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Abstract
We investigate the computational power of non-cooperative polymorphic P systems with no additional ingredients. The vari-
ants we study are even more simple in the sense that the sets of possible right-hand sides of the dynamically changing rules 
are finite. We show that systems with this type of restriction characterize exactly the class of Parikh sets of ET0L languages.
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1 Introduction

Membrane systems or P systems were introduced in [1] as 
a computing model based on an abstract view of the pro-
cesses taking place in living cells. They consist of a nested 
structure of membranes, and the regions delimited by these 
membranes contain different multisets of objects. These 
multisets are transformed step by step during the functioning 
of the system until the result is produced when the system 
reaches a halting configuration. In the basic variant of the 
model, the objects can be rewritten in each computational 
step by parallel application of multi-set rewriting rules, or 
they can be transferred (communicated) between neighbor-
ing regions. More details on the different variants and their 
computational properties can be found in the monograph [2] 
or in the handbook [3].

Besides the static rule sets associated to the regions (as 
considered in the original variant of the model), several 
methods were also introduced with the aim of making the 
rule sets more “dynamic”, that is, with the aim of construct-
ing systems which are able to change not only the objects, 
but also the rules that are applicable to the objects. One of 

the first of these types of models were called generalized P 
systems, see [4], where the operators acting on the objects 
could also be changed by the system during the computation. 
Features like rule creation or the inhibiting/de-inhibiting of 
rules were also considered in [5] and in [6]. In this work, 
we focus on another one of these dynamic models called 
polymorphic P systems, which was introduced in [7].

Polymorphic P systems were motivated by the idea that 
the program of a computing device could be viewed as data. 
Therefore, it could also be changed during the course of the 
computation. In these types of P systems, rules are not stati-
cally defined, but are dynamically inferred from the contents 
of pairs of membranes: The contents of one member of the 
pair define the multiset representing the left-hand side of the 
rule, the contents of the other member define the right-hand 
side. As the membranes can contain further membranes, the 
contents of the pairs, and this way the left- and right-hand 
sides of rules may change dynamically during the computa-
tion. See the survey [8] for more information.

The initial results presented in [7] show the power of the 
model. With cooperative rules (rules with left-hand sides 
having more than one objects) any recursively enumerable 
set of numbers can be generated, but non-cooperative sys-
tems (systems with rules having just one object on the left-
hand side) can also generate several interesting languages, 
mainly based on the fact that exponential, even super-expo-
nential growth of the number of objects inside the system 
can be produced.

The study of non-cooperative variants of the model was 
continued further in [9] by considering the case of “no ingre-
dients”, that is, when no special features (not even target 
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indicators) are added to the system. The equivalence of so-
called strong and weak polymorphism was shown, left poly-
morphism, right polymorphism, and general polymorphism 
was defined. As its main contribution, [9] presented a hierar-
chy of computational power based on the depth of the mem-
brane structure, but in general, many questions concerning 
the computational capabilities of the non-cooperative variant 
remained open for further investigation.

In the present work, we intend to take some additional 
steps in this direction. We show that (1) Parikh sets of ET0L 
languages can be generated using non-cooperative polymor-
phic P systems (with no other ingredients) of depth three 
where all non-dynamical rules are “chain rules”, and that (2) 
ET0L systems can generate string languages corresponding 
to the multiset languages of non-cooperative polymorphic 
P system where the set of the possible contents of regions 
corresponding to right-hand sides of rules is finite. This 
gives us an exact characterization of the class of Parikh sets 
of ET0L languages in terms of restricted variants of non-
cooperative polymorphic P systems. Polymorphic P systems 
were already considered in connection with Lindenmayer 
systems in [10], where so called bounded L systems were 
simulated by polymorphic P systems with target indicators.

In the following, after reviewing the necessary defi-
nitions, we present in Sect. 3 how ET0L systems can be 
simulated with non-cooperating polymorphic P systems of 
depth three. Then, in Sect. 4 we consider systems which may 
have unlimited depth, but a limited complexity in the sense 
that the behavior of their membranes can be described by 
finite transition systems. We show that these types of non-
cooperating polymorphic systems, regardless of their depth, 
characterize the class of Parikh sets of languages generated 
by ET0L systems.

2  Preliminaries

In the following, we briefly define the basic notions we will 
use. See [11] for more on formal language theory, and [2, 3] 
for details about membrane computing.

An alphabet V is a finite non-empty set of symbols called 
letters. A string (or word) over V is a finite sequence of let-
ters, the set of all strings over V (the free monoid generated 
by V) is denoted by V∗ , and V+ = V∗ ⧵ {�} where � denotes 
the empty string. For a string w ∈ V∗ , we denote by |w|x 
the number of occurrences of the letter x ∈ V  in w. If we 
fix an order V = {a1, a2,… , an} of the letters, then the vec-
tor (|w|a1 , |w|a2 ,… , |w|an) is called the Parikh vector of the 
word w ∈ V∗.

Multisets  can be thought of as sets with multiplici-
ties associated to their elements. If ℕ denotes the set 
of nonnegative integers, then a multiset over a set U is a 

mapping M ∶ U → ℕ where M(a), for all a ∈ U , is the 
multiplicity of element a in the multiset M. If U is finite, 
U = {a1, a2,… an} , then M can also be represented 
by the vector (M(a1),M(a2),… ,M(an)) or by a string 
w = a

M(a1)

1
a
M(a2)

2
… a

M(an)
n  (and all permutations of this string) 

where aj denotes the string obtained by concatenating j ∈ ℕ 
occurrences of the letter a ∈ V  (with a0 = � ). Note that the 
vector representation of a multiset coincides with the Parikh 
vector of the string representations.

We will also need the notion of a finite transition system 
which is defined as a triple M = (Q, q, �) where Q is a finite 
set of states, q ∈ Q is the initial state, and � ∶ Q → 2Q is 
the state transition mapping. A state q� ∈ �(q) is called the 
successor state of q, and q ∈ Q is called a halting state if 
�(q) = �.

Lindenmayer systems (or L systems) are parallel rewrit-
ing systems introduced in [12] with the aim of describing 
the development of simple biological organisms in terms 
of formal languages. For more information on the area of L 
systems, see the book [13]. In the following, we will use the 
variants which are extended, tabled, and interactionless, that 
is, ET0L systems in short.

An ET0L system is a construct G = (V , T ,U,w) where V 
is an alphabet, T ⊆ V  is a terminal alphabet, w ∈ V+ is the 
initial word of G, and U = (P1,… ,Pm) where Pi, 1 ≤ i ≤ m , 
are finite sets of context-free productions over V (called 
tables), such that for each a ∈ V  , there is at least one rule 
a → �, � ∈ V∗ in each table. In a computational step in G, 
all the symbols of the current sentential form are rewritten 
using one of the tables of U. The language generated by G 
consists of all terminal strings which can be generated in a 
series of computational steps (a derivation) starting from 
the initial word, that is, L(G) = {u ∈ T∗ ∣ w ⇒

∗ u} where 
⇒ denotes a computational step, and ⇒∗ is the reflexive and 
transitive closure of ⇒.

It is known (see [14], for example) that for each ET0L 
system with an arbitrary number of tables, there exists an 
ET0L system with only two tables generating the very same 
language.

Moreover, since we are going to relate ET0L languages 
to the multiset languages of P systems, we are not interested 
in the string generated by the ET0L system as a sequence of 
letters, but only in the multiplicities of different letters, that 
is, in the Parikh vectors of the generated strings. We will 
denote by Ps(G) the set of Parikh vectors corresponding the 
strings of L(G) (also called the Parikh set of L(G)), and by 
PsET0L the class of Parikh sets corresponding to the class 
of languages generated by ET0L systems.

Polymorphic membrane systems were introduced in [7]. 
Unlike in traditional membrane systems, the rules rules in 
polymorphic P systems are not fixed in advance, but they 
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are defined by the contents of specific membrane regions 
corresponding to the left- and right-hand sides of the rule.

