
Vol.:(0123456789)

Journal of Membrane Computing
https://doi.org/10.1007/s41965-024-00145-0

RESEARCH PAPER

Simple variants of non‑cooperative polymorphic P systems

Anna Kuczik1 · György Vaszil1

Received: 17 December 2023 / Accepted: 21 March 2024
© The Author(s) 2024

Abstract
We investigate the computational power of non-cooperative polymorphic P systems with no additional ingredients. The vari-
ants we study are even more simple in the sense that the sets of possible right-hand sides of the dynamically changing rules
are finite. We show that systems with this type of restriction characterize exactly the class of Parikh sets of ET0L languages.

Keywords P systems with dynamic rules · Polymorphic P systems · P systems with non-cooperative rules · P systems with
limited depth · Parikh sets of ET0L languages

1 Introduction

Membrane systems or P systems were introduced in [1] as
a computing model based on an abstract view of the pro-
cesses taking place in living cells. They consist of a nested
structure of membranes, and the regions delimited by these
membranes contain different multisets of objects. These
multisets are transformed step by step during the functioning
of the system until the result is produced when the system
reaches a halting configuration. In the basic variant of the
model, the objects can be rewritten in each computational
step by parallel application of multi-set rewriting rules, or
they can be transferred (communicated) between neighbor-
ing regions. More details on the different variants and their
computational properties can be found in the monograph [2]
or in the handbook [3].

Besides the static rule sets associated to the regions (as
considered in the original variant of the model), several
methods were also introduced with the aim of making the
rule sets more “dynamic”, that is, with the aim of construct-
ing systems which are able to change not only the objects,
but also the rules that are applicable to the objects. One of

the first of these types of models were called generalized P
systems, see [4], where the operators acting on the objects
could also be changed by the system during the computation.
Features like rule creation or the inhibiting/de-inhibiting of
rules were also considered in [5] and in [6]. In this work,
we focus on another one of these dynamic models called
polymorphic P systems, which was introduced in [7].

Polymorphic P systems were motivated by the idea that
the program of a computing device could be viewed as data.
Therefore, it could also be changed during the course of the
computation. In these types of P systems, rules are not stati-
cally defined, but are dynamically inferred from the contents
of pairs of membranes: The contents of one member of the
pair define the multiset representing the left-hand side of the
rule, the contents of the other member define the right-hand
side. As the membranes can contain further membranes, the
contents of the pairs, and this way the left- and right-hand
sides of rules may change dynamically during the computa-
tion. See the survey [8] for more information.

The initial results presented in [7] show the power of the
model. With cooperative rules (rules with left-hand sides
having more than one objects) any recursively enumerable
set of numbers can be generated, but non-cooperative sys-
tems (systems with rules having just one object on the left-
hand side) can also generate several interesting languages,
mainly based on the fact that exponential, even super-expo-
nential growth of the number of objects inside the system
can be produced.

The study of non-cooperative variants of the model was
continued further in [9] by considering the case of “no ingre-
dients”, that is, when no special features (not even target

Anna Kuczik and György Vaszil have contributed equally to this
work.

 * György Vaszil
 vaszil.gyorgy@inf.unideb.hu

 Anna Kuczik
 kuczik.anna@inf.unideb.hu

1 Faculty of Informatics, University of Debrecen, Kassai út 26,
4028 Debrecen, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-024-00145-0&domain=pdf

 A. Kuczik, G. Vaszil

indicators) are added to the system. The equivalence of so-
called strong and weak polymorphism was shown, left poly-
morphism, right polymorphism, and general polymorphism
was defined. As its main contribution, [9] presented a hierar-
chy of computational power based on the depth of the mem-
brane structure, but in general, many questions concerning
the computational capabilities of the non-cooperative variant
remained open for further investigation.

In the present work, we intend to take some additional
steps in this direction. We show that (1) Parikh sets of ET0L
languages can be generated using non-cooperative polymor-
phic P systems (with no other ingredients) of depth three
where all non-dynamical rules are “chain rules”, and that (2)
ET0L systems can generate string languages corresponding
to the multiset languages of non-cooperative polymorphic
P system where the set of the possible contents of regions
corresponding to right-hand sides of rules is finite. This
gives us an exact characterization of the class of Parikh sets
of ET0L languages in terms of restricted variants of non-
cooperative polymorphic P systems. Polymorphic P systems
were already considered in connection with Lindenmayer
systems in [10], where so called bounded L systems were
simulated by polymorphic P systems with target indicators.

In the following, after reviewing the necessary defi-
nitions, we present in Sect. 3 how ET0L systems can be
simulated with non-cooperating polymorphic P systems of
depth three. Then, in Sect. 4 we consider systems which may
have unlimited depth, but a limited complexity in the sense
that the behavior of their membranes can be described by
finite transition systems. We show that these types of non-
cooperating polymorphic systems, regardless of their depth,
characterize the class of Parikh sets of languages generated
by ET0L systems.

2 Preliminaries

In the following, we briefly define the basic notions we will
use. See [11] for more on formal language theory, and [2, 3]
for details about membrane computing.

An alphabet V is a finite non-empty set of symbols called
letters. A string (or word) over V is a finite sequence of let-
ters, the set of all strings over V (the free monoid generated
by V) is denoted by V∗ , and V+ = V∗ ⧵ {�} where � denotes
the empty string. For a string w ∈ V∗ , we denote by |w|x
the number of occurrences of the letter x ∈ V in w. If we
fix an order V = {a1, a2,… , an} of the letters, then the vec-
tor (|w|a1 , |w|a2 ,… , |w|an) is called the Parikh vector of the
word w ∈ V∗.

Multisets can be thought of as sets with multiplici-
ties associated to their elements. If ℕ denotes the set
of nonnegative integers, then a multiset over a set U is a

mapping M ∶ U → ℕ where M(a), for all a ∈ U , is the
multiplicity of element a in the multiset M. If U is finite,
U = {a1, a2,… an} , then M can also be represented
by the vector (M(a1),M(a2),… ,M(an)) or by a string
w = a

M(a1)

1
a
M(a2)

2
… a

M(an)
n (and all permutations of this string)

where aj denotes the string obtained by concatenating j ∈ ℕ
occurrences of the letter a ∈ V (with a0 = �). Note that the
vector representation of a multiset coincides with the Parikh
vector of the string representations.

We will also need the notion of a finite transition system
which is defined as a triple M = (Q, q, �) where Q is a finite
set of states, q ∈ Q is the initial state, and � ∶ Q → 2Q is
the state transition mapping. A state q� ∈ �(q) is called the
successor state of q, and q ∈ Q is called a halting state if
�(q) = �.

Lindenmayer systems (or L systems) are parallel rewrit-
ing systems introduced in [12] with the aim of describing
the development of simple biological organisms in terms
of formal languages. For more information on the area of L
systems, see the book [13]. In the following, we will use the
variants which are extended, tabled, and interactionless, that
is, ET0L systems in short.

An ET0L system is a construct G = (V , T ,U,w) where V
is an alphabet, T ⊆ V is a terminal alphabet, w ∈ V+ is the
initial word of G, and U = (P1,… ,Pm) where Pi, 1 ≤ i ≤ m ,
are finite sets of context-free productions over V (called
tables), such that for each a ∈ V , there is at least one rule
a → �, � ∈ V∗ in each table. In a computational step in G,
all the symbols of the current sentential form are rewritten
using one of the tables of U. The language generated by G
consists of all terminal strings which can be generated in a
series of computational steps (a derivation) starting from
the initial word, that is, L(G) = {u ∈ T∗ ∣ w ⇒

∗ u} where
⇒ denotes a computational step, and ⇒∗ is the reflexive and
transitive closure of ⇒.

It is known (see [14], for example) that for each ET0L
system with an arbitrary number of tables, there exists an
ET0L system with only two tables generating the very same
language.

Moreover, since we are going to relate ET0L languages
to the multiset languages of P systems, we are not interested
in the string generated by the ET0L system as a sequence of
letters, but only in the multiplicities of different letters, that
is, in the Parikh vectors of the generated strings. We will
denote by Ps(G) the set of Parikh vectors corresponding the
strings of L(G) (also called the Parikh set of L(G)), and by
PsET0L the class of Parikh sets corresponding to the class
of languages generated by ET0L systems.

Polymorphic membrane systems were introduced in [7].
Unlike in traditional membrane systems, the rules rules in
polymorphic P systems are not fixed in advance, but they

Simple variants of non-cooperative polymorphic P systems

are defined by the contents of specific membrane regions
corresponding to the left- and right-hand sides of the rule.

