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Abstract
In Membrane Computing, different variants of devices can be found by changing both syntactical and semantic ingredients. 
These devices are usually called membrane systems or P systems, and they recall the structure and behavior of living cells in 
the nature. In this sense, rules are introduced as a way for objects to interact with membranes, giving P systems the ability to 
solve computational problems. Some of these rules, as division, separation and creation rules are inspired by the membrane 
division through the mitosis process or new membranes are created through gemmation. These rules seem to be crucial in 
the path to solve computationally hard problems. In this work, creation rules are used in classical P systems with symport/
antiport rules, where objects travel through membranes without changing to achieve enough computational power to effi-
ciently solve PSPACE-complete problems. More precisely, a solution to the QSAT problem is given by means of a uniform 
family of these systems. This paper was originally submitted to the International Conference on Membrane Computing 2021.
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1  Introduction

Membrane Computing, since its beginnings [1], has covered 
a wide spectrum of applications, from computability theory 
[2] and computational complexity theory [3] to pandemics 
[4] and engineering [5]. The model is inspired in the struc-
ture and behavior of living cells and the chemical reactions 
occurring within them. From the beginning, solving compu-
tationally hard problems has been a hot topic in this area [6], 
being one of the most studied fields with membrane systems.

Cell-like P systems can be seen as a hierarchical structure 
of membranes that let chemical compounds pass by them. 
Making an abstraction of integral membrane proteins and 

their role in the transport of molecules, symport/antiport 
rules let objects move to one region to other one or inter-
change them between two regions [7]. Usually, P systems are 
found to be Turing complete [8], but from the point of view 
of the computational complexity theory, they can only solve 
problems from the class P [9]. To increase the efficiency of 
these systems, different types of rules have been introduced: 
division rules [6], separation rules [10] and creation rules 
[11] are three of the protocols that have been implemented 
in membrane computing with this purpose. The latter uses a 
single object and transforms it into a new membrane.

In the framework of cell-like membrane systems, creation 
rules have been used lately besides evolutional communica-
tion rules in [12] to solve the SAT problem by means of a 
family of recognizer P systems with evolutional communi-
cation rules and creation rules. In [13], an efficient solution 
to QSAT is given by means of a family of recognizer polari-
zationless P systems with active membranes and membrane 
creation, and in [14], an efficient solution to QSAT is given 
by means of a family of P systems with evolutional sym-
port/antiport rules of length (1, 1) and creation rules. Crea-
tion rules have not been used in P systems with classical 
symport/antiport rules. In this work, we try to replicate the 
results of the latter paper using recognizer P systems with 
classical symport/antiport rules with a minimal amount of 
objects per communication rule. This is a really important 
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result, since evolutional communication rules are intrinsi-
cally changing the nature of the objects, and thus both in 
a software simulation and in real-life implementations, it 
would need to implement these changes in some sense, lead-
ing to a more complex implementation. That is why the use 
of classical symport/antiport rules is really interesting in 
order to reduce the “number of ingredients” (we could think 
that the evolution part of evolutional symport/antiport rules 
is an ingredient) of the P systems using these rules.

The rest of the work is organized as follows: Section 2 is 
devoted to introduce some formal language and set theory 
concepts used later through the paper. In Sect. 3, the defi-
nition of recognizer P systems with symport/antiport rules 
and membrane creation is given. In the following section, 
a polynomial-time and uniform solution to QSAT is given 
by means of a family of recognizer P systems with symport/
antiport rules of length at most 1 and membrane creation, 
and an overview of the computations and the formal verifica-
tion of the design are specified. Finally, some remarks and 
open research lines are indicated.

2 � Preliminaries

Some basic notions of formal languages, set theory and other 
terms used throughout the paper are recalled in this section. 
For a deeper explanation on formal languages and membrane 
computing, we refer the reader to [15, 16].