A polymorphic P system of degree 2n + 1 for some 
n ∈ ℕ is a construct

where O is the alphabet of objects, T ⊆ O is the set of 
terminal objects, � is the membrane structure consisting 
of 2n + 1 membranes labeled by a symbol from the set 
H = {s, 1L, 1R,… , nL, nR} , the elements of the multiset 
ws are the initial contents of the skin membrane, the pairs 
of multi-sets ⟨wiL,wiR⟩ correspond to the initial contents of 
membranes iL and iR, 1 ≤ i ≤ n , and ho ∈ H is the label of 
the output membrane.

The membrane structure is usually denoted by a string 
of labeled and matching parentheses, but it can also be 
represented by a tree with its root labeled by the label 
of the outermost membrane, and the descendant nodes of 
each node labeled by the labels of membranes enclosed 
by the region corresponding to the given node. In the fol-
lowing, the number of nodes encountered during the tra-
versal of the longest path from the root to a leaf in such a 
tree representation will be called the depth of the mem-
brane system. (For example, the system which only has 
one membrane is of depth 1, while the system with a pair 
of nested membranes is of depth 2.) Note that for every 
1 ≤ i ≤ n , the membranes iL and iR have the same parent 
membrane, so they are located at the same depth.

The rules of Π are not given statically in the descrip-
tion, but are dynamically deduced for each configura-
tion based on the content of the membrane pairs iL and 
iR, 1 ≤ i ≤ n . Thus, if in the configuration of the system 
these membranes contain the multisets u and v, then in the 
next step their parent membrane is transformed as if the 
u → v multiset rewriting rule were added to it.

If there is at least one rule in a system Π where the num-
ber of objects in u (the multiset on the left-hand side) can 
grow to be greater than one, then we say that Π is a coop-
erative system, otherwise, it is a non-cooperative system. 
If iL is empty for some 1 ≤ i ≤ n in a configuration, then 
the rule defined by the pair iL, iR is considered disabled, 
that is, no rule will be inferred from the contents of iL and 
iR for use in the next computational step.

A computation of the system is a series of computa-
tional steps in which the rules associated to a given region 
are applied in a maximally parallel way, that is, as many 
rules have to be applied in parallel as possible (with the 
restriction that each object can be rewritten by at most one 
rule). A P system halts (reaches a halting configuration) 
when no more computational steps are possible, that is, 
when no rule can be applied in any of the regions.

Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, ho),

The set of vectors generated by a P system Π with the 
terminal alphabet T ⊆ O is the set of vectors representing 
the multisets of the terminal objects appearing in the output 
region ho in a halting configuration of Π which is reached 
by a computation starting in the initial configuration of the 
system.

We denote the classes of non-cooperative polymor-
phic membrane systems and the sets of vectors they 
generate as OP(polym,  ncoo) and L(OP(polym, ncoo)) , 
respectively (polym stands for polymorphism, and ncoo 
means that the system is non-cooperative). To emphasize 
limited depth, we may also write OPk(polym, ncoo) and 
L(OPk(polym, ncoo)) where k denotes the depth of the sys-
tems under consideration.

Now we recall an example of a simple polymorphic mem-
brane system with super-exponential growth from [7].

Example 1 Consider the polymorphic P system

with membrane structure � = [ [ ]1L [ [ ]2L [ ]2R ]1R ]s as 
illustrated in Fig. 1.

In the initial configuration, the rule corresponding to the 
contents of 1L, 1R (rule 1) is a → a , and it will be applied 
in the skin region. The rule corresponding to 2L, 2R (rule 
2) is a → aa , and it will be applied in region 1R. In the first 
step, rule 1 is applied in the skin leaving the contents of the 
membrane intact, and rule 2 is applied in membrane 1R dou-
bling the number of a’s, so rule 1 (the rule corresponding to 
1L, 1R) will be changed to a → aa . In the second step, rule 
1 will transform the multiset a in the skin into aa, and rule 
2 will double the contents of region 1R again, so after this 
step, rule 1 becomes a → a4 . In general, after k derivation 
steps, the contents of 1R will be a2k , so rule 1 will have the 
form a → a2

k . As the number of a’s in the skin will be 2
k(k−1)

2  , 
the rate of growth of the contents of the skin membrane is 
super-exponential.

Π1 = ({a}, {a},�, a, ⟨a, a⟩, ⟨a, aa⟩, s)

Fig. 1  The membrane structure and the initial configuration of the 
polymorphic P system Π1 of Example 1
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3  Polymorphic P systems with limited depth

In this section, we examine the relationship of languages 
generated by ET0L systems and simple polymorphic P sys-
tems, where simplicity is captured by non-cooperation and 
limited depth. We look at an example first.

Example 2 Consider the following ET0L system 
G = (V , T ,U,w) with V = {a1, a2} , T = {a1} , w = a1a2 , and 
two tables U = (P1,P2) , each containing two rules

We construct a non-cooperative polymorphic P system Π2 
with depth 3 that can perform the choosing between rules 
of P1 and P2 , and therefore can simulate the operation of G.

Let O = {a1, a2, a
�
1
, a�

2
, a0

1
, a0

2
, a1

1
, a1

2
, ā1, ā2,

̄̄a1, ̄̄a2,
̄̄̄a1,

̄̄̄a2, b, c, d,F} , 
T � = {a1} and

where the membrane structure of Π2 is such that the 
skin membrane directly contains the membranes 
1L, 1R, 17L, 17R,… , 28L, 28R , and the rest of the mem-
branes are contained by 1L and 1R. In more detail, � is 
defined as

where membrane 1L contains the inner membranes 
[ ]2L [ ]2R …[ ]6L [ ]6R , and membrane 1R contains the inner 
membranes [ ]7L [ ]7R …[ ]16L [ ]16R.

The graphical representation of � can be seen in Fig. 2 
where also the initial membrane contents are depicted. 
Non-dynamical rules, that is, pairs of membranes 
[ wiL ]iL, [ wiR ]iR with constant contents (contents that never 
change during the computation) are given in a simplified 
notation as wiL → wiR . Note that in this example, we only 
have one rule that changes dynamically, rule 1 (the rule cor-
responding to the regions 1L, 1R), the other rules have the 
same form at each step of the computation.

The initial contents of the regions with non-constant con-
tents are

the initial multisets contained by the rest of the regions are 
given (using the simplified notation) in Fig. 2.

The functioning of Π2 is demonstrated in Table 1. The 
first column contains the step number, the second column 
shows the form of rule 1 (defined by the membranes 1L, 1R) 
before the corresponding step, the third column contains 
the objects in the skin region, while the fourth, fifth, and 

P1 ={a1 → a1a2, a2 → a2a1a1}, and

P2 ={a1 → a1, a2 → a1}.

Π2 = (O,T �,�,ws, ⟨w1L,w1R⟩,… , ⟨w28L,w28R⟩, s)

� = [ […]1L […]1R [ ]17L [ ]17R …[ ]28L [ ]28R ]s

ws = a�
1
a�
2
c, w1L = b, w1R = b,

sixth columns contain the rules we (need to) use in the same 
computational steps.

The general idea behind the functioning of Π2 is as fol-
lows: Rules 17–20 simulate the rewriting process of the 
tables of G. Those with left-hand side ā1 or ā2 simulate 
the first table, those with left-hand side ̄̄a1, ̄̄a2 simulate the 
second table. The objects of the skin region correspond to 
the sentential form of G. Rule 1 is “dynamic”, it prepares 
the objects of the skin membrane for the application of the 
rules 17–20 in the appropriate order. At the beginning of a 
“simulating cycle”, rule 1 is used to rewrite a1 (more pre-
cisely, its variant, a′

1
 ) to ā1 or ̄̄a1 selecting this way the table 

to be simulated. Then, rule 1 changes to rewrite a′
2
 according 

to the same selection while rules 17–20 proceed with the 
actual simulation of the chosen table. The rest of the rules 
are needed to synchronize the whole process.

