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Abstract
Using multiple external representations is advocated for learning in STEM educa-
tion. This learning approach assumes that multiple external representations promote 
richer mental representations and a deeper understanding of the concept. In math-
ematics, the concept of function is a prototypical content area in which multiple 
representations are used. However, there are hardly any experimental studies inves-
tigating the effect of learning functional thinking with multiple representations com-
pared to learning with only one form of representation. Therefore, this article reports 
on a quasi-experimental intervention study with students from Grade 7, using three 
measurement time points. The study compared the multi-representational learn-
ing of functional thinking with both tables and graphs with mono-representational 
learning with either tables or graphs. The results show that multi-representational 
learning led to advantages in learning qualitative functional thinking. However, in 
quantitative functional thinking, learning with both graphs and tables did not result 
in higher learning gains than learning exclusively with graphs. Furthermore, stu-
dents were better able to transfer their knowledge from graphs to tables than vice 
versa. The results also indicate that multi-representational learning requires more 
time than mono-representational learning but can lead to higher learning gains. In 
sum, the results show that the effect of learning with representations is a complex 
interaction process between learning content and the forms of representation.
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Introduction

Mathematics and science classes often deal with concepts (e.g., function, energy, 
atom) that are not directly accessible through the senses. Therefore, STEM learners 
are often provided with oral or written information about the concepts in question. 
The learning process consists of performing tasks that prompt the processing of the 
information given. The information is frequently provided in written form and com-
bines different forms of external representation (e.g., texts, pictures, charts, graphs, 
tables, formulas). The learner’s goal in working with these external representations 
is to process them in their mind and generate adequate internal mental representa-
tions of the concept to be learned.

Consequently, over the last decades, the interplay between external and internal 
representations while learning has been an essential topic of educational psychol-
ogy (e.g., Mayer, 2014; van Meter et al., 2020) as well as chemistry education (Gil-
bert & Treagust, 2009), physics education (Treagust et  al., 2017), biology educa-
tion (Treagust & Tsui, 2013), and mathematics education (e.g., Duval, 2006, 2017; 
Heinze et al., 2009). In this research, there is a consensus that learners should have 
rich mental representations that allow them to solve problems related to the concept 
flexibly.

However, the question of how external representations in learning foster or hin-
der the generation of elaborate and flexible mental representations is still open. It is 
often assumed that to develop rich mental representations, learning with multiple 
external representations is helpful. To justify this assumption, it is stressed that each 
form of representation highlights only certain aspects of a concept; therefore, mul-
tiple representations complement each other, and learning with multiple represen-
tations thus confers advantages (Cuoco, 2001; Gagatsis & Shiakalli, 2004; Kaput, 
1992; Lesh et al., 1987). It is also argued that representations differ in terms of the 
information they contain or the actions that they support (e.g., Ainsworth, 1999). 
Thus, learners can gain from the complementarity of the benefits derived from dif-
ferent forms of representation in multi-representational learning environments. As 
a result, students are not limited to the strengths and weaknesses of one particular 
form of representation (Ainsworth et al., 2002).

However, results from empirical research challenge the simple principle that two 
representations are better than one. Multiple representations can confuse the learner 
and can result in higher cognitive demand that hinders learning (e.g., Sweller et al., 
1998). For example, the split-attention effect (see Schroeder & Cenkci, 2018) shows 
that the combination of different external representations (e.g., text and picture) is 
not always conducive to the learning process. It may even be that some represen-
tations are better suited to learning a particular concept than others (Cobb et  al., 
1992). Furthermore, it has become increasingly apparent that complex interactions 
occur between external representations and the mental representations constructed 
by learners (Schnotz, 2014). The potential effectiveness of multi-representational 
learning materials is likely to be influenced by how the learning environment accom-
modates these complex interactions. Therefore, it is necessary to better understand 
the requirements for processing different forms of representation.
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Theoretical background

In mathematics, learning with multiple representations plays an essential role when 
learning the concept of function. As an abstract mathematical concept, it is only 
accessible through external representations (Duval, 2006). Representing a function 
through an equation, a graph, a table, a verbal description, or a real-world situation 
are five common methods (Moschkovich et al., 1993). Because of the importance of 
the function concept for mathematics and its permeation of everyday life, one goal 
of mathematics education is the development of functional thinking in both primary 
education (Blanton & Kaput, 2011) and secondary education (Doorman et al., 2012; 
Günster & Weigand, 2020; Lichti & Roth, 2018). Functional thinking can be defined 
as “a way of thinking that is typical for dealing with functions” (Vollrath, 1989, p. 6, 
translated by the authors). A common approach that is used to further elaborate on 
functional thinking is to highlight three aspects of the function concept: correspond-
ence, covariation, and mathematical object (e.g., Doorman et al., 2012; Günster & 
Weigand, 2020; Lichti & Roth, 2018; Vollrath, 1989). The aspect of covariation or 
covariational reasoning has received increasing attention in mathematics education 
research in recent years (e.g., Johnson, 2012, 2015; Thompson & Carlson, 2017; 
Wilkie, 2020). Although there are slightly different perspectives on covariation (see 
Thompson & Carlson, 2017), a common perspective on covariational reasoning for 
functions with one single variable is the investigation of the following question: 
What effect does varying the value of one variable (e.g., x-value) have on the value 
of the other variable (e.g., the y-value)?

One situational context proposed to foster functional thinking with a particu-
lar focus on covariation is the bottle problem (Carlson, 1998; Johnson et al., 2017; 
Swan, 1985; Thompson & Carlson, 2017). In this problem context, bottles (or other 
vessels that can contain water, such as vases) of different shapes are imagined, and 
water is poured in at a constant rate. The students then have to investigate the func-
tional relationship between time and the bottle’s water level in various ways.

