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Abstract
P systems are a bio-inspired framework for defining parallelmodels of computation.Despite their relevance for both theoretical
and application scenarios, the design and the identification of P systems remain tedious and demanding tasks, requiring
considerable time and expertise. In this work, we try to address these problems by proposing an automatedmethodology based
on grammatical evolution (GE)—an evolutionary computation technique—which does not require any domain knowledge.
We consider a setting where observations of successive configurations of a P system are available, and we rely on GE for
automatically inferring the P system, i.e., its ruleset. Such approach directly addresses the identification problem, but it can
also be employed for automated design, requiring the designer to simply express the configurations of the P system rather
than its full ruleset. We assess the practicability of the proposed method on six problems of various difficulties and evaluate its
behavior in terms of inference capability and time consumption. Experimental results confirm our approach is a viable strategy
for small problem sizes, where it achieves perfect inference in a few seconds without any human intervention. Moreover,
we also obtain promising results for larger problem sizes in a human-aided context, paving the way for fully or partially
automated design of P systems.

Keywords P system · Membrane computing · Grammatical evolution · Evolutionary algorithms

1 Introduction

Membrane computing (MC), also called membrane systems
or P systems, is a parallel computational model inspired by
the functioning of living cell membranes [1]. MC is a widely
investigated interdisciplinary field of research, because of its
main characteristics, including the non-determinism of com-
putations, maximal parallelism, and locality of interactions
[2]. In fact, especially in recent years, MC has been success-
fully applied in various fields, such as theoretical computer
science, parallel and distributed algorithms, graphics, lin-
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guistics, cryptography, economy [3], and, more recently,
in systems and synthetic biology [4]. For a comprehensive
review of the principal concepts of MC, together with exam-
ples of research trends in this area, we refer the reader to
[5].

Handcrafting a P system for a given application is,
however, a non-trivial and time-consuming task, requiring
precision and expertise. Oftentimes, the designer has an
approximate idea of the membrane structure, initial multi-
sets, and set of rules necessary to describe the P system;
however, undesired consequences can arise from small mis-
takes in the description of the initial configuration or in the set
of rules [6].As amatter of fact, specifying desired subsequent
configurations of a P system ismuch easier than directly engi-
neering its set of rules. Hence, a convenient approach relies
on automatic inference techniques, which aim at inferring the
structure of the P system from its successive configurations.
Several methods have been proposed in the literature, among
which we find automated design of membrane computing
models, a sub-field of evolutionarymembrane computing [7],
which exploits evolutionary computation (EC) for tackling
the programmability issue of P systems.
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EC is a natural computing technique based on principles of
biological evolution that consists of a wide range of problem-
solving optimization methods. The principal evolutionary
paradigms are: genetic algorithm (GA) [8], genetic program-
ming (GP) [9], evolution strategies (ES) [10], grammatical
evolution (GE) [11], particle swarmoptimization (PSO) [12],
quantum-inspired evolutionary algorithm (QIEA) [13], and
many more.

In this work, we follow along with the idea of making
use of EC for the identification task, relying on GE [14]—
a branch of EC dealing with the automated synthesis of
programs, or, more broadly, strings, of a language defined
by a context-free grammar (CFG). We resort to GE for its
demonstrated capabilities of inferring underlying structures
of systems whose functioning can be expressed with a CFG
[11]. To this end, we introduce a CFG to describe the rules
of a P system, and we apply GE as an inferring tool, given a
set of successive configurations of a P system.

In the literature, an intersection betweenP systems andGE
has already been investigated in the work of Nishida et al.
[15], where the authors propose a tissue evolutionary P sys-
tem that evolves a CFG to generate a given target language.
However, to the best of our knowledge, this is the first attempt
to infer the P system rules by means of GE.

The strength of our proposed GE-based method is that—
unlike those previously investigated in the literature [16]—it
does not require the user any specific knowledge of the P sys-
tem under analysis, meaning that the discovery is completely
left to the evolutionary search. This derives from the fact that
the CFG used does not impose constraints on either the size
of the ruleset, or the size of the multisets, or the type of rules
that shall be used.

We validate our approach by testing the inference abil-
ity on three benchmark problems (send-in, send-out, and
variable assignment) and three basic arithmetic operations
(addition, multiplication, and division). Experimental results
show that our approach is able to always achieve correct
and fast inference on all arithmetic operations, and on the
benchmark problems with small problem size. Moreover,
we manage to partially overcome the scaling limitation by
leveraging some knowledge about the system, which could
be attained with limited human intervention.

The remainder of the manuscript is organized as follows.
Section2 links this study to the existing literature. Thereafter,
Sect. 3 reviews somebackground concepts, specifically intro-
ducing P systems andGE;while Sect. 4 presents the proposed
GE-based inference method. We detail the experimental set-
tings together with a description of the benchmark problems
used to assess the validity of our approach in Sect. 5, and
present and comment the results achieved in Sect. 6. Finally,
we summarize the main findings of the paper and suggest
future research directions in Sect. 7.

2 Related works

The combination of MC and EC is receiving growing atten-
tion in the last few years. On one side, MC has the rigor
and sound theoretical development, as well as it provides a
parallel distributed framework.On the other side, EC has out-
standing characteristics, such as easy understanding, robust
performance, flexibility, convenience of use for real-world
problems, and a very large scope of applications. These fea-
tures strongly encourage the exploration of the interactions
between MC and EC: this branch of research falls under the
name of Evolutionary Membrane Computing (EMC) [7].

