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Abstract
PDP systems have been widely used for real-life applications, such as systems biology, ecosystems, physics or economy, 
among others. Complex systems related with these areas are simulated in the framework of Membrane Computing using 
objects and membranes that can represent entities or places in the real-life process. In physics, the study of a particle in 
different fluids, depending on their composition, is really interesting for several applications. A first approximation to this 
field is to think that particles move randomly in the available space, without any force that constrains their movements. This 
behavior is known as random walk, and it is used not only in physics but in economics, genetics, and ecology among other 
areas. In this paper, we introduce generic PDP systems for simulating the behavior of particles, both for one-dimensional 
spaces and for two-dimensional spaces, using different simulators to analyze the computational resources consumed.
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1  Introduction

Membrane Computing is a bio-inspired paradigm based on 
the structure and behavior of living cells. It was first intro-
duced in Ref. [12], trying to give an alternative perspective 
to fields such as formal language theory and computability 
theory. The main devices within this framework are the so-
called P systems. Several kinds of these systems have been 

defined, some of them are explained in Refs. [13, 14]. Apart 
from theoretical results, such as computational power and 
efficiency, a wide range of applications have been found 
by specific types of P systems. As some of them can be 
found in Refs. [9, 11, 16], we want to stress the impact of 
probabilistic-like systems, called population dynamics P 
systems, or PDP systems, in the field of ecosystems. From 
the first successful implementation of a model for the endan-
gered species Gypaetus barbatus, or bearded vultures, in 
the Pyrenean and Prepyrenean mountains of Catalonia  [7], 
passing through the Pyrenean chamois [5] and the zebra 
mussel [8] in the fluvial reservoir of Riba-roja, to the Giant 
Panda conservation in China [16], it has been proved that 
this framework is plausible for the simulation of real-life 
processes. In fact, in Refs. [1, 2], two simple models are 
defined to simulate two classical physics problems such as 
the Stern–Gerlach experiment and the Uranium 238 decay. 
Some tools have been developed to simulate and validate 
these models, such as P-Lingua [17], conceiving a gen-
eral framework for simulating several different variants of 
membrane systems, MeCoSim [18], a user-friendly custom-
izable user interface capable of automatizing some tasks for 
users outside of the community of P systems, as well as 
some GPU-based simulators in the PMCGPU project [19], 
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simulating both recognizer and probabilistic P systems using 
GPGPU technologies, more precisely, under the NVIDIA 
CUDA framework. In this work, we want to prove the use-
fulness of these kinds of systems in the simulation of the 
dynamics of particles moving in a free manner. The paper 
is organized as follows: in the next section, some references 
of PDP systems are given. In Sects. 3 and 4, two different 
models for one-dimensional and two-dimensional spaces 
are introduced. Next, we introduce some tools to graph the 
behavior of particles in the space and to show a comparison 
of the time spent in the computations depending on the size 
of the space and the number of particles. The work will be 
closed with some conclusions and open research lines.

2 � PDP systems

PDP systems are a variant of P systems inspired by the func-
tioning of cells. Cells are able to run multiple processes in 
parallel in a perfectly synchronized manner, making them 
good candidates to be imitated for modeling complex prob-
lems. A PDP system can be viewed as a cellular tissue in 
which each cell is within a special compartment called 
environment. The cells have a particular structure hierarchy 
in which there is a skin membrane that defines and distin-
guishes the inside from the outside. In turn, inside a cell, 
there are a number of hierarchically arranged membranes, 
where organelles or chemical substances capable of evolv-
ing according to specific reactions of the membrane may 
appear. PDP systems are probabilistic P systems, that is, the 
applications of their rules are commanded by a predefined 
probability on them. While having the possibility of multiple 
environment and both evolution and environment rules, we 
are going to explain the model of a single PDP system in an 
environment where no environment rules are allowed. For 
a more exhaustive explanation of this model, see Ref. [6].