An alphabet Γ is a non-empty set, and its elements are 
called symbols. A string u over Γ is a finite sequence of 
symbols from Γ . The number of appearances of a symbol 
a in u is denoted by ∣ u ∣a . The length of u, denoted by ∣ u ∣ 
is 
∑

a∈u ∣ u ∣a.
A multiset over Γ is a pair (Γ, f ) where f ∶ Γ → ℕ is 

a mapping from Γ to the set of natural numbers ℕ . Let 
m1 = (Γ1, f1),m2 = (Γ2, f2) two multisets over Γ . The union 
of m1 and m2 , denoted by m1 + m2 or m1 ∪ m2 is defined as 
(f1 + f2)(x) = f1(x) + f2(x) . The relative complement of m2 in 
m1 , denoted by m1 ⧵ m2 , is the defined as

The empty multiset is denoted by ∅ , and the set of all finite 
multisets over Γ is denoted by Mf (Γ).

The size of the set u is given by the total number of 
objects in u, and it is denoted by ∣ u ∣.

The Cantor pairing function ⟨⋅, ⋅⟩ is a bijective function 
defined as ⟨a, b⟩ = (a+b+1)(a+b)

2
+ b.

(m1 ⧵ m2)(x) =

{
f1(x) − f2(x) if f1(x) ≥ f2(x)

0 if f1(x) < f2(x).

3 � Recognizer P systems with symport/
antiport rules and creation rules

In this section, a definition of recognizer P systems with 
symport/antiport rules and creation rules is given, and both 
the syntax and semantics are recalled.

Definition 1  A recognizer P system with symport/antiport 
rules and membrane creation of degree q ≥ 1 is a tuple

where 

1.	 Γ , Σ and E are finite alphabets of objects, where 
Σ, E ⊆ Γ,Σ ∩ E = �;

2.	 H is a finite set of labels;
3.	 � is a membrane structure whose elements are injec-

tively labeled by elements of H;
4.	 Mi, 1 ≤ i ≤ q are finite multisets over Γ ⧵ (Σ ∪ E);
5.	 R is a set of rules of the following forms:

•	 Symport rules:

–	 (u, in) ∈ Ri , where u ∈ Mf (Γ) , except if i is the 
skin membrane, where u ∈ Mf (Γ) ∧ u ∉ Mf (E) 
(send-in rules);

–	 (u, out) ∈ Ri , where u ∈ Mf (Γ) (send-out rules);

•	 Antiport rules:

–	 (u, out;v, in) ∈ Ri , where u, v ∈ Mf (Γ);

•	 C r e a t i o n  r u l e s :  [ a → [ u ]i ]j  ,  w h e r e 
i, j ∈ H, i ∉ {skin, iout} , where skin is the label of the 
skin membrane, a ∈ Γ, u ∈ Mf (Γ);

6.	 iin ∈ H is the label of the input membrane;
7.	 iout = env is the label of the output zone, in this case, the 

environment.

A configuration Ct of a P system with symport/antiport 
rules and creation rules is described by the membrane struc-
ture at the moment t and the multisets of objects over Γ 
of each membrane, and the multiset of objects over Γ ⧵ E 
of the environment. We use the term region i to refer to 
a membrane if i ∈ H and to the environment if i = env . 
We can suppose that in each moment, there is an arbitrary 
number of objects from E in the environment. Let m be the 
input multiset encoding the corresponding instance of a 

Π = (Γ,Σ, E,H,�,M1,… ,Mq,R1,… ,Rq, iin, iout),
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problem. The initial configuration is of such a P system Π is 
C0 = (�,M1,… ,Miin

+ m,… ,Mq;�).
A symport rule (u, in) ∈ Ri , called send-in rule, can be 

applied to a configuration Ct if there exists a membrane 
labeled by i, and the parent region contains a multiset 
of objects u. When applying such a rule, the multiset of 
objects u is consumed from the parent region and a multi-
set of objects u is produced in the membrane i in the next 
configuration.

A symport rule (u, out) ∈ Ri , called send-out rule, can 
be applied to a configuration Ct if there exists a membrane 
labeled by i that contains a multiset of objects u. When 
applying such a rule, the multiset of objects u is consumed 
from the membrane i and a multiset of objects u is produced 
in the parent region.

