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Abstract
This paper presents an acceleration of the optimal subgradient algorithm OSGA
(Neumaier in Math Program 158(1–2):1–21, 2016) for solving structured convex
optimization problems, where the objective function involves costly affine and cheap
nonlinear terms. We combine OSGA with a multidimensional subspace search tech-
nique, which leads to a low-dimensional auxiliary problem that can be solved
efficiently. Numerical results concerning some applications are reported. A software
package implementing the new method is available.

Keywords Convex optimization · Nonsmooth optimization · Subgradient methods ·
Multidimensional subspace search · Optimal complexity · First-order black-box
information · Costly linear operator
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1 Introduction

Over the past few decades, solving convex optimization with smooth or nonsmooth
objectives has receivedmuch attention due tomany applications in the fields of applied
sciences and engineering, cf. [15,50]. For smooth problems, first- and second-order
information is typically available and many first- and second-order methods exist,
see [37,44]. However, for nonsmooth problems, usually only first-order information
is available. Solving nonsmooth problems is commonly harder than solving smooth
problems; however, there are many nonsmooth problems with nice structure such that
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this structure can be used to design efficient methodologies for them. Because of the
low memory requirement, first-order methods are especially important for problems
with a large number of variables.

Subgradient methods constitute a class of first-order methods that have been devel-
oped since 1960 to solve convex nonsmooth optimization problems, see, e.g., [46,49].
In general, they only need function values and subgradients, have lowmemory require-
ment, and can be used for solving convex optimization problems with several millions
of variables. However, toomany iterations are needed to attain a very accurate solution.
The low convergence speed of subgradient methods corresponds to their complexity
(the number of iterations required to attain an ε-solution for a given ε > 0). In 1983,
Nemirovski and Yudin [36] proved that the worst-case complexity bound to achieve
an ε-solution of problems with a Lipschitz continuous convex nonsmooth objective
by first-order methods is O(ε−2), while it is O(ε−1/2) for smooth problems with
Lipschitz continuous gradients.

Algorithms attaining the optimal worst-case complexity bound for a class of prob-
lems are called optimal. Historically, optimal first-order methods for smooth convex
optimization date back to Nesterov [38] in 1983. He later in [40,41] proposed two
gradient-type methods for minimizing a sum of two functions (composite problems)
with the optimal complexity, where, for the first method, the smooth part of the objec-
tive needs to have Lipschitz continuous gradients and, for the second one, the smooth
part of the objective needs to have Hölder continuous gradients. Since 1983 many
researchers have studied optimal first-ordermethods; see, e.g., Auslander andTeboulle
[7], Beck andTeboulle [11], Devolder et al. [22], Gonzaga et al. [26,27], Lan [30], Lan
et al. [31], Nesterov [37,39,40], and Tseng [52]. Moreover, Nemirovski and Yudin in
[36] showed that the subgradient, subgradient projection, and mirror descent methods
attain the complexity O(ε−2) for Lipschitz continuous nonsmooth objectives, so that
they are optimal for this class of problems. Recently, Neumaier in [42] proposed a sub-
gradient algorithm called OSGA, which attains both the optimal complexityO(ε−1/2)

for smooth problems with Lipschitz continuous gradients and the optimal complexity
O(ε−2) for Lipschitz continuous nonsmooth problems. It is notable that OSGA does
not need to know about global information of objective functions such as Lipschitz
constants and behaves well for problems arising in applications, see Ahookhosh and
Neumaier [1,4–6].

A multidimensional subspace search scheme is a generalization of line search tech-
niques, which are one-dimensional search schemes for finding a step-size along a
specific direction. Hence, in multidimensional subspace search, one searches a vector
of step-sizes allowing the best combination of several search directions for optimizing
an objective function. Generally, subspace search techniques form a class of descent
methods, where they can be used independently or employed as an accelerator inside
of iterative schemes to attain a faster convergence. The pioneering work of subspace
optimization was proposed in 1969 for smooth problems by Miele and Cantrell [33]
and Cragg and Levy [21] who defined a memory gradient technique based on a sub-
space of the form S = span{−gk, dk−1}, where gk denotes the gradient of the function
at xk and dk−1 is the last available direction. Since then,many subspace search schemes
have been proposed by selecting various search directions, see, e.g., [18,20,51] and
references therein. Depending on the selected search directions used for constructing
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a subspace, two classes of subspace methods are distinguished, namely, gradient-type
techniques [21,23,34] and Newton-type schemes [28,32,53,54].
Content In this paper we propose an accelerated version of OSGA (called OSGA-S)
for solving convex optimization problems involving costly linear operators and cheap
nonlinear terms. Our new method is a two-stage method that solves unconstrained
nonsmooth convex optimization problems of the form

min f (x) :=
p∑

i=1
fi (Ai x)

s.t. x ∈ V,

(1)

where for i = 1, . . . , p (p � n), fi : Ui → R is a (non)smooth, proper, and convex
function, and Ai : V → Ui is a linear operator, for real finite-dimensional vector
spaces V, Ui . Solving (1) with OSGA involves two key steps, namely, providing the
first-order information and solving an auxiliary high-dimensional subproblem (Eq. (5)
below). Since the problem (1) is unconstrained, the exact solution of the corresponding
auxiliary problem is given in a closed form, cf. [1,42]. In many applications involving
overdetermined systems of equations and classification with support vector machine
(see Sects. 4.1 and 4.2), the objective function has the form (1) involving costly affine
but cheap nonlinear terms. Hence the most costly parts in computing function values
and subgradients are related to applying forward and adjoint operators. We therefore
try to improve in each iteration the current best point by an inner iteration solving a
low-dimensional version of the original problem, using a subspace composed from
the best point and the last few iterations. We emphasize that applying the subspace
search involves no additional costly forward and adjoint operators. Therefore, the
subspace search stage does not impose a significant cost to the outer scheme OSGA
while improves its performance considerably. As proved in [42], this does not affect
the worst-case complexity of the algorithm if done in the right place. However, our
numerical results show that it successfully reduces the number of iterations and the
running time needed in practice.