A polymorphic P system of degree 2n + 1 for some
n ∈ ℕ is a construct

where O is the alphabet of objects, T ⊆ O is the set of
terminal objects, � is the membrane structure consisting
of 2n + 1 membranes labeled by a symbol from the set
H = {s, 1L, 1R,… , nL, nR} , the elements of the multiset
ws are the initial contents of the skin membrane, the pairs
of multi-sets ⟨wiL,wiR⟩ correspond to the initial contents of
membranes iL and iR, 1 ≤ i ≤ n , and ho ∈ H is the label of
the output membrane.

The membrane structure is usually denoted by a string
of labeled and matching parentheses, but it can also be
represented by a tree with its root labeled by the label
of the outermost membrane, and the descendant nodes of
each node labeled by the labels of membranes enclosed
by the region corresponding to the given node. In the fol-
lowing, the number of nodes encountered during the tra-
versal of the longest path from the root to a leaf in such a
tree representation will be called the depth of the mem-
brane system. (For example, the system which only has
one membrane is of depth 1, while the system with a pair
of nested membranes is of depth 2.) Note that for every
1 ≤ i ≤ n , the membranes iL and iR have the same parent
membrane, so they are located at the same depth.

The rules of Π are not given statically in the descrip-
tion, but are dynamically deduced for each configura-
tion based on the content of the membrane pairs iL and
iR, 1 ≤ i ≤ n . Thus, if in the configuration of the system
these membranes contain the multisets u and v, then in the
next step their parent membrane is transformed as if the
u → v multiset rewriting rule were added to it.

If there is at least one rule in a system Π where the num-
ber of objects in u (the multiset on the left-hand side) can
grow to be greater than one, then we say that Π is a coop-
erative system, otherwise, it is a non-cooperative system.
If iL is empty for some 1 ≤ i ≤ n in a configuration, then
the rule defined by the pair iL, iR is considered disabled,
that is, no rule will be inferred from the contents of iL and
iR for use in the next computational step.

A computation of the system is a series of computa-
tional steps in which the rules associated to a given region
are applied in a maximally parallel way, that is, as many
rules have to be applied in parallel as possible (with the
restriction that each object can be rewritten by at most one
rule). A P system halts (reaches a halting configuration)
when no more computational steps are possible, that is,
when no rule can be applied in any of the regions.

Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, ho),

The set of vectors generated by a P system Π with the
terminal alphabet T ⊆ O is the set of vectors representing
the multisets of the terminal objects appearing in the output
region ho in a halting configuration of Π which is reached
by a computation starting in the initial configuration of the
system.

We denote the classes of non-cooperative polymor-
phic membrane systems and the sets of vectors they
generate as OP(polym, ncoo) and L(OP(polym, ncoo)) ,
respectively (polym stands for polymorphism, and ncoo
means that the system is non-cooperative). To emphasize
limited depth, we may also write OPk(polym, ncoo) and
L(OPk(polym, ncoo)) where k denotes the depth of the sys-
tems under consideration.

Now we recall an example of a simple polymorphic mem-
brane system with super-exponential growth from [7].

Example 1 Consider the polymorphic P system

with membrane structure � = [[]1L [[]2L []2R]1R]s as
illustrated in Fig. 1.

In the initial configuration, the rule corresponding to the
contents of 1L, 1R (rule 1) is a → a , and it will be applied
in the skin region. The rule corresponding to 2L, 2R (rule
2) is a → aa , and it will be applied in region 1R. In the first
step, rule 1 is applied in the skin leaving the contents of the
membrane intact, and rule 2 is applied in membrane 1R dou-
bling the number of a’s, so rule 1 (the rule corresponding to
1L, 1R) will be changed to a → aa . In the second step, rule
1 will transform the multiset a in the skin into aa, and rule
2 will double the contents of region 1R again, so after this
step, rule 1 becomes a → a4 . In general, after k derivation
steps, the contents of 1R will be a2k , so rule 1 will have the
form a → a2

k . As the number of a’s in the skin will be 2
k(k−1)

2 ,
the rate of growth of the contents of the skin membrane is
super-exponential.

Π1 = ({a}, {a},�, a, ⟨a, a⟩, ⟨a, aa⟩, s)

Fig. 1 The membrane structure and the initial configuration of the
polymorphic P system Π1 of Example 1

 A. Kuczik, G. Vaszil

3 Polymorphic P systems with limited depth

In this section, we examine the relationship of languages
generated by ET0L systems and simple polymorphic P sys-
tems, where simplicity is captured by non-cooperation and
limited depth. We look at an example first.

Example 2 Consider the following ET0L system
G = (V , T ,U,w) with V = {a1, a2} , T = {a1} , w = a1a2 , and
two tables U = (P1,P2) , each containing two rules

We construct a non-cooperative polymorphic P system Π2
with depth 3 that can perform the choosing between rules
of P1 and P2 , and therefore can simulate the operation of G.

Let O = {a1, a2, a
�
1
, a�

2
, a0

1
, a0

2
, a1

1
, a1

2
, ā1, ā2,

̄̄a1, ̄̄a2,
̄̄̄a1,

̄̄̄a2, b, c, d,F} ,
T � = {a1} and

where the membrane structure of Π2 is such that the
skin membrane directly contains the membranes
1L, 1R, 17L, 17R,… , 28L, 28R , and the rest of the mem-
branes are contained by 1L and 1R. In more detail, � is
defined as

where membrane 1L contains the inner membranes
[]2L []2R …[]6L []6R , and membrane 1R contains the inner
membranes []7L []7R …[]16L []16R.

The graphical representation of � can be seen in Fig. 2
where also the initial membrane contents are depicted.
Non-dynamical rules, that is, pairs of membranes
[wiL]iL, [wiR]iR with constant contents (contents that never
change during the computation) are given in a simplified
notation as wiL → wiR . Note that in this example, we only
have one rule that changes dynamically, rule 1 (the rule cor-
responding to the regions 1L, 1R), the other rules have the
same form at each step of the computation.

The initial contents of the regions with non-constant con-
tents are

the initial multisets contained by the rest of the regions are
given (using the simplified notation) in Fig. 2.

The functioning of Π2 is demonstrated in Table 1. The
first column contains the step number, the second column
shows the form of rule 1 (defined by the membranes 1L, 1R)
before the corresponding step, the third column contains
the objects in the skin region, while the fourth, fifth, and

P1 ={a1 → a1a2, a2 → a2a1a1}, and

P2 ={a1 → a1, a2 → a1}.

Π2 = (O,T �,�,ws, ⟨w1L,w1R⟩,… , ⟨w28L,w28R⟩, s)

� = [[…]1L […]1R []17L []17R …[]28L []28R]s

ws = a�
1
a�
2
c, w1L = b, w1R = b,

sixth columns contain the rules we (need to) use in the same
computational steps.

The general idea behind the functioning of Π2 is as fol-
lows: Rules 17–20 simulate the rewriting process of the
tables of G. Those with left-hand side ā1 or ā2 simulate
the first table, those with left-hand side ̄̄a1, ̄̄a2 simulate the
second table. The objects of the skin region correspond to
the sentential form of G. Rule 1 is “dynamic”, it prepares
the objects of the skin membrane for the application of the
rules 17–20 in the appropriate order. At the beginning of a
“simulating cycle”, rule 1 is used to rewrite a1 (more pre-
cisely, its variant, a′

1
) to ā1 or ̄̄a1 selecting this way the table

to be simulated. Then, rule 1 changes to rewrite a′
2
 according

to the same selection while rules 17–20 proceed with the
actual simulation of the chosen table. The rest of the rules
are needed to synchronize the whole process.

Table 1 shows how the rewriting of a1a2 to a1a2a2a1a1
by the first table of G is simulated in Π2 . In the initial state,
the form of rule 1 is b → b which is not applicable because
we only have objects a′

1
, a′

2
, c in the skin region, so we have

to change rule 1 in the first step. In 1L we can use rule 2
(b → a′

1
) which rewrites b in 1L to a′

1
 making rule 1 appli-

cable. In parallel, we have to use rule 7 (b → ā1) or rule 10
(b → ̄̄a1) in 1R depending on the table of the ET0L system
we want to simulate. To simulate P1 , we must use rule 7,
to simulate P2 , we must use rule 10. As we would like to
simulate P1 , we use rule 7. Rule 14 (b →

̄̄̄a1) is used only
in the terminating phase of the computation, see below for
more details.