Table 1 shows how the rewriting of a1a2 to a1a2a2a1a1 
by the first table of G is simulated in Π2 . In the initial state, 
the form of rule 1 is b → b which is not applicable because 
we only have objects a′

1
, a′

2
, c in the skin region, so we have 

to change rule 1 in the first step. In 1L we can use rule 2 
( b → a′

1
 ) which rewrites b in 1L to a′

1
 making rule 1 appli-

cable. In parallel, we have to use rule 7 ( b → ā1 ) or rule 10 
( b → ̄̄a1 ) in 1R depending on the table of the ET0L system 
we want to simulate. To simulate P1 , we must use rule 7, 
to simulate P2 , we must use rule 10. As we would like to 
simulate P1 , we use rule 7. Rule 14 ( b →

̄̄̄a1 ) is used only 
in the terminating phase of the computation, see below for 
more details.

As can be seen in the second row of Table 1, the form of 
rule 1 has changed, and now we can use it in the skin region 

Fig. 2  The membrane structure and the initial configuration of P sys-
tem Π2 of Example 2. Non-dynamical rules are given in a simplified 
rewriting-rule-like notation
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to rewrite a′
1
 to ā1 . At the same time, the rules used in 1L 

and 1R ( a′
1
→ a′

2
 , ā1 → ā2 , respectively) change the form of 

rule 1 to a′
2
→ ā2 in order to be able to start rewriting a′

2
 -s 

in the next step.
After we have used rule 1 and the objects in the skin 

region have changed, we can use rule 17 ( ̄a1 → a1
1
a1
2
 ) which 

simulates the first rule from the table P1 of G. The upper 
indexing of the symbols on the right-hand side starts from 
1, and it will decrease in each of the following steps until 
the symbols are written back into the original primed form 
(after counting down with the indices to zero) at the appro-
priate step, that is, at the step when the rewriting of the other 
symbol, a′

2
 is also finished.

Meanwhile, in step 3, rule 1 ( a′
2
→ ā2 ) is also applied to 

rewrite a′
2
 (so the second rule of table P1 of G can also be 

simulated), and rule 1 is changed to c → c (so it does not 
change the contents of the skin region in the next step).

Then, with rule 19 ( ̄a2 → a0
2
a0
1
a0
1
 ), the rule a2 → a2a1a1 

(the second rule of P1 ) is simulated, while rules 21 and 23 
decrement the upper indices of the objects introduced by 
the simulation of the previous rule, and the form of rule 1 is 
changed to b → b.

Now, as can be seen in row 5 of Table 1, the system is 
ready to prepare the next simulating cycle by rewriting the 
objects corresponding to the sentential form of G to their 
original primed versions, and changing rule 1 in the appro-
priate way. We can return to a state that is similar to the 
initial state by choosing between rule 7 and rule 10 again 
(to simulate another step from the ET0L system), and in 
parallel, by rewriting a0

1
 -s and a0

2
 -s to a′

1
 -s and a′

2
 -s with rules 

22 and 24.
The simulation of the ET0L system can be stopped at 

the steps which precede the table selection phase of the 
simulation. If both 1L and 1R contain the object b and we 
want to stop the simulating process, we can choose rule 14 
( b →

̄̄̄a1 ) instead of rule 7 or 10, which will change the sym-
bols to their triple-barred versions in the skin membrane. 
As a1 ∈ T  , the symbol ̄̄̄a1 can be rewritten to the terminal 
symbol a1 , but since a2 ∉ T  , the symbol ̄̄̄a2 is changed to F 
which will never result in a halting configuration (because 
of the rule F → F ). In the next step, rule 4 ( a′

2
→ c ) and 

rule 16 ( ̄̄̄a2 → 𝜆 ) is used in the regions 1L and 1R, respec-
tively, so it will be possible to remove the symbol c from the 
skin, enabling the halting of the system in the case when no 
nonterminal symbols are present. Otherwise, if nonterminal 
objects were present in the beginning of the finishing phase, 
then the symbol F was introduced, so rule 27 ( F → F ) pre-
vents the halting of the system. The finishing phase of the 
computation is shown in Table 2.

The halting of the system is also impossible if rule 6 
( b → d ) is used “too early" (when rules 14 − 16 were not 
yet applied in region 1R) since the symbol c and the rule 
c → c is present in the skin region. Thus, the result of a 
halting computation of Π2 is a multiset over T = {a1} in the 
skin membrane (the output membrane of the system) which 
corresponds to the Parikh set of a string that can be gener-
ated by the ET0L system G.

Now we show how the idea presented in the example 
above can be generalized to arbitrary ET0L systems.

Theorem 1 PsET0L ⊆ L(OP3(polym, ncoo)).

Proof Let G = (V , T ,U,w) be an ET0L system, let k denote 
the number of letters in the alphabet, V = {a1, a2, ..., ak} , 
and let T = {a1,… , al} ⊆ V  for some l ≤ k . Without loss 
of generality, we assume that G has exactly two tables, 
U = (P1,P2) . We denote the jth rule of table i, 1 ≤ i ≤ 2 

Table 1  The first few 
computational steps of the 
polymorphic system Π2 of 
Example 2

Step Rule 1 Contents Rule Rule Other rules used
of the Skin used in 1L used in 1R in the Skin

1 b → b a
′
1
a
′
2
c 2 7 27

2 a
′
1
→ ā1 a

′
1
a
′
2
c 3 8 27

3 a
′
2
→ ā2 ā1a

′
2
c 4 9 17, 27

4 c → c a
1

1
a
1

2
ā2c 5 13 19, 21, 23, 27

5 b → b a
0

1
a
0

2
a
0

2
a
0

1
a
0

1
c 2 7 or 10 22, 24, 27

6 a
′
1
→ ā1 or a′

1
→ ̄̄a1 a

′
1
a
′
2
a
′
2
a
′
1
a
′
1
c . . .

Table 2  The last computational steps of a successful computation in 
the polymorphic system Π2 of Example 2

Step Rule 1 Contents Rule Rule Other rules 
used

of the Skin used in 1 L used in 1R in the Skin

(n − 4) b → b a
0

1
… a

0

1
c 2 14 22, 27

(n − 3) a
′
1
→

̄̄̄a1
a
�
1
… a

�
1
c 3 15 27

(n − 2) a
′
2
→

̄̄̄a2
̄̄̄a1 …

̄̄̄a1c
4 16 25, 27

(n − 1) c → � a1 … a1c 5 − −
(n). b → � a1 … a1 6 − −

d → � a1 … a1 − − −
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(and their left- and right-hand sides) as �i,j → �i,j , where 
�i,j ∈ V  and �i,j ∈ V∗ , 1 ≤ j ≤ m . In order to simplify the 
notation, we assume that the cardinality of the two tables 
are the same, m = |P1| = |P2| . If this is not the case, that 
is, if |P1| < |P2| = m , then �1,j → �1,j for |P1| + 1 ≤ j ≤ |P2| 
(or �2,j → �2,j for |P2| + 1 ≤ j ≤ |P1| if |P2| < |P1| = m ) will 
denote the same rule as �1,1 → �1,1 (or �2,1 → �2,1).

Let

and let

where p = (5k + 8) + 2m + k2 + 2 and the membrane struc-
ture of Π is such that the skin region directly contains the 
membranes with labels 1L, 1R and iL, iR for (4k + 9) ≤ i ≤ p , 
while the rest of the membranes are contained by 1L and 1R. 
In more detail, � is defined as

with membrane 1L  containing the membranes 
[ ]2L [ ]2R …[ ](k+4)L [ ](k+4)R , and membrane 1R containing 
the membranes [ ](k+5)L [ ](k+5)R …[ ](4k+8)L [ ](4k+8)R.