Similar to OSGA, OSGA-S needs to know about no global information except
the strong convexity parameter μ (μ = 0 if it is not available), and it only requires
the first-order information; however, the main advantage of OSGA-S is being able
to handle problems with complex structure of the form (1) involving composition of
several functions and linear operators. Such structured problems have received much
attention due to increase of interest in using mixed regularization terms, e.g., [8].
However, if fi , i = 1, . . . , p, are nonsmooth, then smooth solvers, Nesterov-type
optimal methods [37,38,40], and proximal splitting methods [11,19] are not able to
handle the problem. In this case subgradient methods [14] and Nesterov’s universal
gradient method with the level of smoothness parameter ν = 0 [41] can deal with the
problem. Note that themirror descent methods [12,36] can only handle the constrained
version of (1). On the other hand, to the best of our knowledge there is only little work
involving subspace search techniques for nonsmooth optimization problems [23,35],
where they are based on smoothing the objective functions so that can not be used in
our numerical comparison.
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For high-dimensional problems involving dense matrices, applying OSGA-S with
a multidimensional subspace search results in a substantial gain in the running time,
despite the extra effort needed for applying the subspace optimization. Indeed, the inner
level runs OSGA-S only on a low-dimensional unconstrained auxiliary problem in an
adaptive multidimensional subspace, and the associated solution is used to accelerate
the outer level of OSGA-S iteration on the original problem. The multidimensional
subspace uses some previously computed directions and results in a low-dimensional
problem with typically at most 20 variables. Numerical experiments and comparison
with subgradient methods and the universal gradient method show that the subspace
search can significantly accelerate OSGA, especially when the objective involves
costly linear operators.

The remainder of this paper is organized as follows. In the next section we briefly
review the main idea of OSGA. Section 3 describes a combination of OSGA and a
multidimensional subspace search. Numerical results are reported in Sect. 4, and some
conclusions are given in Sect. 5.
Notations Let V be a real finite-dimensional vector space endowed with the norm ‖ ·‖,
and V∗ denotes its dual space, which is formed by all linear functional on V where the
bilinear pairing 〈g, x〉 denotes the value of the functional g ∈ V∗ at x ∈ V . If V = R

n ,
then, for 1 ≤ p ≤ ∞,

‖x‖p :=
(

n∑

i=1

|xi |p
)1/p

.

For a function f : V → R = R ∪ {±∞},

dom f = {x ∈ V | f (x) < +∞}

denotes its effective domain, and f is called proper if dom f �= ∅ and f (x) > −∞
for all x ∈ V . The vector g ∈ V∗ is called a subgradient of f at x if f (x) ∈ R and

f (y) ≥ f (x) + 〈g, y − x〉 for all y ∈ V.

The set of all subgradients is called the subdifferential of f at x denoted by ∂ f (x).
We denote by fx and gx , the function value f (x) and the subgradient g at x ∈ C ,
respectively.

2 A Review of OSGA

In this section we briefly review the main idea of the optimal subgradient algorithm
(see Algorithm 1) proposed by Neumaier in [42] for solving the convex constrained
minimization problem

min f (x)
s.t. x ∈ C,

(2)
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where f : C → R is a proper and convex function defined on a nonempty, closed,
and convex subset C of V .

OSGA is a subgradient algorithm for problem (2) that uses first-order information,
i.e., function values and subgradients, to construct a sequence of iterations {xk} ∈ C
whose sequence of function values { f (xk)} converge to the minimum f̂ = f (̂x) with
the optimal complexity. OSGA requires no information regarding global parameters
such as Lipschitz constants of function values and gradients. In the unconstrained
version relevant for the present work, we have C = V , and we work with a quadratic
prox-function Q(z) := Q0 + 1

2‖z − x0‖22, where x0 ∈ V is a given starting point and
Q0 an appropriate positive constant. Let us denote by gQ(x) the gradient by Q at x .
At each iteration, OSGA satisfies the bound

0 ≤ f (xb) − f̂ ≤ ηQ(̂x) (3)

on the currently best function value f (xb) with a monotonically decreasing error
factor η that is guaranteed to converge to zero by an appropriate steplength selection
strategy (see Procedure PUS ). Note that x̂ is not known, thus the error bound is
not fully constructive, but enough to guarantee the convergence of f (xb) to f̂ with a
predictableworst-case complexity. Tomaintain (3),OSGAconsiders linear relaxations
of f at z,

f (z) ≥ γ + 〈h, z〉 for all z ∈ C, (4)

where γ ∈ R and h ∈ V∗, updated using linear underestimators available from the
subgradients evaluated (see Algorithm 1). For each such linear relaxation, OSGA
solves a maximization problem of the form