More in detail, we can identify two main research lines
regarding the interplay of MC and EC: membrane-inspired
evolutionary algorithms (MIEAs) and automated design of
membrane computing models (ADMCM). MIEA, originally
named membrane algorithms (MA) [17], consists of meta-
heuristic algorithms where P system is used as a part of
an evolutionary algorithm. These methods have been suc-
cessfully applied in many real-world problems ranging from
optimization to engineering design and machine learning
[2]. Conversely, ADMCM is envisaged to obtain the auto-
mated synthesis of membrane computing models or of a
high-level specification of them by applying various meta-
heuristic search methods. Specifically, among the interest
areas covered by ADMCM, emerges the automatic design of
P systems (ADPS), which is also the research field to which
our investigation belongs.

The first attempt at correctly inferring a P system can be
found in [6], where the authors proposed PSystemEvolver,
an evolutionary algorithm based on generative encoding, and
tested it with a simple mathematical problem: the computa-
tion of squared numbers n2. The samemathematical problem
was later tackled in [18], where the authors proposed a binary
encoding for representing a P system, and exploited a QIEA
for evolving the P system population. Also Tudose et al. [19]
focused on the computation of squared numbers employing
a binary encoding and GA for the evolutionary part. Yet,
this work differs from the previous ones as it encompasses
non-determinism and model checking. Namely, multiple
non-deterministic simulations are performed for the fitness
evaluations, which are followed by formal verification of the
model. Moving towards a more general framework, Ou et
al. [20] still relied on an elitist GA for the same mathemati-
cal problem (actually, they considered only the square of 4),
but introduced a method for automatically designing a cell-
likemembrane system by tuningmembrane structures, initial
objects, and evolution rules. On the other hand, Chen et al.
[21] aimedat generalization in termsof operations to be simu-
lated within the same framework, considering five arithmetic
operations—addition, subtraction, multiplication, division,
and power. To this end, the authors leveraged a QIEA, yet
they considered only a predefined membrane structure and
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fixed initial objects. Along the same line, in [7] the authors,
besides surveying the state of art, also proposed an automatic
design for the computation of various arithmetic operations
(2(n−1), 2n−1, n2, 12 (n(n−1)), n(n−1), (n−1)2+2n+2,
a2

n
b3

n
and 1

2 (3
n − 1)).

The most recent work devoted to the automatic identifi-
cation of P systems with an evolutionary approach is [16].
Therein, the authors presented an evolutionary algorithm that
uses a direct encoding to evolve a population of (initially
random) P systems with active membranes and four types
of cooperative rules. The inference process only requires the
observation of subsequent configurations of the P system,
and relies on a fitness defined as edit distance between mem-
branes [22], similar to that employed in [23]. The authors
tested their method on several benchmark problems, includ-
ing three arithmetical operations. This work is the most
similar to our proposition, for we share the same general
setting and fitness measure. However, there are a few key
differences that distinguish our approach and add significant
novelty. First, we rely on an indirect encoding for P systems,
which is based on an easily customizable CFG. Second, we
do not require the user to have any specific knowledge of the
system under examination, as we do not pose any constraints
on either the size of the ruleset, of the multisets or on the
types of rules to be employed. Last, we provide an estimate
of the time needed for the automatic inference, to evaluate
its practicability in a real-world scenario.

3 Background

In this section, we formally define P systems (in Sect. 3.1)
and we introduce grammatical evolution (in Sect. 3.2), the
evolutionary computation technique we exploit for inferring
them.

3.1 P systems

Membrane systems, also referred to as P systems, consist
of a framework for defining parallel models of computation,
inspired by some basic features of biological membranes. In
P systems, multisets of objects are located in compartments,
i.e., in membrane structures, which evolve thanks to rewrit-
ing rules associated with specific compartments, applied in a
maximally parallel, non-deterministic way [1]. In this paper,
we consider P systems with active membranes without elec-
trical charges.

Definition 1 A P system with active membranes and coop-
erative rules, of initial degree d ≥ 1, is a tuple � =
(�,�,μ,wh1 , . . . , whd , R), where

• � is an alphabet of symbols, called objects,

• � is a finite set of labels,
• μ is a membrane structure (represented as a rooted
unordered tree) consisting of d membranes labeled by
elements of �,

• wh1, . . . , whd , with h1, . . . , hd ∈ �, are multisets
describing the initial contents of each of the d regions
of μ, and

• R is a finite set of rules.

We consider the following 4 types of cooperative rules for
the set R, taking inspiration from [16].

• Cooperative rewriting rules, [ u → v ]h for h ∈ � and
u ∈ �+, v ∈ ��: when applied inside a membrane h pre-
scribe the substitution of all objects in u with the objects
in v.

• Cooperative communication send-in rules, u [ ]h →
[ v ]h for h ∈ � and u ∈ �+, v ∈ ��: when applied
to a membrane h prescribe the removal of the objects in
u present in the parent region, and the insertion of the
objects in v in the membrane h.

• Cooperative communication send-out rules, [ u ]h →
v [ ]h for h ∈ � and u ∈ �+, v ∈ ��): when applied
inside a membrane h prescribe the removal of all objects
in u from its content, and the addition of all objects in v

to the parent region.
• Cooperative weak division rules, [ u ]h → [ v ]h [ w ]h
for h ∈ � and u ∈ �+, v, w ∈ ��, when applied to a
membrane h prescribe its replication (together with its
content) into two separate membranes, both labeled with
h. The objects of u are removed from both newly created
membranes, and replaced by those in v for the first one,
and by those in w for the second one.

