Skip to main content

Advertisement

Log in

Change Detection Techniques for Land Cover Change Analysis Using Spatial Datasets: a Review

  • Review
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

The change detection (CD) methods explore the potential of remote sensing (RS) spatial datasets in various land use/land cover (LU/LC) applications. These methods are used to analyze the LU/LC dynamics using various high and medium-resolution multi-spectral remote sensing satellite datasets (Landsat-TM/ETM+/OLI, IRS LISS-3 & 4, Sentinel-2, SPOT, and ASTER). The study’s objective is to summarize multiple changes in the last two decades in land use applications at the regional and international levels using traditional and advance change detection methods. Mapping of LU/LC dynamics at regional and global scales is essential for various land use applications (vegetation monitoring, crop cultivation monitoring, urban planning, landslide, and socio-economic dynamics). The review study showed that machine learning and deep learning techniques play an essential role in classification and change detection applications. The deep learning methods more effectively identify the changes in LU/LC (due to human activities and natural phenomena) than other traditional methods. The present study analyzes the conventional and advanced methods of change detection methods and various challenges and problems facing during the change detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

In this research paper, remote sensing satellite data is obtained from the USGS earth explore website https://earthexplorer.usgs.gov/.

References

  1. Almutairi A, Warner TA (2010) Change detection accuracy and image properties: a study using simulated data. Remote Sens 2(6):1508–1529

    Article  Google Scholar 

  2. Alphan H, Doygun H, Unlukaplan YI (2009) Post-classification comparison of land cover using multitemporal Landsat and ASTER imagery: the case of Kahramanmaraş, Turkey. Environ Monit Assess 151:327–336

    Article  Google Scholar 

  3. Aly AA, Al-omran AM, Sallam AS, Al-wabel MI, Al-shayaa MS (2016) Vegetation cover change detection and assessment in arid environment using multitemporal remote sensing images and ecosystem management approach. Solid Earth 7:713–725

    Article  Google Scholar 

  4. Asadi S, Bannayan M, Jahan M, Hosseini AF (2019) Using the red-near infrared spectral to estimate ground cover based on vegetative indices. Int J Remote Sens 40(18):7153–7168

    Article  Google Scholar 

  5. Ayele GT, Tebeje AK, Demissie SS, Belete MA, Jemberrie MA, Teshome WM, Mengistu DT, Teshale EZ (2017) Time series land cover mapping and change detection analysis using geographic information system and remote sensing, northern Ethiopia. Air, Soil and Water Research 11:1–18

    Google Scholar 

  6. Baker C, Lawrence RL, Clifford M, Duncan P (2007) Change detection of wetland ecosystems using Landsat imagery and change vector analysis. Wetlands 27(3):610–619

    Article  Google Scholar 

  7. Baker DJ, Richards G, Grainger A, Gonzalez P, Brown S, DeFries R, Held A, Kellndorfer J, Ndunda P, Ojima D, Skrovseth PE, Souza C, Stolle F (2010) Achieving forest carbon information with higher certainty: a five-part plan. Environ Sci Pol 13(3):249–260

    Article  Google Scholar 

  8. Banskota A, Kayastha N, Falkowski MJ, Wulder MA, Froese RE, White JC (2014) Forest monitoring using Landsat time series data: a review. Can J Remote Sens 40(5):362–384

    Article  Google Scholar 

  9. Baugh WM, Groeneveld DP (2006) Broadband vegetation index performance evaluated for a low-cover environment. Int J Remote Sens 27(21):4715–4730

    Article  Google Scholar 

  10. Belgiu M, Csillik O (2018) Remote sensing of environment Sentinel-2 cropland mapping using pixel-based and object-based time- weighted dynamic time warping analysis. Remote Sens Environ 204:509–523

    Article  Google Scholar 

  11. Bhandari AK, Soni V, Kumar A, Singh GK (2014) Cuckoo search algo- rithm based satellite image contrast and brightness enhancement using DWT – SVD. ISATrans:1–11

  12. Chen J, Gong P, He C, Pu R, Shi P (2003) Land-use / land-cover change detection using improved change-vector analysis. Photogramm Eng Remote Sens 69(4):369–379

    Article  Google Scholar 

  13. Deng JS, Wang K, Deng YH, Qi GJ (2008) PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int J Remote Sens 29(16):4823–4838

    Article  Google Scholar 

  14. Dezso Z, Bartholy J, Pongracz R, Barcza Z (2005) Analysis of land-use/land-cover change in the Carpathian region based on remote sensing techniques. Phys Chem Earth 30(1–3 SPEC. ISS):109–115