Figure 1 shows an exemplary task of a bottle problem in which the information 
about the filling process is given as a graph. Sometimes, a graph is considered to 
be especially suitable for developing functional thinking because it offers a view 
of the function as a whole (Vollrath, 1989) and it has the advantages of an iconic 
representation (Vogel, 2006). The task in Fig. 1 illustrates that functional thinking’s 
covariational aspect can be further divided into quantitative functional thinking 
and qualitative functional thinking (Rolfes et al., 2018). In subtask (a), the students 
have to determine the rate of change, which is an elementary concept of the covari-
ational aspect (see Carlson et al., 2002). In this subtask, students could determine 
the rate of change by drawing a slope triangle and calculating rise over run (e.g., 
3  cm/3  s = 1 cm/s). Calculating the rate of change requires quantitative functional 
thinking because the solution is based on precise function values that have to be 
inferred from the graph, that is, it deals with functional thinking in a quantitative 
way. To solve subtasks (b) and (c), on the contrary, is possible without inferring 
particular function values from the graph. For these tasks, it is sufficient to investi-
gate the shape of the graph qualitatively. The steeper the graph, the higher the func-
tion values’ change (in this case: the water level’s height). Moreover, if the water 
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level rises faster, the bottle has to become narrower. Therefore, subtasks (b) and (c) 
require qualitative functional thinking. As a previous empirical study with function 
tasks showed (Rolfes, 2018), the ability in quantitative functional thinking and the 
ability in qualitative functional thinking are connected but different abilities because 
a two-dimensional model that assumed different psychometric dimensions for these 
two abilities fitted substantially better than a one-dimensional model. The discrimi-
natory validity of the two-dimensional model was satisfactory, with a latent correla-
tion between the two dimensions quantitative and qualitative functional thinking of 
0.79.

In Fig. 1, the tasks are based on a graph. However, it would also be possible to 
present the task and its relevant information with a table (see Fig. 2). In this form of 
representation, students could analyze the aspect of covariation by calculating the 
difference values of the x-values and the y-values, as illustrated in Fig. 2. In almost 
the same way as in a graph with a slope triangle, the rate of change can be calcu-
lated in a table by calculating the difference quotient (e.g., 3 cm/3 s = 1 cm/s). Stu-
dents can solve subtask (b) by realizing that the difference in the y-values is higher 
between 6 and 12 s than between 0 and 6 s.

The possibility of conveying information in different forms of representation 
raises the question of how external representations can be compared. According 
to Larkin and Simon (1987), two representations are computationally equivalent if 

Imagine a vase filling with water at a constant rate. The 
graph displays the r etween me and 
height of the water level.

a) What was the rate of change in the first six seconds? 
b)  rise the fastest?
c) Sketch a possible shape of the vase.
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Fig. 1   Exemplary task concerning the bottle problem, supplemented by possible notes from students (in 
blue)
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the relevant information can be obtained from both representations just as quickly 
and easily. Thus, a representation A is computationally more efficient than a repre-
sentation B if representation A makes it possible to solve the task more easily and 
faster than representation B. Therefore, the representation with the highest computa-
tional efficiency is the most advantageous representation for a task (Larkin & Simon, 
1987). In the tradition of cognitive psychology, computational efficiency describes 
the interaction between the form of representation and the task regarding the human 
mind in general.

The computational efficiency of forms of representation depends on which type 
of functional thinking has to be performed (Rolfes et  al., 2018). For example, for 
quantitative functional thinking (e.g., numerically calculating a rate of change), pre-
vious research has shown that a table had greater computational efficiency than a 
graph (Rolfes et al., 2018). However, for qualitative functional thinking (e.g., evalu-
ating in which part of a piecewise linear function the increase is the fastest), a graph 
turned out to be more computationally efficient than a table because one could visu-
ally solve the task by assessing the slope of the graph (Rolfes et al., 2018). How-
ever, computational efficiency primarily refers to the performance on a task: Which 
form of representation is best for using students’ existing cognitive structures? Up 
until now, no statement has been made in previous research about the advantages of 
forms of representation in learning. Learning involves the experiential and relatively 
permanent modification of the cognitive structure (Anderson, 1995). Studies exam-
ining performance dependent on different forms of representation do not measure a 
change in cognitive structures. Hence, such studies provide only limited information 

Imagine a vase filling with water at a constant rate. The 
table displays the r me and height 
of the water level.

a) What was the rate of change in the first six seconds? 
b)  rise the fastest?
c) Sketch a possible shape of the vase.
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Fig. 2   Exemplary task with a table as form of representation, supplemented by possible notes from stu-
dents (in blue)
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about the effect of different forms of representation on learning procedures and 
concepts.

Therefore, the question about which influence the forms of representation have 
on learning functional thinking remains open. In addition to the term computational 
efficiency (Larkin & Simon, 1987), we refer to the effect of representational forms 
on the learning process as learning efficiency: A representation A is more learning 
efficient than a representation B if learning with representation A more efficiently 
modifies or extends cognitive structures for a particular requirement than learning 
with representation B does. That is, when learning within a certain amount of time 
with a representation A has a higher effect on learning a specific content than when 
learning with a representation B in the same amount of time, representation A has 
more learning efficiency than representation B.

Present study

Tables and graphs are two forms of representation very commonly used for teaching 
the concept of function. Therefore, this empirical study aimed to compare tables’ 
and graphs’ learning efficiency for learning functional thinking. Additionally, we 
examined the efficiency of multi-representational learning (i.e., learning with both 
tables and graphs) compared with mono-representational learning (i.e., learning 
with either tables or graphs).

Research question: When learning functional thinking, does the learning effi-
ciency differ depending on whether students learn with tables only, with graphs 
only, or with both tables and graphs?

There were three different, in part competing, hypotheses to our research 
question:

Hypothesis 1 (Multiple representation hypothesis): Functional thinking can be 
learned more efficiently in a multi-representational than in a mono-representa-
tional manner. That is, it is more learning-efficient to learn with both graphs and 
tables than to learn only with graphs or only with tables.
Justification: It is often assumed from a theoretical perspective that learning with 
multiple representations brings advantages. This is based on the assumption that 
using multiple representations broadens the spectrum of cognitive possibilities 
and therefore enhances the learning outcome.
Hypothesis 2 (Representational congruence hypothesis): Functional thinking 
should be learned with the same representation that the students later use for 
solving problems that require functional thinking. That is, graphs are the most 
efficient representation for learning graph-based functional thinking; tables are 
the most efficient representation for learning table-based functional thinking.
Justification: Every representation requires different cognitive schemata. There-
fore, students need to learn how to deal with each representation separately. 
For example, if a person wants to work out the piecewise linear function’s sec-
tion with the highest rate of change (see Figs. 1 and 2), the procedures will dif-
fer between graphs and tables. When using a graph, the slopes of the lines can 
be compared visually. When using a table, a visual strategy is not possible and, 
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therefore, changes must be numerically examined by, for example, calculating 
difference values.
Hypothesis 3 (Master representation hypothesis): Functional thinking can be 
learned more efficiently with graphs than with tables.
Justification: The representation that better supports the development of suitable 
cognitive schemata for functional thinking is more efficient for learning. Apply-
ing this argument to graphs and tables, it can be assumed that when learning with 
graphs, more diverse and flexible cognitive schemata can be developed than when 
learning with tables. Graphs contain many global features (e. g., general shape, 
intervals of increase or decrease) that can be interpreted (Leinhardt et al., 1990). 
For example, it is possible to analyze change behavior with a graph numerically 
(e.g., by calculating the rate of change) and qualitatively using the graph’s visual 
properties (e.g., from the graph’s slope). However, when using tables, the change 
behavior can only be analyzed numerically by calculating difference values or 
difference quotients. Therefore, the graph can be considered to be a superior form 
of representation to a table.

