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Abstract
In this paper, by solving Diophantine equations involving simple K4-groups, we will
try to point out that it is not easy to prove the infinitude of simple K4-groups. This
problem goes far beyond what is known about Dickson’s conjecture at present.
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1 Introduction

A finite simple group is called a Kn-group if its order is divisible by exactly n different
primes.Bya classical paqb theoremofBurnside, everygroupof order paqb is solvable,
where p and q are primes, and a and b are positive integers; hence, there is no simple
K2-group. On the other hand, there are only eight different simple K3-groups [1]. In
this paper, we concentrate on describing simple K4-groups.
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In the famous book Unsolved Problems in Group Theory, the following problem is
asked: is the number of simple K4-groups finite or infinite? See [2]: Problem 13.65.
This problem is the first to be posed by the second author Shi [3]. Denote by N and
P the set of positive integers and the set of prime numbers, respectively. In [3], the
second author claimed that the simple K4-group problem can be reduced to the four
Diophantine problems:

p2 − 1 = 2a3bqc, p, q ∈ P, p > 3, q > 3, a, b, c ∈ N, (1.1)

2m − 1 = p, 2m + 1 = 3qn, p, q ∈ P, p > 3, q > 3,m, n ∈ N, (1.2)

3m − 1 = 2pn, 3m + 1 = 4q, p, q ∈ P, p > 3, q > 3,m, n ∈ N, (1.3)

3m − 1 = 2p, 3m + 1 = 4qn, p, q ∈ P, p > 3, q > 3,m, n ∈ N. (1.4)

In 2001, Bugeaud et al. [4] showed that if n > 1, (1.2) and (1.4) have no solution
and (1.3) has only the solution (p, q,m, n) = (11, 61, 5, 2).

In Sect. 2, we will prove that if c > 1, (1.1) has only the solutions (p, q, a, b, c) =
(97, 7, 6, 1, 2) and (p, q, a, b, c) = (577, 17, 7, 2, 2). Our methods are slightly dif-
ferent from those in [4].

Thus, the infinitude of simple K4-groups can be decided by the following three
Diophantine problems:

p2 − 1 = 2a3bq, p, q ∈ P, p > 3, q > 3, a, b ∈ N, (1.5)

2m − 1 = p, 2m + 1 = 3q, p, q ∈ P, p > 3, q > 3,m ∈ N, (1.6)

3m − 1 = 2p, 3m + 1 = 4q, p, q ∈ P, p > 3, q > 3,m ∈ N. (1.7)

By considering Diophantine equations (1.5), (1.6) and (1.7), one will see that it is
very difficult to determine the infinitude of simple K4-groups, and this problem goes
far beyond what is known about the following Dickson’s conjecture [5] at present.
In fact, if the Diophantine equation (1.6) has infinitely many solutions for p, q ∈ P,
p > 3, q > 3, m ∈ N, then f1(x) = x and f2(x) = 3x − 2 represent simultaneously
primes for infinitely many integers x . This is the special case of Dickson’s conjecture.
Unfortunately, this case is open. The Diophantine equations (1.5) and (1.7) can be
similarly discussed. For the details, see Sect. 3.
Dickson Conjecture: Let 1 ≤ s ∈ N, fi (x) = ai +bi x with ai and bi integers, bi ≥ 1
(for i = 1, . . . , s). If there does not exist any integer n > 1 dividing all the products∏i=s

i=1 fi (k), for every integer k, then there exist infinitely many natural numbers m
such that all numbers f1(m), . . . , fs(m) are primes.

The case s = 1 is Dirichlet’s theorem. Two special cases are well-known conjec-
tures: there are infinitely many twin primes ( f1(x) = x and f2(x) = x + 2 represent
simultaneously primes for infinitely many integers x), and there are infinitely many
Sophie Germain primes ( f1(x) = x and f2(x) = 2x + 1 represent simultaneously
primes for infinitely many integers x). As we know, even these two simple cases,
nobody has proved up until now, let alone other special cases.
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2 Main Theorem and Its Proof

Theorem 2.1 If 1 < c ∈ N, p, q ∈ P, p > 3, q > 3, and a, b ∈ N, then the
Diophantine equation p2 − 1 = 2a3bqc has only the solutions (p, q, a, b, c) =
(97, 7, 6, 1, 2) and (p, q, a, b, c) = (577, 17, 7, 2, 2).