An antiport rule (u, out;v, in) ∈ Ri can be applied to a 
configuration Ct if there exists a membrane labeled by i that 
contains a multiset of objects u, and whose parent region 
contains a multiset of objects v. When applying such a rule, 
the multisets of objects u and v are consumed from the mem-
brane i and its parent region, respectively, and multisets v 
and u are produced in the membrane i and its parent region, 
respectively.

A creation rule [ a → [ u ]i ]j can be applied to a configura-
tion Ct if there exists a membrane labeled by j that contains 
an object a. When applying such a rule, object a is con-
sumed from membrane j and a new membrane labeled by i 
and containing the multiset of objects u appears as a child 
membrane of j.

A recognizer P system with symport/antiport rules and 
creation rules that does not send objects from the environ-
ment to the system is said to be a P system with symport/
antiport rules and creation rules without environment. In this 
case, the set of objects of the environment E is usually not 
defined in the tuple.

A transition of a P system Π is defined as a computational 
step of Π , passing from one configuration to the next one, 
and denoted by Ct ⇒Π Ct+1 . A computation of a P system is 
a sequence of configurations such that a configuration Ct+1 
is always obtained from Ct by applying a computation step. 
C0 is the initial configuration of Π.

In [17, 18], the semantics applied are maximalist in the 
following sense: In each membrane, an arbitrary number of 
creation rules can be applied, and they do not interfere with 
the application of other types of rules. In [12, 13], more 
restrictive semantics were introduced. When a creation rule 
is applied in a membrane h, no other rules can be applied 
in the same computational step. In this case, dealing with P 
systems with symport/antiport rules and membrane creation, 
either communication rules in a maximal parallel way or a 
single creation rule can be applied in a membrane in a transi-
tion, but not both at the same time. That is, if a creation rule 
[ a → [ b ] ]h is applied, then neither other creation rules in 

that membrane h nor other symport/antiport rules from Rh . 
In this paper, the latter semantics, called minimalist seman-
tics are going to be used. As a recognizer membrane system, 
all the computations of a recognizer P system with com-
munication rules and creation rules halt and either an object 
��� or an object �� (but not both) is sent to the environment 
at the last step of the computation.

The length of a symport rule r ≡ (u, in) or r ≡ (u, out) is 
given by the number of objects in multiset u; that is, it is 
equal to ∣ u ∣ . The length of an antiport rule r ≡ (u, out;v, in) 
is given by the total number of objects in the rule; that is, 
it is equal to ∣ u ∣ + ∣ v ∣ . Let us denote the length of a rule 
r by l(r).

The class of all recognizer P systems with symport/anti-
port rules and membrane creation of degree q is denoted by 
CCC(k) with minimalistic semantics, where k represents the 
maximal number of objects in a communication rule; that 
is, k = max(l(r) ∣ r ∈ Ri, 1 ≤ i ≤ q) . The class of recognizer 
membrane systems of this type when environment plays a 
passive role; that is, when no objects can be sent from the 
environment to the P system itself, is denoted by ĈCC(k).

All the concepts of a decision problem and the class of 
decision problems that can be solved by means of a uniform 
family of membrane systems from CCC(k) can be extracted 
from [12, 15, 19]. The class of problems that can be solved 
efficiently (i.e., in polynomial time with respect to the input) 
by means of a uniform family of recognizer P systems with 
symport/antiport rules of length at most k and membrane 
creation with environment (respectively, without environ-
ment) is denoted by PMCCCC(k) (resp., PMC

ĈCC(k)
).

4 � An efficient solution to ���� in ĈCC(1)

In this section, we give an efficient solution to the ���� 
problem by means of a uniform family � of P systems 
from ĈCC(1) . Let t = ⟨n, p⟩ . Each P system Π(t), t ∈ ℕ, from 
� solves all instances from ���� with n variables and p 
clauses.