As can be seen in the second row of Table 1, the form of
rule 1 has changed, and now we can use it in the skin region

Fig. 2 The membrane structure and the initial configuration of P sys-
tem Π2 of Example 2. Non-dynamical rules are given in a simplified
rewriting-rule-like notation

Simple variants of non-cooperative polymorphic P systems

to rewrite a′
1
 to ā1 . At the same time, the rules used in 1L

and 1R (a′
1
→ a′

2
 , ā1 → ā2 , respectively) change the form of

rule 1 to a′
2
→ ā2 in order to be able to start rewriting a′

2
 -s

in the next step.
After we have used rule 1 and the objects in the skin

region have changed, we can use rule 17 (̄a1 → a1
1
a1
2
) which

simulates the first rule from the table P1 of G. The upper
indexing of the symbols on the right-hand side starts from
1, and it will decrease in each of the following steps until
the symbols are written back into the original primed form
(after counting down with the indices to zero) at the appro-
priate step, that is, at the step when the rewriting of the other
symbol, a′

2
 is also finished.

Meanwhile, in step 3, rule 1 (a′
2
→ ā2) is also applied to

rewrite a′
2
 (so the second rule of table P1 of G can also be

simulated), and rule 1 is changed to c → c (so it does not
change the contents of the skin region in the next step).

Then, with rule 19 (̄a2 → a0
2
a0
1
a0
1
), the rule a2 → a2a1a1

(the second rule of P1) is simulated, while rules 21 and 23
decrement the upper indices of the objects introduced by
the simulation of the previous rule, and the form of rule 1 is
changed to b → b.

Now, as can be seen in row 5 of Table 1, the system is
ready to prepare the next simulating cycle by rewriting the
objects corresponding to the sentential form of G to their
original primed versions, and changing rule 1 in the appro-
priate way. We can return to a state that is similar to the
initial state by choosing between rule 7 and rule 10 again
(to simulate another step from the ET0L system), and in
parallel, by rewriting a0

1
 -s and a0

2
 -s to a′

1
 -s and a′

2
 -s with rules

22 and 24.
The simulation of the ET0L system can be stopped at

the steps which precede the table selection phase of the
simulation. If both 1L and 1R contain the object b and we
want to stop the simulating process, we can choose rule 14
(b →

̄̄̄a1) instead of rule 7 or 10, which will change the sym-
bols to their triple-barred versions in the skin membrane.
As a1 ∈ T , the symbol ̄̄̄a1 can be rewritten to the terminal
symbol a1 , but since a2 ∉ T , the symbol ̄̄̄a2 is changed to F
which will never result in a halting configuration (because
of the rule F → F). In the next step, rule 4 (a′

2
→ c) and

rule 16 (̄̄̄a2 → 𝜆) is used in the regions 1L and 1R, respec-
tively, so it will be possible to remove the symbol c from the
skin, enabling the halting of the system in the case when no
nonterminal symbols are present. Otherwise, if nonterminal
objects were present in the beginning of the finishing phase,
then the symbol F was introduced, so rule 27 (F → F) pre-
vents the halting of the system. The finishing phase of the
computation is shown in Table 2.

The halting of the system is also impossible if rule 6
(b → d) is used “too early" (when rules 14 − 16 were not
yet applied in region 1R) since the symbol c and the rule
c → c is present in the skin region. Thus, the result of a
halting computation of Π2 is a multiset over T = {a1} in the
skin membrane (the output membrane of the system) which
corresponds to the Parikh set of a string that can be gener-
ated by the ET0L system G.

Now we show how the idea presented in the example
above can be generalized to arbitrary ET0L systems.

Theorem 1 PsET0L ⊆ L(OP3(polym, ncoo)).

Proof Let G = (V , T ,U,w) be an ET0L system, let k denote
the number of letters in the alphabet, V = {a1, a2, ..., ak} ,
and let T = {a1,… , al} ⊆ V for some l ≤ k . Without loss
of generality, we assume that G has exactly two tables,
U = (P1,P2) . We denote the jth rule of table i, 1 ≤ i ≤ 2

Table 1 The first few
computational steps of the
polymorphic system Π2 of
Example 2

Step Rule 1 Contents Rule Rule Other rules used
of the Skin used in 1L used in 1R in the Skin

1 b → b a
′
1
a
′
2
c 2 7 27

2 a
′
1
→ ā1 a

′
1
a
′
2
c 3 8 27

3 a
′
2
→ ā2 ā1a

′
2
c 4 9 17, 27

4 c → c a
1

1
a
1

2
ā2c 5 13 19, 21, 23, 27

5 b → b a
0

1
a
0

2
a
0

2
a
0

1
a
0

1
c 2 7 or 10 22, 24, 27

6 a
′
1
→ ā1 or a′

1
→ ̄̄a1 a

′
1
a
′
2
a
′
2
a
′
1
a
′
1
c . . .

Table 2 The last computational steps of a successful computation in
the polymorphic system Π2 of Example 2

Step Rule 1 Contents Rule Rule Other rules
used

of the Skin used in 1 L used in 1R in the Skin

(n − 4) b → b a
0

1
… a

0

1
c 2 14 22, 27

(n − 3) a
′
1
→

̄̄̄a1
a
�
1
… a

�
1
c 3 15 27

(n − 2) a
′
2
→

̄̄̄a2
̄̄̄a1 …

̄̄̄a1c
4 16 25, 27

(n − 1) c → � a1 … a1c 5 − −
(n). b → � a1 … a1 6 − −

d → � a1 … a1 − − −

 A. Kuczik, G. Vaszil

(and their left- and right-hand sides) as �i,j → �i,j , where
�i,j ∈ V and �i,j ∈ V∗ , 1 ≤ j ≤ m . In order to simplify the
notation, we assume that the cardinality of the two tables
are the same, m = |P1| = |P2| . If this is not the case, that
is, if |P1| < |P2| = m , then �1,j → �1,j for |P1| + 1 ≤ j ≤ |P2|
(or �2,j → �2,j for |P2| + 1 ≤ j ≤ |P1| if |P2| < |P1| = m) will
denote the same rule as �1,1 → �1,1 (or �2,1 → �2,1).

Let

and let

where p = (5k + 8) + 2m + k2 + 2 and the membrane struc-
ture of Π is such that the skin region directly contains the
membranes with labels 1L, 1R and iL, iR for (4k + 9) ≤ i ≤ p ,
while the rest of the membranes are contained by 1L and 1R.
In more detail, � is defined as

with membrane 1L containing the membranes
[]2L []2R …[](k+4)L [](k+4)R , and membrane 1R containing
the membranes [](k+5)L [](k+5)R …[](4k+8)L [](4k+8)R.

In 1L, the number of rules depends on the number of let-
ters in the alphabet of the ET0L system, we have to apply
k + 2 rules for each table simulation in succession (where
k = |V|). In general, we specify the rules for the k letters as

These rules perform the same task as the rules of 1L in
Example 2 do for two letters. In order to be able to finish the
simulation, we also need the additional rule rk+4 ∶ b → d
(see the end of the proof for more details).

Note that here we have used the simplified notation again
for membranes with contents that remain constant for the
whole computation. (Without this simplification we would
have to write ⟨w2L,w2R⟩ and specify w2L = b , w2R = a�

1

instead of the rule r2 ∶ b → a�
1
 , for example.)

Rules applied in 1R determine on the choice of the table,
so we have to introduce rules for P1 and P2 . We need

to enable the simulation of P1 , the rules

O ={a�
i
, an

i
, āi, ̄̄ai,

̄̄̄ai ∣ 1 ≤ i, n ≤ k} ∪ {ai ∣ 1 ≤ i ≤ l} ∪ {b, c, d,F},

T ={ai ∣ 1 ≤ i ≤ l},

Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wpL,wpR⟩, s)

� = [[…]1L […]1R [](4k+9)L [](4k+9)R …[]pL []pR]s

r2 ∶ b → a�
1
, ri+2 ∶ a�

i
→ a�

i+1
, for 1 ≤ i ≤ k − 1, and

rk+2 ∶ a�
k
→ c, rk+3 ∶ c → b.

rk+5 ∶ b → ā1, rk+5+i ∶ āi → āi+1 for 1 ≤ i ≤ k − 1,

r2k+5 ∶ āk → c,

r2k+6 ∶ b → ̄̄a1, r2k+6+i ∶ ̄̄ai → ̄̄ai+1 for 1 ≤ i ≤ k − 1,

r3k+6 ∶ ̄̄ak → c,

to enable the simulation of P2 , and one more rule
r3k+7 ∶ c → b to finish the process.