We recall these rules are cooperative as they are triggered by
the co-occurrence of multiple objects within a membrane,
i.e., they act on multisets rather than on single objects. We
call left-hand side (LHS) of the rule the multiset it acts on,
(i.e., u for the rules listed here) and right-hand side (RHS) of
the rule the multiset(s) being produced (i.e., v and w).

At each time step i , a membrane h is in a configuration
defined as the multiset of objects it contains. Hence, the con-
figuration of a P system � at i , Ci , is given by its membrane
structure μ, i.e., by the configuration of all its membranes, at
i . Such configuration can be changed by the application of
the rules in R, i.e., by a computation step, which leads to a
new configuration Ci+1.

A computation step changes the current configuration of
the P system according to a series of principles, specifically:

(1) Each object is subject to at most one rule per step, yet
more objects can cross membranes at each step;

(2) The application of rules is maximally parallel;
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(3) A non-deterministic choice is performed if more than
one rule can be applied at the same time;

(4) Rules are applied simultaneously in an atomic way;
(5) The outermost membrane cannot be divided and any

object sent out from it can not re-enter the system again.

However, in this paper, we will consider solely determin-
istic P systems, meaning that we enforce determinism in the
application of the rules, differently from what principle (3)
states. Hence, there exists a unique computation C0,C1, . . .

starting from the initial configuration C0.

3.2 Grammatical evolution

Evolutionary algorithms (EAs) [24], among which we find
grammatical evolution (GE), are a class of population-based
optimization algorithms. As the name suggests, EAs take
strong inspiration from Darwin’s theory of evolution [25], in
that they evolve a population, i.e., a multiset, of candidate
solutions for a problem. Similarly to what happens in bio-
logical evolution, solutions are encoded with a genotype. To
compute the actual solution, i.e., the phenotype, we define
a genotype–phenotype mapping. At each generation, i.e., at
each iteration of the evolutionary loop, we generate new indi-
viduals bymeans ofmutation and recombination,we evaluate
their fitness, i.e., their quality, and we retain some individuals
according to a certain criterion.

GE is a variant of genetic programming [9], which can
evolve programs in any language. Its strength lies in its
indirect encoding and in a mapping procedure that solves
the “closure” problem [11], always yielding valid solutions.
More in detail, the genotype in GE consists of a variable-
length bit string, where bits are grouped into codons—
consecutive groups of 8 bits, which can be converted into
integer values in [0, 28 − 1 = 255]. Conversely, the pheno-
type can be a program, i.e., a string, in any language L(G)

that can be specified with a Context-Free Grammar (CGF)
G (more in the following). Thanks to this dichotomy, the
end-user can rely on standard techniques for the evolution-
ary loop, and obtain a solution to their problem by simply
specifying a suitable grammar G.

We provide the pseudo-code for evolving a solution with
GE in Algorithm 1. After initializing a population of npop
individuals, the evolutionary search proceeds iteratively for
ngen generations. At each generation, we generate noff new
individuals, by first selecting two parents from the popula-
tion P , and then applying crossover and mutation to their
genotypes. From the newly obtained genotypes, we compute
the individuals with a mapping procedure followed by the
fitness evaluation (see Lines 10 and 11). Last, we merge the
offspring with an elite of the current population, to constitute
the population for the next evolutionary loop. Concerning
the operators involved, namely initialization, mutation, and

Fig. 1 A CFG in the Backus–Naur Form (BNF) for mathematical
expressions

crossover, it is in principle possible to use any operator suit-
able for a bit string genotype.

Algorithm 1 The evolutionary loop of GE.
1: function evolve( )
2: I ← initialize(npop)
3: for all g ∈ {

1, . . . , ngen
}
do

4: C ← ∅
5: for all i ∈ {

1, . . . , noff
2

}
do

6: g1 ← selectParent(I)
7: g2 ← selectParent(I)
8: g′

1, g
′
2 ← crossover(g1, g2)

9: g′′
1 , g

′′
2 ← mutate(g′

1), mutate(g
′
2)

10: p1, p2 ← map(g′′
1 ), map(g

′′
2 )

11: f1, f2 ← evaluate(p′′
1 ), evaluate(p

′′
2 )

12: i1, i2 ← (g1, p1, f1), (g2, p2, f2)
13: I ′ ← I ′ ∪ {i1, i2}
14: end for
15: I ← I ′ ∪ best(I, npop − noff)
16: end for
17: return best(I, 1)
18: end function

The core of GE, however, does not lie in its rather stan-
dard evolutionary loop. Instead, it resides within the CFG,
which specifies the syntax of the desired solution, and in the
mapping, procedure based on it.

Definition 2 A context-free grammar (CFG) is defined as a
tuple G = (N , T , s0, P), where

• N is the set of non-terminal symbols,
• T is the set of terminal symbols (with N ∩ T = ∅),
• s0 ∈ N is the starting symbol, and
• P is the set of production rules.

The production rules P , usually expressed in the Backus–
Naur Form (BNF) [26], constitute the essence of GE,
for the genotype-phenotype mapping is built upon them.
We provide an example of CFG for mathematical expres-
sions in Fig. 1, with N = {〈expr〉, 〈op〉, 〈var〉, 〈num〉} and
T = {+, -, *, /, x, y, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Following the
usual convention, the starting symbol corresponds to the non-
terminal on the left side of the first rule, i.e., s0 = 〈expr〉.