In 1L, the number of rules depends on the number of let-
ters in the alphabet of the ET0L system, we have to apply 
k + 2 rules for each table simulation in succession (where 
k = |V| ). In general, we specify the rules for the k letters as

These rules perform the same task as the rules of 1L in 
Example 2 do for two letters. In order to be able to finish the 
simulation, we also need the additional rule rk+4 ∶ b → d 
(see the end of the proof for more details).

Note that here we have used the simplified notation again 
for membranes with contents that remain constant for the 
whole computation. (Without this simplification we would 
have to write ⟨w2L,w2R⟩ and specify w2L = b , w2R = a�

1
 

instead of the rule r2 ∶ b → a�
1
 , for example.)

Rules applied in 1R determine on the choice of the table, 
so we have to introduce rules for P1 and P2 . We need

to enable the simulation of P1 , the rules

O ={a�
i
, an

i
, āi, ̄̄ai,

̄̄̄ai ∣ 1 ≤ i, n ≤ k} ∪ {ai ∣ 1 ≤ i ≤ l} ∪ {b, c, d,F},

T ={ai ∣ 1 ≤ i ≤ l},

Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wpL,wpR⟩, s)

� = [ […]1L […]1R [ ](4k+9)L [ ](4k+9)R …[ ]pL [ ]pR ]s

r2 ∶ b → a�
1
, ri+2 ∶ a�

i
→ a�

i+1
, for 1 ≤ i ≤ k − 1, and

rk+2 ∶ a�
k
→ c, rk+3 ∶ c → b.

rk+5 ∶ b → ā1, rk+5+i ∶ āi → āi+1 for 1 ≤ i ≤ k − 1,

r2k+5 ∶ āk → c,

r2k+6 ∶ b → ̄̄a1, r2k+6+i ∶ ̄̄ai → ̄̄ai+1 for 1 ≤ i ≤ k − 1,

r3k+6 ∶ ̄̄ak → c,

to enable the simulation of P2 , and one more rule 
r3k+7 ∶ c → b to finish the process.

To end the simulation, we need to be able to stop the 
functioning of Π in the case when the skin region contains 
(primed variants of) terminal letters only, that is, objects 
only from the set {a�

1
,… , a�

l
} = {a� ∣ a ∈ T} . In order to do 

this, we introduce a mechanism that is similar to the simula-
tion of the tables. To 1R, we add the rules

In the skin region, we go through the objects of the alpha-
bet applying the rules of the chosen table to each of them 
in a sequence, the rules for the occurrences of one specific 
object at a time. For this reason, we use indexed variants of 
the symbols which are produced in the intermediate steps, 
so they are able to “wait” until the rules for the rest of the 
objects are also applied. To achieve this effect, we add extra 
rules decreasing the indices in such a way that we get back 
to the primed form a�

1
, a�

2
,… , a�

k
 for all objects at the same 

computational step.
Recall our assumption that |P1| = |P2| = m , and that we 

denote the jth rule of table i, 1 ≤ i ≤ 2 , as �i,j → �i,j where 
�i,j ∈ V and �i,j ∈ V∗ , 1 ≤ j ≤ m . In the following we will use 
the notation � l

i,j
 for some 1 ≤ l ≤ k to express that 

� l
i,j
∈ {al

1
, al

2
,… , al

k
}∗ is the indexed version of the corre-

sponding string �i,j ∈ {a1, a2,… , ak}
∗.

Now we add the following rules to the skin region. To 
simulate the rules of P1 , we need

where �1,j = ai for some ai ∈ {a1, a2,… ak} and 1 ≤ j ≤ m.
For the simulation of P2 , we have

where �2,j = ai for some ai ∈ {a1, a2,… ak} and 1 ≤ j ≤ m.
After rewriting with the rules above, we have to use rules 

to count down with the indices of the objects that were pro-
duced until the last element of the alphabet is rewritten (sim-
ilarly to the way we count down in the example). To achieve 
this, for each ai, 1 ≤ i ≤ k , we need

In order to stop the system, we use the rules

r3k+8 ∶ b →
̄̄̄a1, r3k+8+i ∶

̄̄̄ai →
̄̄̄ai+1 for

1 ≤ i ≤ k − 1, r4k+8 ∶
̄̄̄ak → 𝜆.

r4k+8+j ∶ āi → 𝛽k+1−i
1,j

for each rule 𝛼1,j → 𝛽1,j ∈ P1

r4k+8+m+j ∶ ̄̄ai → 𝛽k+1−i
2,j

for each rule 𝛼2,j → 𝛽2,j ∈ P2

r4k+8+2m+(i−1)k+n ∶ a
n

i
→ a

n−1
i

for 2 ≤ n ≤ k, and

r4k+8+2m+(i−1)k+1 ∶ a
1

i
→ a

�

i
.

r4k+8+2m+k2+i ∶
̄̄̄ai → 𝛿i where 𝛿i = ai if ai ∈ T or

𝛿i = F if ai ∉ T ,
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for 1 ≤ i ≤ k in the skin region. If the multiset in the skin 
region corresponding to the current sentential form of the 
simulated ET0L system contains primed versions of termi-
nals only, that is, elements of the set {a�

1
,… , a�

l
} , then these 

rules rewrite them to terminal objects. Otherwise, if nonter-
minal objects are present (that is, if the simulation should 
not be stopped), they introduce the nonterminal F which 
prevents the halting of the system because the rule

is also present in the skin region.
The simulation of the ET0L system can be stopped as 

follows: If both 1L and 1R contain the object b, then choos-
ing rule r3k+8 ∶ b →

̄̄̄a (instead of rule rk+5 ∶ b → ā or 
r2k+6 ∶ b → ̄̄a ) will change the symbols to their triple-barred 
versions and then to terminals in the skin membrane, and 
produce c and � in region 1L and 1R, respectively, so the 
object c can also be removed from the skin region. Now, 
if rule rk+4 ∶ b → d is chosen to be applied in region 1L, 
then the system halts producing a multiset of terminals in 
the skin.

If nonterminal objects were still present in the skin region 
at the beginning of the finishing phase (that is, if the simula-
tion should not produce any result), then the symbol F was 
introduced, so the rule r5k+8+2m+k2+1 ∶ F → F prevents the 
halting of the system.

If rule rk+4 ∶ b → d is applied before the nonterminals 
are removed from the skin region, then the symbol c is still 
present, so if we also add the rule

it prevents the halting of the system.
When Π halts, the result is a multiset over 

T = {a1, a2,… , al} which corresponds to a terminal string 
that can be generated by the ET0L system G.

To see that the P system Π cannot produce multisets that 
do not correspond to the Parikh set of a string generated by 
the ET0L system, observe the construction of Π . Informally 
speaking, there are just a few points where the rule appli-
cation in Π is not deterministic (apart from simulating the 
possibility when one symbol can be rewritten by more than 
one rule of the ET0L system). These nondeterministic steps 
involve the choice of the table of G to be simulated and the 
choice whether to finish or to continue the computation, so 
we might conclude that the behavior of the P system cor-
responds to an ET0L system derivation.   ◻

r5k+8+2m+k2+1 ∶ F → F

r5k+8+2m+k2+2 ∶ c → c,

4  Polymorphic P systems with finite sets 
of instances of dynamic rules

Since there is no communication between the regions 
(as we consider P systems with “no ingredients”), the 
sequence of multisets appearing inside a given region 
as the computation proceeds only depends on the initial 
contents of the region itself. To formalize this idea, we 
introduce a successor relation defined on the contents of 
regions.

Let Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, ho) be a 
polymorphic P  system, and let  wj,h for some 
h ∈ {s, 1L, 1R,… , nL, nR} denote the multiset contained by 
the region labeled by h after the jth step of the computation 
of Π for some j ≥ 0 . We say that w′

j,h
 is in the successor set 

of wj,h , denoted as w�
j,h

∈ �j,h(wj,h) , if w′
j,h

 can be obtained 
from wj,h by the maximally parallel applications of the mul-
tiset rewriting rules associated to the region h, as can be 
deduced from the configuration of Π which is reached in the 
jth step of the computation.