For each pair n, p ∈ ℕ , we consider a recognizer P system 
with symport/antiport rules of length 1 and creation rules

that will solve all instances with n variables and p clauses, 
where �∗ = ∃x1∀x2 …Qnxn�(x1,… , xn) is an existential 
fully quantified formula associated with a Boolean formula 
�(x1,… , xn) ≡ C1 ∧… ∧ Cp in CNF, where each clause 
Cj = lj,1 ∨… ∨ lj,rj   ,  Var(�) = {x1,… , xn}  a n d 
lj,k ∈ {xi,¬xi ∣ 1 ≤ i ≤ n} . Let us suppose that the number of 
variables, n, and the number of clauses, p, is at least 2. We 
consider a polynomial encoding (cod, s) from ���� in � as 
follows: for each formula � associated with an existential 

Π(⟨n, p⟩) = (Γ,Σ,H,�,Mskin,M� ,R, iin, iout)
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fully quantified formula �∗ with n variables and p clauses, 
s(�) = ⟨n, p⟩ and cod(�) = {xi,j ∣ xi ∈ Cj} ∪ {xi,j ∣ ¬xi ∈ Cj} 
and s(�) = ⟨n, p⟩

1.	 The working alphabet is defined as follows:

	 

Γ =Σ ∪ {���, ��, d′ , d′t , d
′
f , d

′′}∪

{�i ∣ 0 ≤ i ≤ n2 ⋅ p + 5n + 2p + 3}∪

{�′i ∣ 0 ≤ i ≤ n2 ⋅ p + 5n + 2p + 4}∪

{ci,j,r ∣ 1 ≤ i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }}∪

{di,r ∣ 0 ≤ i ≤ n, r ∈ {t, f }}∪

{zi , zi,t , zi,f ∣ 1 ≤ i ≤ n}∪

{xi′ ,i,j,t , xi′ ,i,j,f ∣ 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ p}

.
2.	 The input alphabet Σ = {xi,j, xi,j ∣ 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

3.	

H ={skin, 1,… , p, yes, no, #}∪

{⟨i, r⟩ ∣ 0 ≤ i ≤ n, r ∈ {t, f }}∪

{⟨i,Q, r, r′⟩ ∣ 0 ≤ i ≤ n,Q ∈ {∃,∀}, r, r′ ∈ {t, f }}∪

{⟨i, #⟩ ∣ 0 ≤ i ≤ n2 ⋅ p + 5n + 2m + 4}

.
4.	 � = [ [ ]� ]skin.
5.	 Mskin = {z1,t, z1,f },M� = {�0, �

�}.
6.	 The set of rules R : 

6.1	Rules for the counter of the elements of membrane 
� ; let k = n2p + 13n + 5p + 2

	   [ �i → [ �i+1 ]# ]� for 0 ≤ i ≤ ⌊k∕2⌋ − 1

	   (�i, out) ∈ R# for 0 ≤ i ≤ ⌊k∕2⌋

	 

[ �⌊k∕2⌋ → [ � ]�� ]�
(�, out) ∈ R��

(�, out) ∈ R�

(��, in) ∈ R��

[ � → [ ��� ]# ]��
(���, out) ∈ R#

(���, out) ∈ R��

(���, out) ∈ R�

6.2	Rules to return a positive answer
	   [D1,r → [ # ]yes ]skin for r ∈ {t, f }

	 

(�, in) ∈ Ryes

[ � → [ ��� ]# ]yes
(���, out) ∈ R#

(���, out) ∈ Ryes

(���, out) ∈ Rskin

6.3	Rules to return a negative answer

	 

[ ���
→ [ # ]no ]skin

(�, in) ∈ Rno

[ � → [ �� ]# ]no
(��, out) ∈ R#

(��, out) ∈ Rno

(��, out) ∈ Rskin

6.4	Rules to generate the membrane structure
	   [ z1,r → [ z1 d∀ ]⟨1,r⟩ ]skin for r ∈ {t, f }

	
 [ zi,r → [ z1 d∃ ]⟨i,r⟩ ]⟨i−1,r�⟩ for 3 ≤ i ≤ n − 1, i odd , r, r� ∈ {t, f }

	   [ z1,r → [ z1 d
�� ]⟨1,r⟩ ]skin for r ∈ {t, f }

[ zi,r → [ zi d
� ]⟨i,r⟩ ]⟨i−1,r�⟩ for 2 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