Method

Participants

The study included N = 331 students from 13 Grade 7 classes from five academic-
track coeducational secondary schools (Gymnasium) in the German federal state of 
Rhineland-Palatinate. The study took place in proximate learning in the first quarter 
of the school year. The participating students were recruited by the teachers who 
were willing to participate with their classes in the study. The students’ parents or 
legal guardians gave their informed consent for the students to participate in the 
research study. The teachers provided the information that the students had not yet 
been formally introduced to the concept of function (scheduled, according to the 
curriculum, to happen in Grades 7 or 8).

Design and materials

Design

The study consisted of three experimental groups and one control group (see Fig. 3). 
One experimental group learned exclusively with tables, another learned exclusively 
with graphs, and the third learned with both tables and graphs. The control group 
received instruction on a topic other than the concept of function (e.g., geometry). 
The study was quasi-experimental in that the nine classes willing to participate in 
the intervention were randomly assigned to an experimental group. The three exper-
imental groups completed a pretest, a short intermediate test in the middle of the 
intervention, and a post-test at the end of the intervention. Four classes were willing 
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to act as the control group, which only completed the pre- and post-test to estimate 
the pretest’s testing effect.

Learning environment

During the intervention, the students in the experimental groups received instruction 
on essential covariational aspects of functional thinking. For this purpose, a lesson 
sequence (the complete learning environment is presented in Online Supplement 1) 
was administered according to direct instructions (see Hattie, 2009), which means 
the explicit teaching of content followed by an exercise phase. Direct instruction has 
been shown to be highly effective in empirical studies (Hattie, 2009). This teaching 
method was chosen in our study mainly because it made it possible to administer a 
highly standardized lesson sequence in each participating class. New content was 
typically developed in an introductory phase and then consolidated and deepened 
by individual exercises or exercises solved with a classmate. Throughout the lesson 
sequence, flower vases served as the context because bottle-filling problems have 
been proven fruitful for teaching functional thinking (see Introduction). Lessons in 
all three experimental groups followed a strictly parallel structure and were carried 
out in all classes by the first author of this article. The class’s regular mathematics 
teacher was present only as an observer during the lessons and was not involved 
in the intervention. The process of filling vases with water at a constant rate was 
demonstrated with four differently shaped vases at the beginning of the learning 
sequence in the whole learning group. In the three experimental groups, the learning 
materials for the lessons differed only in the form of representation used (see Fig. 4): 
the table-only group used tables exclusively; the graph-only group used graphs 

Pre-
test

EG1: 

EG2:
Post-
test

120 min

Learning with
table only

Inter-
mediate

Test

45 min 45 min

EG3:

Learning with
graph only

15 min 120 min

Lessons 2 to 4
(piece-wise linear func�ons)

Lessons 5 to 7 
(nonlinear func�ons)

Learning with
table and graph

CG: Learning in a different content area (e.g., geometry)

Learning with
table only

Learning with
graph only

Learning with
table and graph

Fig. 3   Quasi-experimental design of the study (EG experimental group, CG control group)
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exclusively; and in the table-graph group, tables and graphs were used alternately 
for the introductory examples and tasks. The students in the table-graph group had 
to work with both tables and graphs because the relevant information for an exercise 
was given either in one particular table or in one particular graph (see Online Sup-
plement 1). Aside from the variation of the forms of representation, the teaching 
materials used were identical because the functional context, tasks, and layout were 
the same in all three experimental groups.

In the first half of the intervention, functional thinking was learned mainly 
through piecewise linear functions. For this purpose, according to the given func-
tional relationship in the tables or graphs, change behavior was quantitatively ana-
lyzed either by determining rates of change or by extrapolation. To determine rates 
of change using the tables, the students were instructed to note the difference values 
beside the table (see Fig. 2).

Next, change behavior was qualitatively analyzed by producing qualitative 
descriptions (“uniformly increasing”), qualitatively comparing the change behavior 
(“water level increases quicker in the first section than in the second”) or inferring 
possible vase shapes from the rise in water level. At the end of the first half of the 
intervention, an intermediate test was performed containing questions on piecewise 
linear functions.

In the second half of the intervention, functional thinking was extended to nonlin-
ear relationships, for example, by discussing the processes of filling spherical vases. 
For these nonlinear functions, similar tasks to those in the first half of the interven-
tion were used (e.g., determining average rates of change, inferring possible vase 
forms, and qualitatively describing change behavior)..

Strictly speaking, the term mono-representational learning does not accurately 
characterize the experimental groups that learned solely with graphs or solely with 
tables. This is because, in addition to the tables or graphs, the students also had to 
deal with verbal descriptions (e.g., “the water level increases faster”) and images 
(e.g., a cross-sectional drawing of a vase). The learning environment’s central learn-
ing goal was even to translate between tables or graphs and verbal descriptions or 
images. However, because tables and graphs constituted the factorial variation of the 
quasi-experiment and the fundamental difference of the intervention, the learning 
process of the two groups that did not learn with both tables and graphs was never-
theless called mono-representational learning.

