
Vol.:(0123456789)1 3

Journal of Membrane Computing (2022) 4:261–267
https://doi.org/10.1007/s41965-022-00104-7

REGULAR PAPER

Membrane creation and symport/antiport rules solving QSAT

David Orellana‑Martín1 · Luis Valencia‑Cabrera1,2 · Mario J. Pérez‑Jiménez1,2

Published online: 12 September 2022
© The Author(s) 2022

Abstract
In Membrane Computing, different variants of devices can be found by changing both syntactical and semantic ingredients.
These devices are usually called membrane systems or P systems, and they recall the structure and behavior of living cells in
the nature. In this sense, rules are introduced as a way for objects to interact with membranes, giving P systems the ability to
solve computational problems. Some of these rules, as division, separation and creation rules are inspired by the membrane
division through the mitosis process or new membranes are created through gemmation. These rules seem to be crucial in
the path to solve computationally hard problems. In this work, creation rules are used in classical P systems with symport/
antiport rules, where objects travel through membranes without changing to achieve enough computational power to effi-
ciently solve PSPACE-complete problems. More precisely, a solution to the QSAT problem is given by means of a uniform
family of these systems. This paper was originally submitted to the International Conference on Membrane Computing 2021.

Keywords Membrane computing · Membrane creation · QSAT · Computational complexity theory

1 Introduction

Membrane Computing, since its beginnings [1], has covered
a wide spectrum of applications, from computability theory
[2] and computational complexity theory [3] to pandemics
[4] and engineering [5]. The model is inspired in the struc-
ture and behavior of living cells and the chemical reactions
occurring within them. From the beginning, solving compu-
tationally hard problems has been a hot topic in this area [6],
being one of the most studied fields with membrane systems.

Cell-like P systems can be seen as a hierarchical structure
of membranes that let chemical compounds pass by them.
Making an abstraction of integral membrane proteins and

their role in the transport of molecules, symport/antiport
rules let objects move to one region to other one or inter-
change them between two regions [7]. Usually, P systems are
found to be Turing complete [8], but from the point of view
of the computational complexity theory, they can only solve
problems from the class P [9]. To increase the efficiency of
these systems, different types of rules have been introduced:
division rules [6], separation rules [10] and creation rules
[11] are three of the protocols that have been implemented
in membrane computing with this purpose. The latter uses a
single object and transforms it into a new membrane.

In the framework of cell-like membrane systems, creation
rules have been used lately besides evolutional communica-
tion rules in [12] to solve the SAT problem by means of a
family of recognizer P systems with evolutional communi-
cation rules and creation rules. In [13], an efficient solution
to QSAT is given by means of a family of recognizer polari-
zationless P systems with active membranes and membrane
creation, and in [14], an efficient solution to QSAT is given
by means of a family of P systems with evolutional sym-
port/antiport rules of length (1, 1) and creation rules. Crea-
tion rules have not been used in P systems with classical
symport/antiport rules. In this work, we try to replicate the
results of the latter paper using recognizer P systems with
classical symport/antiport rules with a minimal amount of
objects per communication rule. This is a really important

 * David Orellana-Martín
 dorellana@us.es

 Luis Valencia-Cabrera
 lvalencia@us.es

 Mario J. Pérez-Jiménez
 marper@us.es

1 Research Group on Natural Computing, Department
of Computer Science and Artificial Intelligence, Universidad
de Sevilla, Avda. Reina Mercedes, Sevilla 41012, Sevilla,
Spain

2 SCORE Laboratory, I3US, Universidad de Sevilla,
Avda. Reina Mercedes, Sevilla 41012, Sevilla, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-022-00104-7&domain=pdf

262 D. Orellana-Martín et al.

1 3

result, since evolutional communication rules are intrinsi-
cally changing the nature of the objects, and thus both in
a software simulation and in real-life implementations, it
would need to implement these changes in some sense, lead-
ing to a more complex implementation. That is why the use
of classical symport/antiport rules is really interesting in
order to reduce the “number of ingredients” (we could think
that the evolution part of evolutional symport/antiport rules
is an ingredient) of the P systems using these rules.