If for the same wj,h as above, we fix �0
j,h
(wj,h) = {wj,h} for 

any j ≥ 0 , and for k ≥ 0 we have �k+1
j,h

= �j+k,h(�
k
j,h
(wj,h)) 

(where we extend the range of the function from multisets 
to sets of multisets in the natural way), then we can define

Definition 1 Given a polymorphic P system Π as above, we 
say that a region h of Π is finitely representable or FIN-
representable in short, if the set of successor multisets of 
the initial contents of h, wh , is finite, that is, �∗

0,h
(wh) is finite.

First, we demonstrate the notion of FIN-representability 
on an example.

Example 3 Consider the polymorphic P system

where O = T = {a, b, c, d, e} , and the membrane structure 
is � = [ […]1L […]1R ]s , where the child membranes of 
1 L are [ ]2L [ ]2R …[ ]5L [ ]5R and the children of 1R are 
[ ]6L [ ]6R …[ ]8L [ ]8R . Let

and using the simplified notation for static (non-dynamic) 
rules, let the rules applicable in 1L be

and the rules applicable in 1R be

�∗
j,h

=
⋃

k≥0

�k
j,h
(wj,h).

Π3 = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨w8L,w8R⟩, s)

ws = a, w1L = a, w1R = aa,

r2 ∶ a → c, r3 ∶ a → b, r4 ∶ b → a, r5 ∶ c → d,
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as can also be seen in Fig. 3.
In the following, we show that both 1L and 1R 

are FIN-representable. Concerning 1L, observe that 
�∗
0,1L

(a) = {a, b, c, d} w i t h  �0,1L(a) = �j,1L(a) = {b, c} , 
�0,1L(b) = �j,1L(b) = {a} ,  �0,1L(c) = �j,1L(c) = {d} ,  and 
�0,1L(d) = �j,1L(d) = � for all j ≥ 0 , which can be repre-
sented with the graph in Fig. 4a.

Considering 1R, �0,1R(aa) = �j,1R(aa) = {bb, be, ee} , 
�0,1R(ae) = �j,1R(ae) = {be, ee} , �0,1R(bb) = �j,1R(bb) = {aa} , 
�0,1R(be) = �j,1R(be) = {ae} , and �0,1R(ee) = �j,1R(ee) = � , 
thus, �∗

0,1R
(aa) = {aa, bb, ae, be, ee} , as can be seen on 

Fig. 4b.
The skin region is not FIN-representable, as the 

dynamical rule r1 given by the membranes labeled with 
1L and 1R has more than one symbol on its right-hand 
side in each computational step, and this means that 
the number of symbols in the skin region is increasing 
with each rule application. To see this, consider the fol-
lowing. Initially, r1 ∶ a → aa , so �0,s(a) = {aa} . Then 
r1 ∈ {c → be, c → ee, c → bb, b → be, b → ee, b → bb}  , 
so it is not applicable, �2

0,s
(a) = �1,s(aa) = {aa} . Then 

r1 ∈ {d → aa, d → ae, d → ee, a → aa, a → ae, a → ee}  , 
thus, �3

0,s
(a) = �2

2,s
(aa) = �3,s(aa) = {aaaa, aaae, aaee, aeee, eeee} . 

As we see by the construction of the system, the rule a → aa 
might appear arbitrary many times during the subsequent 
parts of the computation, the multiplicity of objects in the 

r6 ∶ a → b, r7 ∶ b → a, r8 ∶ a → e,

skin region might keep increasing, so this region cannot be 
FIN-representable according to Definition 1.

Given a non-cooperative polymorphic system as defined 
above, left-hand sides of rules have at most one symbol, so 
the membranes with labels iL, 1 ≤ i ≤ n , are always FIN-
representable. The situation is different, however, in the 
case of membranes iR, 1 ≤ i ≤ n . If at least one of the rules 
which is applicable (in an arbitrary number of computa-
tional steps) during a computation inside some right-hand 
membrane has more than one symbol on its right-hand 
side, then the corresponding dynamic rule has arbitrary 
many possible instances, so the region corresponding to 
its right-hand side cannot be FIN-representable.

Let us denote by OP(polym, ncoo, fin) the class of non-
cooperative polymorphic membrane systems of degree 
2n + 1 where all right-hand side regions, iR, 1 ≤ i ≤ n , are 
FIN-representable, and let L(OP(polym, ncoo, fin)) denote 
the class of vectors that they generate.

If a region is FIN-representable, we can describe the 
sequences of possible contents that can appear during the 
computations with a finite transition system.

D e f i n i t i o n  2  L e t  Π ∈ OP(polym, ncoo, fin)  b e  a 
FIN-representable polymorphic P  system with 
Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, s) ,  and  l e t 
M = (Q, q0, �) be a transition system. We say that M repre-
sents the rule configurations of Π if the contents of the pairs 
of membranes labeled by 1L, 1R,… , nL, nR of the configura-
tion sequences of Π

are in a one-to-one correspondence with the state sequences

of the transition system M. Moreover, qh, h ≥ 0 , is a halting 
state of M, if and only if no rules are applicable in any of the 
regions 1L, 1R,… , nL, nR in the corresponding configuration 

(ws,w1L,w1R,… ,wnL,wnR)

= (w0
s
,w0

1L
,w0

1R
,… ,w0

nL
,w0

nR
) ⇒

⇒ (w1
s
,w1

1L
,w1

1R
,… ,w1

nL
,w1

nR
) ⇒ … ⇒

(wi
s
,wi

1L
,wi

1R
,… ,wi

nL
,wi

nR
) ⇒ …

q0 = q0 ⇒ q1 ⇒ … ⇒ qi ⇒ …

Fig. 3  The initial configuration of the polymorphic P system Π3 of 
Example 3

Fig. 4  Graphical demonstra-
tion of the possible membrane 
contents of the P system Π3 of 
Example 3 with arrows indicat-
ing the initial contents and the 
successor relation between the 
multisets (which are given by 
their string representations)
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(wh
s
,wh

1L
,wh

1R
,… ,wh

nL
,wh

nR
) of Π . Note that M, as the evolu-

tion of the rule configurations of Π can be nondeterministic.

In the following lemma, we describe how such a repre-
sentation can be constructed.

Le m m a  2  Fo r  a n y  p o l y m o r p h i c  P  s y s t e m 
Π ∈ OP(polym, ncoo, fin) , we can construct a finite transi-
tion system MΠ which represents the rule configurations of 
Π.

Proof Let Π ∈ OP(polym, ncoo, fin) be a polymorphic P sys-
tem with Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, s) , and 
let 1L, 1R,… , lL, lR for some l ≤ n be the labels of those 
regions which are directly enclosed in the skin membrane. 
We construct a finite transition system M1…l which repre-
sents the rule configurations of Π by describing how the 
k-tuples of rules corresponding to these regions are changing 
during the computations.

We start with constructing representations of the ele-
mentary membranes at the deepest level of the system, and 
continue upwards, level by level, finally arriving to those 
regions which are enclosed by the skin membrane.

(1) If a membrane labeled by h ∈ {1L, 1R… , nL, nR} is 
an elementary membrane, then let Mh = (Qh, q̄h, 𝛿h) , where

• Qh = {q̄h} = {(wh, �)} , and
• �h ∶ Qh → 2Qh such that 𝛿h(q̄h) = �.

This transition system has a single state which is a pair 
of the unchanging membrane contents and an empty set, 
the set of rules that can be used for changing the contents.

As we move upwards in the hierarchy, a similar represen-
tation will be constructed for each region: the states of the 
transition systems are pairs of the (dynamically changing) 
membrane contents and sets of rules which can be used to 
transform them.