Moving back to GE, we detail the genotype–phenotype
mapping procedure in Algorithm 2. The rationale of the
mapping is to begin from the starting symbol s0, and then
iteratively replace non-terminal symbols with other symbols
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according to the production rules, until the string is only
composed of terminal symbols. To disambiguate among the
available replacement options Ps for the considered symbol
s, we rely on the current codon g[c]. Namely, we divide the
integer value of g[c] by |Ps |, and use the remainder of the
division j to select the new symbol from Ps (with zero-based
indexing). Clearly, we slide the genotype g for selecting
the current codon, possibly restarting from the beginning if
needed.

Note that in some edge cases an incomplete mapping
might occur if the genome has been completely traversed
(even with multiple restarts from the beginning) and the
derivation string still contains non-terminals. In such cases
(not reported in Algorithms 1 and 2 for brevity), we consider
the individual as invalid and we assign it a poor fitness value
to minimize its chances of propagation in the next genera-
tions.

Algorithm 2 Genotype-phenotype mapping in GE.
1: function map(g)
2: p ← s0
3: c ← 0
4: while containsNt(p) do
5: s ← getFirstNt(p)
6: Ps ← getProductionRules(s)
7: j ← mod(g[c], |Ps |)
8: r ← Ps [ j]
9: p ← replaceFirst(p, s, r )
10: c ← c + 1
11: if c ≥ size(g) then
12: c ← 0
13: end if
14: end while
15: return p
16: end function

The mapping used in GE ensures that all produced valid
individuals conform to the usedCFG.Weprovide an example
of mapping in Fig. 2 for a genotype g of 48 bits (6 codons),
using the CFG of Fig. 1.

4 Inferring P systems with GE

The goal of this work is to leverage GE to automatically
infer a P system, i.e., its ruleset, given an observation of its
successive configurations. Namely, we observe a sequence of

configurations of a P system,
−→
C = (C0, . . . ,Cm) of length

m + 1, and we aim at applying GE to find the ruleset whose
application would give rise to said sequence.

As GE is able to evolve a string in any language, as long as
its syntax can be specified with a CFG, we need to introduce
a CFG to express the ruleset of a P system. Moreover, we
need to define a quality measure of a candidate solution, i.e.,

Fig. 2 Steps of the GEmapping procedure with a genotype g of 48 bits,
i.e., 6 codons, and the grammar of Fig. 1. The rightmost column shows
the phenotype p before the derivation of the highlighted non-terminal

Fig. 3 The proposed CFG in BNF for describing the ruleset of a P sys-
tem

the fitness of a ruleset, to guide GE towards the identification
of the correct P system. We devote Sects. 4.1 and 4.2 to the
definition of a CFG and the specification of a fitnessmeasure,
respectively.

4.1 A CFG for P systems rulesets

In compliance with the P system features described in
Sect. 3.1, we propose the CFG reported in Fig. 3, with N =
{〈ruleset〉, 〈rule〉, 〈multiset〉, 〈membrane〉, 〈object〉},
T = {m1,…,m�, o1,…, o�}, and s0 = 〈ruleset〉. We
leave the number of membranes and objects as free param-
eters of the CFG, as they can easily be set on-the-fly before
the inference, according to those involved in the observed
P system.

As we can see in Fig. 3, a ruleset can either be comprised
of a single rule or of multiple rules, each of which can be of
one of the 4 types listed in Sect. 3.1. For each rule we require
to select a membrane on which to apply it and the multisets,
either 2 or 3, it operates on. However, we remark that the
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Fig. 4 Steps of the GE mapping procedure with a genotype g of 80
bits, i.e., 10 codons, and the grammar of Fig. 3. For this example, we
set both � and � to 10. As for the previous example, the rightmost
column shows the phenotype p before the derivation of the highlighted
non-terminal

introduced CFG does not pose any constraint neither on the
size of the ruleset and of the multisets, nor on the types of
rules to be used. This way the user is not required to have any
specific knowledge of the observed P system, and the discov-
ery is completely left to the evolutionary search. Moreover,
the proposed CFG can be easily altered to encompass differ-
ent scenarios, e.g., by simply adding more rule types.

We provide an example of genotype–phenotype mapping
in Fig. 4 for a genotype with 10 codons. For this example, we
set both � and � to 10.

4.2 Computing the fitness

To assess the performance of the inferred rules in approxi-
mating the observed P system,we introduce a fitnessmeasure
based on that proposed in [16].Namely, the goal is to quantify

how well the transitions in
−→
C are captured by the considered

ruleset. To this end, for eachCi ∈ −→
C , with i = 0, . . . ,m−1,

we computed
(
Ci+1, C̃i+1

)
, whereCi+1 is the next observed

configuration and C̃i+1 is the configuration obtained by
applying the candidate ruleset for one computation step to
Ci . Clearly, a lower distance (averaged across all m transi-
tions) means a better P system approximation and a better
quality of the ruleset. Hence, we aim at finding a ruleset R
that minimizes the average distance across transitions.

We define d as an edit distance betweenmembranes based
on the following operations:

(1) Addition of a membrane and its content (including other
membranes), whose cost is equal to the number of mem-
branes added;

(2) Removal of a membrane and its content, whose cost is
equal to the number of membranes removed;

(3) Change of the objects contained in a membrane, whose
cost is computed as the Jaccard distance between the two
multisets contained in the membranes. We recall that the
Jaccard distance measures the dissimilarity between A
and B, as

dJ (A, B) = 1 − |A ∩ B|
|A ∪ B| ,

which ranges from dJ (A, B) = 0, if the two multisets
are exactly the same, to dJ (A, B) = 1 if the intersection
is empty.