The rest of the work is organized as follows: Section 2 is
devoted to introduce some formal language and set theory
concepts used later through the paper. In Sect. 3, the defi-
nition of recognizer P systems with symport/antiport rules
and membrane creation is given. In the following section,
a polynomial-time and uniform solution to QSAT is given
by means of a family of recognizer P systems with symport/
antiport rules of length at most 1 and membrane creation,
and an overview of the computations and the formal verifica-
tion of the design are specified. Finally, some remarks and
open research lines are indicated.

2 Preliminaries

Some basic notions of formal languages, set theory and other
terms used throughout the paper are recalled in this section.
For a deeper explanation on formal languages and membrane
computing, we refer the reader to [15, 16].

An alphabet Γ is a non-empty set, and its elements are
called symbols. A string u over Γ is a finite sequence of
symbols from Γ . The number of appearances of a symbol
a in u is denoted by ∣ u ∣a . The length of u, denoted by ∣ u ∣
is
∑

a∈u ∣ u ∣a.
A multiset over Γ is a pair (Γ, f) where f ∶ Γ → ℕ is

a mapping from Γ to the set of natural numbers ℕ . Let
m1 = (Γ1, f1),m2 = (Γ2, f2) two multisets over Γ . The union
of m1 and m2 , denoted by m1 + m2 or m1 ∪ m2 is defined as
(f1 + f2)(x) = f1(x) + f2(x) . The relative complement of m2 in
m1 , denoted by m1 ⧵ m2 , is the defined as

The empty multiset is denoted by ∅ , and the set of all finite
multisets over Γ is denoted by Mf (Γ).

The size of the set u is given by the total number of
objects in u, and it is denoted by ∣ u ∣.

The Cantor pairing function ⟨⋅, ⋅⟩ is a bijective function
defined as ⟨a, b⟩ = (a+b+1)(a+b)

2
+ b.

(m1 ⧵ m2)(x) =

{
f1(x) − f2(x) if f1(x) ≥ f2(x)

0 if f1(x) < f2(x).

3 Recognizer P systems with symport/
antiport rules and creation rules

In this section, a definition of recognizer P systems with
symport/antiport rules and creation rules is given, and both
the syntax and semantics are recalled.

Definition 1 A recognizer P system with symport/antiport
rules and membrane creation of degree q ≥ 1 is a tuple

where

1. Γ , Σ and E are finite alphabets of objects, where
Σ, E ⊆ Γ,Σ ∩ E = �;

2. H is a finite set of labels;
3. � is a membrane structure whose elements are injec-

tively labeled by elements of H;
4. Mi, 1 ≤ i ≤ q are finite multisets over Γ ⧵ (Σ ∪ E);
5. R is a set of rules of the following forms:

• Symport rules:

– (u, in) ∈ Ri , where u ∈ Mf (Γ) , except if i is the
skin membrane, where u ∈ Mf (Γ) ∧ u ∉ Mf (E)
(send-in rules);

– (u, out) ∈ Ri , where u ∈ Mf (Γ) (send-out rules);

• Antiport rules:

– (u, out;v, in) ∈ Ri , where u, v ∈ Mf (Γ);

• C r e a t i o n r u l e s : [a → [u]i]j , w h e r e
i, j ∈ H, i ∉ {skin, iout} , where skin is the label of the
skin membrane, a ∈ Γ, u ∈ Mf (Γ);

6. iin ∈ H is the label of the input membrane;
7. iout = env is the label of the output zone, in this case, the

environment.

A configuration Ct of a P system with symport/antiport
rules and creation rules is described by the membrane struc-
ture at the moment t and the multisets of objects over Γ
of each membrane, and the multiset of objects over Γ ⧵ E
of the environment. We use the term region i to refer to
a membrane if i ∈ H and to the environment if i = env .
We can suppose that in each moment, there is an arbitrary
number of objects from E in the environment. Let m be the
input multiset encoding the corresponding instance of a

Π = (Γ,Σ, E,H,�,M1,… ,Mq,R1,… ,Rq, iin, iout),

263Membrane creation and symport/antiport rules solving QSAT

1 3

problem. The initial configuration is of such a P system Π is
C0 = (�,M1,… ,Miin

+ m,… ,Mq;�).
A symport rule (u, in) ∈ Ri , called send-in rule, can be

applied to a configuration Ct if there exists a membrane
labeled by i, and the parent region contains a multiset
of objects u. When applying such a rule, the multiset of
objects u is consumed from the parent region and a multi-
set of objects u is produced in the membrane i in the next
configuration.