    Article  Google Scholar 

  15. Ding L, Li H, Hu C, Zhang W, Wang S (2018) Alexnet feature extraction and multi-kernel learning for object-oriented classification. Int Arch Photogramm Remote Sens Spat Inf Sci 42(3):277–281

    Article  Google Scholar 

  16. Feng W, Sui H, Jihui T, Huang W, Xu C, Sun K (2018) A novel change detection approach for multi-temporal high resolution remote sensing images based on rotation Forest and coarse-to-fine uncertainty analyses. Remote Sens 10(7)

  17. Fichera CR, Modica G, Pollino M (2012) Land cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. European Journal of Remote Sensing 45(1):1–18. https://doi.org/10.5721/EuJRS20124501

    Article  Google Scholar 

  18. Fung T, Siu W (2000) Environmental quality and its changes, an analysis using NDVI. Int J Remote Sens 21(5):1011–1024

    Article  Google Scholar 

  19. Galiatsatos N, Donoghue DNM, Watt P, Bholanath P, Hansen MC, Mahmood ARJ (2020) An assessment of global forest change datasets for national forest monitoring and reporting. Remote Sensig 12(1790)

  20. Gan M, Deng J, Zheng X, Yang H, Wang K (2014) Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis. PLoS One 9(11)

  21. Gao B-C (1996) Naval research laboratory, 4555 overlook Ave. Remote Sens Environ 7212:257–266

    Article  Google Scholar 

  22. Garzelli A, Aiazzi B, Alparone L, Lolli S, Vivone G (2018) Multispectral Pansharpening with radiative transfer-based detail injection modeling for preserving changes in vegetation cover. Remote Sens 10:1308

    Article  Google Scholar 

  23. Gebresamuel G, Singh BR, Dick Ø (2010) Land-use changes and their impacts on soil degradation and surface runoff of two catchments of northern Ethiopia. Acta Agric Scand Sect B Soil Plant Sci 60:211–226

    Google Scholar 

  24. Ghebrezgabher MG, Yang T, Yang X, Wang X, Khan M (2016) Extracting and analyzing forest and woodland cover change in Eritrea based on Landsat data using supervised classification. Egypt. J. Remote. Sens. Space Sci. 19:37–47

  25. Ghosh A, Sharma R, Joshi PK (2014) Random forest classification of urban landscape using Landsat archive and ancillary data: combining seasonal maps with decision level fusion. Appl Geogr 48:31–41

    Article  Google Scholar 

  26. Gong J, Sui H, Ma G, Zhou Q (2008) A review of multi-temporal remote sensing data change detection algorithms. Int Arch Photogramm Remote Sens Spat Inf Sci 37:757–762

    Google Scholar 

  27. Grochala A, Kedzierski M (2017) A method of panchromatic image modification for satellite imagery data fusion. Remote Sens 9(6):11–13

    Article  Google Scholar 

  28. Hame T, Heiler I, Miguel-Ayanz JS (1998) An unsupervised change detection and recognition system for forestry. Int J Remote Sens 19(6):1079–1099

    Article  Google Scholar 

  29. Haque MI, Basak R (2017) Land cover change detection using GIS and remote sensing techniques: a spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. Egypt J Remote Sens Space Sci 20(2):251–263

    Google Scholar 

  30. He C, Shi P, Xie D, Zhao Y (2010) Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sensing Letters 1(4):213–221

    Article  Google Scholar 

  31. He P, Shi W, Zhang H, Hao M (2014) A novel dynamic threshold method for unsupervised change detection from remotely sensed images. Remote Sensing Letters 5:396–403

    Article  Google Scholar 

  32. He P, Shi W, Miao Z, Zhang H (2015) Advanced Markov random field model based on local uncertainty for unsupervised change detection. Remote Sensing Letters 6(9):667–676

    Article  Google Scholar 

  33. Hegazy IR, Kaloop MR (2015) Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int J Sustain Built Environ 4(1):117–124

    Article  Google Scholar 

  34. Heinimann A, Mertz O, Frolking S, Christensen AE, Hurni K, Sedano F, Chini LP, Sahajpal R, Hansen M, Hurtt G (2017) A global view of shifting cultivation: recent, current, and future extent. PLoS One 12(9):1–21

    Article  Google Scholar 

  35. Huete AR (1988) A soil-adjusted vegetation index ( SAVI ). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  36. Jensen JR (2005) Introductory digital image processing: ARemote sensing Perspec- tive, 3rd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  37. Jiang J, Tian G (2010) Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia Environ Sci 2:571–575