To end the simulation, we need to be able to stop the
functioning of Π in the case when the skin region contains
(primed variants of) terminal letters only, that is, objects
only from the set {a�

1
,… , a�

l
} = {a� ∣ a ∈ T} . In order to do

this, we introduce a mechanism that is similar to the simula-
tion of the tables. To 1R, we add the rules

In the skin region, we go through the objects of the alpha-
bet applying the rules of the chosen table to each of them
in a sequence, the rules for the occurrences of one specific
object at a time. For this reason, we use indexed variants of
the symbols which are produced in the intermediate steps,
so they are able to “wait” until the rules for the rest of the
objects are also applied. To achieve this effect, we add extra
rules decreasing the indices in such a way that we get back
to the primed form a�

1
, a�

2
,… , a�

k
 for all objects at the same

computational step.
Recall our assumption that |P1| = |P2| = m , and that we

denote the jth rule of table i, 1 ≤ i ≤ 2 , as �i,j → �i,j where
�i,j ∈ V and �i,j ∈ V∗ , 1 ≤ j ≤ m . In the following we will use
the notation � l

i,j
 for some 1 ≤ l ≤ k to express that

� l
i,j
∈ {al

1
, al

2
,… , al

k
}∗ is the indexed version of the corre-

sponding string �i,j ∈ {a1, a2,… , ak}
∗.

Now we add the following rules to the skin region. To
simulate the rules of P1 , we need

where �1,j = ai for some ai ∈ {a1, a2,… ak} and 1 ≤ j ≤ m.
For the simulation of P2 , we have

where �2,j = ai for some ai ∈ {a1, a2,… ak} and 1 ≤ j ≤ m.
After rewriting with the rules above, we have to use rules

to count down with the indices of the objects that were pro-
duced until the last element of the alphabet is rewritten (sim-
ilarly to the way we count down in the example). To achieve
this, for each ai, 1 ≤ i ≤ k , we need

In order to stop the system, we use the rules

r3k+8 ∶ b →
̄̄̄a1, r3k+8+i ∶

̄̄̄ai →
̄̄̄ai+1 for

1 ≤ i ≤ k − 1, r4k+8 ∶
̄̄̄ak → 𝜆.

r4k+8+j ∶ āi → 𝛽k+1−i
1,j

for each rule 𝛼1,j → 𝛽1,j ∈ P1

r4k+8+m+j ∶ ̄̄ai → 𝛽k+1−i
2,j

for each rule 𝛼2,j → 𝛽2,j ∈ P2

r4k+8+2m+(i−1)k+n ∶ a
n

i
→ a

n−1
i

for 2 ≤ n ≤ k, and

r4k+8+2m+(i−1)k+1 ∶ a
1

i
→ a

�

i
.

r4k+8+2m+k2+i ∶
̄̄̄ai → 𝛿i where 𝛿i = ai if ai ∈ T or

𝛿i = F if ai ∉ T ,

Simple variants of non-cooperative polymorphic P systems

for 1 ≤ i ≤ k in the skin region. If the multiset in the skin
region corresponding to the current sentential form of the
simulated ET0L system contains primed versions of termi-
nals only, that is, elements of the set {a�

1
,… , a�

l
} , then these

rules rewrite them to terminal objects. Otherwise, if nonter-
minal objects are present (that is, if the simulation should
not be stopped), they introduce the nonterminal F which
prevents the halting of the system because the rule

is also present in the skin region.
The simulation of the ET0L system can be stopped as

follows: If both 1L and 1R contain the object b, then choos-
ing rule r3k+8 ∶ b →

̄̄̄a (instead of rule rk+5 ∶ b → ā or
r2k+6 ∶ b → ̄̄a) will change the symbols to their triple-barred
versions and then to terminals in the skin membrane, and
produce c and � in region 1L and 1R, respectively, so the
object c can also be removed from the skin region. Now,
if rule rk+4 ∶ b → d is chosen to be applied in region 1L,
then the system halts producing a multiset of terminals in
the skin.

If nonterminal objects were still present in the skin region
at the beginning of the finishing phase (that is, if the simula-
tion should not produce any result), then the symbol F was
introduced, so the rule r5k+8+2m+k2+1 ∶ F → F prevents the
halting of the system.

If rule rk+4 ∶ b → d is applied before the nonterminals
are removed from the skin region, then the symbol c is still
present, so if we also add the rule

it prevents the halting of the system.
When Π halts, the result is a multiset over

T = {a1, a2,… , al} which corresponds to a terminal string
that can be generated by the ET0L system G.

To see that the P system Π cannot produce multisets that
do not correspond to the Parikh set of a string generated by
the ET0L system, observe the construction of Π . Informally
speaking, there are just a few points where the rule appli-
cation in Π is not deterministic (apart from simulating the
possibility when one symbol can be rewritten by more than
one rule of the ET0L system). These nondeterministic steps
involve the choice of the table of G to be simulated and the
choice whether to finish or to continue the computation, so
we might conclude that the behavior of the P system cor-
responds to an ET0L system derivation. ◻

r5k+8+2m+k2+1 ∶ F → F

r5k+8+2m+k2+2 ∶ c → c,

4 Polymorphic P systems with finite sets
of instances of dynamic rules

Since there is no communication between the regions
(as we consider P systems with “no ingredients”), the
sequence of multisets appearing inside a given region
as the computation proceeds only depends on the initial
contents of the region itself. To formalize this idea, we
introduce a successor relation defined on the contents of
regions.

Let Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, ho) be a
polymorphic P system, and let wj,h for some
h ∈ {s, 1L, 1R,… , nL, nR} denote the multiset contained by
the region labeled by h after the jth step of the computation
of Π for some j ≥ 0 . We say that w′

j,h
 is in the successor set

of wj,h , denoted as w�
j,h

∈ �j,h(wj,h) , if w′
j,h

 can be obtained
from wj,h by the maximally parallel applications of the mul-
tiset rewriting rules associated to the region h, as can be
deduced from the configuration of Π which is reached in the
jth step of the computation.

If for the same wj,h as above, we fix �0
j,h
(wj,h) = {wj,h} for

any j ≥ 0 , and for k ≥ 0 we have �k+1
j,h

= �j+k,h(�
k
j,h
(wj,h))

(where we extend the range of the function from multisets
to sets of multisets in the natural way), then we can define

Definition 1 Given a polymorphic P system Π as above, we
say that a region h of Π is finitely representable or FIN-
representable in short, if the set of successor multisets of
the initial contents of h, wh , is finite, that is, �∗

0,h
(wh) is finite.

First, we demonstrate the notion of FIN-representability
on an example.

Example 3 Consider the polymorphic P system

where O = T = {a, b, c, d, e} , and the membrane structure
is � = [[…]1L […]1R]s , where the child membranes of
1 L are []2L []2R …[]5L []5R and the children of 1R are
[]6L []6R …[]8L []8R . Let

and using the simplified notation for static (non-dynamic)
rules, let the rules applicable in 1L be

and the rules applicable in 1R be

�∗
j,h

=
⋃

k≥0

�k
j,h
(wj,h).

Π3 = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨w8L,w8R⟩, s)

ws = a, w1L = a, w1R = aa,

r2 ∶ a → c, r3 ∶ a → b, r4 ∶ b → a, r5 ∶ c → d,

 A. Kuczik, G. Vaszil

as can also be seen in Fig. 3.
In the following, we show that both 1L and 1R

are FIN-representable. Concerning 1L, observe that
�∗
0,1L

(a) = {a, b, c, d} w i t h �0,1L(a) = �j,1L(a) = {b, c} ,
�0,1L(b) = �j,1L(b) = {a} , �0,1L(c) = �j,1L(c) = {d} , and
�0,1L(d) = �j,1L(d) = � for all j ≥ 0 , which can be repre-
sented with the graph in Fig. 4a.