A symport rule (u, out) ∈ Ri , called send-out rule, can
be applied to a configuration Ct if there exists a membrane
labeled by i that contains a multiset of objects u. When
applying such a rule, the multiset of objects u is consumed
from the membrane i and a multiset of objects u is produced
in the parent region.

An antiport rule (u, out;v, in) ∈ Ri can be applied to a
configuration Ct if there exists a membrane labeled by i that
contains a multiset of objects u, and whose parent region
contains a multiset of objects v. When applying such a rule,
the multisets of objects u and v are consumed from the mem-
brane i and its parent region, respectively, and multisets v
and u are produced in the membrane i and its parent region,
respectively.

A creation rule [a → [u]i]j can be applied to a configura-
tion Ct if there exists a membrane labeled by j that contains
an object a. When applying such a rule, object a is con-
sumed from membrane j and a new membrane labeled by i
and containing the multiset of objects u appears as a child
membrane of j.

A recognizer P system with symport/antiport rules and
creation rules that does not send objects from the environ-
ment to the system is said to be a P system with symport/
antiport rules and creation rules without environment. In this
case, the set of objects of the environment E is usually not
defined in the tuple.

A transition of a P system Π is defined as a computational
step of Π , passing from one configuration to the next one,
and denoted by Ct ⇒Π Ct+1 . A computation of a P system is
a sequence of configurations such that a configuration Ct+1
is always obtained from Ct by applying a computation step.
C0 is the initial configuration of Π.

In [17, 18], the semantics applied are maximalist in the
following sense: In each membrane, an arbitrary number of
creation rules can be applied, and they do not interfere with
the application of other types of rules. In [12, 13], more
restrictive semantics were introduced. When a creation rule
is applied in a membrane h, no other rules can be applied
in the same computational step. In this case, dealing with P
systems with symport/antiport rules and membrane creation,
either communication rules in a maximal parallel way or a
single creation rule can be applied in a membrane in a transi-
tion, but not both at the same time. That is, if a creation rule
[a → [b]]h is applied, then neither other creation rules in

that membrane h nor other symport/antiport rules from Rh .
In this paper, the latter semantics, called minimalist seman-
tics are going to be used. As a recognizer membrane system,
all the computations of a recognizer P system with com-
munication rules and creation rules halt and either an object
��� or an object �� (but not both) is sent to the environment
at the last step of the computation.

The length of a symport rule r ≡ (u, in) or r ≡ (u, out) is
given by the number of objects in multiset u; that is, it is
equal to ∣ u ∣ . The length of an antiport rule r ≡ (u, out;v, in)
is given by the total number of objects in the rule; that is,
it is equal to ∣ u ∣ + ∣ v ∣ . Let us denote the length of a rule
r by l(r).

The class of all recognizer P systems with symport/anti-
port rules and membrane creation of degree q is denoted by
CCC(k) with minimalistic semantics, where k represents the
maximal number of objects in a communication rule; that
is, k = max(l(r) ∣ r ∈ Ri, 1 ≤ i ≤ q) . The class of recognizer
membrane systems of this type when environment plays a
passive role; that is, when no objects can be sent from the
environment to the P system itself, is denoted by ĈCC(k).

All the concepts of a decision problem and the class of
decision problems that can be solved by means of a uniform
family of membrane systems from CCC(k) can be extracted
from [12, 15, 19]. The class of problems that can be solved
efficiently (i.e., in polynomial time with respect to the input)
by means of a uniform family of recognizer P systems with
symport/antiport rules of length at most k and membrane
creation with environment (respectively, without environ-
ment) is denoted by PMCCCC(k) (resp., PMC

ĈCC(k)
).

4 An efficient solution to ���� in ĈCC(1)

In this section, we give an efficient solution to the ����
problem by means of a uniform family � of P systems
from ĈCC(1) . Let t = ⟨n, p⟩ . Each P system Π(t), t ∈ ℕ, from
� solves all instances from ���� with n variables and p
clauses.