Pre‑, intermediate, and post‑test

Eighty-two items were developed to evaluate the learning effect of the intervention 
(typical test items are provided in Online Supplement 2). To calculate the ability 
on a common scale, a linked multimatrix design test (Frey et al., 2009) was admin-
istered (see Table 1). Six different booklets were developed from the item clusters 
for the pre-, intermediate, and post-test. The item clusters were distributed to the 
pre-, intermediate, and post-test booklets so that each student of the experimental 
groups received all 82 items, albeit at different time points. The pre- and post-test 
each consisted of 36 items, in which piecewise linear and non-linear functions were 
included. The intermediate test consisted of 10 items from the item clusters A, B, 
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and C, which contained piecewise linear functions because only this function type 
had been addressed in the intervention up to this point. To adequately take account 
of differences between booklets, the item cluster LV was used in all booklets of the 
pretest and thereby formed a link (Frey et al., 2009) to the pretest. Similarly, the item 
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cluster LN was included in all booklet variants of the post-test and served as a link to 
the posttest.

The items’ psychometric fit was evaluated by scaling the data with a two-dimen-
sional Rasch model (quantitative vs. qualitative functional thinking). Three items 
showed values for the INFIT greater than 1.2 and were therefore excluded from 
the following analyses. All remaining 79 items met the defined quality criteria 
(INFIT ≤ 1.20, item-total correlation ≥ 0.20).

Data analysis

Learning effect analysis

The item response theory (IRT) in the form of a linear logistic test model (LLTM) 
was used to measure the learning effect (see Fischer, 1995). In a Rasch model, the 
basic model of the IRT, a specific item difficulty is estimated for every item. As a 
Rasch model’s extension, an LLTM decomposes item difficulties into components. 
Where an LLTM is used to measure change, the difficulty parameter of an item at 
the second time point is estimated as the sum of the item’s difficulty parameter at 
the first time point and one or more group-specific or global change parameters (Fis-
cher, 1995). The basic idea is that, with no loss of generality, any change in a per-
son’s ability can be regarded as a change in the item parameters (Mair & Hatzinger, 
2007). A group contrast can be included to allow item difficulty to vary between 
groups (Mair & Hatzinger, 2007). For example, if �

T
 denotes the item difficulty of 

an item administered in the table-only group in the post-test, the item difficulty of 
the same item administered in the graph-only group in the post-test can be formu-
lated as σG = σT – δ. The parameter δ estimates the difficulty difference parameter 
between the two experimental groups and indicates the ability difference between 
the graph-only and the table-only groups (see Fig. 5). When the graph-only group 
learned more than the table-only group, an item was easier for the graph-only group 
than for the table-only group, resulting in a positive difficulty difference parameter 
δ. Whether a difficulty difference parameter δ differed significantly from zero was 

Table 1   Booklets

The symbols A, B, C, D, E, F, G, LV, and LN represent item clusters. 
In item cluster C−1, only the order of the graph and table task, was 
swapped so that the booklets began equally often with tables and 
graphs

Booklet Pretest Intermediate test Post-test

1 A LV D F B C−1 LN E G
2 B LV E G C A LN D F
3 C LV D F A B LN E G
4 A LV E G B C LN D F
5 B LV D F C−1 A LN E G
6 C−1 LV E G A B LN D F
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tested by conducting a Gaussian Z-test because the parameters δ are asymptotically 
normally distributed.

In the IRT framework, persons’ abilities and item difficulties are estimated in 
logits. Figure  6 shows the relationship between the ability on the logit scale and 
the probability of solving a task with medium item difficulty. As can be seen there, 
a change of δ = 0.5 logits approximately corresponds to an increase in the solu-
tion probability P of 10 percentage points (∆P). Because values on the logit scale 
are independent of the population, they can be interpreted as effect measures. The 
δ-values can be roughly interpreted similar to values of Cohen’s d, for which a value 
of 0.2 can be considered a small effect, a value of 0.5 represents a medium effect, 
and values of 0.8 and above are large effects.

Two‑dimensional LLTM

First, a two-dimensional LLTM was calculated (LLTM-2D). With this model, the 
learning efficiency of the different experimental groups on quantitative and quali-
tative functional thinking was evaluated. The first 79 parameters σ1 to σ79 of the 
LLTM-2D calculated the item difficulties in the table-only group in the pretest as 
the baseline item difficulties. The other 20 parameters δ1 to δ20 estimated the group 
differences in the two dimensions at the various time points. Of these group differ-
ence parameters, the first six basic parameters (δ1 to δ6) each estimated the ability 
difference between the four groups in the pretest. Six further parameters (δ7 to δ12) 
estimated the learning gain from pretest to intermediate test, taking into account the 
ability difference of the groups in the pretest. Hence, it should be pointed out that 

(posttest of
graph-only group)

Solution 
probability

Person’s ability
(in logits)

=
−( − )

1 + −( − )

=
−

1 + −

Difficulty
difference
parameter
(in logits)

= −

1

0.5

Difference in 
solution probability

∆ (posttest of
table-only group)

Fig. 5   Illustration of the linear logistic test model (LLTM). The difficulty difference parameter indicates 
the difference in posttest achievement between the table-only group and the graph-only group
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it was not analyzed whether the ability level differed in the intermediate test, but 
whether the learning gain differed. The parameters δ13 to δ20 estimated the learning 
gain from pre- to post-test while partitioning out the ability differences in the pretest.

Four‑dimensional LLTM

Additionally, a four-dimensional model that took the form of representation (table 
or graph) into account was estimated (LLTM-4D). This four-dimensional model 
(Dimension 1: quantitative table items; Dimension 2: qualitative table items; Dimen-
sion 3: quantitative graph items; and Dimension 4: qualitative graph items) enabled 
us to analyze students’ ability to transfer their knowledge from graphs to tables and 
vice versa. Overall, the four-dimensional model showed a satisfactory model fit and 
satisfactory EAP/PV reliabilities (Dimension 1: .786; Dimension 2: .724; Dimen-
sion 3: .807; Dimension 4: .648).

Assessment of model fit

The LLTM-2D and the LLTM-4D models assumed a particular two-dimensional or, 
respectively, four-dimensional structure of the construct functional thinking. There-
fore, confirmatory factor analyses were conducted with the pretest data to assess 
whether these modeling approaches were psychometrically reasonable. Because 
all items were dichotomously scored, a full-information item factor analysis (Bock 
et al., 1988) was performed.

