
1 3

Journal for STEM Education Research (2023) 6:326–357
https://doi.org/10.1007/s41979-022-00084-4

RESEARCH ARTICLE

The Effect of Automated Error Message Feedback
on Undergraduate Physics Students Learning Python:
Reducing Anxiety and Building Confidence

Tessa Charles1 ·Carl Gwilliam1

Accepted: 28 December 2022
© The Author(s) 2023

Abstract
STEM fields, such as physics, increasingly rely on complex programs to analyse
large datasets, thus teaching students the required programming skills is an impor-
tant component of all STEM curricula. Since undergraduate students often have no
prior coding experience, they are reliant on error messages as the primary diagnostic
tool to identify and correct coding mistakes. However, such messages are notoriously
cryptic and often undecipherable for novice programmers, presenting a significant
learning hurdle that leads to frustration, discouragement, and ultimately a loss of
confidence. Addressing this, we developed a tool to enhance error messages for the
popular PYTHON language, translating them into plain English to empower students
to resolve the underlying error independently. We used a mixed methods approach to
study the tool’s effect on first-year physics students undertaking an introductory pro-
gramming course. We find a broadly similar distribution of the most common error
types to previous studies in other contexts. Our results show a statistically significant
reduction in negative student emotions, such as frustration and anxiety, with the mean
self-reported intensity of these emotions reducing by (73 ± 12)% and (55 ± 18)%,
respectively. This led to a corresponding decrease in discouragement and an increase
in student confidence. We conclude that enhanced error messages provide an effective
way to alleviate negative student emotions and promote confidence. However, further
longer-term investigations are necessary to confirm if this translates into improved
learning outcomes. To our knowledge, this is the first physics-specific investigation
of the effect of PYTHON error message enhancement on student learning.

Keywords Python · Novice programming · STEM · Physics · Error enhancement ·
Feedback

� Carl Gwilliam
c.gwilliam@liverpool.ac.uk

Tessa Charles
tessa.charles@liverpool.ac.uk

1 Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK

/ Published online: 27 April 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s41979-022-00084-4&domain=pdf
http://orcid.org/0000-0001-8710-5021
http://orcid.org/0000-0002-9401-5304
mailto: c.gwilliam@liverpool.ac.uk
mailto: tessa.charles@liverpool.ac.uk

1 3

Journal for STEM Education Research (2023) 6:326–357

Introduction

As STEM fields increasingly rely upon generating large quantities of data as well
as processing, analysing, and visualising this data, the ability to code has become
a required skill for current and future generations of STEM degree graduates out-
side of computer science (CS), such as physics graduates. As such, teaching students
computer programming has become a key component of the vast majority of STEM
curricula (Cropper, 2018; Weiss, 2017; Wilson, 2006) and is an integral part of almost
all physics degree programs.

Error messages are a vital ingredient of all computing languages, providing the
details of any mistakes made when inputting the code. Programmers of all levels
depend on the feedback error messages provide to understand, locate, and ultimately
fix issues with their programs. Such issues encompass both syntactic errors, where
the user enters code that does not conform to the syntax rules defining the accept-
able combinations of symbols for the language in question, or more general flaws in
the design of the program that prevent correct execution, leading to run-time errors.
Throughout this paper, we refer to both collectively as ‘bugs’.

Beginner programmers are no different. Encountering errors is an unavoidable part
of any beginner programmer’s learning experience and the lack of prior experience
not only means that they are likely to make more mistakes and thus produce more
error messages, but they are also heavily reliant on these error messages as the pri-
mary diagnostic tool (Becker et al., 2019; Marceau et al., 2011). Consequently, being
able to interpret these messages is a key ingredient in effectively teaching computer
programming, allowing students to learn from their mistakes.

Unfortunately error messages can be difficult for beginners to decipher. Regard-
less of the specific programming language being used, the error messages have
always been notoriously cryptic (Becker et al., 2019; Brown, 1983), especially to the
uninitiated, often containing technical vocabulary or terminology that may be unfa-
miliar (Marceau et al., 2011). Perhaps unsurprisingly given the error messages are
largely written with experienced programmers in mind, the lack of readability in error
messages particularly affects novice programmers (Traver, 2010). Consequently, stu-
dents often waste hours trying to correct or ‘debug’ even simple mistakes (e.g. Barik
et al. (2018)), as supported by our results below.

Furthermore, the actual cause of the error is often hidden amongst a plethora of
details (known as a traceback) about the how the program arrived at the point of
error, resulting in off-putting detail that increases the cognitive load on the learner.
According to Lahtinen et al. (2005), when asked to grade the difficulty of various
programming aspects and concepts, novice programmers responded that finding and
fixing bugs is the greatest challenge.

Unexpected error messages can also be disheartening for students if they do not
yet feel equipped with the knowledge and skills required to resolve the error. This
experience can induce anxiety, which is a powerful hindrance in learning (Warr
& Downing, 2010; Mandler & Sarason, 1952). The experience of positive emo-
tions during learning (e.g. enjoyment, excitement, and pride) is widely recognised
as promoting confidence and engagement (Simon et al., 2015; Sinatra et al., 2015;
Villavicencio & Bernardo, 2016), with the influence on learning being less clear

327

1 3

Journal for STEM Education Research (2023) 6:326–357

(Villavicencio & Bernardo, 2016). Despite the lack of evidence that positive emo-
tions are a reliable indicator of learning, cognition, or achievement (Ben-Eliyahu &
Linnenbrink-Garcia, 2013; Finch et al., 2015; Villavicencio & Bernardo, 2016), it
is clear that negative emotions, such as anxiety, boredom, or hopelessness, predict
poorer academic achievement (Daniels et al., 2009; Mega et al., 2014; Pekrun et al.,
2017) and leave students feeling discouraged (Murphy et al., 2019).

Without experience to draw on, or even enough context-specific knowledge to
adequately search for a solution, often students’ only course of action is to ask a
demonstrator or a peer for help diagnosing the issue. Whilst peer-instruction is an
effective learning strategy, it can be limiting if this is the only action a student can
take with a broken piece of code. Ultimately, misunderstood error messages result in
a ‘barrier to progress’ (Becker, 2016a). In addition, the significant demonstrator time
spent solving trivial problems, often repeating the explanation to individual students,
has the knock-on effect of longer waiting times for assistance (Coull, 2008).

Large computer classes make it difficult to give detailed, individualised, formative
feedback (Chow et al., 2017). Various systems have been invented to counteract this
problem and these are described in the “Related Work” section of this paper.

According to Robins et al. (2003), students’ attitudes to mistakes and errors matter.
Students who become frustrated or are quick to negative emotional reactions are more
likely to become what Perkins et al. (1989) refers to as ‘stoppers’. Stoppers are stu-
dents who, when encountering a problem where they do not see immediately how to
proceed, will, as the name suggests, stop. Appearing to ‘abandon all hope of solving
the problem on their own’ (Perkins et al., 1989). The alternative category of novice
programmer is a ‘mover’. Movers are students who will attempt to modify their code,
often experimenting through trial and error. Often movers use error feedback more
effectively, allowing them to progress through a problem. In the case of ‘tinkerers’ (a
subset of movers), this is not always the case, since, as noted in Perkins et al. (1988),
some tinkerers can alter their code non-systematically and have little understanding
why the code is behaving how it is. Nevertheless, tinkerers, like all movers, have a
greater chance of solving the issue. This study attempts to help students use the error
messages and prevent students from falling into the ‘stopper’ mindset.

In this paper, we focus explicitly on automating feedback related to PYTHON error
messages. Due to the relative ease of readability and the large standard library, the
coding language PYTHON has surged in popularity over recent years, climbing to
top position on the TIOBE Index (TIOBE, 2021), which measures the popularity of
programming languages, in October 2021.

We present a tool called the ERROR EXPLAINER that hooks into JUPYTER

(Kluyver et al., 2016) notebooks to display a description of the error type in ‘plain
English’ directly below the error message, and guides the student how to read and
interpret the error message.

This new tool was introduced to students in the University of Liverpool Physics
Department’s first-year ‘Introduction to Computational Physics’ undergraduate mod-
ule. Through two surveys and a focus group, we evaluated the effectiveness of the
ERROR EXPLAINER’s automated feedback and the impact the tool has on reducing
negative emotions brought about by error messages. We also analysed the types of

328

1 3

Journal for STEM Education Research (2023) 6:326–357

errors encountered and the number of consecutive attempts required by the students
to resolve the error.

Research Questions

Based on the observations above, our hypothesis is as follows: a tool that provides
automated feedback, enhancing PYTHON error messages, will positively impact how
students respond to error messages and aid in their learning.

This tool to enhance PYTHON error messages, which is explained in detail in
“The ERROR EXPLAINER Tool” section, was named the ERROR EXPLAINER. The
tool translates PYTHON error message into plain English, referencing different parts
of the PYTHON error message.

To effectively evaluate the impact of the ERROR EXPLAINER, we first needed to
understand two preparatory research questions:

RQ1 Do students properly utilise the provided error messages and are they aware
of the information they contain?

RQ2 What is the distribution of error types encountered by these novice program-
mers?

To assess the perceived usefulness of the ERROR EXPLAINER and its impact
on students’ emotions and confidence, we sought to answer the following primary
research questions:

RQ3 Did the enhanced error messages provided by the ERROR EXPLAINER tool
help the students to solve errors and reduce the time spent doing so?

RQ4 Did the ERROR EXPLAINER tool improve the students’ confidence and
reduce negative emotions surrounding PYTHON errors?

RelatedWork

Given that programming error messages themselves show no signs of improving sig-
nificantly, various approaches to ameliorate their inadequacies have been studied in
the literature (e.g. Traver (2010) and Becker et al. (2019) for a summary).

One category of approach consists of trying to prevent errors occurring in the
first place. Integrated development environments (IDEs) can be built to ease the pro-
cess of writing code and examples exist for the majority of programming languages.
Amongst these are several pedagogic IDEs that are aimed at novices, perhaps most
notably BLUEJ (Kölling et al., 2003) for JAVA. Amongst other features, these often
provide functionality such as templates for common coding constructs and code com-
pletion hints, which reduce the likelihood of syntactic errors. Such aids, however,
risk users not actually learning the necessary syntax rules, thus causing issues further
down the road.