E(γ, h) := max Eγ,h(x)
s.t. x ∈ C,

(5)

where

Eγ,h(x) := −γ + 〈h, x〉
Q(x)

. (6)

Let γb := γ − f (xb) and u := U (γb, h) ∈ C be a solution of (5). From (4) and (6),
we obtain

E(γb, h) ≥ −γ − f (xb) + 〈h, x̂〉
Q(̂x)

≥ f (xb) − f̂

Q(̂x)
≥ 0. (7)

Setting η := E(γb, h) in (7) implies that (3) is valid. If xb is not optimal then the right
inequality in (7) is strict, and since Q(z) ≥ Q0 > 0, we conclude that the maximum
η is positive.
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In each step, OSGA uses the next scheme for updating the given parameters α, h,
γ , η, and u, see [42] for more details.

Procedure PUS(parameters updating scheme)

Input: δ, αmax ∈ ]0, 1[, 0 < κ ′ ≤ κ , α, η, h̄, γ̄ , η̄, ū;
Output: α, h, γ , η, u;

1 begin
2 R ← (η − η)/(δαη);
3 if R < 1 then
4 α = αe−κ ;
5 else
6 α ← min(αeκ ′(R−1), αmax);
7 end
8 α ← α;
9 if η < η then

10 h ← h; γ ← γ ; η ← η; u ← u;
11 end
12 end

Algorithm 1: OSGA (optimal subgradient algorithm)

Input: δ, αmax ∈ ]0, 1[, 0 < κ ′ ≤ κ; local parameters: x0, μ ≥ 0;
Output: xb, fxb ;

1 begin
2 xb = x0; h = gxb − μgQ(xb); γ = fxb − μQ(xb) − 〈h, xb〉;
3 γb = γ − fxb ; u = U (γb, h); η = E(γb, h) − μ; α ← αmax;
4 while stopping criteria do not hold do
5 x = xb + α(u − xb); g = gx − μgQ(x); h = h + α(g − h);
6 γ = γ + α( fx − μQ(x) − 〈g, x〉 − γ );

x ′
b = argminz∈{xb,x} f (z); fx ′

b
= min{ fxb , fx };

7 γ ′
b = γ − fx ′

b
; u′ = U (γ ′

b, h); x ′ = xb + α(u′ − xb);

8 choose xb in such a way that fxb ≤ min{ fx ′
b
, fx ′ };

9 γ b = γ − fxb ; u = U (γ b, h); η = E(γ b, h) − μ; xb = xb; fxb = fxb ;
10 update the parameters α, h, γ , η and u using PUS;
11 end
12 end

In [42], it is shown that the number of iterations to achieve an ε-optimum is of
the optimal order O (

ε−1/2
)
for a smooth f with Lipschitz continuous gradients and

of the order O (
ε−2

)
for a Lipschitz continuous nonsmooth f . The algorithm has

low memory requirements so that, if the subproblem (5) can be solved efficiently,
OSGA is appropriate for solving large-scale problems. Numerical results reported by
Ahookhosh in [1,3] for unconstrained problems, and by Ahookhosh and Neumaier in
[4–6] for simply constrained problems show the good behavior of OSGA for solving
practical problems.
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Note that there is a flexibility in choosing xb in Line 8 of OSGA (xb ∈ {x ′
b, x

′}).
In the next section we give a two-stage scheme (called OSGA-S) that the outer stage
is OSGA and the inner stage is a multidimensional subspace search used to produce
a suitable point xb in Line 8 of OSGA guaranteeing fxb ≤ min{ fx ′

b
, fx ′ } without

increasing a significant computational cost to the outer stage OSGA for solving the
problem (1).

3 Structured Convex Optimization Problems

In this paper we consider the convex optimization problem (1), which appears in many
applications such as signal and image processing, machine learning, statistics, data
fitting, and inverse problems; see, e.g., [15,50].

In many applications, the objective function of (1) involves expensive linear map-
pings (equivalently matrix-vector products with dense matrices). To apply a first-order
method for minimizing such problems, the first-order oracle (function values and sub-
gradients) should be available, i.e.,

fx =
p∑

i=1

fi (Ai x), gx ∈
p∑

i=1

A∗
i ∂ f (Ai ·)(x).

Hence, in each call of the first-order oracle, p forward operatorsAi , i = 1, . . . , p, and
p adjoint operators A∗

i , i = 1, . . . , p, must be applied requiring O(n2) operations.
This computationally leads to overall expensive function and subgradient evaluations
such that the total cost of using a first-order method is dominated by the cost of
applying forward and adjoint linear operators. This motivates the quest for developing
an acceleration of OSGA using a multidimensional subspace search for solving such
problems.