    Article  Google Scholar 

  38. Jiménez AA, Vilchez FF, González ON, Susana ML, Flores M (2018) Analysis of the land use and cover changes in the metropolitan area of Tepic-Xalisco (1973-2015) through Landsat images. Sustainability (Switzerland) 10(6)

  39. Johnson RD, Kasischke ES (1998) Change vector analysis : a technique for the multispectral monitoring of land cover and condition. Int J Remote Sens 19(3):411–426

    Article  Google Scholar 

  40. Justice CO et al (1998) The moderate resolution imaging spectroradiometer ( MODIS ): land remote sensing for global change research. IEEE Trans Geosci Remote Sens 36(4):1228–1249

    Article  Google Scholar 

  41. Kauth RJ, Thomas GS (1976) Tasselled cap - a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. LARS Symposia, pp 41–51

    Google Scholar 

  42. Khan SH, He X, Porikli F, Bennamoun M (2017) Forest change detection in incomplete satellite images with deep neural networks. IEEE Trans Geosci Remote Sens 55(9):5407–5423

    Article  Google Scholar 

  43. Kusetogullari H, Yavariabdi A (2018) Unsupervised change detection in Landsat images with atmospheric artifacts: a fuzzy multiobjective approach. Math Probl Eng 2018(2):24–26. https://doi.org/10.1155/2018/7274141

    Article  Google Scholar 

  44. Li A, Wang Q, Bian J, Lei G (2015) An improved physics-based model for topographic correction of Landsat TM images. Remote Sens 7(5):6296–6319

    Article  Google Scholar 

  45. Liang B, Weng Q (2011) Assessing urban environmental quality change of Indianapolis, United States, by the remote sensing and GIS integration. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4(1):43–55

    Article  Google Scholar 

  46. Liu J, Gong M, Qin K, Zhang P (2016) A deep convolutional coupling network for change detection based on heterogeneous optical and radar images. IEEE transactions on neural networks and learning systems 29(3):1–15

    Article  Google Scholar 

  47. Liu C-C, Yu-Cheng Z, Pei-Yin C, Chien-Chih L, Yi-Hsin C, Cheng J-H, Ming-Hsun K (2019) Clouds classification from Sentinel-2 imagery with deep residual learning and semantic image segmentation. Remote Sens 11(119):1–16

    Google Scholar 

  48. Liu Q, Liu L, Wang Y (2017) Unsupervised change detection for multispectral remote sensing images using random walks. Remote Sens 9(5):1–17

    Article  Google Scholar 

  49. Liu X, Lathrop JG (2002) Urban change detection based on an artificial neural network. Int J Remote Sens 23(12):2513–2518

    Article  Google Scholar 

  50. Loveland TR, Sohl TL, Stehman SV, Gallant AL, Sayler KL, Napton DE (2002) A strategy for estimating the rates of recent United States land-cover changes. Photogramm Eng Remote Sens 68:1091–1099

    Google Scholar 

  51. Lowell K (2001) An area-based accuracy assessment methodology for digital change maps. Int J Remote Sens 22(17):3571–3596

    Article  Google Scholar 

  52. Lu D, Mausel P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2401

    Article  Google Scholar 

  53. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  54. Lu D, Batistella M, Moran E (2004) Multitemporal spectral mixture analysis for Amazonian land-cover change detection. Can J Remote Sens 30(1):87–100

    Article  Google Scholar 

  55. Lu M, Hamunyela E, Verbesselt J, Pebesma E (2017) Dimension reduction of multi-spectral satellite image time series to improve deforestation monitoring. Remote Sens 9(10)

  56. Luo H, Liu C, Wu C, Guo X (2018) Urban change detection based on Dempster-Shafer theory for multitemporal very high resolution imagery. Remote Sens 10(7):20–22

    Article  Google Scholar 

  57. Madugundu R, Al-Gaadi KA, Patil VC, Tola E (2014) Detection of land use and land cover changes in Dirab region of Saudi Arabia using remotely sensed imageries. Am J Environ Sci 10(1):8–18

    Article  Google Scholar 

  58. Mahdianpari M, Salehi B, Rezaee M, Mohammadimanesh F, Zhang Y (2018) Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sens 10(7)

  59. Maldonado-bascón S, Lafuente-arroyo S, Gil-jiménez P, Gómez-moreno H, López-ferreras F (2007) Road-sign detection and recognition based on support vector machines. IEEE Trans Intell Transp Syst 8(2):264–278