The edit distance between two membrane structures is
measured by counting the minimum number of edit oper-
ations required to transform one into the other. We define
(e1 . . . , el) as the minimum sequence of operations to trans-
form a configuration C1 = [w1[w2]h2 . . . [wm]hm ]h1 into
C2 = [v1[v2]k2 . . . [v�]k�

]k1 . Thus, if the cost of a single
operation ei is γ (ei ), the total cost of the sequence, i.e., the
distance between the two configurations, is given by

d (C1,C2) =
l∑

i=1

γ (ei ).

To overcome the limitation given by the computational
burden implied by finding the minimum cost, some practi-
cal simplifications can be introduced—without impacting the
quality of the final results. First, when considering two root
membranes with different labels, the distance is given by the
cost of completely removing the first membrane plus the cost
of adding thewhole secondmembrane. Conversely, if the two
membranes share the same root, the total distance d(w1, v1)

is defined by the cost of changing w1 into v1 plus the cost of
changing the membrane structure recursively. Specifically,
all the membranes contained in the root membrane are par-
titioned according to their label, and, subsequently, for each
one of these partitions, the elements in the outermost mem-
brane are sorted (in lexicographic order) and the distance
between each pair of membranes is computed.

This approximation returns a distance that preserves two
fundamental properties: membranes with equal labels can
change their order and membranes with different labels need
to be removed and replaced. This is consistent with the fact
that in P systemswhen twomembranes have the same content
but different label, there is no easy way to transform one into
another, as the rules are naturally bounded with membranes
by their definition.
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5 Experimental setting

We experiment with six different benchmark problems in
order to assess the capability of the proposed approach to
correctly infer the ruleset of a P system. Each of the con-
sidered benchmark problems deals with a different class of
P systems, and is, hence, targeted at testing the inference
ability with respect to a specific task. Namely, the send-in
and send-out problems test the ability to infer communica-
tion rules, while the variable assignment problem tests the
ability to learn weak membrane division rules. Finally, we
also test and discuss the ability to infer three basic arithmetic
operations: unary addition, unary multiplication, and unary
division.

To achieve general results we experiment with different
settings concerning the benchmark problems, i.e., with dif-
ferent problem sizes. Moreover, we evaluate the impact of
including someapriori knowledge in the evolutionary search,
by reducing the rule types in the CFG to only those actually
employed by the observed P system.

Regarding the code, we employ PonyGE2 [27] for the
GE part and Psystem-GA [16] for the P systems simulation.
For the complete reproducibility of the following results,
we make our code available at https://github.com/giorgia-
nadizar/psystems-ge.

5.1 Benchmark problems

We hereby introduce the benchmark problems used to assess
the effectiveness of our approach. We summarize their fea-
tures with respect to the problem size n in Table 1. Namely,
we report the number of rules needed nrules, the number
of rule types used nrtypes, the number of different objects
involved nobj, the number of computation steps needed to
solve the problem nsteps, the cardinality of the LHS and of
the RHS, and whether cooperative rules are required, i.e.,
whether they are actually triggered by the presence of mul-
tiple objects or if a single object suffices. We detail the
benchmark problems in the following.

5.1.1 Send-in problem

The goal of the send-in problem is to send n objects from the
outer membrane h to an inner membrane k. Hence, to move
from an initial configuration

[x0,0 x1,1 . . . xn−1,n−1 [ ]k]h

to a final configuration

[[x0 x1 . . . xn−1]k]h

following a specified order. In more details, the dynamic of
the P system is given by two types of rules:

[
xi, j → xi, j−1

]
h for 0 ≤ i < n and 0 < j ≤ i,

xi,0 [ ]k → [ xi ]k for 0 ≤ i < n.

The former act as a counter to determine when an object
can be sent in the inner membrane, whereas the latter ones
actually perform the send-in action.

5.1.2 Send-out problem

The send-out problem is symmetric with respect to the send-
in problem, meaning that the goal is to send the n objects
from the innermost membrane k to an outer membrane h,
starting from

[[x0,0 x1,1 . . . xn−1,n−1]k
]
h

to achieve

[
x0 x1 . . . xn−1 [ ]k

]
h .

The rules governing the system are:

[
xi, j → xi, j−1

]
k for 0 ≤ i < n and 0 < j ≤ i,

[
xi,0

]
k → xi [ ]k for 0 ≤ i < n,

respectively, acting as counters and sending out the objects.

5.1.3 Variable assignment problem

In this problem, we consider n Boolean variables stored
within a membrane. The aim is to generate 2n membranes,
each containing a possible assignment of the aforementioned
variables. Thus, starting from

[[x0,0 x1,1 . . . xn−1,n−1]k
]
h

we want to reach

[ [t0 t1 . . . tn−1]k , [t0 t1 . . . fn−1]k , . . . , [ f0 f1 . . . fn−1]k︸ ︷︷ ︸
2n

]
h ,

where ti and fi indicate variables which are set to true and
false, respectively. The needed rules are

[
xi, j → xi, j−1

]
k for 0 ≤ i < n and 0 < j ≤ i,

[
xi,0

]
k → [ ti ]k [ fi ]k for 0 ≤ i < n,

where, as before, the first ones act as counters, while the latter
ones actually perform the assignment task.
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5.1.4 Elementary operations

Last, we use three elementary functions as benchmark
problems. Namely, we consider unary addition, unary multi-
plication, and unary division, inspired by [21]. The first two
problems require only non-cooperative rules, unlike the last
one which needs a cooperative rule, as we can note from
the definition of the rules needed for performing such oper-
ations, provided below. We decided to focus on the study
of these three elementary functions—and not on all the five
listed in [21]—since the considered functions cover a wide
enough range of cases needed to test the performance of an
automatic inference method, as also done in [16].