The primary idea of multidimensional subspace methods is to restrict the next
iteration to a low-dimensional subspace by constructing a subproblem with a reduced
dimension. Let us fix M � n, where n is the number of variables. Let the sequence
{xk}k≥0 be generated by xk+1 = xk + dk , where dk is a search direction. We suppose
that d1, d2, . . . , dM are M directions used to span the subspace

S = span{d1, d2, . . . , dM }. (8)

In this case a direction d belongs to the subspace S if and only if there exist constants
t1, t2, . . . , tM such that

d =
M∑

i=1

ti di = Ũ t, (9)

where Ũ := [d1, d2, . . . , dM ] is a matrix constructed from the directions considered
and t = (t1, t2, . . . , tM )T is a vector of coefficients. Afterwards, the M-dimensional
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minimization problem

min
p∑

i=1
fi (Ai (x + Ũ t)) =

p∑

i=1
fi (vi + Vi t)

s.t. t ∈ R
M

(10)

is considered to determine the best possible vector of coefficients t , where vi := Ai x
and Vi := Ai Ũ . Theminimization problem (10) shows that the procedure of searching
the best possible direction of the form (9) in the subspace (8) generalizes the idea of
exact line search, see, e.g., [44], but it provides an approximate minimization. One
can also construct the subspace

S = span{xk−M+1, xk−M+2, . . . , xk}, (11)

and set Ũ = (xk−M+1, xk−M+2, . . . , xk). Then the subspace minimization is defined
by

min
p∑

i=1
fi (Ai (Ũ t)) =

p∑

i=1
fi (Vi t)

s.t. t ∈ R
M .

(12)

Since M � n, the minimization subproblems (10) and (12) are low-dimensional and
can be solved efficiently by classical optimization methods. Hence subspace search
techniques can be implemented extremely fast. This leads to suitable schemes for
large-scale optimization as the number of variables of practical problems growing
up. Moreover, using a multidimensional subspace search as an inner step of iterative
schemes needs lowmemory, which may be considerably cheaper than performing one
step of the algorithm in the full dimension. Further, many common ideas in nonlin-
ear optimization can be considered as multidimensional subspace search techniques,
namely conjugate gradient, limited memory quasi-Newton, and memory gradient
methods; see, e.g., [18,23,54].

Motivated by the above-mentioned discussion, the multidimensional subspace
search scheme can be outlined as follows:
Algorithm 2: MDSS (multidimensional subspace search)

Input: xb ∈ V , Ũ , vi ∈ Ui , Vi (i = 1, . . . , p);
Output: xb, fxb ;

1 begin
2 solve the M-dimensional minimization problem (10) or (12) inexactly to find

t∗;
3 set xb = xb + Ũ t∗ for (10) or xb = Ũ t∗ for (12); fxb = f (xb);
4 end

To implement Algorithm 2 successfully, some factors are crucial: (i) the number of
directions M controlling the computational cost of the scheme; (ii) choosing suitable
directions to construct the subspaces; (iii) solving the minimization problem (10) or
(12) efficiently. Indeed, for choosing the number of directions M , there is a trade-off
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between the total computational cost per iteration and the amount of possible decrease
in function values.

We here use MDSS as an accelerator of OSGA for solving problems involving
costly linear operators. More precisely, we save some previously computed points,
construct a subspace of the form (8) and apply MDSS to find a point xb in Line 8
of OSGA. This typically gives us a better point xb in Line 9 of OSGA. In the next
subsection, we will show how the subspace S is constructed and how the subproblem
(12) can be solved efficiently at a reasonable cost.

3.1 Solving the Auxiliary Problem (12) by OSGA

In this section we show how one can construct a suitable subspace of the form (11) and
how to solve the auxiliary problem (12) with OSGA. Without loss of generality, we
here assume Ai : Rn → R

m, i = 1, . . . , p. For Ũ , Vi ∈ R
n×(2M+1), i = 1, . . . , p,

Ũ: j and (Vi ): j denote the j th column of the matrices Ũ and Vi , respectively. Let us
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consider a variant of OSGA using the multidimensional subspace search technique as
follows:
Algorithm 3: OSGA-S (optimal subgradient algorithm with subspace search)

Input: global parameters: δ, αmax ∈ ]0, 1[, 0 < κ ′ ≤ κ; local parameters:
x0, μ ≥ 0;

Output: xb, fxb ;
1 begin
2 xb = x0; h = gxb − μgQ(xb); γ = fxb − μQ(xb) − 〈h, xb〉;
3 γb = γ − fxb ; u = U (γb, h); η = E(γb, h)−μ; α ← αmax; r = 0; flag = 1;
4 while stopping criteria do not hold do
5 x = xb + α(u − xb); vxi = Ai x, i = 1, . . . , p; r = r + 1,

Ũ:r = x ; (Vi ):r = vxi , i = 1, . . . , p;
6 g = gx − μgQ(x); h = h + α(g − h);

γ = γ + α( fx − μQ(x) − 〈g, x〉 − γ );
7 x ′

b = argminz∈{xb,x} f (z); fx ′
b

= min{ fxb , fx };
γ ′
b = γ − fx ′

b
; u′ = U (γ ′

b, h);

8 x ′ = xb + α(u′ − xb); vx
′

i = Ai (x ′), i = 1, . . . , p; r = r + 1, Ũ:r = x ;

(Vi ):r = vx
′

i , i = 1, . . . , p;
9 if r = 2M then

10 Ũ:2M+1 = xb; (Vi ):2M+1 = vbi , i = 1, . . . , p; flag = 0; r = 1;
11 end
12 if flag then
13 fxb = min{ fx ′

b
, fx ′ }; xb = argmin{ fx ′

b
, fx ′ }

14 else
15 solve (12) with t ∈ R

2M+1 by MDSS routine to find xb and fxb ;
16 end
17 γ b = γ − fxb ; u = U (γ b, h); η = E(γ b, h) − μ; xb = xb; fxb = fxb ;

vbi = Ai xb, i = 1, . . . , p;
18 update the parameters α, h, γ , η, and u using PUS;
19 end
20 end