As a baseline model, we estimated the one-dimensional model 1D, in which all 
items loaded on one factor. This baseline model was compared with three different 
multidimensional models. In the model 2D–Quan × Qual, functional reasoning was 
divided into the two factors quantitative functional thinking (factor Quan) and quali-
tative functional thinking (factor Qual). The model 2D–T × G assumed the two latent 

82%
73%

62%

50%

38%
27%

18%

Solution 
probability

Person’s ability
(in logits)

0 0.5−0.5−1−1.5−2−2.5 1.5 2.51 2
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imately indicates an increase in the solution rate of 10 percentage points
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dimensions table-based functional thinking (factor T) and graph-based functional 
thinking (factor G). Furthermore, the model 4D–QuanT × QualT × QuanG × QualG 
split quantitative and qualitative functional thinking according to whether the tasks 
had to be solved with tables or graphs.

To assess which of these models fitted best, model comparisons were performed 
using the Akaike information criterion (AIC, Akaike, 1974) and the Bayesian infor-
mation criterion (BIC, Schwarz, 1978). Furthermore, the latent correlations of 
the dimensions were estimated. Finally, the EAP-PV reliability of the models was 
calculated.

Assessment of multilevel effect

The quasi-experiment had a design-related multilevel structure (Goldstein, 1987), 
with students (Level 1 units) nested in classes (Level 2 units). One problematic effect 
of a multilevel structure can be that measurements violate the assumption of inde-
pendence because measurements within a class might be more homogeneous than 
those between different classes. However, hierarchical linear models should only be 
applied with a high number of Level 2 units (i.e., school classes) (see Maas & Hox, 
2005). Nevertheless, to investigate the possible influence of the multilevel structure 
on the results, the extent of nonindependence can be estimated using the intraclass 
correlation (Gelman & Hill, 2006). The higher the intraclass correlation, the higher 
the dependence within classes and the higher the multilevel effect. Therefore, for the 
quasi-experiment, intraclass correlations for the pretest results were calculated for 
each model and each dimension with 10 plausible values (Adams et al., 2007). If the 
intraclass correlation does not deviate significantly from zero, there is no evidence 
that the multilevel structure affects the results.

Software

The calculations were made using the software package R (R Core Team, 2020). 
Dimension analyses were performed using the package Mirt (Chalmers, 2012), and 
the IRT scaling and calculation of the LLTMs were performed using the package 
TAM (Robitzsch et al., 2020).

Results

Assessment of model fit

The data analyses were based on the models LLTM-2D and LLTM-4D. The LLTM-
2D was based on a two-dimensional model, 2D–Quan × Qual, which assumed the 
two dimensions of quantitative and qualitative functional thinking. The LLTM-4D 
additionally separated quantitative and qualitative functional thinking, depending on 
whether it was performed with tables or graphs. To assess the appropriateness of 
these modeling approaches, model comparisons were performed.
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The model comparison with the information criteria AIC and BIC showed that 
the model 2D–Quan × Qual and the model 4D–QuanT × QualT × QuanG × QualG 
fitted best (see Table 2). The one-dimensional model had substantially higher val-
ues for AIC and BIC and, therefore, fitted substantially worse. The two-dimensional 
model, 2D–T × G, which separated table-based and graph-based functional thinking, 
fitted even worse than the one-dimensional model.

The analyses of the latent correlations (see Table  3) confirmed the 
results of the model comparisons. The models 2D–Quan × Qual and 
4D–QuanT × QualT × QuanG × QualG showed the highest discriminatory validity. 
In contrast, the dimensions table-based and graph-based functional thinking in the 
model 2D–T × G were highly correlated.

Overall, the models 2D–Quan × Qual and 4D–QuanT × QualT × QuanG × QualG 
showed a similar model fit. Furthermore, the EAP/PV reliabilities of the models were 
satisfactory (2D–Quan × Qual: .809 and .772, 4D–QuanT × QualT × QuanG × QualG: 
.786, .724, .807, and .648).

Assessment of multilevel effect

This study was a quasi-experiment because the random assignment to experimen-
tal conditions occurred on the level of the learning groups. Therefore, it is possible 
that a multilevel effect distorted the results. To evaluate the extent of this multilevel 
effect, intraclass correlations were calculated.

In the two-dimensional model, 2D–Quan × Qual, the mean intraclass correlation 
in the first dimension was .015 with a mean 95% confidence interval [–.012, .099], 
and in the second dimension .014 with a mean 95% confidence interval [–.012, 
.098]. This means that in both dimensions, the intraclass correlation did not differ 
significantly from zero because zero was always included in the mean confidence 
interval. In the four-dimensional model, 4D–QuanT × QualT × QuanG × QualG, 
the mean intraclass correlations also did not differ significantly from zero in any of 
the dimensions: Dimension 1: 95% CI [–.021, .062]; Dimension 2: 95% CI [–.007, 
.120]; Dimension 3: 95% CI [–.013, .094]; and Dimension 4: 95% CI [–.011, .105].

Table 2   Model comparisons

Npar number of parameters, 1D one-dimensional, 2D two-dimen-
sional, 4D four-dimensional, Quan quantitative functional thinking, 
Qual qualitative functional thinking, QuanT quantitative functional 
thinking with tables, QualT qualitative functional thinking with 
tables, QuanG quantitative functional thinking with graphs, QualG 
qualitative functional thinking with graphs, T table-based functional 
thinking, G graph-based functional thinking

Model Npar LogL AIC BIC

2D–Quan × Qual 75 –6246 12,641 12,923
4D–QuanT × QualT × QuanG × QualG 82 –6238 12,640 12,948
1D 73 –6297 12,740 13,013
2D–T × G 75 –6325 12,800 13,081
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These results show that a significant multilevel effect was not detected, either in 
the two-dimensional model, 2D–Quan × Qual, or in the four-dimensional model, 
4D–QuanT × QualT × QuanG × QualG. Hence, it was reasonable to neglect the effect 
of the multilevel structure of the data in the analyses.

Learning effect analysis

Overall, the experimental groups showed a substantial increase in performance. The 
average p value of the experimental groups concerning the items administered in the 
pretest was .34. This average p value rose in the post-test to .64. That is, on average, 
across all experimental groups and dimensions, there was an increase of 30 percent-
age points.

To provide a more detailed insight into the learning effects, the results of the 
data analyses using the two models LLTM-2D (based on the two-dimensional 
model 2D–Quan × Qual) and LLTM-4D (based on the four-dimensional model 
4D–QuanT × QualT × QuanG × QualG) are presented below. Supplementary tables 
with the parameter values of both LLTMs are available in Online Supplement 3.