Considering 1R, �0,1R(aa) = �j,1R(aa) = {bb, be, ee} ,
�0,1R(ae) = �j,1R(ae) = {be, ee} , �0,1R(bb) = �j,1R(bb) = {aa} ,
�0,1R(be) = �j,1R(be) = {ae} , and �0,1R(ee) = �j,1R(ee) = � ,
thus, �∗

0,1R
(aa) = {aa, bb, ae, be, ee} , as can be seen on

Fig. 4b.
The skin region is not FIN-representable, as the

dynamical rule r1 given by the membranes labeled with
1L and 1R has more than one symbol on its right-hand
side in each computational step, and this means that
the number of symbols in the skin region is increasing
with each rule application. To see this, consider the fol-
lowing. Initially, r1 ∶ a → aa , so �0,s(a) = {aa} . Then
r1 ∈ {c → be, c → ee, c → bb, b → be, b → ee, b → bb} ,
so it is not applicable, �2

0,s
(a) = �1,s(aa) = {aa} . Then

r1 ∈ {d → aa, d → ae, d → ee, a → aa, a → ae, a → ee} ,
thus, �3

0,s
(a) = �2

2,s
(aa) = �3,s(aa) = {aaaa, aaae, aaee, aeee, eeee} .

As we see by the construction of the system, the rule a → aa
might appear arbitrary many times during the subsequent
parts of the computation, the multiplicity of objects in the

r6 ∶ a → b, r7 ∶ b → a, r8 ∶ a → e,

skin region might keep increasing, so this region cannot be
FIN-representable according to Definition 1.

Given a non-cooperative polymorphic system as defined
above, left-hand sides of rules have at most one symbol, so
the membranes with labels iL, 1 ≤ i ≤ n , are always FIN-
representable. The situation is different, however, in the
case of membranes iR, 1 ≤ i ≤ n . If at least one of the rules
which is applicable (in an arbitrary number of computa-
tional steps) during a computation inside some right-hand
membrane has more than one symbol on its right-hand
side, then the corresponding dynamic rule has arbitrary
many possible instances, so the region corresponding to
its right-hand side cannot be FIN-representable.

Let us denote by OP(polym, ncoo, fin) the class of non-
cooperative polymorphic membrane systems of degree
2n + 1 where all right-hand side regions, iR, 1 ≤ i ≤ n , are
FIN-representable, and let L(OP(polym, ncoo, fin)) denote
the class of vectors that they generate.

If a region is FIN-representable, we can describe the
sequences of possible contents that can appear during the
computations with a finite transition system.

D e f i n i t i o n 2 L e t Π ∈ OP(polym, ncoo, fin) b e a
FIN-representable polymorphic P system with
Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, s) , and l e t
M = (Q, q0, �) be a transition system. We say that M repre-
sents the rule configurations of Π if the contents of the pairs
of membranes labeled by 1L, 1R,… , nL, nR of the configura-
tion sequences of Π

are in a one-to-one correspondence with the state sequences

of the transition system M. Moreover, qh, h ≥ 0 , is a halting
state of M, if and only if no rules are applicable in any of the
regions 1L, 1R,… , nL, nR in the corresponding configuration

(ws,w1L,w1R,… ,wnL,wnR)

= (w0
s
,w0

1L
,w0

1R
,… ,w0

nL
,w0

nR
) ⇒

⇒ (w1
s
,w1

1L
,w1

1R
,… ,w1

nL
,w1

nR
) ⇒ … ⇒

(wi
s
,wi

1L
,wi

1R
,… ,wi

nL
,wi

nR
) ⇒ …

q0 = q0 ⇒ q1 ⇒ … ⇒ qi ⇒ …

Fig. 3 The initial configuration of the polymorphic P system Π3 of
Example 3

Fig. 4 Graphical demonstra-
tion of the possible membrane
contents of the P system Π3 of
Example 3 with arrows indicat-
ing the initial contents and the
successor relation between the
multisets (which are given by
their string representations)

Simple variants of non-cooperative polymorphic P systems

(wh
s
,wh

1L
,wh

1R
,… ,wh

nL
,wh

nR
) of Π . Note that M, as the evolu-

tion of the rule configurations of Π can be nondeterministic.

In the following lemma, we describe how such a repre-
sentation can be constructed.

Le m m a 2 Fo r a n y p o l y m o r p h i c P s y s t e m
Π ∈ OP(polym, ncoo, fin) , we can construct a finite transi-
tion system MΠ which represents the rule configurations of
Π.

Proof Let Π ∈ OP(polym, ncoo, fin) be a polymorphic P sys-
tem with Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, s) , and
let 1L, 1R,… , lL, lR for some l ≤ n be the labels of those
regions which are directly enclosed in the skin membrane.
We construct a finite transition system M1…l which repre-
sents the rule configurations of Π by describing how the
k-tuples of rules corresponding to these regions are changing
during the computations.

We start with constructing representations of the ele-
mentary membranes at the deepest level of the system, and
continue upwards, level by level, finally arriving to those
regions which are enclosed by the skin membrane.

(1) If a membrane labeled by h ∈ {1L, 1R… , nL, nR} is
an elementary membrane, then let Mh = (Qh, q̄h, 𝛿h) , where

• Qh = {q̄h} = {(wh, �)} , and
• �h ∶ Qh → 2Qh such that 𝛿h(q̄h) = �.

This transition system has a single state which is a pair
of the unchanging membrane contents and an empty set,
the set of rules that can be used for changing the contents.

As we move upwards in the hierarchy, a similar represen-
tation will be constructed for each region: the states of the
transition systems are pairs of the (dynamically changing)
membrane contents and sets of rules which can be used to
transform them.

(2) If we have already constructed MiL = (QiL, q̄iL, 𝛿iL)
and MiR = (QiR, q̄iR, 𝛿iR) for the pair of elementary mem-
branes labeled by iL, iR for some 1 ≤ i ≤ n , we construct
Mi = (Ri, r̄i, 𝛿i) to represent the (non-dynamical) rule cor-
responding to this pair of membranes with

• Ri = {r̄i} = {(q̄iL, q̄iR)} w h e r e q̄iL = (wiL, ∅), q̄iR =
(wiR, ∅) , and

• �i ∶ Ri → 2Ri such that 𝛿i(r̄i) = �.

We also say that (using the above notation) r̄i corresponds
to the rule wiL → wiR.

(3) If the elementary membranes that are directly
enclosed by the non-elementary membrane (their parent
membrane) with label h are labeled by i1L, i1R,… , ikL, ikR ,

and we have already constructed Mi1
,… ,Mik

 with
Mij

= (Rij
, r̄ij , 𝛿ij) for all the pairs ijL, ijR, 1 ≤ j ≤ k , then we

construct the representation Mh in two steps.
(3.1) We first construct Mi1…ik

= (Ri1…ik
, r̄i1…ik

, 𝛿i1…ik
)

with

• Ri1…ik
= {r̄i1…ik

} = {(r̄i1 ,… , r̄ik)} , and
• �i1…ik

∶ Ri1…ik
→ 2Ri1…ik such that �i1…ik

(ri1…ik
) = �.

We say that r̄i1…ik
 corresponds to the set of rules

{wi1L
→ wi1R

,… ,wikL
→ wikR

}.
(3.2) Given Mi1…ik

 and the initial multiset wh , we can con-
struct Mh = (Qh, q̄h, 𝛿h) as

• Qh = 𝜎∗
0,h
(wh) × {r̄i1…ik

} , the direct product of the pos-
sible contents of region h and the representation of the
set of rules corresponding the pairs of (elementary)
regions ijL, ijR, 1 ≤ j ≤ k,

• q̄h = (wh, r̄i1…ik
) , the pair of the initial contents and rep-

resentation of the set of rules associated to the region,
and

• �h ∶ Qh → 2Qh such that (u�
h
, r̄i1…ik

) ∈ 𝛿h(uh, r̄i1…ik
) if and

only if

– the multiset u′
h
 can be obtained from uh by the maxi-

mally parallel application of the set of rules
{ri1 ,… , rik} corresponding to r̄i1…ik

 , denoted as
uh ⇒{ri1

,…,rik
} u

�
h
 , or

– if none of the rules corresponding to r̄i1…ik
 are appli-

cable to uh , then the state (uh, r̄i1…ik
) is a halting state

in Mh , 𝛿h(uh, r̄i1…ik
) = �.

Now we repeat the above procedure also for the non-elemen-
tary membranes as follows:

(4) If we have already constructed MiL = (QiL, q̄iL, 𝛿iL) and
MiR = (QiR, q̄iR, 𝛿iR) for the pair of (not necessarily elemen-
tary) membranes labeled by iL, iR for some 1 ≤ i ≤ n , we
construct Mi = (Ri, r̄i, 𝛿i) to represent the dynamical rule cor-
responding to this pair of membranes. Let

• Ri = QiL × QiR,
• r̄i = (q̄iL, q̄iR) , and
• �i ∶ Ri → 2Ri such that (q�

iL
, q�

iR
) ∈ �i(qiL, qiR) , if and only

if

– q�
iL
∈ �iL(qiL) and q�

iR
∈ �iR(qiR) , or

– if �iL(qiL) = � and q�
iR
∈ �iR(qiR) (or if �iR(qiR) = �

and q�
iL
∈ �iL(qiL)) then q�

iL
= qiL (or q�

iR
= qiR ,

respectively), or

 �i(qiL, qiR) = � , if and only if and �iL(qiL) = �iR(qiR) = �

.