For each pair n, p ∈ ℕ , we consider a recognizer P system
with symport/antiport rules of length 1 and creation rules

that will solve all instances with n variables and p clauses,
where �∗ = ∃x1∀x2 …Qnxn�(x1,… , xn) is an existential
fully quantified formula associated with a Boolean formula
�(x1,… , xn) ≡ C1 ∧… ∧ Cp in CNF, where each clause
Cj = lj,1 ∨… ∨ lj,rj , Var(�) = {x1,… , xn} a n d
lj,k ∈ {xi,¬xi ∣ 1 ≤ i ≤ n} . Let us suppose that the number of
variables, n, and the number of clauses, p, is at least 2. We
consider a polynomial encoding (cod, s) from ���� in � as
follows: for each formula � associated with an existential

Π(⟨n, p⟩) = (Γ,Σ,H,�,Mskin,M� ,R, iin, iout)

264 D. Orellana-Martín et al.

1 3

fully quantified formula �∗ with n variables and p clauses,
s(�) = ⟨n, p⟩ and cod(�) = {xi,j ∣ xi ∈ Cj} ∪ {xi,j ∣ ¬xi ∈ Cj}
and s(�) = ⟨n, p⟩

1. The working alphabet is defined as follows:

Γ =Σ ∪ {���, ��, d′ , d′t , d
′
f , d

′′}∪

{�i ∣ 0 ≤ i ≤ n2 ⋅ p + 5n + 2p + 3}∪

{�′i ∣ 0 ≤ i ≤ n2 ⋅ p + 5n + 2p + 4}∪

{ci,j,r ∣ 1 ≤ i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }}∪

{di,r ∣ 0 ≤ i ≤ n, r ∈ {t, f }}∪

{zi , zi,t , zi,f ∣ 1 ≤ i ≤ n}∪

{xi′ ,i,j,t , xi′ ,i,j,f ∣ 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ p}

.
2. The input alphabet Σ = {xi,j, xi,j ∣ 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

3.

H ={skin, 1,… , p, yes, no, #}∪

{⟨i, r⟩ ∣ 0 ≤ i ≤ n, r ∈ {t, f }}∪

{⟨i,Q, r, r′⟩ ∣ 0 ≤ i ≤ n,Q ∈ {∃,∀}, r, r′ ∈ {t, f }}∪

{⟨i, #⟩ ∣ 0 ≤ i ≤ n2 ⋅ p + 5n + 2m + 4}

.
4. � = [[]�]skin.
5. Mskin = {z1,t, z1,f },M� = {�0, �

�}.
6. The set of rules R :

6.1 Rules for the counter of the elements of membrane
� ; let k = n2p + 13n + 5p + 2

 [�i → [�i+1]#]� for 0 ≤ i ≤ ⌊k∕2⌋ − 1

 (�i, out) ∈ R# for 0 ≤ i ≤ ⌊k∕2⌋

[�⌊k∕2⌋ → [�]��]�
(�, out) ∈ R��

(�, out) ∈ R�

(��, in) ∈ R��

[� → [���]#]��
(���, out) ∈ R#

(���, out) ∈ R��

(���, out) ∈ R�

6.2 Rules to return a positive answer
 [D1,r → [#]yes]skin for r ∈ {t, f }

(�, in) ∈ Ryes

[� → [���]#]yes
(���, out) ∈ R#

(���, out) ∈ Ryes

(���, out) ∈ Rskin

6.3 Rules to return a negative answer

[���
→ [#]no]skin

(�, in) ∈ Rno

[� → [��]#]no
(��, out) ∈ R#

(��, out) ∈ Rno

(��, out) ∈ Rskin

6.4 Rules to generate the membrane structure
 [z1,r → [z1 d∀]⟨1,r⟩]skin for r ∈ {t, f }

 [zi,r → [z1 d∃]⟨i,r⟩]⟨i−1,r�⟩ for 3 ≤ i ≤ n − 1, i odd , r, r� ∈ {t, f }

 [z1,r → [z1 d
��]⟨1,r⟩]skin for r ∈ {t, f }

[zi,r → [zi d
�]⟨i,r⟩]⟨i−1,r�⟩ for 2 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