Another method to reduce errors amongst students is to limit the language fea-
tures available at any given time to a predefined subset, which increases as the

329

1 3

Journal for STEM Education Research (2023) 6:326–357

student becomes more experienced. An example of this is the JAVA-based PROFES-
SORJ (Gray & Flatt, 2003), with three increasing levels. By limiting the features
available to those a student is more familiar with, the idea is that they are only likely
to encounter error messages they have more chance of understanding, but there is no
guarantee this will actually be the case.

The other main approach is to provide automated code feedback, which can be
further split into two main sub-areas. One focuses on parsing the user’s code and com-
paring it to previous peer solutions to suggest fixes; the bank of prior solutions may
either be crowd-sourced from the internet, such as in the HELPMEOUT (Hartmann
et al., 2010) system or, within the educational context, previous students’ solutions
to the task being performed (Marwan et al., 2020). Whilst rapid and scalable, this
approach falters in its inability to provide individual feedback on where a student may
have made a mistake and guide them towards a solution. It also has the potential dis-
advantage that students may blindly apply the solution, without learning the essential
skill of how to resolve the issue using the information provided by the error message
itself. An extension of this is Intelligent Tutor Systems (ITSs), which parse the stu-
dent’s code using machine learning to create personalised feedback (Mousavinasab
et al., 2021). These systems have the advantage of providing immediate feedback,
allowing students to edit their code and learn through doing (Koedinger et al., 2004;
Paladines & Ramirez, 2020; Woolf, 2009), but they are typically time-intensive to
develop and can be limited when applied to open-ended problems (Folsom-Kovarik
et al., 2010).

The other, more common, method of providing feedback (Becker et al., 2019)
is to enhance the error message to make it more understandable to inexperienced
programmers. This may take the form of either replacing the original error message
with a more educational one or keeping the original message and augmenting it with
additional information to aid comprehension, the latter having the advantage that the
students can connect the two pieces to gradually learn how to decode the native error
message (Coull & Duncan, 2011). In both cases, the enhanced error messages often
provide tips or suggestions for how to solve the generated error.

There has been a long history of error message enhancement, beginning with
the FORTRAN language as far back as 1965 (Rosen et al., 1965). Since 2000, there
has been rapid growth in this area, the landscape of which has recently been com-
prehensively studied and summarised by Becker et al. (2019). Whilst many of the
studies have focused on JAVA, leading to tools such as GAUNTLET (Flowers et al.,
2004), SNOOPIE (Coull, 2008) and DECAF (Becker, 2016b; Becker et al., 2016),
various error enhancements have been developed for a wide variety of programming
languages.

The results suggest that syntax errors make up a large fraction of novice program-
mer errors (Kohn, 2019). Consecutive repeated errors can be another useful data set,
as Jadud (2006) found that consecutive repeated errors are often the ‘best indicator
of how well (or poorly) a student is progressing’.

Despite the myriad of tools designed to improve error messages, Becker (2016a)
noted that, until recently, many of the studies ‘lack empiricism in determining if they
make any difference, particularly to novices’. Although the situation has improved in
recent years, there is still debate surrounding the effectiveness of error enhancement

330

1 3

Journal for STEM Education Research (2023) 6:326–357

(Becker et al., 2019), with some studies (e.g. Becker (2015)) finding a positive effect
whilst others (e.g. the debated Denny et al., 2014) suggesting they are ‘ineffectual’.
In addition, there is a lack of literature regarding the effect of the enhancement on
the emotional state of the student.

There are several other important avenues of study that feed in to the development
of error enhancement tools. One is whether programmers encountering errors actu-
ally read the error messages encountered and how their use of them affects the ability
to resolve the underlying issue. A 2017 study by Barik et al. (2017) investigated
this in the context of JAVA by tracking students’ eye movements when attempting
to resolve commonly encountered issues. Their results showed not only that students
read the error messages produced but that as much as 25% of their eye fixations
were focused on the error messages, suggesting that reading error messages is ‘a cog-
nitively demanding task’. Comparing the probability of a correct solution with the
number of times the student revisited the error message further showed that difficulty
in reading the error messages is significantly anti-correlated with the ability to solve
the problem at hand. This supports the potential of error enhancement to significantly
improve learning outcomes.

Another is to better understand which issues students are particularly struggling
with at a given time. This can be ascertained via specialised tools (e.g. Jadud (2006)
for Java) that log students’ keyboard inputs whilst coding, which can even pre-
pare automatic summaries, along with associated recommendations, for students and
teachers (Murphy et al., 2009). The results of such studies provide important input
into which sources of error are particularly problematic to resolve and whose error
messages are thus primary candidates for enhancement.

Despite the rising popularity of the PYTHON language, particularly in educational
settings, relatively few error studies have focused on PYTHON, with Becker et al.
(2016) noting the need for more research as recently as 2016.

One of the earliest attempts was a tool called CAT-SOOP in 2011 (Hartz, 2012),
which automatically collected and assessed homework exercises, with an initial
small-scale (n = 25) study in the context of MIT CS courses providing inconclu-
sive results on its usefulness. Whilst CAT-SOOP contained a proof-of-concept add-on
(‘The Detective’) to analyse errors and provide a simple plain-English explanation in
addition to the original message, this was not rigorously tested.

In 2013, Guo (2013) developed an online PYTHON tutor, whereby students could
execute their PYTHON program step-wise via a web browser whilst viewing the run-
time state of the various structures, with anecdotal evidence that it helped ‘clarify
concepts’. More recently, Rivers and Koedinger (2017) developed a data-driven ITS
for PYTHON called ITAP (Intelligent Teaching Assistant for Programming), which
automatically generates hints for individual students. Whilst this showed impres-
sive technical performance, improving over time as more data is added to provided
more personalised suggestions, the effect of ITAP’s feedback on students was not
evaluated.

A study by Kohn (2019) investigated the cause of errors in programs col-
lected from more than 4000 high-school students undertaking introductory PYTHON

courses. Whilst the results showed that a large fraction of the errors are due to minor

331

1 3

Journal for STEM Education Research (2023) 6:326–357

mistakes (e.g. misspellings), it was unable to reliably determine the nature of many
of the errors due to not knowing the context and goals of the program.

Also in 2019, a plugin for the Sublime Text (Sublime, 2021) IDE called PYCEE

(Python Compiler Error Enhancer) (Thiselton & Treude, 2019) was introduced,
which uses data collected from the popular Stack Overflow question-and-answer
webpage to augment error messages with additional information and suggestions for
their resolution. A small-scale (n = 16) ‘think-aloud’ study showed that the major-
ity of students found PYCEE helpful, particularly the code examples included and
concrete solutions suggested.

Most recently, Zhou et al. (2021) investigated the most common PYTHON errors
encountered by middle-school students, developing an automated feedback tool
called MULBERRY to provide enhanced error messages for these. Statistical anal-
ysis, however, did not show any significant reduction in errors encountered nor
improvement in students’ ability to debug those errors.

Finally, during the course of our study, we became aware of a new third-party
PYTHON module, FRIENDLY (Roberge, 2021), that ‘replaces standard tracebacks by
something easier to understand’, including interactive buttons to query why an error
occurred, what it means and where it happened, with augmentations available in
English and French. Whilst this seems useful for novice programmers, we are not
aware of any studies investigating its effectiveness.

Much of the above research has, perhaps unsurprisingly, focused on the field of
CS education (Traver, 2010). Even if they have no background in programming, CS
students are likely to have more familiarity with computer systems and an interest in
computing. In addition, learning to program will be a major focus of CS students’
studies, with courses dedicated to specific aspects such as computer systems, data
structures, and algorithmic design. Hence, whilst such cohorts provide a large sam-
ple of introductory students encountering issues with error messages to study, they
may not be representative of the increasing number of students learning computer
programming in other disciplines. In particular, despite the rise in the use of pro-
gramming languages such as PYTHON for analysis within the wider STEM area, to
the best of our knowledge, there have been no dedicated studies on error message
enhancement and logging within this domain. This work concentrates on studying
the effects on physics students and hence represents a first step in this direction.

The ERROR EXPLAINER Tool

The ERROR EXPLAINER tool was designed to be used with JUPYTER notebooks, which
are used in many STEM courses (Johnson, 2020). The aim of the tool is to assist the
student in deciphering the PYTHON error messages and give them agency to resolve
the error, through translating the error message into ‘plain English’ (Cutts, 1996) and
providing some common causes that can result in that error being produced.

By ‘plain English’, we mean writing that is easy to read. Wherever possible, we
avoided jargon, technical words, and nominalisation. Where it was not possible to
avoid technical words, we defined that word immediately and succinctly. For example,
when describing error messages referring to a data structure, the words ‘data

332

1 3

Journal for STEM Education Research (2023) 6:326–357

Fig. 1 Screenshot of a JUPYTER notebook using the ERROR EXPLAINER tool, with annotations identifying
the key components. The PYTHON error message (red shaded area) is immediately followed by the ERROR

EXPLAINER output (blue text)

structure’ were immediately followed in brackets by ‘(e.g. list/tuple/string/array)’.
Following the guidelines on plain English (Cutts, 1996), we used lists with bullet
points, referred to the reader as ‘you’, and aimed for short sentences averaging 10
words or less. We also used the same repeating format for all ERROR EXPLAINER

messages (see Fig. 1) to make it fast and easy to read. These design choices align
with the comprehensive guidelines produced by Becker et al. (2019).

Components of ERROR EXPLAINER Output

Figure 1 shows an example of the ERROR EXPLAINER output. Directly below
the PYTHON error (red shaded area), the additional ERROR EXPLAINER feedback
appears containing the following elements: (1) title, (2) explanation of error in plain
English, (3) ‘What to do’ section, (4) ‘Common causes of this message’ section,
and (5) a final statement: ‘If you are still unsure, please ask one of the demonstra-
tors’. The contents of each of these sections are detailed in the following section,
which describes the rationale behind what was included and how the information was
presented.

Design Rationale

Several design choices were made when creating the ERROR EXPLAINER. We will
explain those choices in this subsection.

333

1 3

Journal for STEM Education Research (2023) 6:326–357

Firstly, the ERROR EXPLAINER text appears in blue to distinguish it from the
PYTHON output or other Markdown text displayed in subsequent notebook cells. Like
an error message, we wanted to ensure that the ERROR EXPLAINER text stood out as
different from the usual JUPYTER notebook outputs.