 A. Kuczik, G. Vaszil

(5) If the membranes that are directly enclosed by the non-
elementary membrane (their parent membrane) with label h
are labeled by i1L, i1R,… , ikL, ikR , and we have already con-
structed Mi1

,… ,Mik
 Mij

= (Rij
, r̄ij , 𝛿ij) for all the pairs

ijL, ijR, 1 ≤ j ≤ k , then we construct the representation Mh
in two steps.

(5.1) We first construct Mi1…ik
= (Ri1…ik

, r̄i1…ik
, 𝛿i1…ik

)
with

• Ri1…ik
= Ri1

×… × Rik
,

• r̄i1…ik
= (r̄i1 ,… , r̄ik) , and

• �i1…ik
∶ Ri1…ik

→ 2Ri1…ik s u ch t h a t (r′i1 ,… , r′ik) ∈
�i1…ik (ri1 ,… , rik) , if and only if

– r�
ij
∈ �ij(rij) for all ij, 1 ≤ j ≤ k , or

– if �ij(rij) = � , but there is at least one il , such that
�il(ril) ≠ � , 1 ≤ j, l ≤ k , then r�

ij
= rij , and

 �i1…ik
(ri1 ,… , rik) = � , if and only if, �ij(rij) = � for all

ij, 1 ≤ j ≤ k.

(5.2) Given Mi1…ik
 and the initial multiset wh , we can con-

struct Mh = (Qh, q̄h, 𝛿h) as

• Qh = �∗
0,h
(wh) × Ri1…ik

 , the direct product of the possible
contents of region h and the representation of the pos-
sible k element sets of rules determined by the actual
configuration of the pairs of regions ijL, ijR, 1 ≤ j ≤ k,

• q̄h = (wh, r̄i1…ik
) , the pair of the initial contents and the

set of rules represented by the initial configuration, and
• �h ∶ Qh → 2Qh such that (u�

h
, r�

i1…ik
) ∈ �h(uh, ri1…ik

) if and
only if

– the multiset u′
h
 can be obtained from uh by the maxi-

mally parallel application of the set of rules of
{ri1 ,… , rik} corresponding to ri1…ik

 denoted as
uh ⇒{ri1

,…,rik
} u

�
h
 , and

– r�
i1…ik

∈ �i1…ik
(ri1…ik

) , or if �i1…ik
(ri1…ik

) = � , then
r�
i1…ik

= ri1…ik
 , or

– if r�
i1…ik

∈ �i1…ik
(ri1…ik

) , but none of the rules
{ri1 ,… , rik} corresponding to ri1…ik

 are applicable to
uh , then u�

h
= uh.

 If none of the cases above holds, that is, none of the
rules corresponding to ri1…ik

 is applicable to uh , and
�i1…ik

(ri1…ik
) = � , then �h(uh, ri1…ik

) = � , thus, the state
(uh, ri1…ik

) is a halting state in Mh.

Based on the above steps, we can construct a finite transition
system Mh for each FIN-representable region h, such that
the states of Mh correspond to the possible pairs of contents
and collections of applicable rules, and the state sequences

of Mh correspond to the sequences of dynamically changing
pairs of possible membrane contents and the corresponding
rule collections.

If Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, s) with
1L, 1R,… , lL, lR , l ≤ n being the labels of those regions
which are directly enclosed in the skin membrane, and we let
MΠ = M1…l , then the states of MΠ represent the dynamically
changing collections of rules applicable in the skin region
which can change as allowed by the possible transitions of
MΠ . In short, MΠ represents the rule configurations of Π .
 ◻

Example 4 Let us construct the representations of finitely
representable membranes MΠ3

= M1 for the P system of
Example 3. Starting with the elementary membranes, we
get M2L = ({(a, �)}, (a, �), �2L) , M2R = ({(c, �)}, (c, �), �2R)
such that �2L(a, �) = �2R(c, �) = � , and M2 = (R2, r̄2, 𝛿2)
with R2 = {(a, �)} × {(c, �)} = {((a, �), (c, �))} = {r̄2} , and
𝛿2(r̄2) = � . Similarly, we can construct Mi = (Ri, r̄i, 𝛿i) for all
i, 2 < i ≤ 8 , which all have a similar structure.

Now, given the transition systems M2,… ,M5 we con-
struct M1L as follows. We start with the construction of
M2…5 = (R2…5, r̄2…5, 𝛿2…5) as

• R2…5 = {r̄2…5} where
• r̄2…5 = (r̄2,… , r̄5) w i t h r̄2 = ((a, �), (c, �)) ,

r̄3 = ((a, �), (b, �)) , ̄r4 = ((b, �), (a, �)) , ̄r5 = ((c, �), (d, �)) ,
and

• 𝛿2…5(r̄2…5) = �.

Note that the rule set corresponding to r̄2…5 (using
the rule labels from Example 3 to denote the rules) is
{r2, r3, r4, r5} = {a → c, a → b, b → a, c → d}.

Now we c a n c o n s t r u c t M1L = (Q1L, q̄1L, 𝛿1L)
a s fo l lows . The se t o f poss ib le s t a tes i s
Q1L = {a, b, c, d} × {(r̄2, r̄3, r̄4, r̄5)} , that is,

the initial state is q̄1L = (a, (r̄2, r̄3, r̄4, r̄5)) , and the transition
mapping is defined as

With a similar construction, we can construct
M1R = (Q1R, q̄1R, 𝛿1R) as

Q1L = {(a, (r̄2, r̄3, r̄4, r̄5)), (b, (r̄2, r̄3, r̄4, r̄5)),

(c, (r̄2, r̄3, r̄4, r̄5)), (d, (r̄2, r̄3, r̄4, r̄5))},

𝛿1L(a, (r̄2, r̄3, r̄4, r̄5)) ={(c, (r̄2, r̄3, r̄4, r̄5)), (b, (r̄2, r̄3, r̄4, r̄5)},

𝛿1L(c, (r̄2, r̄3, r̄4, r̄5)) ={(d, (r̄2, r̄3, r̄4, r̄5))},

𝛿1L(b, (r̄2, r̄3, r̄4, r̄5)) ={(a, (r̄2, r̄3, r̄4, r̄5))},

𝛿1L(d, (r̄2, r̄3, r̄4, r̄5)) =�.

Q1R = {(aa, (r̄6, r̄7, r̄8)), (bb, (r̄6, r̄7, r̄8,)), (be, (r̄6, r̄7, r̄8)),

(ae, (r̄6, r̄7, r̄8)), (ee, (r̄6, r̄7, r̄8))},

Simple variants of non-cooperative polymorphic P systems

where we use a similar notation as above with
r̄6 = ((a, �), (b, �)) , r̄7 = ((b, �), (a, �)) , r̄8 = ((a, �), (e, �)) ,
and

Now, given M1L and M1R we can construct M1 = MΠ3
 as

M1 = (R1, r̄1, 𝛿1) where

is the set of states, and r̄1 = ((a, (r̄2, r̄3, r̄4, r̄5)), (aa,
(r̄6, r̄7, r̄8))) is the initial state corresponding to the rule
a → aa.

If we denote (r̄2, r̄3, r̄4, r̄5) and (r̄6, r̄7, r̄8) as r̄2…5 and r̄6…8 ,
respectively, then the transition relation is defined as follows.

We can now prove the following theorem.

Theorem 3 L(OP(polym, ncoo, fin)) ⊆ PsET0L.

𝛿1R(aa, (r̄6, r̄7, r̄8)) ={(bb, (r̄6, r̄7, r̄8)),

(be, (r̄6, r̄7, r̄8)), (ee, (r̄6, r̄7, r̄8))},

𝛿1R(bb, (r̄6, r̄7, r̄8)) ={(aa, (r̄6, r̄7, r̄8))},

𝛿1R(be, (r̄6, r̄7, r̄8)) ={(ae, (r̄6, r̄7, r̄8))},

𝛿1R(ae, (r̄6, r̄7, r̄8)) ={(be, (r̄6, r̄7, r̄8)), (ee, (r̄6, r̄7, r̄8))},

𝛿1R(ee, (r̄6, r̄7, r̄8)) =�.