[zi,r → [zi d
��]⟨i,r⟩]⟨i−1,r�⟩ for 2 ≤ i ≤ n, i even , r, r� ∈ {t, f }

[zi → [zi+1,t zi+1,f]#]⟨i,r⟩ for 1 ≤ i⟨n, r ∈ {t, f }

(zi,r , out) ∈ R# for 1 ≤ i ≤ n, r ∈ {t, f }

6.5 Rules to check which clauses are satisfied

[xi,j → [x1,i,j,t x1,i,j,f]#]skin for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[xi,j → [x1,i,j,t x1,i,j,f]#]skin for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[xi�,i,j,r → [xi�+1,i,j,t xi�+1,i,j,f]#]⟨i�+1,r⟩
for 1 ≤ i� < i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

[xi�,i,j,r → [xi�+1,i,j,t xi�+1,i,j,f]#]⟨i�+1,r⟩
for 1 ≤ i� < i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(xi�,i,j,r, out) ∈ R#

for 1 ≤ i� < i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(xi�,i,j,r, out) ∈ R#

for 1 ≤ i� < i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(xi�+1,i,j,r, in) ∈ R⟨i�+1,r⟩
for 1 ≤ i < i� ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(xi�+1,i,j,r, in) ∈ R⟨i�+1,r⟩
for 1 ≤ i < i� ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

[xi,i,j,t → [ci,j,t ci,j,f]#]⟨i,t⟩ for 1 ≤ i⟨n, 1 ≤ j ≤ p

[xi,i,j,f → [ci,j,t ci,j,f]#]⟨i,f ⟩ for 1 ≤ i⟨n, 1 ≤ j ≤ p

[xn,n,j,t → [cn,j,t]#]⟨n,t⟩ for 1 ≤ j ≤ p

[xn,n,j,f → [cn,j,f]#]⟨n,f ⟩ for 1 ≤ j ≤ p

(ci,j,r, out) ∈ R# for 1 ≤ i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(ci,j,r, in) ∈ R⟨i+1,r⟩ for 1 ≤ i⟨n, 1 ≤ j ≤ p, r ∈ {t, f }

[ci,j,r → [ci+1,j,t ci+1,j,f]#]⟨i�,r⟩
for 1 ≤ i� ≤ i < n, 1 ≤ j ≤ p, r ∈ {t, f }

6.6 Rules to check if all clauses are satisfied

[zn → [d0]#]⟨n,r⟩ for r ∈ {t, f }

[cn,j,r → []j]⟨n,r�⟩ for 1 ≤ j ≤ p, r, r� ∈ {t, f }

(dj, in) ∈ Rj+1 for 0 ≤ j < p, r ∈ {t, f }

[cn,j,r → []j]⟨n,r⟩ for 1 ≤ j ≤ p, r ∈ {t, f }

[dj → [dj+1]#]j+1 for 0 ≤ j < p

(dj, out) ∈ R# for 0 ≤ j ≤ p, r ∈ {t, f }

(dj, out) ∈ Rj for 0 ≤ j ≤ p, r ∈ {t, f }

[dp → [dn,r]#]⟨n,r⟩ for r ∈ {t, f }

(dn,r, out) ∈ R# for r ∈ {t, f }

265Membrane creation and symport/antiport rules solving QSAT

1 3

6.7 Rules to check if quantifiers are satisfied

(di,r, out) ∈

⟨i,r⟩ for 1 ≤ i ≤ n, r, r′ ∈ {t, f }
[di+1,r → []

⟨i,∃,r,r′⟩]⟨i,r′⟩ for 1 ≤ i < n, i odd , r, r′ ∈ {t, f }
[di+1,r → []

⟨i,∀,r,r′⟩]⟨i,r′⟩ for 2 ≤ i < n, i even , r, r′ ∈ {t, f }

(d�, in) ∈ R⟨i,∃,r,r�⟩ for 1 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

[d� → [di,r�]#]⟨i,∃,r,r�⟩ for 1 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

(d⟨i,r�⟩, out) ∈ R# for 1 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

(d⟨i,r�⟩, out) ∈ R⟨i,∃,r,r�⟩ for 1 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

 (d′′ , in) ∈
⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n, i even , r, r′ ∈ {t, f }

[d′′ → [d′r]#]⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n, i even , r, r′ ∈ {t, f }

(d′r , out) ∈ # for 1 ≤ i ≤ n, r, r′ ∈ {t, f }

(d′r , out) ∈
⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n − 1, r, r′ ∈ {t, f }

