · ,

where xn is defined in (3.1). Let

Ln,1xn+1 = x xn, Ln,2xn+1 = y xn,

be matrices of size (n + 1) × (n + 2). Then,

Ln,1 =
⎛
⎜⎝
1 � 0

. . .
...

� 1 0

⎞
⎟⎠ and Ln,2 =

⎛
⎜⎝
0 1 �
...

. . .

0 � 1

⎞
⎟⎠ . (3.4)

Hence,

x2 xn = Ln,1Ln+1,1xn+2, y2 xn = Ln,2Ln+1,2xn+2 , Ln,2Ln+1,1 = Ln,1Ln+1,2,

and for j = 1, 2,
Ln, j L

T
n, j = In+1,

where In+1 stands for the identity matrix of size n + 1.
Moreover, let

En,1 =

⎛
⎜⎜⎜⎜⎜⎝

n �
n − 1

. . .

� 1
0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠

and En,2 =

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 0
1 �

2
. . .

� n

⎞
⎟⎟⎟⎟⎟⎠

,

be matrices of size (n + 1) × n. For n ≥ 1,

∂xxn = En,1 xn−1, ∂yxn = En,2 xn−1.
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If we apply the second-order partial differential equation (2.1) to xn , we obtain that
the matrix Ĝn,n−2 ∈ M(n + 1, n − 1) is tridiagonal

Ĝn,n−2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1,1(n) 0 0 · · · 0
�2,1(n) �2,2(n) 0 · · · 0
�3,1(n) �3,2(n) �3,3(n) 0 · · · 0

0
. . .

. . .
. . .

... �n−1,n−3(n) �n−1,n−2(n) �n−1,n−1(n)

0 0 · · · 0 �n,n−2(n) �n,n−1(n)

0 0 0 · · · 0 �n+1,n−1(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.5)
and

�i, j (n) = 1

(2n − 3)k0 + q0
×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
n − i + 1

2

)
(k5 − k0ϕ3), i = j,

(i − 1)(n − i + 1)l5, j = i − 1,(
i − 1

2

)
m5, j = i − 2.

(3.6)

As it is well known [12], for n ≥ 0, there exist unique matrices An, j of the size
(n + 1)× (n + 2), Bn, j of the size (n + 1)× (n + 1), and Cn, j of the size (n + 1)× n,
such that

x jPn = An, jPn+1 + Bn, jPn + Cn, jPn−1, j = 1, 2, (3.7)

with the initial conditions P−1 = 0 and P0 = 1 where we have denoted x1 = x and
x2 = y. In the symmetric case Bn, j is zero. From [5, Theorem 4.2] in this symmetric
case, we have:

Corollary 3.1 In the monic case, the explicit expressions of the matrices An, j and Cn, j

( j = 1, 2), that appear in (3.7) in terms of the values of Ĝn,n−2, are given by

⎧⎪⎨
⎪⎩

An, j = Ln, j , n ≥ 0,

C1, j = −L1, j Ĝ2,0,

Cn, j = Ĝn,n−2Ln−2, j − Ln, j Ĝn+1,n−1, n ≥ 2 ,

where the matrices Ln, j have been introduced in (3.4), and the coefficients of the
matrix Ĝn,n−2 defined in (3.5) are given in (3.6).
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The matrix Cn,1 ∈ M(n + 1, n) is tridiagonal

Cn,1 = 1

((2n − 1)k0 + q0)((2n − 3)k0 + q0)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1
1,1(n) 0 0 · · · 0

ϕ1
2,1(n) ϕ1

2,2(n) 0 · · · 0
ϕ1
3,1(n) ϕ1

3,2(n) ϕ1
3,3(n) 0 · · · 0

0
. . .

. . .
. . .

... ϕ1
n−1,n−2(n) ϕ1

n,n−1(n) ϕ1
n,n(n)

0 0 · · · 0 ϕ1
n+1,n−1(n) ϕ1

n+1,n(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

ϕ1
i, j (n) =

⎧⎪⎨
⎪⎩

(n − i + 1)((n + i − 3)k0 + q0)(k0ϕ3 − k5), i = j,

− j((2 j − 3)k0 + q0)l5, j = i − 1,

j( j + 1)k0m5, j = i − 2.

The matrix Cn,2 ∈ M(n + 1, n) is also tridiagonal

Cn,2 = 1

((2n − 1)k0 + q0)((2n − 3)k0 + q0)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ2
1,1(n) ϕ2

1,2(n) 0 0 · · · 0
ϕ2
2,1(n) ϕ2

2,2(n) ϕ2
2,3(n) 0 · · · 0

0 ϕ2
3,2(n) ϕ2

3,3(n) ϕ2
3,4(n) · · · 0

0
. . .

. . . ϕ2
n−1,n−1(n) ϕ2

n−1,n(n)

... 0 ϕ2
n,n−1(n) ϕ2

n,n(n)

0 0 · · · 0 0 ϕ2
n+1,n(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

ϕ2
i, j (n) =

⎧⎪⎨
⎪⎩

−(n − i + 1)((2(n − i) − 1)k0 + q0)l5, i = j,

−(i − 1)((2n − i − 1)k0 + q0)m5, j = i − 1,

−(n − i + 1)(n − i)k0(k0ϕ3 − k5), j = i + 1.