Component 1: Title

Each ERROR EXPLAINER output begins with the title ‘PHYS105 help on
‘{ErrorType}’ error message’. As this tool is intended for first-time learners of
PYTHON, we wanted to ensure the students were aware that the blue ERROR

EXPLAINER text was not a standard PYTHON output, and instead a tool introduced
to them specifically for their PHYS105 class.

Table 1 Error Explainer short descriptions for various PYTHON error types. These short description appear
in location 2 in Fig. 1

Python Error type ERROR EXPLAINER short description

AttributeError Python is telling you: the variable or function you’re asking
for isn’t provided by the object or module. E.g. trying to use
.append() on a string, but strings don’t support .append().

FileNotFoundError Python is telling you: it can’t open the file.

ImportError Python is telling you: it can’t find what you are trying to import.

IndentationError Python is telling you: it has found too much or too little
indentation (i.e. number of spaces or tabs).

IndexError Python is telling you: you’re trying to access an element in a
data structure (e.g. list/tuple/string/array etc) that is bigger than
the size of the structure. E.g. trying to access the 10th element
of a list that is only 9 elements long.

KeyError Python is telling you: you’re trying to look up a key in a
dictionary that doesn’t exist.

ModuleNotFoundError Python is telling you: it can’t find the module you tried to
import.

NameError Python is telling you: the variable, function, or module you’re
trying to use can’t be found. This is often due to a typo.

SyntaxError Python is telling you: what you have written isn’t valid Python
code. Many syntax errors are caused by typos.

TypeError Python is telling you: you’re trying to use an operator on the
wrong type of object, or you’re trying to combine/compare
variables that are of incompatible type.

ValueError Python is telling you: the variable you’re using has the correct
type but the value isn’t acceptable. E.g. trying sqrt(−1).

ZeroDivisionError Python is telling you: you’re trying to divide by zero.

when an unexpected We haven’t implemented an explanation for this error message.

exception was raised Try:

− Looking at the python error documentation

− Googling the error (professional developers do this all the time!)

334

1 3

Journal for STEM Education Research (2023) 6:326–357

Component 2: Explanation

Below the title, we included the explanation of the error in plain English. Table 1
contains the short explanations for various error types for which we provided
explanations.

Component 3: What to Do

As the aim of the ERROR EXPLAINER is to help students become more confident
interpreting and resolving PYTHON error messages, instead of including the relevant
line number in the ERROR EXPLAINER output, we direct the students to look at the
relevant part of the PYTHON error message. In the ‘What to do’ section, the student
is guided where to look in the error message, which usually involves looking where
the caret (∧) symbol points to or the line number indicated in the error message. To
make the connection clear, the colour of the words ‘line [number]’ in the ERROR

EXPLAINER output matches the colour of the line number reference in the PYTHON

error message output.

Component 4: Common Causes

Rather than telling the students how to fix the error, we provide a list of common
causes of that particular error type (see Fig. 1 for an example). Whilst we could have
given students a troubleshooting checklist to work through, this approach encourages
the students to consider common causes and decide whether any of these causes could
be relevant to them, empowering the students to resolve the error themselves.

Component 5: Final Statement

Finally, each ERROR EXPLAINER output contains the same final line: ‘If you are still
unsure, please ask one of the demonstrators’, to express to the students that they can
and should seek further help if needed.

It is worth noting that the ERROR EXPLAINER abides by the majority of the
requirements for effective support tools outlined in Coull and Duncan (2011):

• both the standard error and enhanced support appear concurrently,
• the tool embodies knowledge of key constructs needed to problem solve,
• the tool accommodates feedback for various error types and various causes

leading to errors,
• use of the tool was voluntary on the part of the students, and
• the tool support does not promote dependence on the tool.

The only requirements that the ERROR EXPLAINER does not meet was as fol-
lows: linking to other teaching resources and disseminating knowledge in successive
stages. Wanting to keep the ERROR EXPLAINER output succinct, we opted to not link
to other teaching resources and instead included the encouragement for students to

335

1 3

Journal for STEM Education Research (2023) 6:326–357

seek help from demonstrators (who could point to other resources) if needed. Dis-
seminating knowledge in stages could be considered for later releases of the ERROR

EXPLAINER, with expandable sections that offer further detail or extension.

Usage and Implementation

We have made the ERROR EXPLAINER publicly available under a MIT licence
for others to use or draw inspiration from. To use the ERROR EXPLAINER sim-
ply download the PYTHON file, error explainer.py (available at https://github.com/
carlgwilliam/error explainer), and place it in the same directory as the student’s
JUPYTER notebook. Then activate the tool via the following command: import
error explainer (see Fig. 1).

The ERROR EXPLAINER tool catches when a PYTHON exception (i.e. error) is
raised using JUPYTER’s custom exception handler (set custom exc) and then,
depending upon the error type, will display explanatory HTML text directly below
the PYTHON error, as shown in Fig. 1.

For the purpose of this study, the possibility of logging the errors was incorporated
into the ERROR EXPLAINER, whereby the error type, related error message, and the
date and time the error occurred were recorded.

Methods

Participants and Procedure

Since 2018, the University of Liverpool has embedded the widely used PYTHON

programming language across their physics degree programme, with compulsory
courses in the first 2 years of study followed by an optional third-year course on com-
puter modelling. Whilst this represents a significant investment in training physics
students to program, it should be noted that these courses only represent a small frac-
tion of each year’s teaching (7.5/120 credits in the first year) with a lack of other
courses directly supporting the learning outcomes.

The first-year ‘Introduction to Computational Physics’ (PHYS105) course, led by
one of the authors, aims to introduce physics majors to the PYTHON programming
language and its use in modelling physical systems. Since computing experience is
not a prerequisite for entry onto a physics degree, most of the students are novices,
with 69% of students having no prior programming experience in any language and
27% having only a basic knowledge of simple computer programs. Given this, the
first approximately half of the course focuses on introducing the basic PYTHON

building blocks needed for procedural programming (object-orientated programming
is not covered until the second year), including the numerical PYTHON package
NUMPY (Harris et al., 2020) and the MATPLOTLIB (Hunter, 2007) visualisation
package. In the second part, the students practise what they have learnt, bringing
together the various concepts to solve a series of physical problems both analytically
and numerically. These include solving differential equations symbolically using
SYMPY (Meurer et al., 2017); numerical integration and differentiation, culminating

336

https://github.com/carlgwilliam/error_explainer
https://github.com/carlgwilliam/error_explainer

1 3

Journal for STEM Education Research (2023) 6:326–357

Fig. 2 Study timeline

in modelling the motion of a projectile taking into account air resistance; and fit-
ting functional forms to laboratory data using the least-squares method via SCIPY

(Virtanen et al., 2020).
The data utilised in the study presented were collected as part of PHYS105 course,

consisting of 149 students, during the 2021–2022 academic year. The 12-week course
ran over the first semester, with each week consisting of an online 1-h introductory
lecture followed by in-person hands-on computing classes lasting 2 h. For the latter,
the cohort was split into four similar-sized groups, each overseen by a member of
academic staff with several postgraduate students on-hand to help. Each week the
students were required to work through an interactive JUPYTER notebook running
PYTHON 3.8.10,1 containing a series of formative and summative exercises, hosted
via the COCALC (Sagemath Inc. 2020) collaborative online learning platform.

Data Collection and Analysis

The evaluation took place over a 5-week period of the PHYS105 course covering
weeks 4 to 8 of the semester, with data being collected from hands-on use of the
ERROR EXPLAINER tool by students during the computing classes in weeks 5 and 6.
This period was specifically chosen to coincide with the students bringing together
the basic PYTHON building blocks learnt previously into more complex programs to
solve physics problems for the first time. As such, they would be likely to experience
a significant number of error messages, covering a wide variety of issues, during
the completion of the two weekly assignments. Whilst the students had encountered
error messages in practice previously, this was prior to the formal explanation of the
various PYTHON error categories and how to understand the associated messages in
the online lectures. The usage of the tool was entirely voluntary.

In order to address the research questions outlined above, we utilised a mixed-
methods approach (Creswell & Plano Clark, 2017; Johnson & Onwuegbuzie, 2004)
to combine qualitative and quantitative data collected from a variety of sources
to achieve a more global understanding. The data sources consisted of error log-
ging, surveys, and focus groups as described below. A timeline of these various
components of the evaluation within the semester is presented in Fig. 2.

1This version of PYTHON precedes several improvements to PYTHON error messages undertaken in the
3.10 and 3.11 releases.

337

1 3

Journal for STEM Education Research (2023) 6:326–357

Error Logging

Whilst using the ERROR EXPLAINER tool, the students were asked to optionally
consent to the tool anonymously logging information on the errors encountered (as
described above) to see which errors are most commonly encountered and the dis-
tribution and frequency of reoccurring errors. Of the 149 students registered on the
course, 105 agreed to their data being logged for at least one of the weeks.

We analysed the Repeated Error Density (RED) (Becker, 2016c) of the various
error types encountered to identify the number of consecutive errors of the same type
encountered by students within a 5-minute moving window.

Student Surveys

The students were invited to complete two anonymous surveys, one directly before
(week 4) and one directly after (week 7) the 2-week ERROR EXPLAINER usage
period. The survey questions consisted of a mixture of qualitative and quantitative
questions designed to understand both their experience with PYTHON errors and the
helpfulness of the ERROR EXPLAINER tool.

The initial survey mainly investigated the students’ response to error messages,
particularly in terms of emotions, how they approach solving them and how much
time they spend on this. The follow-up survey concentrated on the student experience
with the ERROR EXPLAINER tool, including its usefulness and how understandable it
was. To see if the tool had improved the students ability to resolve errors, in each sur-
vey, the students were shown the same example error message and asked to comment
on the cause and location of the error in the associated code.

Two main formats were used to collect the responses to the survey questions.
Numerical data were collected on a sliding scale, chosen consistently to be 0–5,
except in the case of the usefulness question where the result could be either posi-
tive or negative and hence a scale of −3 to +3 was used. Non-numerical data were
collected using multiple-choice questions in order to categorise the results and hence
facilitate analysis. A limited number of free-text questions were included to draw
out more details of the responses. The full set of survey questions, along with the
associated answer format, is listed in Table 4 in the Appendix.

Out of the 149 students enrolled on the course only a fraction engaged with the
surveys, with the initial one being completed by 46 students (30%) and 21 students
(14%) responding to the follow-up one. The resulting data were analysed graphi-
cally to visualise trends and numerical results were compared quantitatively using
either a Wilcoxon signed-rank test (Wilcoxon, 1945) (within the same survey) or a
Mann-Whitley U test (Mann & Whitney, 1947) (between surveys). In both cases, the
SCIPY (The SciPy Community, 2021) implementation of the tests was used for the
calculations.