(d′r′′ , in) ∈
⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n, i even , r, r′ , r′′ ∈ {t, f }, r ≠ r′′

[d′r′′ → [di,r′]#]⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n, i even , r, r′ , r′′ ∈ {t, f }, r ≠ r′′

(di,r′ , out) ∈ # for 1 ≤ i ≤ n, r, r′ ∈ {t, f }

 (di,r� , out) ∈ R⟨i,Q,r,r�⟩ for 1 ≤ i ≤ n − 1, r, r� ∈ {t, f },Q ∈ {∃,∀}

[d1,r → []yes]skin for r ∈ {t, f }

7. iin = skin.
8. iout = env.

4.1 An overview of the computation

The proposed solution follows a brute force scheme of rec-
ognizer P systems with symport/antiport rules and mem-
brane creation without environment, and it consists of the
following stages:

4.1.1 Generation and first checking stage

By applying rules from 6.4, a membrane structure is gener-
ated. In some sense, it reminds a binary tree, but having
some “garbage” membranes, labeled by # , used to generate
the objects zi+1,t and zi+1,f . Besides, using rules from 6.5,
objects from cod(�) will be passed throughout the mem-
brane structure in such a way that in the level i, the i-th vari-
able will be checked and, if the corresponding truth assign-
ment makes true a literal in a clause j, then objects ci,j,t and
ci,j,f will appear, that will be passed by the membranes up to
a membrane labeled by ⟨n, r⟩ . This stage takes 2n2 ⋅ 2p steps.

4.1.2 Second checking stage

Rules from 6.6 are in charge of checking whether all the
clauses are satisfied in a truth assignment. For that, if there
exists an object cn,j,r in a membrane labeled by ⟨n, r⟩ , it
means that the corresponding truth assignment makes true
the clause j. Therefore, a membrane labeled by j is created
within such a membrane ⟨n, r⟩ . Object d0 will go through all
membranes, creating a “garbage” membrane within them

and passing to the next one, possibly arriving to membrane
p. In that case, object dp creates a new garbage membrane
with an object dn,r , that will be useful in the next stage. This
stage takes 3p + 5 steps.

4.1.3 Quantifier checking stage

If an object di,r (r ∈ {t, f }) appears in a membrane, then the
quantifier in this level is checked. Depending on the parity
of the level, either a universal or an existential quantifier
should be checked. In the generation stage, objects d′ and
d′′ were created for this purpose. On the one hand, when an
existential quantifier is being checked, an object d′ will exist
in such a membrane, and will change into an object di−1,r if
and only if there is at least one object di,r that has created a
membrane ⟨i,∃, r, r�⟩ . On the other hand, when a universal
quantifier is to be checked, an object d′′ will be present in
such a membrane, and will change into an object di−1,r if
and only if there are two objects di,r that have created two
membranes labeled by ⟨i,∀, r, r�⟩ . These objects will reach
the skin membrane giving way to the last stage. This whole
stage is computed by the application of rules from 6.6. This
stage takes 8n − 6 steps if n is even and 8n steps if n is odd.

4.1.4 Output stage

Counters � and �′ are used in this stage to know if an object
d1,r has reached the skin membrane. In such a case, a mem-
brane labeled by yes will be created, and when object
�n2+5n+2p+3 reaches the skin membrane, it will go into mem-
brane yes and will change into an object ��� that will be sent
to the environment. In the case that object d1,r does not
appear in the skin membrane, object ��

n2+5n+2p+4
 will generate

a membrane labeled by no, that will make the counter
�n2+5n+2p+3 change into an object �� , and will be sent to the
environment. Rules from 6.2 and 6.3 are the responsible in
this stage. It takes p + 8 steps if n is even and p + 9 steps if
n is odd.

4.2 Results

Next, we prove that � provides a polynomial time and uni-
form solution to ����.

Theorem 1 ���� ∈ PMC
ĈCC(1)

.

The family of P systems � is polynomially uniform by
Turing machines, polynomially bounded, sound and com-
plete with regard to (����, cod, s) and both cod and s are
polynomial-time computable functions.

266 D. Orellana-Martín et al.

1 3

Corollary 2 PSPACE ⊆ PMC�CCC(1).