Unary addition Given a membrane k containing n − p
copies of an object a and p copies of an object b, the goal is
to send out n copies of an object c, with p randomly selected
in {0, . . . , n}. To model this operation we can combine two
send-out rules

[ a ]k → c [ ]k
[ b ]k → c [ ]k ,

which need to be applied for a total of n times.
Unary multiplication Given a membrane k containing p

copies of an object a, the goal is to send out p ·n copies of an
object b, with p randomly selected in {1, . . . , n}. To model
the multiplication, we require one single send-out rule

[ a ]k → bn [ ]k .

A single application of the rule suffices as we do not enforce
that only one object can cross a membrane at each step.

Unary division Given a membrane k containing p copies
of an object a, the goal is to send out  p

n � copies on an
object b, with p randomly selected in {1, . . . , n2}. Similarly
to the unary multiplication, to achieve the desired behavior,
we require a single application one send-out rule

[
an

]
k → b [ ]k ,

5.2 Parameters settings

For the benchmarks, we experiment with increasing problem
sizes, n ∈ {2, 3, 4, 5}. Clearly, a larger problem size corre-
sponds to a harder inference task, as we can understand by
examining Table 1. First, we notice a quadratic dependence
of nrules and nobj from n for send-in, send-out, and variable
assignment problems. The growth of nrules indicates that the
GE algorithm needs to produce more rules, and all of them
need to be correct, while the increase in nobjects implies that,
when generating a rule, there is a greater chance of picking
the wrong object as the pool grows. Second, for multiplica-
tion and division, there is a linear dependence on n for |RHS|
and |LHS|, respectively, which increases the difficulty, since
more correct objects need to be selected to form a rule.

Regarding the elementary operations, there is an addi-
tional parameter at play, that is p, as mentioned in Sect. 5.1.
For addition and multiplication, we set p = � n

2 �, whereas
for division we set p = n. For addition, we choose p to have
an approximately equal number of objects of each type, a
and b, within the membrane. Conversely, for multiplication
and division, we select p as a reasonable value within its
range of variability, after a preliminary experimental phase
in which we observed it played a minor role with respect to
the identification difficulty.

Concerning the length m + 1 of the observed sequence−→
C = (C0, . . . ,Cm), we always consider the full computa-
tion for each problem. In other words, we observe all the
configurations the P system goes through to pass from the
initial configuration to the target one, i.e., to the solution of
the problem. Hence, we always set m = nsteps, that ism = n
for send-in, send-out, assignment, and addition, and m = 1
for multiplication and division.

For the GE algorithm, we rely on Algorithm 1 with
npop = 1000, noff = 990, and ngen = 2000, and the fol-
lowing operators [28].

• Initialization We use position-independent grow as ini-
tialization [29], that builds each individual as a tree, by
randomly picking production rules in the CFG. This way
it is possible to control the depth of the tree, which we

Table 1 Summary of the
features of the considered
benchmark problems, with
respect to the problem size n

Problem nrules nrtypes nobj nsteps |LHS| |RHS| Cooperative

Send-in n(n+1)
2 2 n(n+3)

2 n 1 1 ×
Send-out n(n+1)

2 2 n(n+3)
2 n 1 1 ×

Assignment n(n+1)
2 2 n(n+5)

2 n 1 (1, 1) ×
Addition 2 1 3 n 1 1 ×
Multiplication 1 1 2 1 1 n ×
Division 1 1 2 1 n 1 �

For the RHS of the variable assignment problem, we report the size of both the produced multisets
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Fig. 5 Median and
inter-quartile range (across 30
runs) of the fitness d̄� of the best
individual along iterations for
the elementary operations and
problem size n ∈ {2, . . . , 5}

limit to 10, to prevent excessively large individuals at
initialization. To obtain a bitstring, when choosing pro-
duction rules in the tree construction, we select a suitable
codon and append it to the genome.

• Selection. For selection, we rely on tournament selection
[30], with a tournament size of 2. Namely, to select an
individual, we randomly sample 2 individuals from the
entire population, and pick the fittest among them.

• Crossover After selecting the two parents, we recombine
their genomes via variable one-point crossover. That is,
we uniformly select a crossover point for each of the
two genomes and we swap the bits to the right of each
point between the two parents. This way genomes are
also allowed to grow or shrink. We apply crossover with
a probability pxo = 0.75, meaning that in 25% of cases,
the parents are simply copied to form the two children.

• Mutation To further modify the genome, we resort to a
int-flip per codon mutation, with probability pmut = 1

|g|
for each codon. This means that we randomly change
each codon to another integer value with a probability
pmut = 1

|g| .

We choose these settings for GE as they are commonly used
in the literature. Moreover, we performed several prelimi-
nary experiments with different values for npop and ngen and
converged to the aforementioned ones as they constitute a
reasonable trade-off between computational power and time
consumption, as we shall see in Sect. 6.1.

6 Results and discussion

In the following, we report the results obtained on the afore-
mentioned benchmark problems.

First, we display the progression of the fitness d̄� of the
best individual in the population along the iterations of theGE
algorithm for the first three benchmark problems—send-in,
send-out, and variable assignment—in Fig. 5. Namely, each

plot refers to a problem, and each line refers to a problem
size n ∈ {2, . . . , 5}. Given the stochastic nature of the GE
algorithm execution, we run it 30 independent times for each
configuration, to ensure the consistency of results, as sug-
gested in the GE literature. Hence, in the plots, we report
the median and the inter-quartile range (shaded) across those
independent runs.