A PDP system with a single P system of degree q ≥ 1 is 
a tuple

where: 

1.	 Γ is the working alphabet;
2.	 � is a tree-like graph;
3.	 M1,… ,Mq are multisets of objects over Γ , that will be 

placed in the q membranes in the first configuration; and
4.	 R is the set of evolution rules of the type:

•	 u [ v ]h
r
−→u� [ v� ]h , where u, v, u′, v′ are multisets over Γ , 

h ∈ {1,… , q} and r is a probability function.

Π = (Γ,�,M1,… ,Mq,R),

A simple PDP system of degree q can be seen as a set of q 
membranes structured in a tree-like way as defined by � . 
Each multiset of objects Mi is placed in the corresponding 
membrane i in the initial configuration. The system evolves 
as follows: a rule r ≡ u [ v ]h

r
−→u� [ v� ]h is applicable if the 

multiset u is placed in the parent membrane of a membrane 
labeled by h and the multiset v is placed in such a membrane 
labeled by h. If the rule is applied, then the multiset u is 
removed from the parent membrane of such a membrane 
labeled by h, the multiset v is removed from such a mem-
brane labeled by h, the multiset u is placed in the parent 
membrane of a membrane labeled by h, and the multiset v is 
placed in such a membrane labeled by h. The rules will be 
applied in a maximal parallel way; that is, a multiset of rules 
R is not applicable if it is a subset (in the sense of multisets) 
of another applicable multiset of rules. The sum of the prob-
abilities of the rules that share the same left-hand side will 
always be equal to 1. While in this paper, we do not take into 
account polarizations in the membranes, in the original defi-
nition of PDP systems, electrical charges lead to the concept 
of consistent multisets of rules; that is, rules that charge their 
left-hand side must have the same polarization at their right-
hand side. In this context, while it seems that the model is 
clearly defined, some different semantics can arise while the 
following question is asked: what happens when two rules 
do not exactly share the left-hand side but they share some 
objects? In this model, this is allowed and, in fact, the prob-
abilities of the rules that do not share the whole left-hand 
side do not have to sum up to 1. The question then is: how 
are objects distributed between the different rules?

The key of software implementations of these systems are 
conflicts. If two or more rules compete for a resource, the 
algorithm has to take a strategy. The resolution of conflicts 
depends on the algorithm used to simulate the system. Some 
algorithms as the Binomial Block-Based simulation algo-
rithm (BBB) [3], the Direct Non-Deterministic distribution 
with Probabilities algorithm (DNDP) [5], and the Direct dis-
tribution based on Consistent Blocks Algorithm (DCBA) [10] 
have been developed, each of them treating these conflicts 
in a different way. Thus, the state of the system at any time 
step is determined by the state of the system at the previous 
time step.

Depending on the inference engine, the decision on what 
happens if a conflict of objects appears differs. We are going 
to briefly describe the behavior of each of the simulators in 
this sense. The BBB algorithm does not take into account 
this type of conflict, as the real-life cases used did not take 
this behavior into account. The DNDP algorithm will try to 
distribute the objects in the following way: first, a multiset of 
consistent rules will be created, using the number of remain-
ing objects available that fire the rule and the maximum 
number of applications of each rule as the parameter for a 
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binomial distribution. Later, the rest of objects are selected 
to fire rules depending on the probability of the rule (the 
higher the probability, the sooner the rule will be checked). 
Finally, the DCBA algorithm first creates a set of consistent 
blocks that compete for the same resources (i.e., objects). 
In this case, the selection process biases the rules with less 
probability. The process is divided in three phases: first, the 
objects are distributed among the different blocks of rules, 
keeping the consistency of the applied rules. Second, maxi-
mality is pursued by assigning objects to different blocks of 
rules. Lately, for each block, the objects assigned to each 
block are distributed among the different rules of the cor-
responding block using a multinomial distribution function. 
On the one hand, since the BBB algorithm does not check 
anything about the consistency of the applied multisets of 
rules, it is the fastest inference engine. However, if these 
conflicts appear, the results obtained from its simulations 
can lead to non-sense conclusions. On the other hand, since 
it is divided in three computationally intensive stages, the 
DCBA algorithm is not so efficient and, while the results 
can be close to real-life experiments, the simulation time 
can be extremely high and therefore, may not be very useful 
from a practical point of view. For this purpose, a GPGPU 
implementation of this algorithm can be found within the 
PMCGPU project.