Proof It suffices to know that ���� is a PSPACE-complete
problem, ���� ∈ PMC

ĈCC(1)
 and the class PMC

ĈCC(1)
 is

closed under polynomial-time reduction and under comple-
mentary. ◻

In [20], a Python simulator developed for this framework
can be found. This framework can simulate any P system
with symport/antiport rules and creation rules. However,
some specific functions have been implemented to make it
easier to obtain solution to QSAT formulas. In the main.
py file, you can find the line

This line indicates which formula is going to be solved, in
this case, a randomly generated formula with at most n vari-
ables and p clauses. In the case that an specific formula is to
be solved, this line can be changed by, for instance,

In the file examples.py, it can be found how these for-
mulas are generated, and they can be taken as a reference for
creating new formulas. To create a new formula, the same
protocol can be followed: we can create a tuple of tuples,
where each of these tuples symbolize a clause, and each
element of these tuples represent a literal, either in positive
form with �[�] or in negative form with ��[�] , where � is the
variable being used. Therefore, following the format of the
examples, the formula

could be represented by

It can be directly simulated by ������ ����.�� , and the
result will be directly shown in the screen since the com-
pute function will show the contents of the environment.

5 Conclusions and future work

In this work, a result concerning evolutional symport/anti-
port rules has been improved, in the sense that no evolu-
tion is needed in these kinds of rules while using creation
rules. While in the previous work, a solution based on a
family of P systems from ĈCEC(1, 1) was detailed, in this
work, we restrict the number of objects used in a symport/
antiport rule to one; that is, to P systems from ĈCC(1) . This is

������� = ��������.��������_������_�������(�, �).

������� = ��������.��������()).

� ≡ ∃x1∀x2∃x3(x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3)

�ormula =((�x[1]�,� xb[2]�), (�xb[1]�,� xb[2]�,
�x[3]�), (�x[2]�,� xb[3]�)).

a demonstration of the power of creation rules, showing that
rules with a minimal number of objects in symport/antiport
rules is enough to reach presumed efficiency. The use of
division rules and separation rules with this length of sym-
port/antiport rules gives P systems the power to efficiently
solve only problems from P.

From the beginning, creation rules have been only used
in cell P systems, because of the biological inspiration of the
use of parts of a membrane to create a new membrane within
it, but using creation rules in tissue P systems, where new
cells would be created in the environment, and not in the cell
itself, would be an interesting research line. In this case, the
implementation and use of a simulator has helped to cor-
rect some errors in the design, showing the advantages of
using them as research assistants. The non-evolutive nature
of symport/antiport rules are an improvement with respect
to their evolutional counterparts, since in the simulator, no
changes of these objects must be taken into account, then the
same objects will be moved throughout the whole system,
except for the ones created when using creation rules.

Acknowledgements This work was supported by the following
research project: FEDER/Junta de Andalucía - Paidi 2020/ _Proyecto
(P20_00486). D. Orellana-Martín acknowledges Contratación de Per-
sonal Investigador Doctor. (Convocatoria 2019) 43 Contratos Capital
Humano Línea 2. Paidi 2020, supported by the European Social Fund
and Junta de Andalucía.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Păun, Gh. (1998). Computing with Membranes. Turku Centre for
Computer Science: Technical Report.

 2. Alhazov, A., Freund, R., Ivanov, S., & Oswald, M. (2022). Vari-
ants of derivation modes for which purely catalytic P systems are
computationally complete. Theoretical Computer Science, 920,
95–112. https:// doi. org/ 10. 1016/j. tcs. 2022. 03. 007

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.tcs.2022.03.007

267Membrane creation and symport/antiport rules solving QSAT

1 3

 3. Leporati, A., Manzoni, L., Mauri, G., & Zandron, C. (2022).
Depth-two P systems can simulate Turing machines with NP ora-
cles. Theoretical Computer Science, 908, 43–55. https:// doi. org/
10. 1016/j. tcs. 2021. 11. 010

 4. Baquero, F., Campos, M., Llorens, C., & Sempere, J. M. (2021). P
systems in the time of COVID-19. Journal of Membrane Comput-
ing, 3(4), 246–257. https:// doi. org/ 10. 1007/ s41965- 021- 00083-1

 5. Liu, Y., Chen, Y., Paul, P., Fan, S., Ma, X., & Zhang, G. (2021).
A review of power system fault diagnosis with spiking neural P
systems. Applied Sciences. https:// doi. org/ 10. 3390/ app11 104376.