    Article  Google Scholar 

  60. Malila WA, Lafayette W (1980) Change vector analysis : an approach for detecting forest changes with Landsat. In: Proceedings of the 6th international symposium on machine processing of remotely sensed data. Purdue University, pp 326–335

    Google Scholar 

  61. Mas JF (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20(1):139–152

    Article  Google Scholar 

  62. Mas JF, Lemoine-Rodríguez R, González-López R, López-Sánchez J, Piña-Garduño A, Herrera-Flores E (2017) Land use/land cover change detection combining automatic processing and visual interpretation. European Journal of Remote Sensing 50(1):626–635

    Article  Google Scholar 

  63. Minaei M, Kainz W (2016) Watershed land cover / land use mapping using remote sensing and data mining in Gorganrood, Iran. ISPRS Int J Geo Inf 5(57)

  64. Sorour M, Parvaneh S (2019) Cloud-net: an end-to-end cloud detection algorithm for Landsat 8 imagery. arXiv 1901.10077v1 [cs.CV]

  65. Mohan M (2000) Climate change: evaluation of ecological restoration of Delhi ridge using remote sensing and GIS technologies. International Archives of Photogrammetry and Remote Sensing XXXIII:886–894

    Google Scholar 

  66. Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. Int J Remote Sens 26(5):1007–1011

    Article  Google Scholar 

  67. Pohl C, Van Genderen JL (1998) Review article multisensor image fusion in remote sensing : concepts , methods and applications. Int J Remote Sens 19(5):823–854

    Article  Google Scholar 

  68. Park H, Choi J, Park W, Park H (2018) Modified S2CVA algorithm using cross-sharpened images for unsupervised change detection. Sustainability 10:3301

    Article  Google Scholar 

  69. Radoux J, Bogaert P (2017) Good practices for object-based accuracy assessment. Remote Sens 9(7)

  70. Ramachandra TV, Kumar U (2004) Geographic resources decision support system for land use, land cover dynamics analysis. Proceedings of the FOSS/GRASS Users Conference - Bangkok, Thailand, September

  71. Reis S (2008) Analyzing land use/land cover changes using remote sensing and GIS in Rize, north-East Turkey. Sensors 8(10):6188–6202

    Article  Google Scholar 

  72. Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43(12):1541–1552

    Google Scholar 

  73. Rogan J, Franklin J, Roberts DA (2002) A comparison of methods for monitoring multitemporal vegetation change using thematic mapper imagery. Remote Sens Environ 80(1):143–156

    Article  Google Scholar 

  74. Rouse W, Haas H, Deering W (1973) Monitoring vegetation systems in the great plains with Erts. Third ERTS Symposium, NASA SP-351, pp 309–317

    Google Scholar 

  75. Salih AAM, Ganawa ET, Elmahl AA (2017) Spectral mixture analysis (SMA) and change vector analysis (CVA) methods for monitoring and mapping land degradation/desertification in arid and semiarid areas (Sudan), using Landsat imagery. Egyptian Journal of Remote Sensing and Space Science 20:S21–S29

    Article  Google Scholar 

  76. Scarpa G, Massimiliano G, Antonio M, Raffaele G (2018) A CNN-based fusion method for feature extraction from sentinel data. Remote Sens 10(236):1–20

    Google Scholar 

  77. Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz E, Morelli F (2016) Active fire detection using Landsat-8/OLI data. Remote Sens Environ 185:210–220

    Article  Google Scholar 

  78. Seto KC, Fragkias M, Burak G (2011) A meta-analysis of global urban land expansion. PLoS One 6(8)

  79. Seto KC, Woodcock CE, Song C, Huang X, Lu J, Kaufmann RK (2002) Monitoring land-use change in the Pearl River Delta using Landsat TM. Int J Remote Sens 23(10):1985–2004

    Article  Google Scholar 

  80. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: In 3rd International conference on learning representations. ICLR 2015 - Conference Track Proceedings, pp 1–14

    Google Scholar 

  81. Singh A (1989) Review article: digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003

    Article  Google Scholar 

  82. Shaharum NNS, Shafri HZM, Ghani WAWAK, Samsatli S, Prince HM, Yusuf B, Hamud AM (2019) Mapping the spatial distribution and changes of oil palm land cover using an open source cloud-based mapping platform. Int J Remote Sens 40(19):7459–7476

    Article  Google Scholar 

  83. Shakeri M, Dezfoulian MH, Khotanlou H, Barati AH, Masoumi Y (2016) Image contrast enhancement using fuzzy clustering with adaptive cluster parameter and sub-histogram equalization. Digit Signal Process 1:1–13