Demonstrator Focus Group

In the final week of the evaluation period (week 8), the demonstrators of the four
computing classes, both the academic staff and the postgraduate helpers, were invited

338

1 3

Journal for STEM Education Research (2023) 6:326–357

to a focus group. The goal of this was twofold. Firstly, to understand how the
demonstrators approach helping the students resolve errors and whether the ERROR

EXPLAINER tool aided this and was able to reduce the time spent on correcting
(trivial) errors. Secondly, to obtain the demonstrators’ view on how the students
responded to both error messages and the ERROR EXPLAINER tool, to compare to
the students’ own feedback.

One demonstrator from each computing class (three academics and one postgradu-
ate helper) participated in the focus group, which lasted around 90 min and consisted
primarily of open-ended questions to scaffold the discussion, allowing time for the
participants to discuss around these topics.

A thematic analysis was performed on transcripts of the focus group recording and
emerging themes across the focus group responses identified.

Results

In this section, we report our findings, bringing together the various sources of data,
in terms of each of the research questions outlined above. Since the focus of our
study is on novice programmers, we exclude from both surveys the small number
of students (5 and 6 students respectively) who identified themselves as good or
excellent programmers, either in PYTHON specifically or another language, prior to
PHYS105. The resulting datasets consisted of 41 and 15 students for the two surveys
respectively. Such distinction was not possible for the error logging data and hence
logged data from all 105 students was included in the analysis in that case.

RQ1. Do Students Properly Utilise the Provided Error Messages and Are They
Aware of the Information They Contain?

The experience of the demonstrators indicated that some students were unaware of
the content of PYTHON error messages, and unsure of how to read the error message.
That is, the demonstrators believed that some students did not know which parts of
the error message contained the important information to resolve their error.

To determine whether students were aware of the error message contents to be able
to effectively utilise the error message, in the initial survey, we asked the students to
identify from a list, what information is contained in an error message. Ninety-one
percent of students selected that they were aware that error message includes the line
number of the code that caused the error and 70% were aware that it includes the
position of the problematic code within the line. Eighty-one percent were aware that
it includes the error type, whilst only 35% were aware that it includes ‘a summary of
the steps in the code execution that led to the error location’ (i.e. traceback).

We also investigated the time spent by students in the debugging process, since
a lack of ability to efficiently decipher and resolve encountered errors would likely
have an important baring on this. Based on the initial survey, the majority of
PHYS105 students estimated they spent 25–50% of their class time on resolving
errors, with a non-negligible fraction (4.8%) devoting in excess of 75% of their time
to this (see Table 2). Consequently, if the clarity of error messages can be improved,

339

1 3

Journal for STEM Education Research (2023) 6:326–357

Table 2 Estimated proportion of
workshop time spent attempting
to resolve errors, before the
Error Explainer was introduced

Proportion of workshop
time resolving errors

Number of
responses

<10% 5 (12.2%)

10–25% 10 (24.4%)

25–50% 16 (39.0%)

50–75% 8 (19.5%)

75–90% 2 (4.8%)

>90% 0 (0.0%)

such that students are able to resolve them more quickly, it can free up significant
time to be allocated to other learning outcomes.

RQ2. What Is the Distribution of Error Types Encountered by These Novice
Programmers?

Alongside student approaches to error messages, we were interested in determining
the most frequent error messages encountered and how many attempts it typically
took for students to resolve the error with the ERROR EXPLAINER tool in place.
Table 3 shows the total number of occurrences of the most commonly encountered
error types over a 2-week period. This data was collected through the error logging
built into the ERROR EXPLAINER tool for the 105 students that consented.

On average, students encountered 16.2 errors (with std. dev. = 13.4) per 2-hour
computer session. SyntaxError was the most common error, representing 29% of all
errors, and 1.37 times more likely than the next most common error, TypeError.

The same data were analysed to extract the number of times a student gener-
ated the same error within a 5-minute moving window and the average number of
repeated attempts required to resolve the error determined. Figure 3 summarises these
results, with the error bars indicating one standard derivation. For the 8 most common
error types, the average number of attempts to resolve the error was between 1 and
2.5 attempts. It is interesting to note that no one error type took significantly more
repeated attempts to resolve. The error type resolved with most ease was ModuleNot-
FoundError, where no students required more than one attempt to fix the error. The
distributions for all other errors exhibited a long tail with some students requiring up
to 16 attempts to resolve an error. Figure 4 shows the distribution of the number of
attempts taken to resolve SyntaxErrors.

RQ3. Did the Enhanced Error Messages Provided by the ERROR EXPLAINER Tool
Help the Students to Solve Errors and Reduce the Time Spent Doing So?

Prior to the introduction of the ERROR EXPLAINER tool, the initial survey asked
students if they felt a translation of PYTHON error messages into plain English, along

340

1 3

Journal for STEM Education Research (2023) 6:326–357

Table 3 Most common
PYTHON errors types, including
the most common error
messages for SyntaxError and
TypeError. This data analysed
was the PYTHON errors
encountered by 105 students
over a 2-week period, resulting
in a total of 3219 errors logged

Error type and message Frequency

SyntaxError 994 (29.33%)

invalid syntax 635 (19.73%)

EOL whilst scanning string literal 105 (3.26%)

unexpected character after line 33 (1.03%)

continuation character

cannot assign to function call 26 (0.81%)

f-string: empty expression not 25 (0.78%)

allowed

unexpected EOF whilst parsing 24 (0.75%)

positional argument follows 23 (0.71%)

keyword argument

invalid syntax (<fstring>, line 1) 14 (0.43%)

cannot assign to literal 11 (0.34%)

unmatched ’)’ 9 (0.28%)

TypeError 722 (22.43%)

unsupported operand type(s) for-: 203 (6.31%)

‘int’ and ‘str’

unsupported operand type(s) for 32 (0.99%)

** or pow(): ‘str’ and ‘int’

‘str’ object is not callable 31 (0.96%)

fit() missing 1 required positional 25 (0.78%)

argument: ‘init params’

unsupported format string passed 20 (0.62%)

to list. format

errorbar() missing 1 required 16 (0.50%)

positional argument: ‘y’

errorbar() missing 2 required 16 (0.50%)

positional arguments: ‘x’ and ‘y’

‘int’ object is not callable 15 (0.47%)

NameError 628 (19.51%)

ValueError 460 (14.29%)

IndentationError 176 (5.47%)

AttributeError 164 (5.09%)

ModuleNotFoundError 27 (0.84%)

IndexError 25 (0.78%)

with suggestions to resolve them, would help them resolve the errors encounter. The
result was overwhelmingly positive, with 83% of the students answering ‘yes’ and
the remainder believing it might.

341

1 3

Journal for STEM Education Research (2023) 6:326–357

Fig. 3 The average number of repeated times a PYTHON error message was generated within a 5-minute
moving window, for the 8 most commonly encountered PYTHON errors. Error bars indicate one standard
deviation

Following the evaluation period, the second survey sought to assess the usefulness
of the ERROR EXPLAINER tool in practice. The students were first asked to evalu-
ate how useful the ERROR EXPLAINER tool was in helping to understand the error
messages and quantify how often it helped them to resolve the underlying error. The
results are displayed in Fig. 5, where it can be seen that students unanimously found
the tool useful. Approximately two-thirds of the students reported that the ERROR

EXPLAINER helped them resolve the error at least 25% of the time, with a quarter of
students finding it helped them more than 50% of the time. Additionally, when asked
their preferred initial port of call for help when coming across an error message they
could not resolve, 73% of students opted for the ERROR EXPLAINER tool. In par-
ticular, one student commented: ‘I [liked] having the ERROR EXPLAINER appear as
it allowed me to have a better go at solving the error myself without having to ask
for extra help. It also allowed me to gain a better understanding of the error codes
themselves’.

Fig. 4 Distribution of the number of attempts to resolve a SyntaxError, calculated by the number of times
an error of the same error type was logged consecutively within a 5-minute moving window

342

1 3

Journal for STEM Education Research (2023) 6:326–357

Fig. 5 Top: How useful the
students found the tool on a scale
from −3 (strongly hinders) to
+3 (very helpful). Bottom: What
fraction of the time the ERROR

EXPLAINER tool helped the
students in resolving their error

In order to ascertain if the enhanced error messages provided were clear, we then
asked students to rate how understandable they were. As can be seen in Fig. 6,
the majority of students found the explanations very easy to understand. This was
reinforced by students’ free-text comments on why they liked the tool.

Whilst the students found the tool helpful in understanding and resolving errors,
comparing the estimated time spent on resolving errors between the two surveys
showed no significant change (p = 0.679, Z = −0.41) as determined using the two-
sided Mann-Whitley U test. In addition, the test of the students’ ability to identify the
cause and location of the error indicated by the example code and corresponding error
message was inconclusive. Despite this, 86% of students surveyed reported that they
would continue to use the ERROR EXPLAINER tool, with the remainder considering
doing so.

343

1 3

Journal for STEM Education Research (2023) 6:326–357

Fig. 6 How understandable the
students found the tool’s
explanations on a scale from 0
(not easy to understand at all) to
5 (very easy to understand)

RQ4. Did the ERROR EXPLAINER Tool Improve the Students’ Confidence and Reduce
Negative Emotions Surrounding PYTHON Errors?

We were particularly interested in the effect of the ERROR EXPLAINER tool on the
students’ emotional response to encountering PYTHON errors, since negative emo-
tions are likely to reduce confidence and create a barrier to further learning. In the
initial survey, students were asked to rank the various emotions they experienced
when seeing PYTHON error messages from 0 (not at all) to 5 (very intense). The
emotions that ranked highest were frustration and confusion, with around 70% of
students giving these a score of 3 or more. Over 40% of students also reported sig-
nificant (2 or more) anxiety. This led to around 60% of students feeling significantly
discouraged and many lacking motivation (mean = 1.8). This was corroborated by
the focus group, where demonstrators reported that students appear to experience a
range of emotions during the computing classes, with anxiety and frustration being
the most obvious. They noted, in particular, that anxiety levels appeared higher in
students who were working in isolation and not discussing with their peer group.