In OSGA-S if the number of iterations is less than M , we save the points x and x ′
and related vectors vxi = Ai x, vx

′
i = Ai (x ′), i = 1, . . . , p. These points and the best

iteration so far (xb) are used to construct the subspace

S := span{xk−M+1, x
′
k−M+1, . . . , xk, x

′
k, xb}. (13)

If the number of iterations is larger than or equal to M , we use the subspace (13) and
solve a subspace problem of the form (12) with t ∈ R

2M+1, i.e.,

min
p∑

i=1
fi (Vi t)

s.t. t ∈ R
2M+1.

(14)
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This possibly leads us to a better point xb than that provided in Line 8 of OSGA. Note
that if the number of iterations is bigger or equal than M , OSGA-S is a two-stage
algorithm, where the outer stage is OSGA and the inner stage is a subspace search in
Line 15. In the next result we show that fxb ≤ min{ fx ′

b
, fx ′

k
} for all k ≥ 0 of OSGA-S.

Theorem 1 Let k be the iteration counter of OSGA-S, k ≥ M, and Ai : R
n →

R
m, i = 1, . . . , p. Let also the points

xb, x j , x ′
j for j = k − M + 1, . . . , k

be generated by the former iterations of OSGA-S to construct the subspace (13). Then
each step of OSGA applied to (14) in MDSS needs 4pm(2M + 1) operations. In step
k of OSGA-S, we have

fxb ≤ min{ fx ′
b
, fx ′

k
}.

Proof Let us define Ũk ∈ R
n×(2M+1) by

Ũk := (
xk−M+1, x

′
k−M+1, . . . , xk, x

′
k, xb

)
(15)

and

vbi := Ai xb, v
j
i := Ai x j , (v

j
i )

′ := Ai x
′
j for j = k − M + 1, . . . , k, i = 1, . . . , p.

Then we have

Ai (Ũk t) = (Ai Ũk)t = (Ai xk−M+1,Ai x ′
k−M+1, . . . ,Ai xk,Ai x ′

k,Ai xb
)
t

= (v
j
k−M+1, (v

j
k−M+1)

′, . . . , v j
k , (v

j
k )

′, vbi )t = Vikt,
(16)

for i = 1, . . . , p, where Vik := (v
j
k−M+1, (v

j
k−M+1)

′, . . . , v j
k , (v

j
k )

′, vbi ) ∈
R
m×(2M+1). This means that the construction of Vik, i = 1, . . . , p, has no extra

cost if they have been saved in the outer scheme of OSGA-S. We now compute the
first-order oracle at t by

ft =
p∑

i=1

fi (Vikt), gt ∈
p∑

i=1

V ∗
ik∂ fi (Vikt). (17)

Computing each of Vikt and V ∗
ik∂ fi (Vikt), i = 1, . . . , p, needsm(2M+1) operations.

Therefore, apart from the cost of nonlinear terms, we need 2pm(2M + 1) operations
in each call of the first-order oracle for the problem (14). Since OSGA requires two
calls of the first-order oracle in each iteration, we need 4pm(2M + 1) operations in
each iteration of MDSS.

By (15) and setting t := (0, . . . , 1, 0, 0)T ∈ R
2M+1 (1 in its (2M − 1)th

component), t ′ := (0, . . . , 0, 1, 0)T ∈ R
2M+1 (1 in its (2M)th component), and
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tb := (0, . . . , 0, 0, 1)T ∈ R
2M+1 (1 in its (2M + 1)th component), we get

xk = Ũk t, x ′
k = Ũk t

′, xb = Ũk tb.

This implies that xk, x ′
k, xb ∈ S, leading to

x ′
b = argmin

z∈{xb,xk }
f (z) ∈ S. (18)

Let t∗ ∈ R
2M+1 be the minimizer of the subspace problem (14) associated to the

subspace (13). By (18) and setting xb = Ũk t∗, we can write

fxb = min
t

f (Ũk t) = min
z∈S

f (z) ≤ min
x∈{x ′

b,x
′
k }

f (x) = min{ fx ′
b
, fx ′

k
},

giving the result. ��
Note that if Ũk and Vik , for i = 1, . . . , p, are collected in the outer stage of OSGA-

S, then no extra efforts for computing them are needed in applying the subspace
search scheme MDSS (see Lines 5, 8, 10, and 17 of OSGA-S). Let us assume m ≈ n.
Then Theorem 1 implies that in each step of OSGA for solving (14) one needs O(n)

operations. Therefore, applying n step of OSGA to (14) have the complexity the same
as one call of the oracle for the full-dimensional problem by the outer scheme. Since
we suppose n is a large number, the cost of applying n0 (n0 � n) steps of OSGA to
(14) can be ignored in comparison to the cost of a single call of the first-order oracle
in the full dimension. Hence MDSS can be applied efficiently to accelerate OSGA
without imposing too much computational cost for large-scale objectives involving
expensive linear operators and cheap nonlinear terms.