Observing the figure, we notice that in all cases, the fitness
decreases at the progression of iterations, meaning that the
algorithm is indeed getting closer to the correct solution, i.e.,
to the true ruleset. However, it is clear that the efficacy of
GE is strongly dependent on the problem size n. Namely,
we can notice two aspects of such dependency. First, the
smaller the n the faster the fitness decrease, and second, only
for smaller values of n the fitness reaches 0 (meaning that
the evolutionary approach infers correctly all the P system
rules), whereas in all other cases, it decreases but stalls at
higher values.

To further analyze the second aspect, i.e., the performance
at end of the GE algorithm execution, we introduce another
indicator thatwe call correct inference ratio (CIR), defined as
the number of runs in which GE correctly infers the P system
at the end of evolution divided by the total number of runs
performed. We report the CIR for each problem and problem
size n in Table 2. As hinted by Fig. 5, for n = 2 GE can
always infer the P system correctly (CIR = 1), whereas for
n = 5 the correct inference never occurs (CIR = 0). For the
intermediate values of n, instead, the values of the CIR are
greater than 0 (besides for the assignment problem with n =
4). This gives us more insight into our results: even though
the median of the fitness does not reach 0, there are still
some executions in which the ruleset is correctly identified.
Moreover, this draws our attention to the stochasticity of the
GE execution, which, even in the very same conditions, can
achieve different outcomes.

Anyway, the results in Table 2 confirm the behavior
observed in Fig. 5 concerning the relation between n and the
GE execution outcome. This is a direct consequence of the
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Table 2 Correct inference ratio, i.e., number of runs in which GE
correctly infers the P system divided by the total number of runs per-
formed, for the first three benchmark problems for different problem
sizes n ∈ {2, . . . , 5}
Problem Correct inference ratio (CIR)

n = 2 n = 3 n = 4 n = 5

Send-in 1.00 0.80 0.10 0.00

Send-out 1.00 0.90 0.17 0.00

Assignment 1.00 0.17 0.00 0.00

neat increase in the number of objects employed for larger
n (see Table 1), as this enlarges the search space, i.e., the
number of existing rulesets complying with the target CFG,
clearly making it more difficult for GE to find an optimal
solution. These results suggest that the proposed approach is
successful for small problem sizes, but suffers when scaling.

Concerning the other family of benchmark problems con-
sidered, the elementary operations, we report the results
achieved in Fig. 6, where we use the same visual syntax
employed for Fig. 5. To ease the visual examination of the
results, we clip the x-axis to 25 iterations, as for all the
elementary operations the median of the fitness reaches the
perfect value of 0 before said limit.

The paramount trait of the plots in Fig. 6 is that the infer-
ence of all elementary operations is perfectly achieved for all
the considered problem sizes.Moreover, it takes significantly
less than 2000 iterations for the correct inference, implying
an overall computation that is way less costly if compared to
the other benchmark problems considered. To further reason
on the convergence speed, we report in Fig. 7 the distribution
of the total number of iterations necessary to correctly infer
the ruleset of the P system, id̄�=0, for each setting.

From both Figs. 6 and 7, we notice a clear dependence
of the convergence speed from n for both the multiplica-
tion and division operations. This is an expected result given
Table 1, where we note that, for these operations, the size
of either the LHS or the RHS grows with n. However, GE
can always effectively infer the correct ruleset because, dif-
ferently from before, the search space does not grow with n.
For the addition operation, instead, n seems to play a minor
role, in compliance with Table 1, where we do not highlight
any relationship between n and the inference difficulty.

Summarizing, from the experiments conducted,weclearly
noticed that the main limitation of our approach lies in the
size of the search space of GE: when this grows too large it
is difficult to converge to the correct solution with the cho-
sen computation budget. To try to overcome this issue, we
attempt at restricting the search space by leveraging some

Fig. 6 Median and
inter-quartile range (across 30
runs) of the fitness d̄� of the best
individual along iterations for
the elementary operations and
problem size n ∈ {2, . . . , 5}

Fig. 7 Distribution of id̄�=0, i.e.,
the amount of iterations needed
to reach best fitness d̄� = 0, for
the elementary operations for
different problem sizes
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(a) Send-in

(b) Send-out

(c) Variable Assignment

Fig. 8 The CFGs in BNF to describe the rulesets of the P systems used
to solve the considered benchmark problems in the easier setting. Start-
ing from Fig. 3, we enhance the CFG with additional knowledge about
each problem, by replacing 〈multiset〉 with 〈{object}〉 and reducing the
replacement options for the 〈rule〉

knowledge of the observed systems. To this end, we repeat
the previous experimental evaluation for problems where we
could not find the optimal solution (send-in, send-out, and
variable assignment) employing a CFG that leverages some
a priori knowledge of the considered P systems. In practical
terms, we examine two aspects: (1) both the LHS and the
RHS of the rules are always composed of one single object,
and (2) each ruleset only contains a subset of the four con-
sidered rule types.

Given these two observations, we introduce an enhanced
CFG for each problem, to include the aforementioned addi-
tional knowledge; we report said CFGs in Fig. 8. Namely, for
all problems, we substitute 〈multiset〉 with {〈object〉} in the
structure of each rule (as prescribed by (1)). Moreover, we
define only rewrite and send-in rules for the send-in prob-
lem, rewrite and send-out rules for the send-out problem,
and rewrite and division rules for the variable assignment
problem.