3 � The one‑dimensional model

In this model, particles going in a one-dimensional space 
are simulated. In this sense, particles have only two move-
ments options: either going to the left or going to the right. 
Since the PDP system studied has a single environment and 
it is not used, we are going to define directly the behavior of 
the P system under study. Let N be the number of particles 
simulated, and n0 the space available. The corresponding P 
system is a tuple

where: 

1.	 Γ = {ei ∣ 0 ≤ i ≤ N − 1} ∪ {ai,j ∣ 0 ≤ i ≤ N − 1, 0 ≤ j ≤ n0 − 1};
2.	 � = [ ]1;
3.	 M1 = {ei ∣ 0 ≤ i ≤ N − 1};
4.	 The set R contains the following rules:

Objects ei do not directly represent the particles, but they 
will be generated in the first step. In this case, the parti-
cles are generated in the one-dimensional space. We situ-
ate all the particles in the center of the space. Object ai,j 
will represent that particle i will be present in the point j. 
The first subscript is very useful for identifying the particle 

Π = (Γ,�,M1,R),

from other particles in the same system. It can be used, for 
instance, for graphically describing the movement of the 
particle. Particles are not generated directly in the initial 
configuration since it will be useful for future research to be 
able to generate from the initial objects a different number 
of particles or to put them in a specific point of the space.�

ei → ai,j
�
1
for 0 ≤ i ≤ N − 1, j = ⌊n0∕2⌋

From the second configuration, we simulate the ran-
dom movement of the particle. Particles have two possible 
actions: either they move to the left or they move to the right. 
Since the extreme points of the space are limits and they are 
not joint with each other, there are two exceptions to this 
rule: when a particle is at the leftmost point or at the right-
most point. In these cases, the only option for the particle is 
to go to the right or to the left, respectively.

[ ai,j ]1
1∕2
−−→[ ai,j+1 ]1

[ ai,j ]1
1∕2
−−→[ ai,j−1 ]1

⎫
⎪⎬⎪⎭
for

�
0 ≤ i ≤ N − 1,

1 ≤ j ≤ n0 − 2.

[
ai,n0−1 → ai,n0−2

]
1[

ai,0 → ai,1
]
1

}
for 0 ≤ i ≤ N − 1.

4 � The two‑dimensional model

In this model, the behavior of a free movement of parti-
cles in a two-dimensional space is simulated. We simulate a 
two-dimensional space with “walls”; that is, particles cannot 
pass through the limits of the space. Let N be the number 
of particles simulated. Let n0 and n1 be the space available 
in the x axis and in the y axis, respectively; that is, if a par-
ticle is situated in the (i, j) coordinate, 0 ≤ i ≤ n0 − 1 and 
0 ≤ j ≤ n1 − 1 . The corresponding P system is a tuple

where: 

1.	
Γ ={ei ∣ 0 ≤ i ≤ N − 1} ∪ {ai,j,k ∣ 0 ≤ i ≤ N − 1, 0 ≤ j

≤ n0 − 1, 0 ≤ j ≤ n0 − 1} ;
2.	 � = [ ]1;
3.	 M1 = {ei ∣ 0 ≤ i ≤ N − 1};
4.	 The set R contains the following rules:

Objects ei will be transformed into objects ai,j,k in the first 
computational step. As in the one-dimensional case, we 
situate all the particles in the center of the space. Object 
ai,j,k will represent that particle i will be present in the point 
(j, k). It is interesting to keep the position as subscripts for 
having the possibility of creating higher-dimensional spaces 
with the same structure. Particles are not generated directly 
in the initial configuration since it will be useful for future 
research to be able to generate from the initial objects a 