(2) If we have already constructed MiL = (QiL, q̄iL, 𝛿iL) 
and MiR = (QiR, q̄iR, 𝛿iR) for the pair of elementary mem-
branes labeled by iL, iR for some 1 ≤ i ≤ n , we construct 
Mi = (Ri, r̄i, 𝛿i) to represent the (non-dynamical) rule cor-
responding to this pair of membranes with

• Ri = {r̄i} = {(q̄iL, q̄iR)} w h e r e  q̄iL = (wiL, ∅), q̄iR =
(wiR, ∅) , and

• �i ∶ Ri → 2Ri such that 𝛿i(r̄i) = �.

We also say that (using the above notation) r̄i corresponds 
to the rule wiL → wiR.

(3) If the elementary membranes that are directly 
enclosed by the non-elementary membrane (their parent 
membrane) with label h are labeled by i1L, i1R,… , ikL, ikR , 

and we have already constructed Mi1
,… ,Mik

 with 
Mij

= (Rij
, r̄ij , 𝛿ij) for all the pairs ijL, ijR, 1 ≤ j ≤ k , then we 

construct the representation Mh in two steps.
(3.1) We first construct Mi1…ik

= (Ri1…ik
, r̄i1…ik

, 𝛿i1…ik
) 

with

• Ri1…ik
= {r̄i1…ik

} = {(r̄i1 ,… , r̄ik )} , and
• �i1…ik

∶ Ri1…ik
→ 2Ri1…ik such that �i1…ik

(ri1…ik
) = �.

We say that r̄i1…ik
 corresponds to the set of rules 

{wi1L
→ wi1R

,… ,wikL
→ wikR

}.
(3.2) Given Mi1…ik

 and the initial multiset wh , we can con-
struct Mh = (Qh, q̄h, 𝛿h) as

• Qh = 𝜎∗
0,h
(wh) × {r̄i1…ik

} , the direct product of the pos-
sible contents of region h and the representation of the 
set of rules corresponding the pairs of (elementary) 
regions ijL, ijR, 1 ≤ j ≤ k,

• q̄h = (wh, r̄i1…ik
) , the pair of the initial contents and rep-

resentation of the set of rules associated to the region, 
and

• �h ∶ Qh → 2Qh such that (u�
h
, r̄i1…ik

) ∈ 𝛿h(uh, r̄i1…ik
) if and 

only if

– the multiset u′
h
 can be obtained from uh by the maxi-

mally parallel application of the set of rules 
{ri1 ,… , rik} corresponding to r̄i1…ik

 , denoted as 
uh ⇒{ri1

,…,rik
} u

�
h
 , or

– if none of the rules corresponding to r̄i1…ik
 are appli-

cable to uh , then the state (uh, r̄i1…ik
) is a halting state 

in Mh , 𝛿h(uh, r̄i1…ik
) = �.

Now we repeat the above procedure also for the non-elemen-
tary membranes as follows:

(4) If we have already constructed MiL = (QiL, q̄iL, 𝛿iL) and 
MiR = (QiR, q̄iR, 𝛿iR) for the pair of (not necessarily elemen-
tary) membranes labeled by iL, iR for some 1 ≤ i ≤ n , we 
construct Mi = (Ri, r̄i, 𝛿i) to represent the dynamical rule cor-
responding to this pair of membranes. Let

• Ri = QiL × QiR,
• r̄i = (q̄iL, q̄iR) , and
• �i ∶ Ri → 2Ri such that (q�

iL
, q�

iR
) ∈ �i(qiL, qiR) , if and only 

if

– q�
iL
∈ �iL(qiL) and q�

iR
∈ �iR(qiR) , or

– if �iL(qiL) = � and q�
iR
∈ �iR(qiR) (or if �iR(qiR) = � 

and q�
iL
∈ �iL(qiL) ) then q�

iL
= qiL (or q�

iR
= qiR , 

respectively), or

  �i(qiL, qiR) = � , if and only if and �iL(qiL) = �iR(qiR) = �

.
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(5) If the membranes that are directly enclosed by the non-
elementary membrane (their parent membrane) with label h 
are labeled by i1L, i1R,… , ikL, ikR , and we have already con-
structed Mi1

,… ,Mik
 Mij

= (Rij
, r̄ij , 𝛿ij) for all the pairs 

ijL, ijR, 1 ≤ j ≤ k , then we construct the representation Mh 
in two steps.

(5.1) We first construct Mi1…ik
= (Ri1…ik

, r̄i1…ik
, 𝛿i1…ik

) 
with

• Ri1…ik
= Ri1

×… × Rik
,

• r̄i1…ik
= (r̄i1 ,… , r̄ik ) , and

• �i1…ik
∶ Ri1…ik

→ 2Ri1…ik  s u ch  t h a t  (r′i1 ,… , r′ik ) ∈
�i1…ik (ri1 ,… , rik ) , if and only if

– r�
ij
∈ �ij(rij ) for all ij, 1 ≤ j ≤ k , or

– if �ij(rij ) = � , but there is at least one il , such that 
�il(ril ) ≠ � , 1 ≤ j, l ≤ k , then r�

ij
= rij , and

  �i1…ik
(ri1 ,… , rik ) = � , if and only if, �ij(rij ) = � for all 

ij, 1 ≤ j ≤ k.

(5.2) Given Mi1…ik
 and the initial multiset wh , we can con-

struct Mh = (Qh, q̄h, 𝛿h) as

• Qh = �∗
0,h
(wh) × Ri1…ik

 , the direct product of the possible 
contents of region h and the representation of the pos-
sible k element sets of rules determined by the actual 
configuration of the pairs of regions ijL, ijR, 1 ≤ j ≤ k,

• q̄h = (wh, r̄i1…ik
) , the pair of the initial contents and the 

set of rules represented by the initial configuration, and
• �h ∶ Qh → 2Qh such that (u�

h
, r�

i1…ik
) ∈ �h(uh, ri1…ik

) if and 
only if

– the multiset u′
h
 can be obtained from uh by the maxi-

mally parallel application of the set of rules of 
{ri1 ,… , rik} corresponding to ri1…ik

 denoted as 
uh ⇒{ri1

,…,rik
} u

�
h
 , and

– r�
i1…ik

∈ �i1…ik
(ri1…ik

) , or if �i1…ik
(ri1…ik

) = � , then 
r�
i1…ik

= ri1…ik
 , or

– if r�
i1…ik

∈ �i1…ik
(ri1…ik

) , but none of the rules 
{ri1 ,… , rik} corresponding to ri1…ik

 are applicable to 
uh , then u�

h
= uh.

   If none of the cases above holds, that is, none of the 
rules corresponding to ri1…ik

 is applicable to uh , and 
�i1…ik

(ri1…ik
) = � , then �h(uh, ri1…ik

) = � , thus, the state 
(uh, ri1…ik

) is a halting state in Mh.

Based on the above steps, we can construct a finite transition 
system Mh for each FIN-representable region h, such that 
the states of Mh correspond to the possible pairs of contents 
and collections of applicable rules, and the state sequences 

of Mh correspond to the sequences of dynamically changing 
pairs of possible membrane contents and the corresponding 
rule collections.

If Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, s) with 
1L, 1R,… , lL, lR , l ≤ n being the labels of those regions 
which are directly enclosed in the skin membrane, and we let 
MΠ = M1…l , then the states of MΠ represent the dynamically 
changing collections of rules applicable in the skin region 
which can change as allowed by the possible transitions of 
MΠ . In short, MΠ represents the rule configurations of Π .  
 ◻

Example 4 Let us construct the representations of finitely 
representable membranes MΠ3

= M1 for the P system of 
Example 3. Starting with the elementary membranes, we 
get M2L = ({(a, �)}, (a, �), �2L) , M2R = ({(c, �)}, (c, �), �2R) 
such that �2L(a, �) = �2R(c, �) = � , and M2 = (R2, r̄2, 𝛿2) 
with R2 = {(a, �)} × {(c, �)} = {((a, �), (c, �))} = {r̄2} , and 
𝛿2(r̄2) = � . Similarly, we can construct Mi = (Ri, r̄i, 𝛿i) for all 
i, 2 < i ≤ 8 , which all have a similar structure.