LLTM‑2D: quantitative versus qualitative functional thinking

The LLTM-2D estimated gain scores (in logits) for the two constructs, quantita-
tive functional thinking and qualitative functional thinking.

Quantitative functional thinking  From pretest to intermediate test (see Fig.  7, 
left-hand side), the table-only group showed a significant learning gain (δ7 = 1.93, 
z = 25.7, p < .001) in quantitative functional thinking. However, the graph-only 
group demonstrated an even (significantly) higher learning gain (δ9 = 0.55, z = 6.05, 
p < .001) than the table-only group. Up to the intermediate test, the table-graph 

Table 3   Latent correlations of the models 

2D two-dimensional, 4D four-dimensional, Quan quantitative functional thinking, Qual qualitative func-
tional thinking, QuanT quantitative functional thinking with tables, QualT qualitative functional thinking 
with tables, QuanG quantitative functional thinking with graphs, QualG qualitative functional thinking 
with graphs, T table-based functional thinking, G graph-based functional thinking

Model Latent factor Correlation

(1) (2) (3)

2D–Quan × Qual (1) Quan
(2) Qual .795

4D–QuanT × QualT × QuanG × QualG (1) QuanT
(2) QualT .813
(3) QuanG .919 .718
(4) QualG .756 .891 .703

2D–T × G (1) T
(2) G .922
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group showed a significantly lower learning gain than the graph-only group (by 
δ11 =  − 0.54, z =  − 4.37, p < .001), but almost as much learning gain as the table-
only group.

From pre- to post-test, the learning gain in quantitative functional thinking in the 
control group (i.e., the testing effect) was significant, δ13 = 0.74, z = 21.07, p < .001. 
The table-only group displayed a significantly higher learning gain than the control 
group, δ15 = 1.19, z = 27.9, p < .001. At the intermediate test stage, the learning gain 
in the graph-only group was significantly higher than the learning gain in the table-
only group, with a difference in learning gain of δ17 = 0.59, z = 11.3, p < .001, even 
though the magnitude of the intermediate test result was almost identical. However, 
there was no significant difference (δ19 =  − 0.10, z =  − 1.4, p = .15) in the learning 
gain from pre- to post-test between the table-graph group and the graph-only group.

Qualitative functional thinking  Overall, learning gains in qualitative functional 
thinking were lower than in quantitative functional thinking (see Fig. 7, right-hand 
side). From pretest to intermediate test, the ability level in the table-only group 
increased significantly by δ8 = 0.99, z = 11.6, p < .001. The graph-only group showed 
a significantly higher learning gain than the table-only group, δ10 = 0.31, z = 3.0, 
p = .003. However, there was no significant difference between the table-graph group 
and the graph-only group in qualitative functional thinking up to the intermediate 
test (δ12 = 0.16, z = 1.1, p = .27).

From pre- to posttest, ability in qualitative functional thinking in the control 
group increased significantly, by δ14 = 0.23, z = 6.9, p < .001. The table-only group 
showed a significantly higher learning gain than that of the control group, δ16 = 0.90, 
z = 21.7, p < .001, while the graph-only group had a significantly higher increase in 
ability than the table-only group, δ18 = 0.15, z = 2.9, p = .004. However, the highest 
learning gain was recorded for the table-graph group, δ20 = 0.42, z = 5.7, p < .001, 
again significantly higher than that of the graph-only group.
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LLTM‑4D: quantitative and qualitative functional thinking with graphs and tables

To evaluate whether the students were able to transfer their acquired knowledge in 
functional thinking from graphs to tables and vice versa, a four-dimensional model 
was estimated. However, the four dimensions could not be measured reliably in the 
intermediate test because it consisted of only 10 items; therefore, in the LLTM-4D, 
unlike the LLTM-2D, only learning gains from pre- to posttest were calculated.

Quantitative functional thinking with tables and graphs  In quantitative functional 
thinking with tables (see Fig. 8, left-hand side), the control group had significantly 
higher ability values in the posttest than in the pretest, δ1 = 0.82, z = 16.2, p < .001, 
while the table-only group showed a significantly higher learning gain than the con-
trol group, δ5 = 1.50, z = 24.0, p < .001. Moreover, the learning gain of the graph-
only group did not differ significantly from that of the table-only group, δ9 = 0.09, 
z = 1.1, p = .25; likewise, there was no significant difference between the learning 
gain of the table-graph group and that of the graph-only group, δ13 = 0.03, z = 0.2, 
p = .81. The finding that the three experimental groups’ learning gains were approxi-
mately equal is strikingly illustrated in Fig. 8 (on the left-hand side) by the fact that 
the lines are nearly parallel.

Turning to quantitative functional thinking with graphs (see Fig.  8, right-hand 
side), the control group showed a significant learning gain from pre- to post-test, 
by δ3 = 0.64, z = 13.0, p < .001. The table-only group showed a significantly higher 
learning gain than the control group, δ7 = 0.66, z = 11.1, p < .001, while the graph-
only group demonstrated a significantly higher learning gain than the table-only 
group, δ11 = 1.24, z = 17.0, p < .001. There was no significant difference in learn-
ing gain between the graph-only group and the table-graph group, δ15 =  − 0.08, 
z =  − 0.8, p = .43. Visually, Fig. 8 (on the right-hand side) shows that the lines for 
the table-graph group and the graph-only group are nearly parallel, whereas the 
table-only group’s line is obviously less steep, indicating a lower learning gain.

Qualitative functional thinking with tables and graphs  In qualitative functional 
thinking with tables (see Fig.  9, left-hand side), the control group showed a sig-
nificant increase from pre- to post-test by δ2 = 0.19, z = 4.2, p < .001. The learn-
ing gain of the table-only group was significantly higher than that of the control 
group, δ6 = 0.96, z = 17.4, p < .001. The graph-only group had a significantly lower 
gain than the table-only group, δ10 =  − 0.26, z =  − 3.9, p < .001. In turn, the table-
graph group showed a significantly higher learning gain than the graph-only group, 
δ14 = 0.24, z = 2.5, p = .01.