[ zi,r → [ zi d
�� ]⟨i,r⟩ ]⟨i−1,r�⟩ for 2 ≤ i ≤ n, i even , r, r� ∈ {t, f }

[ zi → [ zi+1,t zi+1,f ]# ]⟨i,r⟩ for 1 ≤ i⟨n, r ∈ {t, f }

(zi,r , out) ∈ R# for 1 ≤ i ≤ n, r ∈ {t, f }

6.5	Rules to check which clauses are satisfied

	 

[ xi,j → [ x1,i,j,t x1,i,j,f ]# ]skin for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ xi,j → [ x1,i,j,t x1,i,j,f ]# ]skin for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ xi�,i,j,r → [ xi�+1,i,j,t xi�+1,i,j,f ]# ]⟨i�+1,r⟩
for 1 ≤ i� < i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

[ xi�,i,j,r → [ xi�+1,i,j,t xi�+1,i,j,f ]# ]⟨i�+1,r⟩
for 1 ≤ i� < i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(xi�,i,j,r, out) ∈ R#

for 1 ≤ i� < i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(xi�,i,j,r, out) ∈ R#

for 1 ≤ i� < i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(xi�+1,i,j,r, in) ∈ R⟨i�+1,r⟩
for 1 ≤ i < i� ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(xi�+1,i,j,r, in) ∈ R⟨i�+1,r⟩
for 1 ≤ i < i� ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

[ xi,i,j,t → [ ci,j,t ci,j,f ]# ]⟨i,t⟩ for 1 ≤ i⟨n, 1 ≤ j ≤ p

[ xi,i,j,f → [ ci,j,t ci,j,f ]# ]⟨i,f ⟩ for 1 ≤ i⟨n, 1 ≤ j ≤ p

[ xn,n,j,t → [ cn,j,t ]# ]⟨n,t⟩ for 1 ≤ j ≤ p

[ xn,n,j,f → [ cn,j,f ]# ]⟨n,f ⟩ for 1 ≤ j ≤ p

	

 

(ci,j,r, out) ∈ R# for 1 ≤ i ≤ n, 1 ≤ j ≤ p, r ∈ {t, f }

(ci,j,r, in) ∈ R⟨i+1,r⟩ for 1 ≤ i⟨n, 1 ≤ j ≤ p, r ∈ {t, f }

[ ci,j,r → [ ci+1,j,t ci+1,j,f ]#]⟨i�,r⟩
for 1 ≤ i� ≤ i < n, 1 ≤ j ≤ p, r ∈ {t, f }

6.6	Rules to check if all clauses are satisfied

	 

[ zn → [ d0]# ]⟨n,r⟩ for r ∈ {t, f }

[ cn,j,r → [ ]j ]⟨n,r�⟩ for 1 ≤ j ≤ p, r, r� ∈ {t, f }

(dj, in) ∈ Rj+1 for 0 ≤ j < p, r ∈ {t, f }

[ cn,j,r → [ ]j ]⟨n,r⟩ for 1 ≤ j ≤ p, r ∈ {t, f }

[ dj → [ dj+1 ]# ]j+1 for 0 ≤ j < p

(dj, out) ∈ R# for 0 ≤ j ≤ p, r ∈ {t, f }

(dj, out) ∈ Rj for 0 ≤ j ≤ p, r ∈ {t, f }

[ dp → [ dn,r ]# ]⟨n,r⟩ for r ∈ {t, f }

(dn,r, out) ∈ R# for r ∈ {t, f }
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6.7	Rules to check if quantifiers are satisfied
	

 
(di,r, out) ∈ 

⟨i,r⟩ for 1 ≤ i ≤ n, r, r′ ∈ {t, f }
[ di+1,r → [ ]

⟨i,∃,r,r′⟩ ]⟨i,r′⟩ for 1 ≤ i < n, i odd , r, r′ ∈ {t, f }
[ di+1,r → [ ]

⟨i,∀,r,r′⟩ ]⟨i,r′⟩ for 2 ≤ i < n, i even , r, r′ ∈ {t, f }
	

 