In order to asses the effect of the ERROR EXPLAINER on these emotions, the
follow-up survey asked the students to compare the level of these emotions whilst
using the tool to that before. The data were quantitatively compared using the
one-sided Wilcoxon signed-rank test to determine the probability (p) that negative
emotions do not decrease or positive emotions do not increase. This is converted to
a corresponding significance (Z) at which this hypothesis is ruled out. A selection of
the results are presented in Fig. 7. They show a significant reduction in both frustra-
tion (p = 0.007, Z = −2.72) and anxiety (p = 0.008, Z = −2.64), with the mean
values reducing by (73 ± 12)% and (55 ± 18)%, respectively. In particular, 80% of
those students that had high anxiety (3 or more) initially, reported a decrease in the
anxiety when using the ERROR EXPLAINER tool. As a result students’ discourage-
ment decreased significantly (p = 0.019, Z = −2.34), perhaps leading to a hint of
an increase in motivation (p = 0.333, Z = −0.97).

344

1 3

Journal for STEM Education Research (2023) 6:326–357

Fig. 7 The level which students experienced various emotions on encountering error messages before and
during using the tool. The results are presented on a scale from 0 (not at all) to 5 (very intense). The mean
value (μ) of both distributions is shown along with the probability and significance defined in the text

The overall effect was a increase in confidence reported by all students, as shown
in Fig. 8, with 73% of students ranking the improvement as 2 or more.

Insights from Demonstrator Focus Group

The primary theme that emerged from the demonstrator focus group was the role of
feedback in the computer sessions, including the influence of the ERROR EXPLAINER

on how feedback was delivered and students’ reception of the feedback. The demon-
strators believed that the ERROR EXPLAINER encouraged a focus on interpreting the
PYTHON error message output as opposed to immediately jumping to attempting to
debug the cause of the error message.

The demonstrator focus group was asked about their usual approach to help-
ing students understand the causes of error messages. All of the demonstrators said

345

1 3

Journal for STEM Education Research (2023) 6:326–357

Fig. 8 The effect of the ERROR

EXPLAINER tool on student
confidence on a scale from 0 (no
influence) to 5 (a lot more
confident)

they typically articulate their thinking out loud as they try to determine the cause
of the error, saying what they would look at and try, step-by-step. Essentially the
demonstrators role-model problem solving and debugging techniques to the students.

When asked if the ERROR EXPLAINER made discussing errors with students eas-
ier, more difficult, or no change, the group noted that the ERROR EXPLAINER did
serve as a reminder to explain what the PYTHON error message means, rather than
just jumping straight to an explanation of what caused the error. For example, rather
than pointing out that a student forgot to add a colon (:) at the end of an if statement,
the ERROR EXPLAINER reminded the demonstrator to guide the student through
interpreting the PYTHON error message, highlighting the line number and the position
the caret (∧) points to in the error message.

The focus group participants identified that students rarely ask ‘what does this
error message mean?’ and were more likely to ask ‘why isn’t my code work-
ing?’. This may reflect the students’ focus on how to complete the current week’s
assessment rather than how to decipher error messages more generally.

Demonstrator interaction is one form of feedback, and the ERROR EXPLAINER

tool was designed to complement this with immediate, automated feedback. The
second student survey included the question: ‘During all of your modules you
will receive feedback in many different forms (e.g. talking with demonstrators,
assignment feedback, etc.). Did you recognise the ERROR EXPLAINER text as feed-
back?’ The results showed that 53.3% responded that they did think of the ERROR

EXPLAINER output as feedback, 33.3% responded saying they had not thought of it
as feedback but do now, and the remaining 13.3% did not see the ERROR EXPLAINER

output as feedback.

Discussion

In this section, we begin by discussing the results of each of the research questions
posed in “Research Questions” section and the feedback from the demonstrator focus

346

1 3

Journal for STEM Education Research (2023) 6:326–357

group. We then discuss potential limitations and threats to validity, before outlining
possible future work.

Research Question Outcomes

RQ1 The results presented in “RQ1. Do Students Properly Utilise the Provided Error
Messages and Are They Aware of the Information They Contain?” section show
that students utilise compiler error messages and even before the introduction of
the ERROR EXPLAINER were aware of some of the information contained within
PYTHON error messages (e.g. line number, error type label). Interestingly, this con-
trasts with the demonstrator focus group, who reported a strong impression that
students often do not read the error message. It was acknowledged by the demonstra-
tors that it is possible that the students who do read the error message ask for less
help and a smaller number of students who do not read the error message can domi-
nate the demonstrator’s time. However, a more likely explanation is the students have
looked at the error messages before (to know what it contains) but many were not
yet equipped with the skills or vocabulary required to decipher and resolve the error
message. It is in these cases that the ERROR EXPLAINER tool may be particularly
helpful.

RQ2 The finding that SyntaxError was the most commonly encountered error type
is in agreement with other studies such as Zhou et al. (2021), Thiselton and Treude
(2019), and Pritchard (2015). In fact, the 5 most common errors identified were con-
sistent across each of these studies, albeit with the ordering of places 2 through 5
varying slightly. Furthermore, Table 3 shows that the most common error message is
the generic, ‘SyntaxError: invalid syntax’, representing 19.7% of all error messages.
A 2015 study by Pritchard (2015) which analysed 640,000 PYTHON errors arising in
code written by novice programmers submitted an online learning platform, ‘Com-
puter Science Circles (CS Circles)’, similarly found 28.1% of errors were caused by
‘SyntaxError: invalid syntax’, followed by NameError which comprised 15.2% of
errors. Although SyntaxError was the most common error type encountered, the fact
that all error types took similar numbers of attempts to resolve suggests that all are
worthy of error enhancement. This data may be used to further improve the ERROR

EXPLAINER tool as outlined in “Further Work” section.

RQ3 Similarly to many studies before this one (Becker et al., 2019), we were not able
to show any quantitative improvement in students’ ability to interpret error messages
due to the ERROR EXPLAINER. This maybe due to three reasons. Firstly, to miti-
gate the risk of survey fatigue, we limited the number of survey questions devoted
to assessing the students’ ability to decipher the error messages. Two questions were
dedicated to this, one asking the students to identify the errors in a snippet of code and
one asking about the time spent during computing classes trying to debug. The lim-
ited data did not indicate a significant improvement in either the students’ ability to
debug the code or show a reduction in time spent debugging. Secondly, the short time

347

1 3

Journal for STEM Education Research (2023) 6:326–357

frame of 2 weeks over which the hands-on component of this study was conducted
may have also reduced the measurable signal on student learning. More time spent
using the ERROR EXPLAINER may allow students the practice needed to consolidate
their knowledge. Finally, comparing student performance before and after the intro-
duction of the ERROR EXPLAINER has the inherent challenge that the students were
learning and practising more PYTHON as the study progressed. Despite the lack of
evidence that the ERROR EXPLAINER tool helped the students better comprehend the
PYTHON error messages, the survey results clearly indicated that the students found
the tool useful and that in most cases it helped them to resolve the error in question.

RQ4 The effect of emotions on learning to program is a relatively new area of
research, with a recent synthesis of the available literature by Coto et al. (2022) (pub-
lished whilst the current work was ongoing) noting the sparsity of studies in this area.
The results identify that the predominant emotions experienced by students learning
to program are overwhelmingly negative, with the most frequently experienced being
frustration, followed by confusion and boredom. Our results from the initial survey
agree with these findings. In this context, the reduction in frustration indicated by
students in the follow-up survey is significant. In particular, it shows that the ERROR

EXPLAINER tool can help reduce prolonged frustration, which can avoid a loss of
interest in learning (Leong, 2015). The corresponding reduction in discouragement
reported by students supports this conclusion. Beyond this, since anxiety is known to
inhibit students’ ability to process information (Mandler & Sarason, 1952; Russell &
Topham, 2012), the ERROR EXPLAINER tool has the potential to improve learning
outcomes although, as noted above, we were unable to demonstrate this concretely.
Overall, as noted by Kinnunen and Simon (2012), introductory computing courses
must ‘consider approaches that reverse the common overwhelming amount of nega-
tive feedback in the programming process (e.g. compiler or runtime errors)’ and the
ERROR EXPLAINER tool can form part of an effective strategy in this direction.

Beyond the specific research question results, it is worth noting that in an infor-
mal discussion between one of the authors and a group of 8 students, the students
commented that they initially found the ERROR EXPLAINER very useful; however,
by the end of semester, they no longer felt they needed it anymore. As described in
the “Methods” section, the follow-up survey was sent to the students after 2 weeks
of using the ERROR EXPLAINER, and at that stage, the students all reported that the
tool was useful. The student comments saying that they no longer needed the ERROR

EXPLAINER provide a reassuring indication that the tool, whilst helpful at first, does
not promote dependence, which is a tenant of the requirements by Coull and Duncan
(2011) for effective support tools. Instead the ERROR EXPLAINER provides addi-
tional support where necessary but still forces the students to read the PYTHON error
message, not allowing to the students to rely solely on the ERROR EXPLAINER. These
findings suggest that the ERROR EXPLAINER tool would be best introduced early
in the corresponding course and could then be removed at a later stage. This could
perhaps be done gradually by reducing the amount of explanation available as time
progressed.

348

1 3

Journal for STEM Education Research (2023) 6:326–357

Demonstrator Feedback

Despite the rise in the use of programming languages such as PYTHON for analy-
sis within the wider STEM arena, the vast majority of the existing literature on error
message enhancement has been applied to CS courses. The demonstrator focus group
spoke of a mindset that may be unique to non-CS STEM students, namely that stu-
dents often see the PYTHON error messages as obstacles to their learning, rather than
seeing learning to debug as a desirable skill in and of itself.

The focus group realisation that students rarely ask ‘what does this error mes-
sage mean?’ and more often ask ‘why isn’t my code working?’ reflect this mindset,
suggesting that the students’ focus is often on how to complete programming assign-
ment, rather than how to decipher error messages more generally. This result may
suggest that more emphasis needs to be placed on the idea that learning how to
approach reading error messages and the problem-solving integral to debugging is
an important skill worth developing. As a result, we suggest that deciphering error
messages should be its own learning outcome of physics, and more generally STEM,
programming modules.

Demonstrators also play an important role in encouraging a shift in students’
mindset towards error messages. Instead of seeing error messages as an alarming
warning that their work is wrong, they can express to the students that the error mes-
sages are there to help them solve the problem. PYTHON is telling then what it knows
and is giving them clues as to what to do next. By learning to interpret the error mes-
sage (knowing where to look and what information is most pertinent), students are
developing a skill required for all basic programming (not just resolving an error to
completing a particular assignment.)