Π = (Γ,�,M1,R),
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different number of particles or to put them in a specific 
point of the space.�

ei → ai,j,k
�
1
for 0 ≤ i ≤ N − 1, j = ⌊n0∕2⌋, k = ⌊n1∕2⌋

From this point, the free movement of the particles will 
be simulated. In this case, instead of having two different 
actions, particles can move in two dimensions; that is, they 
have four possible actions (they are not able to move diago-
nally). There exist two exceptions to this rule as following: 
first, when a particle is situated in an edge of the space. In 
this case, either they move in one of the two directions still 
being in the edge or they move in perpendicular directions 
to the edge (three possible actions). Last, when a particle 
is situated in a corner of the space. In this case, it has the 
option to go to each of the edges that finish at that corner 
(two possible options).

[ ai,j,k ]1
1∕4
−−→[ ai,j−1,k ]1

[ ai,j,k ]1
1∕4
−−→[ ai,j,k+1 ]1

[ ai,j,k ]1
1∕4
−−→[ ai,j+1,k ]1

[ ai,j,k ]1
1∕4
−−→[ ai,j,k−1 ]1

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

for

⎧⎪⎨⎪⎩

0 ≤ i ≤ N − 1,

1 ≤ j ≤ n0 − 2,

1 ≤ k ≤ n1 − 2.

[ ai,j,0 ]1
1∕3
−−→[ ai,j−1,0 ]1

[ ai,j,0 ]1
1∕3
−−→[ ai,j,1 ]1

[ ai,j,0 ]1
1∕3
−−→[ ai,j+1,0 ]1

⎫
⎪⎪⎬⎪⎪⎭

for

�
0 ≤ i ≤ N − 1,

1 ≤ j ≤ n0 − 2.

[ ai,j,n1−1 ]1
1∕3
−−→[ ai,j−1,n1−1 ]1

[ ai,j,n1−1 ]1
1∕3
−−→[ ai,j+1,n1−1 ]1

[ ai,j,n1−1 ]1
1∕3
−−→[ ai,j,n1−2 ]1

⎫
⎪⎪⎬⎪⎪⎭

for

�
0 ≤ i ≤ N − 1,

1 ≤ j ≤ n0 − 2.

[ ai,n0−1,k ]1
1∕3
−−→[ ai,n0−2,k ]1

[ ai,n0−1,k ]1
1∕3
−−→[ ai,n0−1,k+1 ]1

[ ai,n0−1,k ]1
1∕3
−−→[ ai,n0−1,k−1 ]1

⎫
⎪⎪⎬⎪⎪⎭

for

�
0 ≤ i ≤ N − 1,

1 ≤ k ≤ n1 − 2.

[ ai,0,k ]1
1∕3
−−→[ ai,0,k+1 ]1

[ ai,0,k ]1
1∕3
−−→[ ai,1,k ]1

[ ai,0,k ]1
1∕3
−−→[ ai,0,k−1 ]1

⎫
⎪⎪⎬⎪⎪⎭

for

�
0 ≤ i ≤ N − 1,

1 ≤ k ≤ n1 − 2.

[ ai,0,n1−1 ]1
1∕2
−−→[ ai,1,n1−1 ]1

[ ai,0,n1−1 ]1
1∕2
−−→[ ai,0,n1−2 ]1

⎫
⎪⎬⎪⎭
for 0 ≤ i ≤ N − 1.

[ ai,n0−1,n1−1 ]1
1∕2
−−→[ ai,n0−2,n1−1 ]1

[ ai,n0−1,n1−1 ]1
1∕2
−−→[ ai,n0−1,n1−2 ]1

⎫
⎪⎬⎪⎭
for 0 ≤ i ≤ N − 1.

[ ai,0,0 ]1
1∕2
−−→[ ai,0,1 ]1

[ ai,0,0 ]1
1∕2
−−→[ ai,1,0 ]1

⎫
⎪⎬⎪⎭
for 0 ≤ i ≤ N − 1.