(d�, in) ∈ R⟨i,∃,r,r�⟩ for 1 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

[ d� → [ di,r� ]#]⟨i,∃,r,r�⟩ for 1 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

(d⟨i,r�⟩, out) ∈ R# for 1 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

(d⟨i,r�⟩, out) ∈ R⟨i,∃,r,r�⟩ for 1 ≤ i ≤ n, i odd , r, r� ∈ {t, f }

	   (d′′ , in) ∈ 
⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n, i even , r, r′ ∈ {t, f }

[ d′′ → [ d′r ]#]⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n, i even , r, r′ ∈ {t, f }

(d′r , out) ∈ # for 1 ≤ i ≤ n, r, r′ ∈ {t, f }

(d′r , out) ∈ 
⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n − 1, r, r′ ∈ {t, f }

(d′r′′ , in) ∈ 
⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n, i even , r, r′ , r′′ ∈ {t, f }, r ≠ r′′

[ d′r′′ → [ di,r′ ]#]⟨i,∀,r,r′⟩ for 1 ≤ i ≤ n, i even , r, r′ , r′′ ∈ {t, f }, r ≠ r′′

(di,r′ , out) ∈ # for 1 ≤ i ≤ n, r, r′ ∈ {t, f }

	
 (di,r� , out) ∈ R⟨i,Q,r,r�⟩ for 1 ≤ i ≤ n − 1, r, r� ∈ {t, f },Q ∈ {∃,∀}

[ d1,r → [ ]yes ]skin for r ∈ {t, f }

7.	 iin = skin.
8.	 iout = env.

4.1 � An overview of the computation

The proposed solution follows a brute force scheme of rec-
ognizer P systems with symport/antiport rules and mem-
brane creation without environment, and it consists of the 
following stages:

4.1.1 � Generation and first checking stage

By applying rules from 6.4, a membrane structure is gener-
ated. In some sense, it reminds a binary tree, but having 
some “garbage” membranes, labeled by # , used to generate 
the objects zi+1,t and zi+1,f  . Besides, using rules from 6.5, 
objects from cod(�) will be passed throughout the mem-
brane structure in such a way that in the level i, the i-th vari-
able will be checked and, if the corresponding truth assign-
ment makes true a literal in a clause j, then objects ci,j,t and 
ci,j,f  will appear, that will be passed by the membranes up to 
a membrane labeled by ⟨n, r⟩ . This stage takes 2n2 ⋅ 2p steps.

4.1.2 � Second checking stage

Rules from 6.6 are in charge of checking whether all the 
clauses are satisfied in a truth assignment. For that, if there 
exists an object cn,j,r in a membrane labeled by ⟨n, r⟩ , it 
means that the corresponding truth assignment makes true 
the clause j. Therefore, a membrane labeled by j is created 
within such a membrane ⟨n, r⟩ . Object d0 will go through all 
membranes, creating a “garbage” membrane within them 

and passing to the next one, possibly arriving to membrane 
p. In that case, object dp creates a new garbage membrane 
with an object dn,r , that will be useful in the next stage. This 
stage takes 3p + 5 steps.

4.1.3 � Quantifier checking stage

If an object di,r ( r ∈ {t, f } ) appears in a membrane, then the 
quantifier in this level is checked. Depending on the parity 
of the level, either a universal or an existential quantifier 
should be checked. In the generation stage, objects d′ and 
d′′ were created for this purpose. On the one hand, when an 
existential quantifier is being checked, an object d′ will exist 
in such a membrane, and will change into an object di−1,r if 
and only if there is at least one object di,r that has created a 
membrane ⟨i,∃, r, r�⟩ . On the other hand, when a universal 
quantifier is to be checked, an object d′′ will be present in 
such a membrane, and will change into an object di−1,r if 
and only if there are two objects di,r that have created two 
membranes labeled by ⟨i,∀, r, r�⟩ . These objects will reach 
the skin membrane giving way to the last stage. This whole 
stage is computed by the application of rules from 6.6. This 
stage takes 8n − 6 steps if n is even and 8n steps if n is odd.