Finally, it was noted in the demonstrator focus group that sometimes the stu-
dents were reluctant to try out different approaches, as they were worried they might
break something (the server, their computer, JUPYTER notebooks, etc.), or that they
would not be able to get back to a working version of their code. These thoughts and
beliefs further exhibit diminished confidence and could also lead to feelings of anx-
iety. However, such thoughts and beliefs may be best addressed through reassurance
from the demonstrators or lecturer (rather than a tool like the ERROR EXPLAINER),
using student focus groups to garner other common concerns. Indeed, some of the
demonstrators mentioned that when helping students, they often use the opportunity
to normalise the student’s experience (saying, for example ‘this is a very common
problem...’). During these real-time exchanges, demonstrator comments could further
alleviate some student anxiety.

Limitations and Threats to Validity

Whilst no significant threats to validity were identified for the preparatory research
questions (RQ1 and RQ2), there are several limitations related to the primary research
questions (RQ3 and RQ4). As discussed in “Research Question Outcomes” section,
the main validity concern affecting RQ3 is the inherent improvement in the students

349

1 3

Journal for STEM Education Research (2023) 6:326–357

coding ability as the course progresses, which cannot be easily untangled from the
additional effect of introducing the ERROR EXPLAINER tool. Whilst the use of a
control group could resolve this issue, it was not possible under the acquired ethical
approval. This was compounded by the limited time during which the students used
the ERROR EXPLAINER tool and the few questions devoted to this in the surveys. A
longer-term study, coupled with more in-depth surveys on this aspect, would help to
mitigate these concerns.

In terms of RQ4, one possible threat to the validity of could arise from the fact
we asked students to self-report the intensity of various emotions, relying upon the
students’ recollection. Our results show that as the students used the tool, their con-
fidence grew. However, it is worth noting that the students’ confidence may grow
throughout semester naturally as they gain more experience. In an attempt to miti-
gate this concern and extract the impact of the ERROR EXPLAINER on confidence,
the students were asked explicitly ‘To what degree did the ERROR EXPLAINER tool
affect your confidence in your ability to resolve PYTHON errors in the PHYS105 PC
classes?’ (see Fig. 8). Again, however, we relied upon students’ recollection being
accurate.

Further Work

Future improvements to the ERROR EXPLAINER could include different outputs not
only for different error types but also for different error messages, to allow for more
targeted feedback based on the context. The data gathered on which are the most
common error messages (e.g. SyntaxErrors) can be used to guide those that would
benefit most from having a more specific, targeted explanation. Further studies could
also investigate the effectiveness of these more specific error messages by consider-
ing the Repeated Error Density, to inform which of the ERROR EXPLAINER messages
are more or least helpful to the students and why.

In addition to more targeted explanations, another feature that could be considered
is to attempt to locate the position within the JUPYTER notebook where an error
message occurs in addition to the time at which it does so, in particular identifying
if repeated error messages are generated from within in the same JUPYTER notebook
coding cell or a different one. This would allow us to more accurately determine
which exercise of a problem set the student is working on and hence better investigate
the rate of repeated errors within each exercise individually and correlate these with
the exercise topic.

As alluded to earlier in the paper, a future version of the ERROR EXPLAINER could
include expandable sections that offer further detail or extension to allow knowl-
edge to be disseminated in stages to accommodate diverse learners (Coull & Duncan,
2011). A reduction in the explanation provided as students become more comfortable
with the native error messages could also be investigated.

Finally, the ERROR EXPLAINER could potentially be extended to teach vocabulary.
One reason novice programmers can struggle interpreting error messages is that they
are still building up the technical vocabulary used in the error message. Making this

350

1 3

Journal for STEM Education Research (2023) 6:326–357

more challenging is the finding by Marceau et al. (2011) that students pick up very
little vocabulary through lectures. The ERROR EXPLAINER could be extended to
teach vocabulary in a just-in-time approach, allowing students to learn some of the
technical terms as they need them and in context.

Future studies involving the ERROR EXPLAINER or variations of the ERROR

EXPLAINER could also be used to directly investigate the differences between
Physics and CS student cohorts to allow direct comparisons between these two
groups to be drawn.

Conclusion

Arguably the main stumbling block that novice programmers face is cryptic error
messages that are inadequate to help them resolve issues encountered, leading to them
feeling discouraged and ultimately presenting a significant hurdle to students learning
to program. Whilst several studies have explored enhancements to error messages,
there is significant debate surrounding their effectiveness and little investigation into
the effect on the student’s emotional state. In particular, despite its rising popularity,
there has been limited quantitative assessment of error enhancement in PYTHON.

We developed a tool, called the ERROR EXPLAINER, to provide enhanced
PYTHON error messages and subsequently studied its effect on first-year physics stu-
dents during an introductory programming course using a mixed methods approach
consisting of data from error logging, student surveys, and a demonstrator focus
group. To our knowledge, this is the first such study specifically in the context of
STEM curricula outside of computer science.

Analysing the most frequent error types showed a broadly similar distribution to
previous studies, with the most common being SyntaxError, whilst no significant dif-
ference was observed in the average number of attempts students required to resolve
errors of different types. Whilst students reported that the tool helped them to resolve
error messages in many cases, the data did not show any quantitative improvement in
students’ ability to understand and debug error messages. Although this is in line with
several previous studies, the short time frame of the study makes it difficult to draw
any strong conclusions. In contrast, the data show a statistically significant reduc-
tion in negative emotions such as anxiety and frustration, along with a corresponding
decrease in discouragement and increase in confidence. A future longer-term study
is required to see if this translates into improved learning outcomes.

Appendix. Survey questions

Table 4 contains the questions, for both the surveys before and after the introduction
of the ERROR EXPLAINER tool.

351

1 3

Journal for STEM Education Research (2023) 6:326–357

Table 4 List of survey questions and the associated answer type

Question Answer

Both

How would you describe your level of coding experience (in any
programming language) prior to starting PHYS105?

Choice

How would you describe your level of Python coding experience
prior to starting PHYS105?

Choice

Take a look at the following Python code snippet and associated
error message and then answer the two questions below:

Which part of the code do you think requires correcting to resolve
the error

Choice

What do you think is the cause of the error being reported? Choice

Before

Are you a native English speaker? Yes/no

On a scale from 0 (not at all) to 5 (very intense), how strongly
do you feel each of the following emotions when your code
produces an error message?

Scale (0–5)

Please list any other terms that describe your feelings when
encountering a Python error message?

Free text

What methods do you use to try to understand and correct the
error? Tick all that apply.

Multiple choice + free
text

When you come across an error message which of following
information does it contain? Tick all that apply.

Multiple choice + free
text

On average, what fraction of your time in PHYS105 PC classes
is spent in trying to resolve Python errors?

Choice

Would a translation of the Python error message into plain
English below the actual message, along with suggested tips to
resolve it, help?

Yes/no

After

Did you notice the ERROR EXPLAINER tool appearing below
Python error messages when using COCALC in weeks 5 and 6?

Yes/no/unsure

How helpful/useful was the ERROR EXPLAINER tool in helping
understand the error (where −3 indicates a strong hindrance, 0
is neutral, and +3 is very helpful)?

Scale (−3–3)

How understandable were the ERROR EXPLAINER descriptions
of the errors (i.e. the blue text)?

Scale (0–5)

To what degree did the ERROR EXPLAINER tool affect your
confidence in your ability to resolve Python errors in the
PHYS105 PC classes?

Scale (0–5)

When you come across a Python error message and you’re not
sure how to resolve it, what do you prefer as a first port of help?

Choice

During all of your modules you will receive feedback in many
different forms (e.g. talking with demonstrators, assignment
feedback, etc.) Did you recognise the ERROR EXPLAINER text
as feedback?

choice

352

1 3

Journal for STEM Education Research (2023) 6:326–357

Table 4 (continued)

Question Answer

Did you like or not like having the ERROR EXPLAINER (i.e. the
blue text) appear? Please tell us why.

Free text

What percentage of the time did reading the ERROR

EXPLAINER message help you to solve the error?
Choice

Since using the ERROR EXPLAINER tool, on average what fraction
of your time in PHYS105 PC classes is spent in trying to resolve
Python errors?

Choice

Reflecting back on PHYS105 weeks 1–4 (before we introduced
the ERROR EXPLAINER), on a scale from 0 (not at all) to 5
(very intense), how strongly did you feel each of the following
emotions when your code produced an error message?

Scale (0–5)

When using the ERROR EXPLAINER tool in weeks 5 and 6, on
a scale from 0 (not at all) to 5 (very intense), how strongly do
you feel each of the following emotions when your code produces
an error message?

Scale (0–5)

Is there anything else that would have been helpful to include in
the ERROR EXPLAINER tool? E.g. other features

Free text

Would you like to continue to use the ERROR EXPLAINER tool
in the future?

Yes/no/maybe

Acknowledgements We wish to thank Dr. Eli Saetnan for her advice, including many helpful discus-
sions, and reading and commenting on this manuscript. We also gratefully acknowledge the students and
demonstrators who participated in the study.

Availability of Data and Materials The datasets generated and/or analysed during the current study are
not publicly available due to the limitations of the current ethical approval but fully anonymised data are
available from the corresponding author on reasonable request.

Code Availability The ERROR EXPLAINER tool is publicly available under a MIT licence at https://
github.com/carlgwilliam/error explainer.

Declarations

Ethics Approval This study was granted ethical approval by the University of Liverpool research ethics
committee (approval number 5402).

Informed Consent Informed consent was obtained from all participants, both staff and students, for each
data source analysed.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly

353

https://github.com/carlgwilliam/error_explainer
https://github.com/carlgwilliam/error_explainer

1 3

Journal for STEM Education Research (2023) 6:326–357

from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

Barik, T., Ford, D., Murphy-Hill, E., & Parnin, C (2018). How should compilers explain problems to
developers? In Proceedings of the 2018 26th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering (pp. 633–643). New York:
Association for Computing Machinery, https://doi.org/10.1145/3236024.3236040.

Barik, T., Smith J., Lubick K., Holmes E., Feng J., Murphy-Hill E., & Parnin,, C. (2017). Do devel-
opers read compiler error messages? In 2017 IEEE/ACM 39th international conference on software
engineering (ICSE) (pp. 575-585). https://doi.org/10.1109/ICSE.2017.59.