Theorem 1 implies that OSGA-S is a special case ofOSGAobtained by specializing
the choice of Line 8 in OSGA. Therefore, all theoretical feature of OSGA remains
valid. Therefore, OSGA-S is optimal for smooth problems with Lipschitz continuous
gradients, Lipschitz continuous nonsmooth problems, and strongly convex problems.
We summarize this result in the next theorem that was proved in [42].

Theorem 2 Let f − μQ be a convex function. Then we have

(i) (Nonsmooth complexity bound) If f is Lipschitz continuous inV , the total number
of iterations needed by OSGA-S is at mostO((ε2 + με)−1). Thus the asymptotic
worst-case complexity is O(ε−2) when μ = 0 and O(ε−1) when μ > 0.

(ii) (Smooth complexity bound) If f has Lipschitz continuous gradients with Lipschitz
constant L, the total number of iterations needed by OSGA-S is at mostO(ε−1/2)

if μ = 0, and O(| log ε|√L/μ) if μ > 0.

4 Numerical Experiments

A software package for solving unconstrained and simply constrained convex opti-
mization problems with OSGA and the code of OSGA-S is publicly available at
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http://homepage.univie.ac.at/masoud.ahookhosh/.

The package is written in MATLAB. It uses the parameters

δ = 0.9, αmax = 0.7, κ = κ ′ = 0.5,

and the quadratic prox-function with Q0 = 1
2‖x0‖2 + ε, where ε is the machine

precision. A user manual [2] describes the design and use of the package. Some
examples are included as illustrations. This section discusses numerical results and
comparisons of OSGA-Swith OSGA and some subgradient algorithms. All numerical
experiments were executed on a PC Intel Core i7-3770 CPU 3.40GHz 8 GB RAM.

WecompareOSGA-SwithOSGA,SGA-1 (a non-summable diminishing steplength
subgradient algorithm, cf. [14]), SGA-2 (a non-summable diminishing step-size sub-
gradient algorithm, cf. [14]), and NESUN (Nesterov’s universal gradient method, cf.
[41]). In our implementation, SGA-1 and SGA-2 use the following step-sizes

α1
k := α0√

k‖gk‖
, α2

k := α0√
k
,

respectively, where α1
k , α

2
k > 0.

4.1 Overdetermined Linear System of Equations

Consider the overdetermined linear system of equations

y = Ax + ν, (19)

where x ∈ R
n is an unknown vector, A ∈ R

m×n withm > n, y ∈ R
m is an observation

vector, and ν ∈ R
m is unknown but small an additive noise. The objective is to recover

x from y by solving (19). Such problems appear in many applications, see, e.g.,
[9,10,16]. They are of particular interest for robust fitting of linear models to data. In
practice, this problem is typically ill-posed, cf. [43]. Therefore, x is usually computed
by a minimization problem of the form (1) with one of the objective functions of Table
1.

Here, we set

A = rand(m,n) − 0.5, y = rand(m,1) − 0.5, x0 = rand(n,1) − 0.5,

where m = 50000 and n = 5000. Since some of the problems given in Table 1
involve regularization terms that NESUN subproblem cannot be solved efficiently
(e.g., ‖ · ‖∞), we will not consider it in this comparison. We therefore use SGA-1,
SGA-2, OSGA, andOSGA-S for solving this overdetermined system of equations.We
set α0 = 8× 10−1 for SGA-1, use α0 = 10−4 for SGA-2 if it applies to the problems
L22R, L22L22R, L22L1R, L1R, L1L22R, and L1L1R, and exploit α0 = 2×10−2 for
SGA-2 if it applies to the problems L2R, L2L22R, L2L1R, LIR, LIL22R, and LIL1R.
Note that SGA-2 is very sensitive to the parameter α0 for different problems, so we
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Table 2 Summary of numerical results for all 12 problems of Table 1, where Mbest denotes the best value of
the parameter M ∈ {1, 2, . . . , 20}, N (M) stands for the number of iterations needed to achieve the function
value less or equal than fs , and T (M) denotes the corresponding running time

Problem name Iteration Time (s)
Mbest N (Mbest) N (2) N (20) Mbest T (Mbest) T (2) T (20)

L22R 11 17 22 33 7 8.31 11.32 25.64

L22L22R 8 22 43 42 8 10.18 16.88 27.82

L22L1R 2 14 14 20 4 6.92 7.41 10.22

L2R 5 23 27 39 5 9.76 11.22 23.74

L2L22R 1 18 19 39 1 6.94 7.62 18.61

L2L1R 1 27 36 31 1 10.56 14.72 73.12

L1R 1 93 94 103 1 36.90 40.80 73.66

L1L22R 3 95 100 104 3 40.22 41.77 82.40

L1L1R 19 59 85 114 2 35.46 35.46 65.66

LIR 1 2 2 93 1 0.67 0.69 3.57

LIL22R 10 32 64 88 10 16.60 26.33 61.95

LIL1R 1 3 8 92 1 1.12 3.19 67.75

tunned α0 to attain the best performance of SGA-2 for the considered set of problems.
For all problems of Table 1, we set λ = 1.

We first conduct an experiment on the parameter M to find an optimal range for
this parameter. To this end, we consider the problems of Table 1, solve the problem by
OSGA in 100 iterations, save the best function value fs in each case, and run OSGA-S
with M = 1, 2, . . . , 20 to achieve fs . The results of our experiment are summarized
in Table 2 and Figs. 1 and 2. In Table 2, the best parameter Mbest for each problem
regarding the best number of iterations and the best running time, alongwith the results
for Mbest, M = 2, and M = 20, is reported. Figures 1 and 2 illustrate comparisons
between OSGA and OSGA-S for M = 1, 2, . . . , 20, where Fig. 1 shows the results
for the number of iterations and Fig. 2 displays the results for the running time.