In qualitative functional thinking with graphs (see Fig.  7, right-hand side), the 
control group’s ability increased significantly from pre- to posttest, δ4 = 0.20, 
z = 4.8, p <.001. The learning gain in the table-only group was significantly higher 
than in the control group, δ8 = 0.28, z = 5.3, p < .001, while the graph-only group 
showed a significantly higher learning gain than the table-only group, δ12 = 0.54, 
z = 8.2, p < .001. Again, the table-graph group recorded the highest learning gain. Its 
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learning gain was significantly higher than that of the graph-only group, δ16 = 0.31, 
z = 3.4, p < .001.

Discussion

In the following, we discuss the results of our study. In the first section, the results 
on learning functional thinking with representations are summarized and evaluated 
with regard to the three hypotheses. We then infer what practical implications for 
learning functional reasoning could follow from the results. Finally, the limitations 
of the study are presented, and future research desiderata are formulated.
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Learning functional thinking

Multiple representation hypothesis

In the multiple representation hypothesis (Hypothesis 1), we assumed that multi-
representational learning would be more efficient than mono-representational learn-
ing. We found some support for this hypothesis in the finding that the table-graph 
group had the significantly highest learning gain from pre- to posttest in qualita-
tive functional thinking. However, in quantitative functional thinking, there was no 
significant difference between mono-representational learning using graphs exclu-
sively and multi-representational learning using both tables and graphs. In the four-
dimensional model, multi-representational learning with tables and graphs had the 
significantly highest learning gain for qualitative functional thinking. In contrast, the 
two dimensions of quantitative functional thinking with tables and graphs showed 
no significant difference between the mono-representational experimental group that 
learned with graphs only and the multi-representational experimental group that 
learned with both tables and graphs.

What is striking about the results is that the table-graph group showed an appar-
ent increase from intermediate to posttest, whereas the mono-representational learn-
ing groups showed little change from intermediate to post-test. For example, up until 
the intermediate test, multi-representational learning with tables and graphs was 
no more efficient than mono-representational learning using graphs exclusively for 
either quantitative or qualitative functional thinking. Up until the intermediate test, 
the multi-representational group even showed a lower learning gain in quantitative 
functional thinking than the group that learned with graphs only. In contrast, the 
increase in qualitative functional thinking between these two experimental groups 
did not differ significantly. Overall, the results indicate that multi-representational 
learning might require more time than mono-representational learning. The reason 
for this result could be that working with multiple representations requires initially 
higher cognitive demands since more information has to be processed simultane-
ously and held in working memory. Conversely, however, multi-representational 
learning presents an opportunity to achieve higher learning gains than are possible 
with mono-representational learning alone. The present study also shows that the 
added value of multi-representational learning depends on both the learning object 
and the learning time. The generality of the assumption that multi-representational 
learning always leads to higher learning gains was not confirmed in our study.

Representational congruence hypothesis

The representational congruence hypothesis (Hypothesis 2) assumed that it is best to 
learn with the form of representation that is used later in the assessment. Essentially, 
this hypothesis suggests that tables are best for learning table-based functional think-
ing, whereas graphs are most effective for learning graph-based functional think-
ing. The empirical data from the quasi-experiment provides some evidence for this 
hypothesis, albeit with some limitations. The graph did prove more efficient than the 
table for learning graph-based quantitative and qualitative functional thinking. In the 
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same manner, the table proved more efficient than the graph for table-based quali-
tative functional thinking. However, concerning table-based quantitative functional 
thinking, learning with tables was not more efficient than learning with graphs. 
Instead, table-based quantitative functional thinking was learned with graphs as effi-
ciently as it was with tables. In other words, the cognitive schemata constructed by 
learning quantitative functional thinking with a graph appear to be relatively easily 
applicable to a table.

Master representation hypothesis

In the master representation hypothesis (Hypothesis 3), we assumed that graphs 
are a superior form of representation and are more efficient than tables for func-
tional thinking. Support for this hypothesis was found in the results for both the 
two-dimensional and the four-dimensional models. Thus, with the two-dimensional 
model, a graph was found to be more efficient than a table for learning quantita-
tive functional thinking. Likewise, in the four-dimensional model, graphs were more 
efficient than tables for learning both table-based and graph-based quantitative func-
tional thinking. In graph-based quantitative functional thinking, the difference in 
learning between the table-only group and the graph-only group was relatively high 
(1.24 logits). This finding supports the thesis that transferring procedures learned 
with a table to a graph poses considerable difficulty. Applying quantitative func-
tional thinking to a table, on the other hand, can be learned with graphs as well as 
with tables. The transfer of graph-based schemata to a table in quantitative func-
tional thinking seems to pose relatively little difficulty. Therefore, a graph seems to 
be a more suitable form of representation for learning quantitative functional think-
ing than a table.

For qualitative functional thinking, however, the graph was not always more 
learning-efficient than the table. In the four-dimensional model, a table was more 
learning-efficient than a graph for table-based qualitative functional thinking, 
whereas, for graph-based qualitative functional thinking, a graph was more learning-
efficient. This result is also plausible from a subject-matter perspective. Qualitative 
functional thinking, for example, includes the ability to assess in which section the 
increase is highest in a piecewise linear function. When using a graph, this problem 
can be solved by comparing the slope of the line. The same problem can be solved 
numerically with a table only by calculating the difference between the x- and y-val-
ues in each section and comparing the differences’ size. Thus, using a table requires 
different procedures than those required when using a graph.

Computational efficiency versus learning efficiency

Overall, one can surmise from the results that the transfer’s success depends on the 
underlying cognitive processes. If the necessary cognitive processes are very similar, 
a transfer from one representation to another is relatively easy. However, if the cog-
nitive processes differ substantially between representations, a transfer is relatively 
difficult. The results also show a difference between the computational efficiency 
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of a form of representation and its learning efficiency. Students learn quantitative 
functional thinking better with a graph than with a table, as this study shows. That 
is, a graph promotes the construction of mental representations for quantitative 
functional thinking better than a table does, and a graph is better suited to learn, 
for example, the concept of the rate of change than a table. However, if students 
have understood the concept of the rate of change, previous research showed (Rolfes 
et al., 2018) that a table is better suited than a graph for actually calculating the rate 
of change.