Lemma 2.2 (Zsigmondy’s theorem [6]) If a > b > 0, gcd(a, b) = 1 and n > 1 are
positive integers, then an + bn has a prime factor that does not divide ak + bk for all
positive integers k < n, with the exception 23 + 13; an − bn has a prime factor that
does not divide ak −bk for all positive integers k < n unless a = 2, b = 1 and n = 6;
or a + b is a power of 2 and n = 2.

Lemma 2.3 [7] The Diophantine equation 3m − 2yq = 1 has only the solution
(y,m, q) = (11, 5, 2) satisfying 2 < m ∈ N, 2 ≤ y, q ∈ N.

Lemma 2.4 [8] The Diophantine equation xm − yn = 1 has only the solution
(x, y,m, n) = (3, 2, 2, 3) satisfying 1 < m, n ∈ N, x, y ∈ P.

Lemma 2.5 [9] The Diophantine equation x2 + 1 = 2yn has only the solution
(x, y, n) = (239, 13, 4) satisfying x, y, n ∈ N, y > 1, n > 2.

Lemma 2.6 [10] The Diophantine equation 3x2 + 1 = 4yn with 1 < n ≡ 1( mod 2)
and x, y, n ∈ N has only the solution x = y = 1.

Lemma 2.7 [4] The Diophantine equation 2m + 1 = 3yq with 1 < m, 1 < y, 1 <

q ∈ N has no solution.

Proof of theorem 2.1 If 1 < c ∈ N, Diophantine equation p2 − 1 = 2a3bqc has
solutions (p, q, a, b, c) such that p, q ∈ P, p > 3, q > 3, a, b ∈ N, then a ≥ 3 and
p2 ≡ 1(mod 2a). Notice that if a ≥ 3, x2 ≡ 1(mod 2a) has only four solutions, say
x ≡ ±1,±1 + 2a−1(mod 2a). Therefore, we must have p = ±1 + 2a−1 + k2a with
k ∈ N∪{0}. If p = 1+2a−1+k2a , thenwe have (2k+1)(1+2a−2+k2a−1) = 3bqc by
p2 − 1 = 2a3bqc. But gcd(2k + 1, 1+ 2a−2 + k2a−1) = 1 = gcd(3b, qc). Therefore,
2k + 1 = 3b or 2k + 1 = qc. When p = −1+ 2a−1 + k2a , we still have 2k + 1 = 3b

or 2k + 1 = qc. Thus, when k ∈ N, p2 − 1 = 2a3bqc can be reduced to the following
Diophantine problems with 3 ≤ a, 1 ≤ b, 1 < c ∈ N, p, q ∈ P, p > 3, q > 3:

2k + 1 = 3b, qc = 1 + 2a−2 + k2a−1, p = 1 + 2a−1 + k2a, (2.1)

2k + 1 = qc, 3b = 1 + 2a−2 + k2a−1, p = 1 + 2a−1 + k2a, (2.2)

2k + 1 = 3b, qc = −1 + 2a−2 + k2a−1, p = −1 + 2a−1 + k2a, (2.3)

2k + 1 = qc, 3b = −1 + 2a−2 + k2a−1, p = −1 + 2a−1 + k2a . (2.4)

��
Rewriting these equations, we get (with 3 ≤ a, 1 ≤ b, 1 < c ∈ N, p, q ∈ P, p > 3,
q > 3):

qc − 1 = 2a−23b, p = −1 + 2qc, (2.5)
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3b − 1 = 2a−2qc, p = −1 + 2 × 3b, (2.6)

qc + 1 = 2a−23b, p = 1 + 2qc, (2.7)

3b + 1 = 2a−2qc, p = 1 + 2 × 3b. (2.8)

Next, we will prove that if 1 < c, then (2.6), (2.7), (2.8) have no solution and (2.5)
has only two solutions satisfying the conditions.

Clearly, if (2.7) has solutions, then c 	= 2. By Lemma 2.2, qc + 1 has at least one
prime factor m that does not divide qr + 1 for all positive integers r < c. However,
m 	= 2, 3. This leads to a contradiction since qc + 1 = 2a−23b.

Now, let us consider (2.8). Assume that 3b +1 = 2a−2qc has solutions. If b is even,
then a = 3. By Lemma 2.5, it is impossible. Hence, b is odd. We deduce that a = 4
and get that 3b + 1 = 4qc. If c is even, then 3b + 1 = 4qc has no solution with c > 1
[11]. If c is odd, then 3b + 1 = 4qc has no solution by Lemma 2.6 (since c > 1). So,
(2.8) has no solution.