Now, given the transition systems M2,… ,M5 we con-
struct M1L as follows. We start with the construction of 
M2…5 = (R2…5, r̄2…5, 𝛿2…5) as

• R2…5 = {r̄2…5} where
• r̄2…5 = (r̄2,… , r̄5)  w i t h  r̄2 = ((a, �), (c, �))  , 

r̄3 = ((a, �), (b, �)) , ̄r4 = ((b, �), (a, �)) , ̄r5 = ((c, �), (d, �)) , 
and

• 𝛿2…5(r̄2…5) = �.

Note that the rule set corresponding to r̄2…5 (using 
the rule labels from Example 3 to denote the rules) is 
{r2, r3, r4, r5} = {a → c, a → b, b → a, c → d}.

Now  we  c a n  c o n s t r u c t  M1L = (Q1L, q̄1L, 𝛿1L) 
a s  fo l lows .  The  se t  o f  poss ib le  s t a tes  i s 
Q1L = {a, b, c, d} × {(r̄2, r̄3, r̄4, r̄5)} , that is,

the initial state is q̄1L = (a, (r̄2, r̄3, r̄4, r̄5)) , and the transition 
mapping is defined as

With a similar construction, we can construct 
M1R = (Q1R, q̄1R, 𝛿1R) as

Q1L = {(a, (r̄2, r̄3, r̄4, r̄5)), (b, (r̄2, r̄3, r̄4, r̄5)),

(c, (r̄2, r̄3, r̄4, r̄5)), (d, (r̄2, r̄3, r̄4, r̄5))},

𝛿1L(a, (r̄2, r̄3, r̄4, r̄5)) ={(c, (r̄2, r̄3, r̄4, r̄5)), (b, (r̄2, r̄3, r̄4, r̄5)},

𝛿1L(c, (r̄2, r̄3, r̄4, r̄5)) ={(d, (r̄2, r̄3, r̄4, r̄5))},

𝛿1L(b, (r̄2, r̄3, r̄4, r̄5)) ={(a, (r̄2, r̄3, r̄4, r̄5))},

𝛿1L(d, (r̄2, r̄3, r̄4, r̄5)) =�.

Q1R = {(aa, (r̄6, r̄7, r̄8)), (bb, (r̄6, r̄7, r̄8, )), (be, (r̄6, r̄7, r̄8)),

(ae, (r̄6, r̄7, r̄8)), (ee, (r̄6, r̄7, r̄8))},
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where we use a similar notation as above with 
r̄6 = ((a, �), (b, �)) , r̄7 = ((b, �), (a, �)) , r̄8 = ((a, �), (e, �)) , 
and

Now, given M1L and M1R we can construct M1 = MΠ3
 as 

M1 = (R1, r̄1, 𝛿1) where

is the set of states, and r̄1 = ((a, (r̄2, r̄3, r̄4, r̄5)), (aa,
(r̄6, r̄7, r̄8))) is the initial state corresponding to the rule 
a → aa.

If we denote (r̄2, r̄3, r̄4, r̄5) and (r̄6, r̄7, r̄8) as r̄2…5 and r̄6…8 , 
respectively, then the transition relation is defined as follows.

We can now prove the following theorem.

Theorem 3 L(OP(polym, ncoo, fin)) ⊆ PsET0L.

𝛿1R(aa, (r̄6, r̄7, r̄8)) ={(bb, (r̄6, r̄7, r̄8)),

(be, (r̄6, r̄7, r̄8)), (ee, (r̄6, r̄7, r̄8))},

𝛿1R(bb, (r̄6, r̄7, r̄8)) ={(aa, (r̄6, r̄7, r̄8))},

𝛿1R(be, (r̄6, r̄7, r̄8)) ={(ae, (r̄6, r̄7, r̄8))},

𝛿1R(ae, (r̄6, r̄7, r̄8)) ={(be, (r̄6, r̄7, r̄8)), (ee, (r̄6, r̄7, r̄8))},

𝛿1R(ee, (r̄6, r̄7, r̄8)) =�.

R1 = Q1L × Q1R,

𝛿1((a, r̄2…5), (aa, (r̄6…8)) = {((b, r̄2…5), (bb, (r̄6…8)),

((b, r̄2…5), (be, (r̄6…8)),

((b, r̄2…5), (ee, (r̄6…8)), ((c, r̄2…5), (bb, (r̄6…8)),

((c, r̄2…5), (be, (r̄6…8)), ((c, r̄2…5), (ee, (r̄6…8))},

𝛿1((b, r̄2…5), (bb, (r̄6…8)) = {((a, r̄2…5), (aa, (r̄6…8))},

𝛿1((b, r̄2…5), (be, (r̄6…8)) = {((a, r̄2…5), (ae, (r̄6…8))},

𝛿1((b, r̄2…5), (ee, (r̄6…8)) = {((a, r̄2…5), (ee, (r̄6…8))},

𝛿1((c, r̄2…5), (bb, (r̄6…8)) = {((d, r̄2…5), (aa, (r̄6…8))},

𝛿1((c, r̄2…5), (be, (r̄6…8)) = {((d, r̄2…5), ae)},

𝛿1((c, r̄2…5), (ee, (r̄6…8)) = {((d, r̄2…5), (ee, (r̄6…8))},

𝛿1((a, r̄2…5), (ae, (r̄6…8)) = {((c, r̄2…5), (be, (r̄6…8)),

((c, r̄2…5), (ee, (r̄6…8)),

((b, r̄2…5), (be, (r̄6…8)), ((b, r̄2…5), (ee, (r̄6…8))},

𝛿1((a, r̄2…5), (ee, (r̄6…8)) = {((c, r̄2…5), (ee, (r̄6…8)),

((b, r̄2…5), (ee, (r̄6…8))},

𝛿1((d, r̄2…5), (aa, (r̄6…8)) = {((d, r̄2…5), (ee, (r̄6…8)),

((d, r̄2…5), (be, (r̄6…8)),

((d, r̄2…5), (bb, (r̄6…8))},

𝛿1((d, r̄2…5), (ae, (r̄6…8)) = {((d, r̄2…5), (ee, (r̄6…8)),

((d, r̄2…5), (be, (r̄6…8))},

𝛿1((d, r̄2…5), (bb, (r̄6…8)) = {((d, r̄2…5), (aa, (r̄6…8))},

𝛿1((d, r̄2…5), (be, (r̄6…8)) = {((d, r̄2…5), (ae, (r̄6…8))},

𝛿1((d, r̄2…5), (ee, (r̄6…8)) = �.

Proof Let  Π = (O,T ,�,ws, ⟨w1L,w1R⟩,… , ⟨wnL,wnR⟩, s) 
be a polymorphic P system, Π ∈ OP(polym, ncoo, fin) , and 
let us assume (without loss of generality) that the mem-
branes that are directly contained in the skin region are 
labeled by the labels 1L, 1R,… , kL, kR , k ≤ n . Since both 
the left- and right-hand membranes iL, iR, 1 ≤ i ≤ k , are 
FIN-representable, we can construct the transition system 
MΠ = (RΠ, r̄Π, 𝛿Π) = M1…k = (R1…k, r̄1…k, 𝛿1…k) as described 
in the proof of Lemma 2. For any q = (r1,… , rk) ∈ RΠ , let 
us denote the set of rules corresponding to (r1,… , rk) by 
rules(q).

Now, based on MΠ , we construct an ET0L system 
G = (V , T ,U,w) , where V is the alphabet, T is the terminal 
alphabet with T ⊆ V  , w is the initial string, and U is a set 
of tables, U = {Pq ∣ q ∈ RΠ} ∪ {Pq,Pq,halt ∣ q ∈ RΠ is a

halting state } ∪ {P
halt

} containing at most three tables for 
each state of MΠ and one additional table.