From the results of Table 2 and Figs. 1 and 2, it can be seen thatMbest is varied for the
considered problems; however, the interval [1, 5] seems to be statistically reasonable
for the parameter M . In addition, it is clear that the performance of OSGA-S depends
on the parameter M , but if we set M ∈ [1, 5], OSGA-S outperforms OSGA except
for L1R, L1L22R, and L1L1R (see figures (g), (h), and (i) of Fig. 2).

We now solve the problems reported in Table 1 by SGA-1, SGA-2, OSGA, and
OSGA-S, where we first solve these problems by OSGA in 100 iterations, save the
best function value fs and stop the others whenever they attain a function value less or
equal than fs or the number of iterations reaches to themaximum number of iterations,
which is 500 here. We set M = 2 for OSGA-S. The results of implementation are
summarized in Table 3 and Fig. 3.

In Table 3, N and T denote the number of iterations and the running time, respec-
tively. The results of Table 3 show that OSGA and OSGA-S outperform SGA-1 and
SGA-2 significantly regarding both the number of iterations and the running time;
however, OSGA-S needs fewer iterations and less running time than OSGA. In Fig.
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Fig. 1 The relation N (M)/NOSGA against M for OSGA and OSGA-S for solving the problems in Table
1, where N (M) denotes the total number of iterations

3, we illustrate the relative error of function values versus iterations, i.e.,

δk := fk − f̂

f0 − f̂
, (20)

where f0, fk , and f̂ denote the function values at a starting point x0, the current point
xk , and the minimizer x̂ , respectively. The results of Fig. 3 show that in many cases
OSGA-S get the same accuracy in fewer iterations and less running time; however, for
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Fig. 2 The relation T (M)/TOSGA against M for OSGA and OSGA-S for solving the problems in Table 1,
where T (M) denotes the running time

some cases such as L1R, L22L1R, and L1L1R the difference between the number of
iterations of OSGA-S andOSGA is not significant andworse running time are attained
by OSGA-S. Moreover, the results of OSGA-S is much better than SGA-1, SGA-2,
andOSGA for LIR and LIL1R thatmight be because of poor sparse subgradients of the
infinity norm ‖ · ‖∞ for SGA-1, SGA-2, and OSGA, while the subspace minimization
step of OSGA-S involves a combination of several former points resulting to better
directions.
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Fig. 3 The relative error of function values δk against iterations for SGA-1, SGA-2, OSGA, and OSGA-S
for solving overdetermined systems of equations using the minimization problems presented in Table 1
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Table 3 Numerical results of SGA-1, SGA-2, OSGA, and OSGA-S, where the best time (in second) is
displayed as bold

Problem name SGA-1 SGA-2 OSGA OSGA-S
N T N T N T N T

L22R 500 125.33 316 77.50 100 40.39 30 21.35

L22L22R 500 125.52 288 70.73 100 37.96 43 33.60

L22L1R 500 102.36 232 62.50 100 38.30 25 19.16

L2R 500 137.48 162 45.34 100 45.43 38 29.85

L2L22R 500 144.80 139 43.22 100 44.53 31 24.24

L2L1R 500 138.72 500 117.80 100 42.20 80 66.71

L1R 500 124.84 412 107.57 100 40.14 100 87.10

L1L22R 500 126.45 254 63.46 100 41.10 72 62.28

L1L1R 500 125.46 346 84.62 100 41.37 81 68.63

LIR 63 15.67 119 31.36 100 41.76 11 4.93

LIL22R 500 136.61 500 133.70 100 45.67 53 44.82

LIL1R 129 32.19 161 42.56 100 42.26 45 46.74

4.2 Support Vector Machines

The learning with support vector machines (SVM) leads to several expensive convex
optimization problemswith large dense data set. Some of these problems have the form
designed in this paper. Let us consider a binary classification, where a set of training
data (x1, y1), . . . , (xq , yq) in which xi ∈ R

n and yi ∈ {−1, 1} for i = 1, . . . , q is
given. The aim is to find a classification rule using the training data, so that for a new
point x one can assign a class y ∈ {−1, 1} to x by the derived classification rule. The
classification rule for SVM is given by the sign of 〈x, w〉 + w0, where w and w0 may
be determined by solving a penalized problem

min
q∑

i=1

[1 − yi (〈xi , w〉 + w0)]+ + λψ(w)

s.t. w ∈ R
n, w0 ∈ R,

(21)

where [z]+ = max{z, 0}, and ψ can be ‖ · ‖1 (SVML1R), ‖ · ‖22 (SVML22R), and
1
2‖ · ‖22 + ‖ · ‖1 (SVML22L1R) (see, e.g., [13,48,55] and references therein). For
〈x, w〉 = wT x , let us define

X :=
⎛

⎜
⎝

y1xT1
...

yq xTq

⎞

⎟
⎠ ∈ R

q×n, A := (X , y) ∈ R
q×(n+1), w̃ :=

(
w

w0

)