 6. Păun, Gh. (2001). P systems with active membranes: Attacking
NP-complete problems. Journal of Automata, Languages, and
Combinatorics, 6(1), 75–90.

 7. Păun, A., & Păun, Gh. (2002). The power of communication:
P systems with symport/antiport. New Generation Computing,
20(3), 295–305.

 8. Alhazov, A., Freund, R., & Ivanov, S. (2021). When catalytic P
systems with one catalyst can be computationally complete. Jour-
nal of Membrane Computing, 3(3), 170–181. https:// doi. org/ 10.
1007/ s41965- 021- 00079-x

 9. Macías-Ramos, L. F., Song, B., Song, T., Pan, L., & Pérez-Jimé-
nez, M. J. (2017). Limits on efficient computation in p systems
with symport/antiport. Fifteenth Brainstorming Week on Mem-
brane Computing (BWMC2017), 147–160.

 10. Pan, L., & Ishdorj, T.-O. (2004). P systems with active membranes
and separation rules. Journal of Universal Computer Science,
10(5), 630–649.

 11. Mutyam, M., & Krithivasan, K. (2001). P systems with membrane
creation: Universality and efficiency. In: Proceedings of the Third
International Conference on Machines, Computations, and Uni-
versality. MCU ’01, (pp. 276–287). Springer, Berlin, Heidelberg.

 12. Song, B., Li, K., Orellana-Martín, D., Valencia-Cabrera, L., &
Pérez-Jiménez, M. J. (2020). Cell-like P systems with evolutional
symport/antiport rules and membrane creation. Information and
Computation, 275, 104542.

 13. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., &
Pérez-Jiménez, M. J. (2020). Membrane creation in polarization-
less P systems with active membranes. Fundamenta Informaticae,
171, 297–311.

 14. Orellana-Martín, D., Valencia-Cabrera, L., & Pérez-Jiménez, M.
J. (2022). P systems with evolutional symport and membrane
creation rules solving QSAT. Theoretical Computer Science, 908,
56–63. https:// doi. org/ 10. 1016/j. tcs. 2021. 11. 012

 15. Paun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford
Handbook of Membrane Computing. Oxford University Press Inc.

 16. Rozenberg, G., & Salomaa, A. (eds.). (1997). Handbook of For-
mal Languages. 3 Vols. Springer.

 17. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., & Romero-
Campero, F. J. (2005). A linear solution of subset sum problem
by using membrane creation. In J. Mira & J. R. Álvarez (Eds.),
Mechanisms, Symbols, and Models Underlying Cognition (pp.
258–267). Berlin, Heidelberg: Springer.

 18. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., & Romero-
Campero, F. J. (2006). A linear solution for qsat with membrane
creation. In R. Freund, G. Păun, G. Rozenberg, & A. Salomaa
(Eds.), Membrane Computing (pp. 241–252). Berlin, Heidelberg.

 19. Pérez-Jiménez, M.J., Álvaro Romero-Jiménez, & Sancho-Cap-
arrini, F. (2003). Complexity classes in models of cellular com-
puting with membranes. Natural Computing: An International
Journal, 2(3), 265–285.

 20. Orellana-Martín, D. (2022) creation-ccc. GitHub.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.tcs.2021.11.010
https://doi.org/10.1016/j.tcs.2021.11.010
https://doi.org/10.1007/s41965-021-00083-1
https://doi.org/10.3390/app11104376
https://doi.org/10.1007/s41965-021-00079-x
https://doi.org/10.1007/s41965-021-00079-x
https://doi.org/10.1016/j.tcs.2021.11.012

	Membrane creation and symportantiport rules solving QSAT
	Abstract
	1 Introduction
	2 Preliminaries
	3 Recognizer P systems with symportantiport rules and creation rules
	4 An efficient solution to in
	4.1 An overview of the computation
	4.1.1 Generation and first checking stage
	4.1.2 Second checking stage
	4.1.3 Quantifier checking stage
	4.1.4 Output stage

	4.2 Results

	5 Conclusions and future work
	Acknowledgements
	References