Practical implications

The present study’s findings appear to justify the dominance of graphs over tables 
in learning the concept of function. A graph is a richer representation than a table 
because, besides the numeric data, it provides a visual impression that a table lacks. 
Therefore, it is reasonable to assume that a graph offers more learning opportunities 
than a table. Accordingly, a graph is more efficient than a table for learning many 
facets of functional thinking. Only in table-based qualitative functional thinking was 
a table more beneficial than a graph in the current study. Therefore, when planning 
lessons, teachers should reflect as much as possible on the benefit of a particular 
form of representation concerning the learning process. The selection of the form 
of representation during the learning process should be determined not only by the 
question of which particular form of representation provides the most straightfor-
ward way to solving the given problem; sometimes, a more cumbersome approach 
with another form of representation might provide more learning opportunities and 
might be more rewarding for the learning process.

Being able to connect different representations of functions is in itself already an 
important learning goal of mathematics education. Besides this rationale for using 
multiple representations, the present study identified further benefits. Multi-repre-
sentational learning can lead to higher learning gains than those achieved through 
mono-representational learning. Put simply, one can learn more with multiple forms 
of representation. This result provides empirical evidence that adopting an approach 
that uses multiple representations is beneficial for learning functional thinking. For 
example, this study showed that it is better to learn qualitative functional thinking 
using a graph and a table rather than only a graph. This leads to the initially coun-
terintuitive conclusion that teaching qualitative functional thinking should not exclu-
sively use graphs. Instead, the way in which qualitative problems (e.g., “In which 
time period do the function values change the quickest?”) might be solved with 
tables should also be considered. In general, these results show that computational 
efficiency and learning efficiency do not always correspond. Therefore, students 
should also be taught with representations that are computationally less efficient for 
the task to be learned; that is, quantitative functional thinking should also be taught 
with graphs, and qualitative functional thinking should also be taught with tables.

However, the benefits of multi-representational learning have limits. In general, 
multi-representational learning takes more time than mono-representational learning 
because students first have to learn how to deal with the different representations. 
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This fact presents a representation dilemma (Rau, 2017) that not only the content 
but also the representation itself must be learned. Furthermore, multi-representa-
tional learning was not superior to mono-representational learning for all learning 
content. For quantitative functional thinking, for example, the effect of learning with 
both tables and graphs was lower than learning with graphs alone from the pretest 
to the intermediary test. However, the effect from pre- to post-test was compara-
ble for both groups. Therefore, it seems appropriate to initially begin the learning 
process with a representation that is particularly suitable for the particular content 
being learned. When the learning content has been mastered to a satisfactory degree 
with this “first” representation, a second and possibly third representation can be 
added. This approach can potentially maximize the learning success, as conferred 
by our results. However, further representations only provide additional value if they 
require a different approach to the learning content than that of the first representa-
tion. If a transfer of what has been learned with the first form of representation to 
other forms is relatively easy, the addition of further representations might not add 
any further value.

Thus, the simple action motto “The more, the better!” is only partially supported 
by the present study’s results. Working with additional representations requires addi-
tional learning time; therefore, whether an additional form of representation justifies 
the additional time required must be weighed up. In classroom practice, it is not 
always easy to determine whether another form of representation truly adds value to 
the learning process. Here, the insight and experience of the teacher are required to 
make the right decision. Hence, further empirical research on learning with repre-
sentations would be desirable to support teachers with this difficult decision.

Limitations

In the study’s learning environment, the connection between tables and graphs was 
not explicitly highlighted in the multi-representational learning group. Instead, the stu-
dents had to implicitly link the two forms of representation by solving similar prob-
lems using a table and a graph. Kaput (1989), for example, highlights the importance 
of connecting the forms of representation while teaching and learning. Hence, learning 
multi-representationally with tables and graphs in the current study may have resulted 
in even higher learning benefits had the connection between tables and graphs been 
explicitly discussed. Future experiments should investigate this possibility further.

Some of our results are limited for methodological reasons. The problem of 
our multilevel structure (students nested in classes) has already been pointed out, 
although the insignificant intraclass correlations suggest that the multilevel effect 
did not lead to a severe distortion of the results. Furthermore, the intermediate test 
did not have the same reliability as the pre- and posttest because the intermediate 
test consisted of only 10 items on linear functional relationships. In contrast, the 
pre- and posttest each consisted of 36 items on both piecewise linear and nonlinear 
functional relationships.

Finally, the learning environment and the test items focused on the bottle prob-
lem. Although this situational context is often recommended for fostering functional 
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thinking, the empirical question of how representative the bottle problem is for 
measuring functional thinking remains open.

Research desiderata

The present study considered learning efficiency as a characteristic of a form of rep-
resentation with regard to the human mind in general. However, interindividual differ-
ential effects of the efficiency of mono- or multi-representational learning are possible 
and should be investigated further in detail. For example, against the backdrop of the 
cognitive load theory (Sweller et  al., 2011), a plausible assumption is that learning 
with multiple representations creates a higher cognitive burden than mono-represen-
tational learning. Therefore, it could be hypothesized that students with considerable 
cognitive capacity (e.g., high working-memory capacity, high intelligence) in particu-
lar would benefit from multi-representational learning because they can handle the 
higher cognitive load. Students with somewhat low cognitive capacity, on the other 
hand, could be overwhelmed by multiple representations in the learning process. On 
that basis, it would be worthwhile to empirically investigate the interaction between 
cognitive capacity and learning gains in multi-representational learning.

Furthermore, our study focused on the quantitative measurement of the effects of 
learning with different forms of representations. Based on our hypotheses, which were 
derived from theoretical considerations and empirical evidence from previous studies, 
we were able to gain valuable insights into learning with representations. However, a 
follow-up study could explore the findings via qualitative research. Such a study could 
provide more information on students’ thinking and how students specifically deal 
with external representations such as tables and graphs in the learning process.

Finally, tables and graphs are only two of several forms of representation of func-
tional relationships. In addition, the learning environment and the test items on the 
bottle problem focused on one particular context. Therefore, studies on the efficiency 
of learning with other forms of representation (e.g., symbolic algebra, verbal descrip-
tions, real-life situations) and in other situational contexts should be conducted. For 
example, the symbolic-algebraic representation of functional relationships forms 
a central subject in mathematics education at the secondary school level. Although 
studies exist on the translation between, for example, a graph and a symbolic-alge-
braic form of representation, future studies should investigate which particular 
aspects of functional thinking can be learned using the symbolic-algebraic form of 
representation.
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