3.2 Explicit Form of theMonic Orthogonal Polynomial Solutions

Next, we obtain the explicit form of the monic polynomial solutions of the partial
differential equation (2.1) for the specific form of the polynomials (3.3).
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Proposition 3.2 Assuming that the polynomials of (2.1) are given by (3.3), then the
monic polynomial solutions of the partial differential equation (2.1) can be explicitly
given as:

Pn,k(x, y) =
k∑

s=0

(
k

s

) [(n−k+s)/2]∑
r=[(s+1)/2]

(
n − k

2r − s

)
xn−k+s−2r yk−s

∏r−1−[s/2]
j=0 (2 j + 1)

∏r−1
j=0((2(n − j) − 3)k0 + q0)

×
[s/2]∑
j=0

22 j−[s/2] (s − 2 j − κs)!
([s/2] − j)!

(
s

κs + 2 j

)

×(k5 − k0ϕ3)
r−s+[s/2]− j (r − [(s + 1)/2] − j + 1) j l

2 j+κs
5 m[s/2]− j

5 ,

(3.8)

for 0 ≤ k ≤ n, where κn is defined in (1.3), (λ)n = λ(λ + 1) · · · (λ + n − 1) denotes
the Pochhammer symbol for a nonnegative integer n, with (λ)0 = 1, and we use the
convention

∏0
j=1 a j = 1.

Proof For the specific form of the polynomials (3.3), plug into (2.1) the expansion
(3.8) to obtain that all the coefficients vanish. �	

3.3 Partial Differential Equation of Hypergeometric Type

Moreover, the partial derivatives of Pn,k also satisfy an equation of the same type.
More precisely:

Proposition 3.3 Let Pn,k(x, y) be the monic orthogonal polynomials defined in (3.8)
solutions to the second-order partial differential equation (2.1) for the specific values
of the polynomials given in (3.3). Then, the partial derivatives of Pn,k(x, y)

v
(r ,s)
n,k (x, y) = ∂r

∂xr
∂s

∂ ys
Pn,k(x, y)

are solution of an equation of the same type as (2.1)

K (x, y)
∂2

∂x2
v

(r ,s)
n,k (x, y) + 2L(x, y)

∂2

∂x∂ y
v

(r ,s)
n,k (x, y) + M(x, y)

∂2

∂ y2
v

(r ,s)
n,k (x, y)

+Qr ,s(x, y)
∂

∂x
v

(r ,s)
n,k (x, y) + Or ,s(x, y)

∂

∂ y
v

(r ,s)
n,k (x, y)

+
[
μ(r ,s)
n ϕ(x, y) + κnT (x, y)

]
v

(r ,s)
n,k (x, y) = 0, (3.9)

where

Qr ,s(x, y) = (2(r + s)k0 + q0)(x
3 + x2y + xy2 + ϕ3),

Or ,s(x, y) = (2(r + s)k0 + q0)(x
2y + xy2 + y3 + ϕ3),

μ(r ,s)
n = −(n − r − s)(k0(n + r + s − 1) + q0) − κnt0.
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Proof The result follows by direct substitution of the partial derivatives of the explicit
expression (3.8) into (3.9) and equate the coefficients. �	
Remark 3.4 Since the polynomials K , L and M in the equation for the partial deriva-
tives (3.9) do not depend on r and s, then the polynomial ζ (r ,s)(x, y) is exactly the
same as for the initial equation. Moreover,

η(r ,s)(x, y) = (
ϕ3 + x2 + xy + y2

) (
k20ϕ3y

2(2x + y)

+k0
(
xy2 (−2k5 + l5(−2r − 2s + 5)

+m5(2r + 2s − 3)) − y3 (k5 + l5(2r + 2s − 3))

+ϕ3y (l5(−2r − 2s + 3) + m5)

+x2y (l5(−2r − 2s + 7) + 2m5(r + s − 2)) + m5ϕ3x(2r + 2s − 1)

+m5x
3(2r + 2s − 5)

) + (2x + y)
(
l25 − k5m5

)

+q0
(
ϕ3 + x2 + xy + y2

)
(m5x − l5y)

)
,

τ (r ,s)(x, y) = (
ϕ3 + x2 + xy + y2

) ((
k0

(
x2 − ϕ3

) + k5
)
(k0y (ϕ3(2r + 2s − 3)

+(2r + 2s − 5)
(
x2 + xy + y2

)) + l5(−(2x + y)) − m5(x + 2y)

+q0y
(
ϕ3 + x2 + xy + y2

)) − (k0xy + l5) (k0ϕ3(x(2r + 2s − 1) + y)

+k0x(2r + 2s − 5)
(
x2 + xy + y2

) − k5(2x + y) − l5(x + 2y)

+q0x
(
ϕ3 + x2 + xy + y2

)))
.

Since

∂

∂x

(
τ (r ,s)(x, y)

ζ(x, y)

)
= ∂

∂ y

(
η(r ,s)(x, y)

ζ(x, y)

)
,

the equation for the partial derivatives (3.9) is again potentially self-adjoint, as well as
hypergeometric since the partial derivatives of any order of any solution of (3.9) are
solution of an equation of the same type.
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