4.1.4 � Output stage

Counters � and �′ are used in this stage to know if an object 
d1,r has reached the skin membrane. In such a case, a mem-
brane labeled by yes will be created, and when object 
�n2+5n+2p+3 reaches the skin membrane, it will go into mem-
brane yes and will change into an object ��� that will be sent 
to the environment. In the case that object d1,r does not 
appear in the skin membrane, object ��

n2+5n+2p+4
 will generate 

a membrane labeled by no, that will make the counter 
�n2+5n+2p+3 change into an object �� , and will be sent to the 
environment. Rules from 6.2 and 6.3 are the responsible in 
this stage. It takes p + 8 steps if n is even and p + 9 steps if 
n is odd.

4.2 � Results

Next, we prove that � provides a polynomial time and uni-
form solution to ����.

Theorem 1  ���� ∈ PMC
ĈCC(1)

.

The family of P systems � is polynomially uniform by 
Turing machines, polynomially bounded, sound and com-
plete with regard to (����, cod, s) and both cod and s are 
polynomial-time computable functions.
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Corollary 2  PSPACE ⊆ PMC�CCC(1).

Proof  It suffices to know that ���� is a PSPACE-complete 
problem, ���� ∈ PMC

ĈCC(1)
 and the class PMC

ĈCC(1)
 is 

closed under polynomial-time reduction and under comple-
mentary. 	�  ◻

In [20], a Python simulator developed for this framework 
can be found. This framework can simulate any P system 
with symport/antiport rules and creation rules. However, 
some specific functions have been implemented to make it 
easier to obtain solution to QSAT formulas. In the main.
py file, you can find the line

This line indicates which formula is going to be solved, in 
this case, a randomly generated formula with at most n vari-
ables and p clauses. In the case that an specific formula is to 
be solved, this line can be changed by, for instance,

In the file examples.py, it can be found how these for-
mulas are generated, and they can be taken as a reference for 
creating new formulas. To create a new formula, the same 
protocol can be followed: we can create a tuple of tuples, 
where each of these tuples symbolize a clause, and each 
element of these tuples represent a literal, either in positive 
form with �[�] or in negative form with ��[�] , where � is the 
variable being used. Therefore, following the format of the 
examples, the formula

could be represented by

It can be directly simulated by ������ ����.�� , and the 
result will be directly shown in the screen since the com-
pute function will show the contents of the environment.

5 � Conclusions and future work

In this work, a result concerning evolutional symport/anti-
port rules has been improved, in the sense that no evolu-
tion is needed in these kinds of rules while using creation 
rules. While in the previous work, a solution based on a 
family of P systems from ĈCEC(1, 1) was detailed, in this 
work, we restrict the number of objects used in a symport/
antiport rule to one; that is, to P systems from ĈCC(1) . This is 

������� = ��������.��������_������_�������(�, �).

������� = ��������.��������()).

� ≡ ∃x1∀x2∃x3(x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3)

�ormula =((�x[1]�,� xb[2]�), (�xb[1]�,� xb[2]�,
�x[3]�), (�x[2]�,� xb[3]�)).

a demonstration of the power of creation rules, showing that 
rules with a minimal number of objects in symport/antiport 
rules is enough to reach presumed efficiency. The use of 
division rules and separation rules with this length of sym-
port/antiport rules gives P systems the power to efficiently 
solve only problems from P.

From the beginning, creation rules have been only used 
in cell P systems, because of the biological inspiration of the 
use of parts of a membrane to create a new membrane within 
it, but using creation rules in tissue P systems, where new 
cells would be created in the environment, and not in the cell 
itself, would be an interesting research line. In this case, the 
implementation and use of a simulator has helped to cor-
rect some errors in the design, showing the advantages of 
using them as research assistants. The non-evolutive nature 
of symport/antiport rules are an improvement with respect 
to their evolutional counterparts, since in the simulator, no 
changes of these objects must be taken into account, then the 
same objects will be moved throughout the whole system, 
except for the ones created when using creation rules.
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