Becker, B., Glanville, G., Iwashima, R., Mcdonnell, C., Goslin, K., & Mooney, C. (2016). Effective com-
piler error message enhancement for novice programming students. Computer Science Education,
1–28. https://doi.org/10.1080/08993408.2016.1225464.

Becker, B. A. (2015). An exploration of the effects of enhanced compiler error messages for computer pro-
gramming novices (Dublin Institute of Technology). https://doi.org/10.13140/RG.2.2.26637.13288.

Becker, B. A. (2016a). An effective approach to enhancing compiler error messages. In Proceedings
of the 47th ACM technical symposium on computing science education (pp. 126–131). New York:
Association for Computing Machinery. https://doi.org/10.1145/2839509.2844584.

Becker, B. A. (2016b). An effective approach to enhancing compiler error messages. In Proceedings
of the 47th ACM technical symposium on computing science education (pp. 126–131). New York:
Association for Computing Machinery. https://doi.org/10.1145/2839509.2844584.

Becker, B. A. (2016c). A new metric to quantify repeated compiler errors for novice programmers. In Pro-
ceedings of the 2016 ACM conference on innovation and technology in computer science education
(pp. 296–301). New York: Association for Computing Machinery. https://doi.org/10.1145/2899415.
2899463.

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harrington, B., & Prather, J. (2019).
Compiler error messages considered unhelpful: the landscape of text-based programming error mes-
sage research. In Proceedings of the working group reports on innovation and technology in computer
science education (pp. 177–210). New York: Association for Computing Machinery. https://doi.org/
10.1145/3344429.3372508.

Ben-Eliyahu, A., & Linnenbrink-Garcia, L. (2013). Extending self-regulated learning to include self-
regulated emotion strategies. Motivation and Emotion, 37, 558–573. https://doi.org/10.1007/s11031-
012-9332-3.

Brown, P. J. (1983). Error messages: the neglected area of the man/machine interface. Communications of
the ACM, 26, 246–249. https://doi.org/10.1145/2163.358083.

Chow, S., Yacef, K., Koprinska, I., & Curran, J. (2017). Automated data-driven hints for computer pro-
gramming students. In Adjunct publication of the 25th conference on user modeling, adaptation
and personalization (pp. 5–10). ACM. Retrieved 2022-01-16 from, https://doi.org/10.1145/3099023.
3099065.

Coto, M., Mora, S., Grass, B., & Murillo-Morera, J. (2022). Emotions and programming learning: system-
atic mapping. Computer Science Education, 32(1), 30–65. https://doi.org/10.1080/08993408.2021.19
20816.

Coull, N. J. (2008). Snoopie : development of a learning support tool for novice programmers within
a conceptual framework (Doctoral dissertation, University of St Andrews, St Andrews, Scotland).
https://research-repository.st-andrews.ac.uk/handle/10023/522.

Coull, N. J., & Duncan, I. M. M. (2011). Emergent requirements for supporting introductory program-
ming. Innovation in Teaching and Learning in Information and Computer Sciences, 10(1), 78–85.
https://doi.org/10.11120/ital.2011.10010078.

Creswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research, 3rd edn.
Thousand Oaks, CA: SAGE Publications.

Cropper, C. (2018). Why should chemistry students code? : are universities doing enough to build on a skill
that is now taught at school and is needed for many areas of employment? Education in Chemistry, 55.

354

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.13140/RG.2.2.26637.13288
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1007/s11031-012-9332-3
https://doi.org/10.1007/s11031-012-9332-3
https://doi.org/10.1145/2163.358083
https://doi.org/10.1145/3099023.3099065
https://doi.org/10.1145/3099023.3099065
https://doi.org/10.1080/08993408.2021.1920816
https://doi.org/10.1080/08993408.2021.1920816
https://research-repository.st-andrews.ac.uk/handle/10023/522
https://doi.org/10.11120/ital.2011.10010078

1 3

Journal for STEM Education Research (2023) 6:326–357

https://edu-rsc-org.liverpool.idm.oclc.org/opinion/why-should-chemistry-students-learn-to-code/300
8177.article.

Cutts, M. (1996). The plain english guide. Oxford: Oxford University Press. https://books.google.co.uk/
books?id=OWF5AAAAIAAJ.

Daniels, L. M., Stupnisky, R. H., Pekrun, R., Haynes, T. L., Perry, R. P., & Newall, N.E. (2009). A longitu-
dinal analysis of achievement goals: from affective antecedents to emotional effects and achievement
outcomes. Journal of Educational Psychology, 101, 948–963. https://doi.org/10.1037/a0016096.

Denny, P., Luxton-Reilly, A., & Carpenter, D. (2014). Enhancing syntax error messages appears inef-
fectual, (pp. 273–278). New York: Association for Computing Machinery. https://doi.org/10.1145/25
91708.2591748.

Finch, D., Peacock, M., Lazdowski, D., & Hwang, M. (2015). Managing emotions: a case study exploring
the relationship between experiential learning, emotions, and student performance. The International
Journal of Management Education, 13(1), 23–36. https://doi.org/10.1016/j.ijme.2014.12.001.

Flowers, T., Carver, C., & Jackson, J. (2004). Empowering students and building confidence in novice
programmers through gauntlet. In 34th annual frontiers in education, 2004. fie, (Vol. 2004 pp. 433–
436). https://doi.org/10.1109/FIE.2004.1408551.

Folsom-Kovarik, J. T., Schatz, S., & Nicholson, D. (2010). Plan ahead: pricing its learner models. In
Proceedings of the 19th conference on behavior representation in modeling and simulation (p. 8).

Gray, K. E., & Flatt, M. (2003). Professorj: a gradual introduction to java through language levels. In
Companion of the 18th annual ACM SIGPLAN conference on object-oriented programming, sys-
tems, languages, and applications (pp. 170–177). New York: Association for Computing Machinery.
https://doi.org/10.1145/949344.949394.

Guo, P. J. (2013). Online python tutor: embeddable web-based program visualization for CS education.
In Proceeding of the 44th ACM technical symposium on computer science education (pp. 579–584).
New York: Association for Computing Machinery. https://doi.org/10.1145/2445196.2445368.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., & Oliphant,
T.E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/
s41586-020-2649-2.

Hartmann, B., MacDougall, D., Brandt, J., & Klemmer, S.R. (2010). What would other programmers
do: suggesting solutions to error messages. In Proceedings of the SIGCHI conference on human
factors in computing systems (pp. 1019–1028). New York: Association for Computing Machinery.
https://doi.org/10.1145/1753326.1753478.

Hartz, A. (2012). Cat-soop : a tool for automatic collection and assessment of homework exercises
(Doctoral dissertation, Massachusetts Institute of Technology). https://dspace.mit.edu/handle/1721.1/
77086.

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Computing in Science & Engineering, 9(3),
90–95. https://doi.org/10.1109/MCSE.2007.55.

Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour. In Proceedings of the
second international workshop on computing education research (pp. 73–84). New York: Association
for Computing Machinery. https://doi.org/10.1145/1151588.1151600.

Johnson, J. W. (2020). Benefits and pitfalls of Jupyter notebooks in the classroom. In Proceedings of the
21st annual conference on information technology education (pp. 32–37). New York: Association for
Computing Machinery. https://doi.org/10.1145/3368308.3415397.

Johnson, R., & Onwuegbuzie, A. (2004). Mixed methods research: a research paradigm whose time has
come. Educational Researcher, 33, 14. https://doi.org/10.3102/0013189X033007014.

Kinnunen, P., & Simon, B. (2012). My program is ok – am I? computing freshmen’s experiences of
doing programming assignments. Computer Science Education, 22(1), 1–28. https://doi.org/10.1080/
08993408.2012.655091.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., & development team,
J (2016). Jupyter notebooks - a publishing format for reproducible computational workflows. In F.
Loizides, & B. Scmidt (Eds.) Positioning and power in academic publishing: Players, agents and
agendas (pp. 87–90). Netherlands: IOS Press. https://eprints.soton.ac.uk/403913/.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B., & Hockenberry, M. (2004). Opening the
door to non-programmers: authoring intelligent tutor behavior by demonstration. In J.C. Lester, R.M.
Vicari, & F. Paraguaçu (Eds.) Intelligent Tutoring Systems, (Vol. 3220 pp. 162–174). Berlin: Springer.
Retrieved 2022-01-27, from https://doi.org/10.1007/978-3-540-30139-4 16.

355

https://edu-rsc-org.liverpool.idm.oclc.org/opinion/why-should-chemistry-students-learn-to-code/3008177.article
https://edu-rsc-org.liverpool.idm.oclc.org/opinion/why-should-chemistry-students-learn-to-code/3008177.article
https://books.google.co.uk/books?id=OWF5AAAAIAAJ
https://books.google.co.uk/books?id=OWF5AAAAIAAJ
https://doi.org/10.1037/a0016096
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1016/j.ijme.2014.12.001
https://doi.org/10.1109/FIE.2004.1408551
https://doi.org/10.1145/949344.949394
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/1753326.1753478
https://dspace.mit.edu/handle/1721.1/77086
https://dspace.mit.edu/handle/1721.1/77086
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/3368308.3415397
https://doi.org/10.3102/0013189X033007014
https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1080/08993408.2012.655091
https://eprints.soton.ac.uk/403913/
https://doi.org/10.1007/978-3-540-30139-4_16

1 3

Journal for STEM Education Research (2023) 6:326–357

Kohn, T. (2019). The error behind the message: finding the cause of error messages in Python. In Pro-
ceedings of the 50th ACM technical symposium on computer science education (pp. 524–530). ACM.
Retrieved 2021-10-20, from https://doi.org/10.1145/3287324.3287381.

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy.
Computer Science Education, 13. https://doi.org/10.1076/csed.13.4.249.17496.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.M. (2005). A study of the difficulties of novice programmers.
SIGCSE Bulletin, 37(3), 14–18. https://doi.org/10.1145/1067445.1067453.

Leong, F. H. (2015). Automatic detection of frustration of novice programmers from contextual and
keystroke logs. In 2015 10th international conference on computer science & education (ICCSE)
(pp. 373–377). https://doi.org/10.1109/ICCSE.2015.7250273.

Mandler, G., & Sarason, S. B. (1952). A study of anxiety and learning. The Journal of Abnormal and
Social Psychology, 47(2), 166. https://doi.org/10.1037/h0062855.