[ ai,n0−1,0 ]1
1∕2
−−→[ ai,n0−2,0 ]1

[ ai,n0−1,0 ]1
1∕2
−−→[ ai,n0−1,1 ]1

⎫
⎪⎬⎪⎭
for 0 ≤ i ≤ N − 1.

5 � Evolution of the systems

The evolution of the systems is easy to follow since each 
particle i is represented by an object ai,j (respectively, ai,j,k ) 
that represents that the particle i is in the point (j) (resp., 
(j, k)) of the one-dimensional (resp., two dimensional) space. 
In Fig. 1, we can observe how ten particles move through the 
space along all the computation. This computation has been 
carried out using the BBB algorithm. Take into account that 
the x axis represent the time steps and the y axis represent 
the point where the particles are placed.

6 � Study of the complexity of the systems

We have made simulations for different number of parti-
cles and different sizes of space. One of the first interesting 
points to investigate is the impact of the algorithm used to 
simulate this program. We are comparing the three infer-
ence motors implemented in P-Lingua: BBB, DNDP4 1 and 
DCBA. In Figs. 2 and 3, we can see that BBB is, as expected, 
the most efficient algorithm, and that the time spent while 
using the DCBA algorithm drastically increments as the size 

Fig. 1   Evolution of ten particles in a one-dimensional space

1  This is the last version of the DNDP algorithm.
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or the number of particles increment. The DNDP4, instead, 
keeps a similar time independent of the size or the number 
of particles. While the first two figures are referred to one-
dimensional spaces, Figs. 4 and 5 give the corresponding 
times for the two-dimensional spaces. These times have 
been calculated using the running time of the simulation 
of the systems in a Intel Core i5-8250U CPU @ 1.60GHz 
processor. In the future, we will try to update this compara-
tive with parallel algorithms, such as the ABCD simulator .2 
This simulator is part of the PMCGPU project [19], and it 
parallelizes the concepts included in the DNDP algorithm. 
It would be interesting to see if, for a big lattice or a high 

number of particles, the parallelism improves the behavior 
of the compared algorithms.

7 � Conclusion and future work

In the framework of PDP systems, several applications 
have been found using them as a modeling tool for real-life 
processes. In this sense, the study of particles moving in a 
space is interesting for Monte Carlo processes and different 
types of movements of particles in different fluids. Several 
research lines are open in this field. On the one hand, new 
models can arise to simulate the behavior of different types 

Fig. 2   Time spent in 1000 steps of computation of a one-dimensional 
space of size (50) depending on the number of particles

Fig. 3   Time spent in 1000 steps of computation of 50 particles in a 
one-dimensional space depending on the size

Fig. 4   Time spent in 1000 steps of computation of a two-dimensional 
space of size (10, 10) depending on the number of particles

Fig. 5   Time spent in 1000 steps of computation of 20 particles in a 
two-dimensional space depending on the size

2  https://​sourc​eforge.​net/​proje​cts/​pmcgpu/​files/​ABCD-​GPU/

https://sourceforge.net/projects/pmcgpu/files/ABCD-GPU/
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of movement such as Brownian motion. On the other hand, 
different approaches depending on the simulators are inter-
esting to study.

Virus machines [4] are interesting models of compu-
tation inspired by the spread and replication of viruses 
between hosts. In Ref. [15], authors introduce a variant of 
virus machines, called stochastic virus machines, where the 
instructions are connected to hosts instead of channels, and 
one of the channels going out of the host will be opened 
depending on probability functions associated to them. A 
software for this model can be found in Ref. [20]. It would 
be interesting to see if virus machines are good to simulate 
the behavior studied in this framework, and how the perfor-
mance changes with respect to the framework of membrane 
computing.

Besides, authors have been working lately in a stochas-
tic version of virus machines [4], called stochastic virus 
machines [15], that use probabilities besides weights in the 
channels between the hosts.

We are working on new generators to automatically gen-
erate different systems depending on the number of dimen-
sions, number of particles and so on.
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