Suppose that (2.6) 3b − 1 = 2a−2qc has solutions. If b is odd, then a = 3 and
3b − 1 = 2qc has no solution such that p = −1 + 2 × 3b by Lemma 2.3. Let b be
even. Write b = 2r . We obtain that a ≥ 5 and 3r−1

2
3r+1
2 = 2a−4qc. By Lemma 2.4,

one can prove that 3r−1
2

3r+1
2 = 2a−4qc has no solution. Thus, (2.6) has no solution.

If qc − 1 = 2a−23b has solutions with c > 1, then c = 2 by Lemma 2.2. By
Lemma 2.4, one can obtain that (2.5) has only solutions (q, a, b) = (7, 6, 1) and
(q, a, b) = (17, 7, 1). It leads that Diophantine equation p2 − 1 = 2a3bqc has only
solutions (p, q, a, b, c) = (97, 7, 6, 1, 2) and (p, q, a, b, c) = (577, 17, 7, 2, 2) sat-
isfying p, q ∈ P, p > 3, q > 3, a, b, c ∈ N and c > 1.

Finally, we consider the case k = 0. Obviously, p2−1 = 2a3bqc can be reduced to
the following Diophantine problems with 3 ≤ a, 1 ≤ b, 1 < c ∈ N, p, q ∈ P, p > 3,
q > 3:

3bqc = 1 + 2a−2, p = 1 + 2a−1, (2.9)

3bqc = −1 + 2a−2, p = −1 + 2a−1. (2.10)

By Lemma 2.4, if (2.9) or (2.10) has solutions, then b must be 1. Furthermore,
using Lemma 2.7, one can show that (2.9) and (2.10) have no solution satisfying the
conditions. This proves Theorem 2.1.

3 Our Conclusion

In this section, we will try to point out that it is not easy to prove the infinitude of
simple K4-groups. By (1.5), (1.6), (1.7), one will see that the infinitude of simple
K4-groups can be equivalently decided by the following Diophantine problems:

2m − 1 = p, 2m + 1 = 3q, p, q ∈ P, p > 3, q > 3,m ∈ N, (3.1)

3m − 1 = 2p, 3m + 1 = 4q, p, q ∈ P, p > 3, q > 3,m ∈ N, (3.2)

q − 1 = 2a−23b, p = −1 + 2q, p, q ∈ P, a ≥ 3, a, b ∈ N, (3.3)
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3b − 1 = 2a−2q, p = −1 + 2 × 3b, p, q ∈ P, a ≥ 3, a, b ∈ N, (3.4)

q + 1 = 2a−23b, p = 1 + 2q, p, q ∈ P, a ≥ 3, a, b ∈ N, (3.5)

3b + 1 = 2a−2q, p = 1 + 2 × 3b, p, q ∈ P, a ≥ 3, a, b ∈ N, (3.6)

3q = 1 + 2a−2, p = 1 + 2a−1, p, q ∈ P, a ≥ 3, a ∈ N, (3.7)

3q = −1 + 2a−2, p = −1 + 2a−1.p, q ∈ P, a ≥ 3, a ∈ N. (3.8)

Hence, if the number of simple K4-groups is infinite, then one of the following
holds:

f1(x) = x and

f2(x) = 3x − 2 represent simultaneously primes for infinitely

many integers x by (3.1), (3.9)

f1(x) = x and

f2(x) = 2x − 1 represent simultaneously primes for infinitely

many integers x by (3.2) or (20), (3.10)

f1(x) = x and

f2(x) = 2x + 1 represent simultaneously primes for infinitely

many integers x by (3.5), (3.11)

f1(x) = x and

f2(x) = 4x + 1 represent simultaneously primes for infinitely many integers x

by (3.4)( Note that by (3.4) one can deduce that a must be 3.), (3.12)

f1(x) = x and

f2(x) = 2a−1x − 1 represent simultaneously primes for infinitely many integers x

by (3.6), where a = 3 or a = 4, (3.13)

f1(x) = x and

f2(x) = 6x − 1 represent simultaneously primes for infinitely

many integers x by (3.7), (3.14)

f1(x) = x and

f2(x) = 6x + 1 represent simultaneously primes for infinitely

many integers x by (3.8). (3.15)

Clearly, (3.9), (3.10), (3.11), (3.12), (3.13), (3.14) and (3.15) are all special cases of
Dickson’s conjecture. This goes far beyond what is known about Dickson’s conjecture
at present. Anyway, due to that fact it is closely tied with many topics in number theory
such as Fermat’s primes, Mersenne primes, Dickson’s conjecture and so on, we think
that determining the number of simple K4-groups is significative. It should be given
much attention.
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