The ET0L system G is defined as follows:

Given a state q ∈ RΠ , let us denote for a rule 
r ∶ u → v ∈ rules(q) by r� ∶ u� → v� the rule h(u) → h(v) 
w h e r e  i f  w = a1 … at  ,  ai ∈ O, 1 ≤ i ≤ t  ,  t h e n 
h(w) = h(a1)… h(at) for h(a) = a� ∈ V .

The axiom is given as

where w�
s
= h(ws) , the primed version of a string correspond-

ing the initial contents of the skin region of Π.
We construct a table Pq for each state q ∈ RΠ as

Note that the rules Dq → Dq can be applied when q is a halt-
ing state. The rule Dz → F ensures that the table is only 
applied when the computation is in the appropriate state, 
since the symbol F functions as a trap: if the rule Dz → F is 
applied during the computation, the system will never pro-
duce a terminal string.

Note also that for each object x that does not have a rule 
above, we assume that x → x is present in each table.

It must be checked that the table belonging to the halting 
state can only be used in the appropriate step. In order to 
achieve this, it is necessary to introduce new tables for each 
q ∈ RΠ , which can only be used if q is a halting state. For 
each halting state q, we construct the tables Pq and Pq,halt as 
follows. Let

V ={a� ∣ a ∈ O} ∪ {Dq,Dq,Dq,halt ∣ q ∈ RΠ} ∪ {F,Dhalt} ∪ T .

w =DrΠ
w�
s
,

Pq ={r
� ∣ r ∈ rules(q)} ∪ {Dq → Ds ∣ s ∈ �Π(q)}∪

{Dq → Dq ∣ �Π(q) = �}∪

{Dz → F ∣ Dz ≠ Dq}.
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Since q ∈ RΠ is a halting state, the rule configuration repre-
sented by q does not change in the P system Π any more 
during the computation. Thus, Π reaches a halting state, if 
and only if the rules represented by q are not applicable in 
the skin membrane. G guesses that this is the case by intro-
ducing the symbol Dq,halt . After applying the rule 
Dq → Dq,halt , the table Pq,halt makes sure that the current 
rules are not applicable by introducing trap symbols if any 
of them are. This is achieved by

In the case of the corresponding configuration of Π being 
a non-halting configuration, the use of this table causes all 
rewritable symbols to be rewritten to F and the computation 
will not produce any result.

In the case of a proper halting configuration (if the sym-
bol F is not introduced), an additional table, table Phalt must 
be used. This table deletes the marker symbols and rewrites 
the remaining letters to terminals as follows.

By the construction above, a1a2 … ak ∈ L(Π) implies that 
a1a2 … ak is an element of L(G). The other way around, we 
may also see that if a1a2 … ak is successfully produced by 
G, then a1a2 … ak must also be an element of L(Π) .   ◻

Corollary 4 L(OP(polym, ncoo, fin)) = PsET0L.

Proof By observing the proof of Theorem 1, we may see 
that for any ET0L system G, the right-hand regions of the P 
system Π ∈ OP3(polym, ncoo) constructed to simulate G are 
FIN-representable. Combining this observation with Theo-
rem 3 we obtain our statement.   ◻

Example 5 Consider the polymorphic P system of Example 
3 which can be seen in Fig. 3. Let us construct an ET0L 
system G = (V , T ,U,w) simulating this membrane system 
based on the transition system MΠ3

= M1 = (R1, r̄1, 𝛿1) from 

Pq ={r
� ∣ r ∈ rules(q)} ∪ {Dq → Dq,Dq → Dq,halt}∪

{Dx → F ∣ Dx ≠ Dq}.

Pq,halt ={u
�
→ F ∣ u → v ∈ rules(q)}∪

{Dq,halt → Dhalt}∪

{Dx → F ∣ Dx ≠ Dq,halt}.

Phalt ={X → � ∣ X ∈ O ⧵ {a� ∣ a ∈ T}}∪

{a� → a ∣ a ∈ T}∪

{Dx → F ∣ Dx ≠ Dhalt}.

Example 4. The nonterminal alphabet of G includes O, a 
set of labeled symbols and trap symbol in addition, the ter-
minals correspond to the terminal objects of the P system, 
and the axiom corresponds to the initial contents of the skin 
region and the initial rule configuration of the P system.

Recall that according to the above construction, we need 
the nonterminals Dq , Dq̄ , and Dq̄,halt in the alphabet of the 
ET0L system for all states q ∈ R1 , and for the initial state, 
for example, these would be written as D((a,r̄2…5),(aa,r̄6…8))

 , 
D((a,r̄2…5),(aa,r̄6…8))

 , and D((a,r̄2…5),(aa,r̄6…8)),halt
 . Since the rules 

cor responding to the (elementary) membranes 
2L, 2R,… , 8L, 8R  ,  t ha t  i s ,  r̄2…5 = (r̄2,… , r̄5) and 
r̄6…8 = (r̄6,… , r̄8) do not change during the computation, for 
the sake of simplicity, we use the symbols Da→aa , Da→aa , and 
Da→aa,halt , that is, Dr , Dr , and Dr,halt for r ∈ rules(q) instead 
of the more general and precise notation that would be nec-
essary for more complicated membrane structures. Thus, we 
have

We start by constructing the first table which contains the 
current instance of the rule associated to the skin membrane, 
that is, the rule corresponding to r̄1 , the relabeling rules, and 
additional rules for identical rewriting of the other symbols 
(because ET0L systems rewrite every symbol at every step) 
which we do not indicate in the tables below, for the sake 
of brevity.

The construction of the relabeling rules is based on the 
number of different configurations that can be obtained after 
the next computational step. Since there are six possible con-
figurations that the P system can reach in the first step, the 
symbol Da→aa can be relabeled in six ways, either to Db→bb , 
Dc→bb , Db→be , Dc→be , Db→ee , or Dc→ee.

Based on similar considerations, we construct tables for each 
non-halting state q ∈ R1.

As q11 with d → ee ∈ rules(q11) is a halting state of M1 , we 
have

V ={a, a�, b, b�, c, c�, d, d�, e, e�} ∪ {Dr,Dr,Dr,halt ∣

r ∈ rules(q), q ∈ R1}∪

{Dhalt,F},

T ={a, b, c, d, e},

w =Da→aaa
�.

Pr̄1
={Da→aa → D𝛼→𝛽 ∣ 𝛼 ∈ {b, c}, 𝛽 ∈ {bb, be, ee}}∪

{Dz → F ∣ Dz ≠ Da→aa} ∪ {a� → a�a�}.

Pq ={Dr → Dr� ,Dz → F ∣ r ∈ rules(q), r� ∈ rules(q�) for

q� ∈ �1(q), z ≠ r}∪

{��
→ �� ∣ � → � ∈ rules(q)}.



Simple variants of non-cooperative polymorphic P systems  

and finally

Figure 5 shows a graph which is based on the order in 
which the application of the tables constructed above can 
be applied.

5  Conclusion

We have shown how ET0L systems can be simulated by 
restricted variants of non-cooperative polymorphic P system 
of depth three, then showed that the simulation also works 
the other way around, even if the depth of the simulated P 
systems is not limited, but the regions are finitely repre-
sentable. Thus, a precise characterization of Parikh sets of 
ET0L languages can be obtained in term of polymorphic 
P systems. Our work is intended to be an initial step in the 
investigation of the computing power of non-cooperative 
polymorphic systems with limited depth or FIN-represent-
able regions.

Pd→ee ={Dd→ee → Dd→ee,Dz → F ∣ z ≠ d → ee}∪

{d′ → e′e′},

Pd→ee ={Dd→ee → Dd→ee,Dd→ee → Dd→ee,halt,

Dz → F ∣ z ≠ d → ee}∪

{d′ → e′e′},

Pd→ee,halt ={Dd→ee,halt → Dhalt,Dz → F ∣ z ≠ d → ee, halt}∪

{d′ → F},

Phalt ={Dhalt → �,Dz → F ∣ z ≠ halt}∪

{x� → x ∣ x ∈ {a, b, c, d, e}}.
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