    Google Scholar 

  84. Song X, Bo C (2011) Change detection using change vector analysis from Landsat TM images in Wuhan. Procedia Environ Sci 11(PART A):238–244

    Google Scholar 

  85. Sumaiya MN, Kumari RSS (2018) Unsupervised change detection of flood affected areas in SAR images using Rayleigh based Bayesian thresholding. IET Radar, Sonar Navigation 12(5):515–522

    Article  Google Scholar 

  86. Szegedy C, Wei L, Yangqing J, Pierre S, Scott R, Dragomir A, Dumitru E, Vincent V, Andrew R (2015) Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  87. Thapa RB, Murayama Y (2009) Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: remote sensing and spatial metrics approaches. Remote Sens 1(3):534–556

    Article  Google Scholar 

  88. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  89. Wang Q, Zhang X, Chen G, Dai F, Gong Y (2018) Change detection based on faster R-CNN for high- resolution remote sensing images. Remote Sensing Letters 9(10):923–932

    Article  Google Scholar 

  90. Wu C, Bo D, Cui X, Zhang L (2017) A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sens Environ 199:241–255

    Article  Google Scholar 

  91. Xie Z, Chen Y, Lu D, Li G (2019) Classification of land cover, forest , and tree species classes with ZiYuan-3 multispectral and stereo data. Remote Sens 11:1–27

    Article  Google Scholar 

  92. Xu D, Ruishan C, Xiaoshi X, Wenpeng L (2017) Detection of decreasing vegetation cover based on empirical orthogonal function and temporal unmixing analysis. Math Probl Eng 2017

  93. Yan Y, Zhang C, Hu Y, Kuang W (2015) Urban land-cover change and its impact on the ecosystem carbon storage in a Dryland City. Remote Sensig 8(6):1–18

    Google Scholar 

  94. Yang J, Gong P, Fu R, Zhang M, Chen J, Liang S, Xu B (2013) The role of satellite remote sensing in climate change studies. Nat Clim Chang pp :1–9

  95. Young NE, Anderson RS, Chignell SM, Vorster AG, Lawrence R, Evangelista PH (2017) A survival guide to Landsat preprocessing. Ecology 98(4):920–932

    Article  Google Scholar 

  96. Yu X, Wu X, Luo C, Ren P (2017) Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework. GIScience and Remote Sensing 54(5):741–758

    Article  Google Scholar 

  97. Yuan H, Van Der Wiele CF, Khorram S (2009) An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sens 1(3):243–265

    Article  Google Scholar 

  98. Zanchetta A, Bitelli G (2017) A combined change detection procedure to study desertification using Opensource tools. Open Geospatial Data, Software and Standards 2(10)

  99. Zareie S, Khosravi H, Nasiri A, Dastorani M (2016) Using Landsat thematic mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran. Solid Earth 7(6):1551–1564

    Article  Google Scholar 

  100. Zeng Y, Wu B, de Bruin S (2008) Change detection of forest crown closure using an inverted geometric-optical model and scaling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVII B7

  101. Zhang J, Jia L, Menenti M, Guangcheng H (2019) Glacier facies mapping using a machine-learning algorithm: the Parlung Zangbo Basin case study. Remote Sens 11(4)

  102. Zhao J, Gong M, Liu J, Jiao L (2014) Deep learning to classify difference image for image change detection. Proceedings of the Proc. Int. Jt. Conf. Neural Netw pp 411–417

  103. Zhu C, Zhang X, Zhang N, Hassan MA, Lin Z (2018) Assessing the defoliation of pine forests in a long time-series and spatiotemporal prediction of the defoliation using Landsat data. Remote Sens 10(3)

  104. Gandhimathi Alias Usha S, Vasuki S (2017) Improved segmentation and change detection of multi-spectral satellite imagery using graph-cut based clustering and multiclass SVM. Multimed Tools Appl 77:15353–15383

    Article  Google Scholar 

  105. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46

    Article  Google Scholar 

  106. Lu D, Batistella M, Moran E (2004) Multitemporal spectral mixture analysis for amazonian land-cover change detection. Can J Remote Sens 30(1):87–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Arya, S. Change Detection Techniques for Land Cover Change Analysis Using Spatial Datasets: a Review. Remote Sens Earth Syst Sci 4, 172–185 (2021). https://doi.org/10.1007/s41976-021-00056-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-021-00056-z

Keywords

Navigation