∈ R
n+1.
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Then the problem (21) can be rewritten in the form

min 1T [1 − Aw̃]+ + λψ(w)

s.t. w̃ ∈ R
n+1,

(22)

where [1 − Aw̃]+ = max{1 − Aw̃, 0} and 1 ∈ R
q is the vector of all ones. Typically

A is a dense matrix constructed by data points xi and yi for i = 1, . . . , q. It is clear
that (22) is of the form (1), where an associated subgradient g is given by

g = −AT δ + λ

(
sign(w)

0

)

,

in which

δi =
{
1 if Ai :w̃ < 1,
0 if Ai :w̃ ≥ 1,

for i = 1, . . . , q.
In order to show the benefit of our subspace technique for this kind of problems, we

apply SVML1R, SVML22R, and SVML22L1R to the leukemia data given by Golub
et al. in [24], available in [25]. This dataset comes from a study of gene expression in
two types of acute leukemias (acutemyeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL)) and it consists of 38 training data points and 34 test data points. We
apply SVML1R, SVML22R, and SVML22L1R to the training data points (q = 38 and
n = 7129) with six levels of regularization parameters. We first solve the problems by
OSGA in 1000 iterations and save the best function value fs in each case. We then run
SGA-1, SGA-2, NESUN, OSGA, and OSGA-S, where they are stopped after 5000
iterations or after achieving a function value at least as good as fs . The associated
results are summarized in Table 4 and Figs. 4 and 5.

The results of Table 4 show that OSGA and NESUN are comparable but better than
SGA-1 and SGA-2, and OSGA-S outperforms all others significantly with respect
to the number of iterations (N ) and the running time (T ) (the best average is given
by OSGA-S). In Figs. 4 and 5, we illustrate the function values versus iterations
indicating that OSGA-S needs few iterations (typically less than 35 iterations) to get
the accuracy that OSGA attains in 1000 iterations and SGA-1, and SGA-2 get in few
thousands of iterations; however, this number of iterations is varied from about 100
to few thousands for NESUN for different problems. This shows a good potential of
OSGA-S to be applied to machine learning problems.

We now consider the accuracy (the ratio of the number of correctly predicted
data labels to the total number of data multiplied by 100) of OSGA-S for solv-
ing (22). Let us denote by OSGA-S-100, OSGA-S-50, OSGA-S-10, OSGA-S-1,
OSGA-S-0.1, OSGA-S-0.01 the algorithmOSGA-Swith the regularization parameter
λ = 100, 50, 10, 1, 0.1, 0.01, respectively. We first investigate the relation between
the accuracy and the number of iterations used to stop OSGA-S. To do so, we report
the accuracy of OSGA-S-100, OSGA-S-50, OSGA-S-10, OSGA-S-1, OSGA-S-0.1,
OSGA-S-0.01 when they are stopped after 10, 20, 30, 40, 50 number of iterations.
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Fig. 4 The function values against iterations for the algorithms SGA-1, SGA-2, NESUN, OSGA, and
OSGA-S for a binary classification with linear support vector machines (SVML1R, SVML22R)
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Fig. 5 The function values against iterations for the algorithms SGA-1, SGA-2, NESUN, OSGA, and
OSGA-S for a binary classification with linear support vector machines (SVML22L1R)

The results are summarized in Table 5. From the results of this table, it is clear that
in many cases the accuracy of OSGA-S is increased by considering a bigger number
of iterations; however, it produces acceptable results after 50 iterations. In addition,
it can be seen that the regularization parameter plays a crucial role in the accuracy of
OSGA-S.

Among state-of-the-art SVM solvers, we here compare the accuracy of OSGA-S
with LIBSVM [17], FITCSVM (MATLAB internal function), PEGASOS [47], SVM-
perf [29] with their default parameters to solve (22). In our implementation, LIBSVM,
FITCSVM, SVMperf, and PEGASOS attain the accuracies 65.27, 79.17, 79.17, and
69.44, respectively. A comparison among these accuracies with those reported in Table
5 shows that the accuracy of OSGA-S is comparable or even better than LIBSVM,
FITCSVM, SVMperf, and PEGASOS for the considered data set. Since the number
of training and testing data for the leukemia data set [24,25] is small, we consider
a comparison among OSGA-S and LIBSVM, FITCSVM, SVMperf, and PEGASOS
for w1a–w8a data sets [45]. After training procedure, we consider a concatenation
of the training and testing data and apply the derived classification functions, where
the obtained accuracy for each solver is reported in Table 6. In this table, OSGA-
S-1, OSGA-S-2, and OSGA-S-3 stand for OSGA-S for the problems SVML1R,
SVML22R, and SVML22L1R, where we tune the regularization parameter to get
the best performance of OSGA-S (see the numbers in parentheses of the last three
columns of Table 6) and stop OSGA-S after 50 iterations. The results of Table 6
show that the accuracy of OSGA-S is almost comparable with those of state-of-the-art
solvers LIBSVM, FITCSVM, SVMperf, and PEGASOS.
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5 Conclusions

In this paper we give an iterative scheme for solving convex optimization problems
involving costly linear operators with cheap nonlinear terms. More precisely, we com-
bine OSGAwith a multidimensional subspace search, which leads to solve a sequence
of low-dimensional subproblems that can be solved efficiently by OSGA. Numerical
results for overdetermined system of equations and support vector machines show the
efficiency of the scheme proposed.
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