R1 = Q1L × Q1R,

𝛿1((a, r̄2…5), (aa, (r̄6…8)) = {((b, r̄2…5), (bb, (r̄6…8)),

((b, r̄2…5), (be, (r̄6…8)),

((b, r̄2…5), (ee, (r̄6…8)), ((c, r̄2…5), (bb, (r̄6…8)),

((c, r̄2…5), (be, (r̄6…8)), ((c, r̄2…5), (ee, (r̄6…8))},

𝛿1((b, r̄2…5), (bb, (r̄6…8)) = {((a, r̄2…5), (aa, (r̄6…8))},

𝛿1((b, r̄2…5), (be, (r̄6…8)) = {((a, r̄2…5), (ae, (r̄6…8))},

𝛿1((b, r̄2…5), (ee, (r̄6…8)) = {((a, r̄2…5), (ee, (r̄6…8))},

𝛿1((c, r̄2…5), (bb, (r̄6…8)) = {((d, r̄2…5), (aa, (r̄6…8))},

𝛿1((c, r̄2…5), (be, (r̄6…8)) = {((d, r̄2…5), ae)},

𝛿1((c, r̄2…5), (ee, (r̄6…8)) = {((d, r̄2…5), (ee, (r̄6…8))},

𝛿1((a, r̄2…5), (ae, (r̄6…8)) = {((c, r̄2…5), (be, (r̄6…8)),

((c, r̄2…5), (ee, (r̄6…8)),

((b, r̄2…5), (be, (r̄6…8)), ((b, r̄2…5), (ee, (r̄6…8))},

𝛿1((a, r̄2…5), (ee, (r̄6…8)) = {((c, r̄2…5), (ee, (r̄6…8)),

((b, r̄2…5), (ee, (r̄6…8))},

𝛿1((d, r̄2…5), (aa, (r̄6…8)) = {((d, r̄2…5), (ee, (r̄6…8)),

((d, r̄2…5), (be, (r̄6…8)),

((d, r̄2…5), (bb, (r̄6…8))},

𝛿1((d, r̄2…5), (ae, (r̄6…8)) = {((d, r̄2…5), (ee, (r̄6…8)),

((d, r̄2…5), (be, (r̄6…8))},

𝛿1((d, r̄2…5), (bb, (r̄6…8)) = {((d, r̄2…5), (aa, (r̄6…8))},

𝛿1((d, r̄2…5), (be, (r̄6…8)) = {((d, r̄2…5), (ae, (r̄6…8))},

𝛿1((d, r̄2…5), (ee, (r̄6…8)) = �.

Proof Let Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, s)
be a polymorphic P system, Π ∈ OP(polym, ncoo, fin) , and
let us assume (without loss of generality) that the mem-
branes that are directly contained in the skin region are
labeled by the labels 1L, 1R,… , kL, kR , k ≤ n . Since both
the left- and right-hand membranes iL, iR, 1 ≤ i ≤ k , are
FIN-representable, we can construct the transition system
MΠ = (RΠ, r̄Π, 𝛿Π) = M1…k = (R1…k, r̄1…k, 𝛿1…k) as described
in the proof of Lemma 2. For any q = (r1,… , rk) ∈ RΠ , let
us denote the set of rules corresponding to (r1,… , rk) by
rules(q).

Now, based on MΠ , we construct an ET0L system
G = (V , T ,U,w) , where V is the alphabet, T is the terminal
alphabet with T ⊆ V , w is the initial string, and U is a set
of tables, U = {Pq ∣ q ∈ RΠ} ∪ {Pq,Pq,halt ∣ q ∈ RΠ is a

halting state } ∪ {P
halt

} containing at most three tables for
each state of MΠ and one additional table.

The ET0L system G is defined as follows:

Given a state q ∈ RΠ , let us denote for a rule
r ∶ u → v ∈ rules(q) by r� ∶ u� → v� the rule h(u) → h(v)
w h e r e i f w = a1 … at , ai ∈ O, 1 ≤ i ≤ t , t h e n
h(w) = h(a1)… h(at) for h(a) = a� ∈ V .

The axiom is given as

where w�
s
= h(ws) , the primed version of a string correspond-

ing the initial contents of the skin region of Π.
We construct a table Pq for each state q ∈ RΠ as

Note that the rules Dq → Dq can be applied when q is a halt-
ing state. The rule Dz → F ensures that the table is only
applied when the computation is in the appropriate state,
since the symbol F functions as a trap: if the rule Dz → F is
applied during the computation, the system will never pro-
duce a terminal string.

Note also that for each object x that does not have a rule
above, we assume that x → x is present in each table.

It must be checked that the table belonging to the halting
state can only be used in the appropriate step. In order to
achieve this, it is necessary to introduce new tables for each
q ∈ RΠ , which can only be used if q is a halting state. For
each halting state q, we construct the tables Pq and Pq,halt as
follows. Let

V ={a� ∣ a ∈ O} ∪ {Dq,Dq,Dq,halt ∣ q ∈ RΠ} ∪ {F,Dhalt} ∪ T .

w =DrΠ
w�
s
,

Pq ={r
� ∣ r ∈ rules(q)} ∪ {Dq → Ds ∣ s ∈ �Π(q)}∪

{Dq → Dq ∣ �Π(q) = �}∪

{Dz → F ∣ Dz ≠ Dq}.

 A. Kuczik, G. Vaszil

Since q ∈ RΠ is a halting state, the rule configuration repre-
sented by q does not change in the P system Π any more
during the computation. Thus, Π reaches a halting state, if
and only if the rules represented by q are not applicable in
the skin membrane. G guesses that this is the case by intro-
ducing the symbol Dq,halt . After applying the rule
Dq → Dq,halt , the table Pq,halt makes sure that the current
rules are not applicable by introducing trap symbols if any
of them are. This is achieved by

In the case of the corresponding configuration of Π being
a non-halting configuration, the use of this table causes all
rewritable symbols to be rewritten to F and the computation
will not produce any result.

In the case of a proper halting configuration (if the sym-
bol F is not introduced), an additional table, table Phalt must
be used. This table deletes the marker symbols and rewrites
the remaining letters to terminals as follows.

By the construction above, a1a2 … ak ∈ L(Π) implies that
a1a2 … ak is an element of L(G). The other way around, we
may also see that if a1a2 … ak is successfully produced by
G, then a1a2 … ak must also be an element of L(Π) . ◻

Corollary 4 L(OP(polym, ncoo, fin)) = PsET0L.

Proof By observing the proof of Theorem 1, we may see
that for any ET0L system G, the right-hand regions of the P
system Π ∈ OP3(polym, ncoo) constructed to simulate G are
FIN-representable. Combining this observation with Theo-
rem 3 we obtain our statement. ◻

Example 5 Consider the polymorphic P system of Example
3 which can be seen in Fig. 3. Let us construct an ET0L
system G = (V , T ,U,w) simulating this membrane system
based on the transition system MΠ3

= M1 = (R1, r̄1, 𝛿1) from

Pq ={r
� ∣ r ∈ rules(q)} ∪ {Dq → Dq,Dq → Dq,halt}∪

{Dx → F ∣ Dx ≠ Dq}.

Pq,halt ={u
�
→ F ∣ u → v ∈ rules(q)}∪

{Dq,halt → Dhalt}∪

{Dx → F ∣ Dx ≠ Dq,halt}.

Phalt ={X → � ∣ X ∈ O ⧵ {a� ∣ a ∈ T}}∪

{a� → a ∣ a ∈ T}∪

{Dx → F ∣ Dx ≠ Dhalt}.

Example 4. The nonterminal alphabet of G includes O, a
set of labeled symbols and trap symbol in addition, the ter-
minals correspond to the terminal objects of the P system,
and the axiom corresponds to the initial contents of the skin
region and the initial rule configuration of the P system.