We remark that this setting is not unrealistic, as this knowl-
edge about a P system can be derived by a human observer.
Clearly, this requires additional effort with respect to the
standard setting previously considered, yet it is still limited
compared to that needed to infer the P system completely by
hand.

We display the results of the supplementary evaluation in
Fig. 9. From these plots, we note the same trend observed in
the standard setting, regarding both the decrease of the fitness
and the dependencywith respect to n. To ease the comparison
with the previous setting, we also provide comparative plots
in Fig. 10. A twofold improvement emerges from these plots:
(1) a speed up in the fitness decrease, and (2) convergence
at 0 at the end of the GE algorithm execution even for larger
values of n.

As before, we delve into a deeper analysis considering the
CIR, reported in Table 3. Again, we notice an improvement
with respect to the standard setting: not only there are more
problems where CIR = 1, but also in all but one case we
get CIR > 0. However, similarly to Table 2, we observe
decreasing values of CIR at the increase of n, yet in this
case the decrement is less dramatic. In fact, in both cases the
search space grows with n, although here it is clearly smaller
(because of the restricted CFGs employed).

Hence,we can conclude thatwith some preliminary obser-
vation of the system and, possibly, with multiple GE runs, it
is feasible to correctly infer the P system in all the considered
scenarios.

6.1 Computational effort

To complete our experimental evaluation, we provide an esti-
mate of the computational effort required for the P system
inferencewithGE.To evaluate the feasibility of the approach,
we aim at quantifying the time required for executing the GE
algorithm until the correct inference is achieved.

To this end, we consider only configurations where the
observed CIR is equal to 1, that is: all the elementary oper-
ations with the standard setting; the send-in, send-out, and
assignment problems in both settings with n = 2; and the
send-in and send-out problems in the easier setting with
n = 3. For each of these cases, we run the GE algorithm
10 times in a “controlled environment”, i.e., without execut-
ing any other program on the same machine, and measure
td̄�=0, that is the amount of time taken to achieve d̄� = 0. As
machinery, we employ a 64 core workstation (AMD EPYC
7542 W-2295 with 64GB RAM), for which we enable only
the usage of 8 cores.

We report the distribution of td̄�=0 in seconds for all the
considered cases in Fig. 11. These plots confirm the practi-
cability of the proposed method, as the inference requires
less than one minute for all the reported cases. As observed
in Sect. 6, GE takes more time to converge to the correct
solution when the search space is larger (i.e., for send-in,
send-out, and variable assignment problems), although the
inference times are still always reasonable.

We believe the results obtained in terms of time con-
sumption constitute an added value of the proposed method
and make it a promising research direction for future devel-

123



140 G. Nadizar, G. Pietropolli

Fig. 9 Median and inter-quartile
range (across 30 runs) of the
fitness d̄� of the best individual
along iterations for the first three
benchmark problems and
problem size n ∈ {2, . . . , 5} in
the easier setting

Fig. 10 Median (across 30 runs)
of the fitness d̄� of the best
individual along iterations for
the first three benchmark
problems and problem size
n ∈ {2, . . . , 5} in the easier
setting. We use a dashed line for
the standard setting and a solid
line for the easier setting

Table 3 Correct inference ratio, i.e., number of runs in which GE
correctly infers the P system divided by the total number of runs per-
formed, for the first three benchmark problems for different problem
sizes n ∈ {2, . . . , 5} in the easier setting

Problem Correct inference ratio (CIR)

n = 2 n = 3 n = 4 n = 5

Send-in 1.00 1.00 0.87 0.43

Send-out 1.00 1.00 0.87 0.27

Assignment 1.00 0.67 0.07 0.00

opments for the automated synthesis of P systems with a
GE-based approach.

7 Conclusion and future directions

In this work, we leveraged grammatical evolution (GE) to
automatically infer the ruleset of a P system given a sequence
of its configurations. We tested our approach on six bench-
mark problems, involving different classes of P systems.
During our analysis, we considered both a general frame-

work, but also a more specific scenario where we included
some additional knowledge, derived by human observation
of the P system, in the GE search. Experimental results show
that our method skilfully converges to the correct set of rules
for basic arithmetic operations, with slight computational
effort. In addition, we achieved remarkable results also for
the three other benchmark problems considered—the send-
in, send-out and variable assignment problems—for small
problem sizes, especially when some additional information
was provided.

The proposed approach could be relevant for P system
design tasks, but also for structure and operation identifica-
tion. This work is, to the best of our knowledge, the first
attempt to automatically infer P system rules by means of
GE, hence it paves the way for multiple future developments.
In particular, it would be meaningful to test more advanced
versions of GE, to assess whether they could enhance our
method. For instance, structured grammatical evolution [31],
where the genotypic representation explicitly links each gene
to a non-terminal of the grammar, or probabilistic grammati-
cal evolution [32–34], where production rules in the CFG are
associatedwith different probabilities, orweighted hierarchi-
cal grammatical evolution [35], where a form of hierarchy
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Fig. 11 Distribution of td̄�=0 (in
seconds), i.e., the amount of
time needed to reach best fitness
d̄� = 0, for the first three
benchmark problems (only the
settings with CIR = 1) and the
elementary operations (only
with the standard setting)

on the genotype is imposed. In fact, all these GE variants
have yielded improvements with respect to standard GE in
various domains thanks to their increased locality [36]—a
desirable property in EAs, which links the size of the steps in
the search space to the size of the steps in the solution space—
which could be of paramount importance for addressing our
inference cases with a larger search space. Last, it would be
noteworthy to experiment with different classes of P systems,
also in non-deterministic settings.
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