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically
larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60. https://doi.org/10.1214/
aoms/1177730491.

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011). Mind your language: on novices’ interactions with
error messages. In Proceedings of the 10th SIGPLAN symposium on New ideas, new paradigms, and
reflections on programming and software - ONWARD ’11 (p. 3). ACM Press. Retrieved 2021-10-21,
from https://doi.org/10.1145/2048237.2048241.

Marwan, S., Gao, G., Fisk, S., Price, T. W., & Barnes, T. (2020). Adaptive immediate feedback can improve
novice programming engagement and intention to persist in computer science. In Proceedings of the
2020 ACM conference on international computing education research (pp. 194–203). ACM. Retrieved
2022-01-16, from https://doi.org/10.1145/3372782.3406264.

Mega, C., Ronconi, L., & de Beni, R. (2014). What makes a good student? How emotions, self-regulated
learning, and motivation contribute to academic achievement. Journal of Educational Psychology,
101(1), 121–131. https://doi.org/10.1037/a0033546.

Meurer, A., Smith, C. P., Paprocki, M., Čertı́k, O., Kirpichev, S. B., Rocklin, M., & Scopatz, A. (2017).
SymPy: symbolic computing in python. PeerJ Computer Science, 3, e103. https://doi.org/10.7717/
peerj-cs.103.

Mousavinasab, E., Zarifsanaiey, N., R. Niakan Kalhori, S., Rakhshan, M., Keikha, L., & Ghazi Saeedi,
M. (2021). Intelligent tutoring systems: a systematic review of characteristics, applications, and eval-
uation methods. Interactive Learning Environments, 29(1), 142–163. Retrieved 2022-01-27, from
https://doi.org/10.1080/10494820.2018.1558257.

Murphy, C., Kaiser, G., Loveland, K., & Hasan, S. (2009). Retina: helping students and instructors
based on observed programming activities. In Proceedings of the 40th ACM technical symposium
on computer science education (pp. 178–182). New York: Association for Computing Machinery.
https://doi.org/10.1145/1508865.1508929.

Murphy, S., MacDonald, A., Wang, C., & Danaia, L (2019). Towards an understanding of STEM engage-
ment: a review of the literature on motivation and academic emotions. Canadian Journal of Science,
Mathematics and Technology Education, 19, 304–320. https://doi.org/10.1007/s42330-019-00054-w.

Paladines, J., & Ramirez, J. (2020). A systematic literature review of intelligent tutoring systems with dia-
logue in natural language. IEEE Access, 8, 164246–164267. Retrieved 2022-01-27, from https://doi.
org/10.1109/ACCESS.2020.3021383.

Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2017). Achievement emotions and
academic performance: longitudinal models of reciprocal effects. Child Development, 88, 1653–1670.
https://doi.org/10.1111/cdev.12704.

Perkins, D., Hancock, C., Hobbs, R., Martin, F., & Simmons, R (1988). Conditions of learning in novice
programmers. Studying the Novice Programmer.

Perkins, D., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1989). Conditions of learning in novice
programming. In Studying the novice programmer (pp. 261–279). Lawrence Erlbaum Associates.

Pritchard, D. (2015). Frequency distribution of error messages. In Proceedings of the 6th workshop on
evaluation and usability of programming languages and tools (pp. 1–8). ACM. Retrieved 2022-02-15,
from https://doi.org/10.1145/2846680.2846681.

Rivers, K., & Koedinger, K. R. (2017). Data-driven hint generation in vast solution spaces: a self-
improving python programming tutor. International Journal of Artificial Intelligence in Education,
27(1), 37–64. Retrieved 2022-01-27, from https://doi.org/10.1007/s40593-015-0070-z.

Roberge, A. (2021). Friendly 0.5.11. https://pypi.org/project/friendly/. Accessed 31 Jan 2022.

356

https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1145/1067445.1067453
https://doi.org/10.1109/ICCSE.2015.7250273
https://doi.org/10.1037/h0062855
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/3372782.3406264
https://doi.org/10.1037/a0033546
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1080/10494820.2018.1558257
https://doi.org/10.1145/1508865.1508929
https://doi.org/10.1007/s42330-019-00054-w
https://doi.org/10.1109/ACCESS.2020.3021383
https://doi.org/10.1109/ACCESS.2020.3021383
https://doi.org/10.1111/cdev.12704
https://doi.org/10.1145/2846680.2846681
https://doi.org/10.1007/s40593-015-0070-z
https://pypi.org/project/friendly/

1 3

Journal for STEM Education Research (2023) 6:326–357

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: a review and dis-
cussion. Computer Science Education, 13(2), 137–172. https://doi.org/10.1076/csed.13.2.137.14200.

Rosen, S., Spurgeon, R. A., & Donnelly, J.K. (1965). PUFFT—the PURDUE university fast fortran
translator. Communications of the ACM, 8(11), 661–666. https://doi.org/10.1145/365660.365671.

Russell, G., & Topham, P. (2012). The impact of social anxiety on student learning and well-being in higher
education. Journal of Mental Health, 21(4), 375–385. https://doi.org/10.3109/09638237.2012.694505
(PMID: 22823093).

Sagemath Inc. (2020). COCALC – collaborative calculation and data science. https://cocalc.com.
Accessed 08 Feb 2022.

Simon, R. A., Aulls, M. W., Dedic, H., Hubbard, K., & Hall, N. (2015). Exploring student persis-
tence in stem programs: a motivational model. Canadian Journal of Education/Revue canadienne de
l’éducation, 38(1), 1–27. https://journals.sfu.ca/cje/index.php/cje-rce/article/view/1729.

Sinatra, G. M., Heddy, B. C., & Lombardi, D. (2015). The challenges of defining and measuring student
engagement in science. Educational Psychologist, 50(1), 1–13. https://doi.org/10.1080/00461520.
2014.1002924.

Sublime, H. Q. (2021). Text editing, done right. https://www.sublimetext.com. Accessed 11 Feb 2022.
The SciPy Community (2021). Statistical functions. https://docs.scipy.org/doc/scipy/reference/stats.html.

Accessed 08 Feb 2022.
Thiselton, E., & Treude, C. (2019). Enhancing Python compiler error messages via stack overflow. In 2019

ACM/IEEE international symposium on empirical software engineering and measurement (ESEM)
(pp. 1–12). IEEE. Retrieved 2022-01-25, from https://doi.org/10.1109/ESEM.2019.8870155.

TIOBE (2021). TIOBE index. https://www.tiobe.com/tiobe-index/. Accessed 31 Jan 2022.
Traver, V. J. (2010). On compiler error messages: what they say and what they mean. Advances in Human-

Computer Interaction, 2010 https://doi.org/10.1155/2010/602570.
Villavicencio, F., & Bernardo, A. (2016). Beyond math anxiety: positive emotions predict mathematics

achievement, self-regulation, and self-efficacy. The Asia-Pacific Education Researcher, 25, 415–422.
https://doi.org/10.1007/s40299-015-0251-4.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., & van Mulbregt,
P.S. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods,
17, 261–272. https://doi.org/10.1038/s41592-019-0686-2.

Warr, P., & Downing, J. (2010). Learning strategies, learning anxiety and knowledge acquisition. British
Journal of Psychology, 91(3), 311–333. https://doi.org/10.1348/000712600161853.

Weiss, C. J. (2017). Scientific computing for chemists: an undergraduate course in simulations, data pro-
cessing, and visualization. Journal of Chemical Education, 94(5), 592–597. Retrieved 2022-01-27,
from https://doi.org/10.1021/acs.jchemed.7b00078.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.
Retrieved 2022-09-14, from https://doi.org/10.2307/3001968.

Wilson, G. (2006). Software carpentry: getting scientists to write better code by making them more pro-
ductive. Computing in Science & Engineering, 8, 768962. https://doi.org/10.1109/MCSE.2006.122.

Woolf, B. P. (2009). Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutioniz-
ing e-learning. Elsevier: Morgan Kaufmann Publishers.

Zhou, Z., Wang, S., & Qian, Y. (2021). Learning from errors: exploring the effectiveness of enhanced error
messages in learning to program. Frontiers in Psychology, 12, 768962. Retrieved 2022-01-25, from
https://doi.org/10.3389/fpsyg.2021.768962.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

357

https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1145/365660.365671
https://doi.org/10.3109/09638237.2012.694505
https://cocalc.com
https://journals.sfu.ca/cje/index.php/cje-rce/article/view/1729
https://doi.org/10.1080/00461520.2014.1002924
https://doi.org/10.1080/00461520.2014.1002924
https://www.sublimetext.com
https://docs.scipy.org/doc/scipy/reference/stats.html
https://doi.org/10.1109/ESEM.2019.8870155
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1155/2010/602570
https://doi.org/10.1007/s40299-015-0251-4
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1348/000712600161853
https://doi.org/10.1021/acs.jchemed.7b00078
https://doi.org/10.2307/3001968
https://doi.org/10.1109/MCSE.2006.122
https://doi.org/10.3389/fpsyg.2021.768962

	The Effect of Automated Error Message Feedback on Undergraduate Physics Students Learning Python: Reducing Anxiety and Building Confidence
	Abstract
	Introduction
	Research Questions
	Related Work
	The Error Explainer Tool
	Components of Error Explainer Output
	Design Rationale
	Component 1: Title
	Component 2: Explanation
	Component 3: What to Do
	Component 4: Common Causes
	Component 5: Final Statement

	Usage and Implementation

	Methods
	Participants and Procedure
	Data Collection and Analysis
	Error Logging
	Student Surveys
	Demonstrator Focus Group

	Results
	RQ1. Do Students Properly Utilise the Provided Error Messages and Are They Aware of the Information They Contain?
	RQ2. What Is the Distribution of Error Types Encountered by These Novice Programmers?
	RQ3. Did the Enhanced Error Messages Provided by the Error Explainer Tool Help the Students to Solve Errors and Reduce the Time Spent Doing So?
	RQ4. Did the Error Explainer Tool Improve the Students' Confidence and Reduce Negative Emotions Surrounding Python Errors?
	Insights from Demonstrator Focus Group

	Discussion
	Research Question Outcomes
	RQ1
	RQ2
	RQ3
	RQ4

	Demonstrator Feedback
	Limitations and Threats to Validity
	Further Work

	Conclusion
	Appendix: . Survey questions
	Declarations
	References