Recall that according to the above construction, we need
the nonterminals Dq , Dq̄ , and Dq̄,halt in the alphabet of the
ET0L system for all states q ∈ R1 , and for the initial state,
for example, these would be written as D((a,r̄2…5),(aa,r̄6…8))

 ,
D((a,r̄2…5),(aa,r̄6…8))

 , and D((a,r̄2…5),(aa,r̄6…8)),halt
 . Since the rules

cor responding to the (elementary) membranes
2L, 2R,… , 8L, 8R , t ha t i s , r̄2…5 = (r̄2,… , r̄5) and
r̄6…8 = (r̄6,… , r̄8) do not change during the computation, for
the sake of simplicity, we use the symbols Da→aa , Da→aa , and
Da→aa,halt , that is, Dr , Dr , and Dr,halt for r ∈ rules(q) instead
of the more general and precise notation that would be nec-
essary for more complicated membrane structures. Thus, we
have

We start by constructing the first table which contains the
current instance of the rule associated to the skin membrane,
that is, the rule corresponding to r̄1 , the relabeling rules, and
additional rules for identical rewriting of the other symbols
(because ET0L systems rewrite every symbol at every step)
which we do not indicate in the tables below, for the sake
of brevity.

The construction of the relabeling rules is based on the
number of different configurations that can be obtained after
the next computational step. Since there are six possible con-
figurations that the P system can reach in the first step, the
symbol Da→aa can be relabeled in six ways, either to Db→bb ,
Dc→bb , Db→be , Dc→be , Db→ee , or Dc→ee.

Based on similar considerations, we construct tables for each
non-halting state q ∈ R1.

As q11 with d → ee ∈ rules(q11) is a halting state of M1 , we
have

V ={a, a�, b, b�, c, c�, d, d�, e, e�} ∪ {Dr,Dr,Dr,halt ∣

r ∈ rules(q), q ∈ R1}∪

{Dhalt,F},

T ={a, b, c, d, e},

w =Da→aaa
�.

Pr̄1
={Da→aa → D𝛼→𝛽 ∣ 𝛼 ∈ {b, c}, 𝛽 ∈ {bb, be, ee}}∪

{Dz → F ∣ Dz ≠ Da→aa} ∪ {a� → a�a�}.

Pq ={Dr → Dr� ,Dz → F ∣ r ∈ rules(q), r� ∈ rules(q�) for

q� ∈ �1(q), z ≠ r}∪

{��
→ �� ∣ � → � ∈ rules(q)}.

Simple variants of non-cooperative polymorphic P systems

and finally

Figure 5 shows a graph which is based on the order in
which the application of the tables constructed above can
be applied.

5 Conclusion

We have shown how ET0L systems can be simulated by
restricted variants of non-cooperative polymorphic P system
of depth three, then showed that the simulation also works
the other way around, even if the depth of the simulated P
systems is not limited, but the regions are finitely repre-
sentable. Thus, a precise characterization of Parikh sets of
ET0L languages can be obtained in term of polymorphic
P systems. Our work is intended to be an initial step in the
investigation of the computing power of non-cooperative
polymorphic systems with limited depth or FIN-represent-
able regions.

Pd→ee ={Dd→ee → Dd→ee,Dz → F ∣ z ≠ d → ee}∪

{d′ → e′e′},

Pd→ee ={Dd→ee → Dd→ee,Dd→ee → Dd→ee,halt,

Dz → F ∣ z ≠ d → ee}∪

{d′ → e′e′},

Pd→ee,halt ={Dd→ee,halt → Dhalt,Dz → F ∣ z ≠ d → ee, halt}∪

{d′ → F},

Phalt ={Dhalt → �,Dz → F ∣ z ≠ halt}∪

{x� → x ∣ x ∈ {a, b, c, d, e}}.

Funding Open access funding provided by University of Debrecen.

Data availability No datasets were generated or analysed during the
current study.

Declarations

Conflict of interest The authors have no relevant financial or non-fi-
nancial interests to disclose.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Păun, G. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61(1), 108–143. https:// doi. org/ 10.
1006/ jcss. 1999. 1693.

 2. Păun, G. (2002). Membrane computing: An introduction. Berlin,
Heidelberg: Springer. https:// doi. org/ 10. 1007/ 978-3- 642- 56196-2.

 3. Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
Oxford handbook of membrane computing. Oxford: Oxford Uni-
versity Press.

 4. Freund, R. (1999). Generalized P-systems. In G. Ciobanu & G.
Păun (Eds.), Fundamentals of computation theory (Lecture Notes
in Computer Science, vol. 1684, pp. 281–292). Berlin, Heidelberg:
Springer. https:// doi. org/ 10. 1007/3- 540- 48321-7_ 23.

 5. Arroyo, F., Baranda, A. V., Castellanos, J., & Păun, G. (2002).
Membrane computing: the power of (rule) creation. Journal of
Universal Computer Science, 8(3), 369–381. https:// doi. org/ 10.
3217/ jucs- 008- 03- 0369.

 6. Cavaliere, M., Ionescu, M., & Ishdorj, T.-O. (2005). Inhibiting/
de-inhibiting rules in P systems. In G. Mauri, G. Păun, M. J.
Pérez-Jiménez, G. Rozenberg, & A. Salomaa (Eds.), Membrane
computing (Lecture Notes in Computer Science, vol. 3365, pp.
224–238). Berlin, Heidelberg: Springer. https:// doi. org/ 10. 1007/
978-3- 540- 31837-8_ 13.

 7. Alhazov, A., Ivanov, S., & Rogozhin, Y. (2011). Polymorphic P
systems. In M. Gheorghe, T. Hinze, G. Păun, G. Rozenberg, & A.
Salomaa (Eds.), Membrane computing (Lecture Notes in Com-
puter Science, vol. 6501, pp. 81–94). Berlin, Heidelberg: Springer.

 8. Alhazov, A., Ivanov, S., & Freund, R. (2016). Polymorphic P sys-
tems: A survey. Bulletin of the International Membrane Comput-
ing Society, 2, 79–101.

 9. Ivanov, S. (2014). Polymorphic P systems with non-cooperative
rules and no ingredients. In M. Gheorghe, G. Rozenberg, A. Salo-
maa, P. Sosík, & C. Zandron (Eds.), Membrane computing (Lec-
ture notes in computer science, vol. 8961, pp. 258–273). Cham:
Springer.

 10. Román, G. (2019). Inference of bounded L systems with poly-
morphic P systems. Journal of Membrane Computing, 1, 52–57.
https:// doi. org/ 10. 1007/ s41965- 019- 00007-0.

Fig. 5 The graph structure representing the order in which the tables
constructed in Example 4 can be applied after each other. The labels
denote the states of MΠ3

 and the corresponding rules

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/3-540-48321-7_23
https://doi.org/10.3217/jucs-008-03-0369
https://doi.org/10.3217/jucs-008-03-0369
https://doi.org/10.1007/978-3-540-31837-8_13
https://doi.org/10.1007/978-3-540-31837-8_13
https://doi.org/10.1007/s41965-019-00007-0

 A. Kuczik, G. Vaszil

 11. Rozenberg, G., & Salomaa, A. (Eds.). (1997). Handbook of formal
languages. Berlin Heidelberg: Springer.

 12. Lindenmayer, A. (1968). Mathematical models for cellular interac-
tions in development I. Filaments with one-sided inputs. Journal
of Theoretical Biology, 18(3), 280–299. https:// doi. org/ 10. 1016/
0022- 5193(68) 90079-9.

 13. Rozenberg, G., & Salomaa, A. (1992). Lindenmayer systems:
Impacts on theoretical computer science, computer graphics, and
developmental biology. Berlin, Heidelberg: Springer.

 14. Ehrenfeucht, A., Rozenberg, G., & Skyum, S. (1976). A relation-
ship between ET0L and EDT0L languages. Theoretical Computer
Science, 1(4), 325–330. https:// doi. org/ 10. 1016/ 0304- 3975(76)
90076-1.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Anna Kuczik graduated in com-
puter science from the Faculty of
Informatics of the University of
Debrecen in 2022. She started
her PhD in the same year at the
Doctoral School of Informatics.
Her current research interests
include unconventional compu-
tational models and their appli-
cations, membrane computing
and rough set theory.

György Vaszil obtained his PhD
in 2001 at the Eötvös Loránd
University of Budapest. Since
2015, he is full professor at the
Faculty of Informatics of the
University of Debrecen where he
is the head of the Department of
Computer Science. His research
interests include the theory of
formal languages and automata,
unconventional or nature moti-
vated computational models,
such as bio-inspired models like
membrane systems. He has pub-
lished more than 150 papers in
international journals, confer-

ences, and workshops.

https://doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1016/0304-3975(76)90076-1
https://doi.org/10.1016/0304-3975(76)90076-1

	Simple variants of non-cooperative polymorphic P systems
	Abstract
	1 Introduction
	2 Preliminaries
	3 Polymorphic P systems with limited depth
	4 Polymorphic P systems with finite sets of instances of dynamic rules
	5 Conclusion
	References

