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Abstract
As a recurrent neural network, ESN has attracted wide attention because of its simple training process and unique reservoir 
structure, and has been applied to time series prediction and other fields. However, ESN also has some shortcomings, such 
as the optimization of reservoir and collinearity. Many researchers try to optimize the structure and performance of deep 
ESN by constructing deep ESN. However, with the increase of the number of network layers, the problem of low computing 
efficiency also follows. In this paper, we combined membrane computing and neural network to build an improved deep echo 
state network inspired by tissue-like P system. Through analysis and comparison with other classical models, we found that 
the model proposed in this paper has achieved great success both in predicting accuracy and operation efficiency.

Keywords Deep echo state network · Membrane computing · Time series prediction

1 Introduction

With the development of modern information technology 
and the rapid growth of data, the value of data is getting 
more and more attention. Decision-making in various fields 
depends on data processing and analysis. A large number of 
time series data also exist in various fields of life, such as the 
financial field, the transportation field, and the astronomi-
cal field. Time series analysis is the process of processing 
dynamic data. It needs to be analyzed on the basis of existing 
data to obtain the useful information contained in the data 
and realize the extraction of value [1, 2]. For data with time 
series, there are usually difficulties, such as large amount of 
data, high complexity, high storage cost and low calculation 
efficiency, so it is of great significance for the mining and 
analysis of time series data [3], especially for nonstationary 
time series.

After decades of development, time series analysis has 
formed a complete system. Machine learning has made 
great progress in the application of time series analysis and 

prediction, especially the prediction of a small amount of 
data with low dimensions. However, with surging data vol-
ume in today’s society, traditional machine learning algo-
rithms showed their obvious deficiencies. Theoretically 
speaking, thanks to a good ability of nonlinear mapping and 
self-adaptation, recurrent neural network (RNN) is an ideal 
tool for dealing with modeling and forecasting problems of 
time series [4, 5]. This model is a network with a recurrent 
structure. Its working principle is to transport the informa-
tion obtained from the network layer at the previous time to 
the network layer at the next time. The output of the hidden 
layer is determined by the sequence information of the past 
time. Echo state network (ESN) is a new type of RNN, which 
input weights and reservoir weights are randomly generated 
on the basis of a certain probability distribution, and fixed, 
the only that need to be trained are output weights, by simple 
linear regression. This training method of ESN can achieve 
the global optimal of weights, simplify the training process 
of classical RNN. Therefore, compared with the gradient-
based traditional RNN, ESN overcomes the problems of low 
computational efficiency and easy to fall into local optimum 
[6]. In spite of success in time series prediction due to its 
higher generalization ability, ESN performed poorly when 
processing stochastic, nonlinear, non-stationary time series. 
The rapid development of deep learning and its application 
in ESN has solved this problem [2, 7], at the cost of adding 
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model complexity, thus compound the difficulty of model 
construction.

In 1998, Academician Gheorghe Păun proposed mem-
brane computing, a computing method inspired by nature [8, 
9]. Its development starts from the observation of cells, and 
this new computing model is built by abstracting from the 
structure and function of cells, also known as the P system. 
tissue-like P system is the abstract of living organisms, so 
contains a number of cells, cells have connected channels 
through which they can communicate directly, and cells 
without connecting channels can communicate indirectly 
through the environment. Therefore, tissue-like P system is 
easier to implement information exchange [10, 11].

Therefore, our motivation is to design a deep neural net-
work based on tissue-like P system while achieving better 
performance than traditional deep neural networks. In this 
paper, we focus on the NARMA signal, as these are the most 
common time series in correlational research, yet verify our 
model performance.

The rest of this paper is organized as follows. Section 2 
introduces the related work. Section 3 describes an overview 
of the background works and proposes a deep echo state net-
work (DESN) based on tissue-like P systems. The prediction 
performance of the model and the analysis of experimental 
results are presented in Sect. 4. Finally, some conclusions 
are given in Sect. 5.

2  Related work

2.1  Echo state network

As shown in Fig. 1, ESN is the structural basis of deep ESN. 
They have exactly the same reservoir structure and the same 
training mechanism. Echo state network (ESN) is one of RC 
(reservoir computing) algorithms, which is developed on the 
basis of recurrent neural network. To solve the problems of 
large training resource consumption and long running time 
of cyclic neural network, ESN came into being [12, 13].

The echo state network was proposed in 2001. It is a spe-
cial type of RNN, and it is also composed of input layer, hid-
den layer and output layer. The difference between ESN and 

traditional neural networks is that it adds a randomly con-
nected reserve pool to replace the original hidden layer. The 
connection state of neurons in the reserve pool is random, and 
the connection weight is fixed. This allows it to effectively 
reduce the amount of calculation during the training process, 
and to a certain extent avoid the phenomenon of local minima 
during the gradient descent process [14]. The reservoir accepts 
two directions of input, one from the input layer, and the other 
from the output of the previous state of the reservoir, where 
the state feedback weight is the same without training, and it 
is determined by the random initial state [15, 16]. ESN uses 
randomly connected neurons in the reserve pool to generate 
a complex state space. The input data on the left is linearly 
combined with the state space to obtain the output data on 
the right.

The classical ESN contains three layers: a input layer, a 
reservoir and a output layer, as shown in Fig. 1. The external 
input, the reservoir and the output vector are denoted by the 
vector u(n) of size M, x(n) of size N, y(n) of size P, respec-
tively. ESN contains three relatively independent topology 
structures accordingly: the connection weight from the input 
layer to the reservoir is the matrix W in of size M × N ; the 
recursive connection weight inside the reservoir is the matrix 
W of size N × N ; the output connection weight from the res-
ervoir to the output layer is Wout . Sometimes the neurons of 
the input layer and the output layer can be connected. The 
recursive formula for the state of each part of ESN over time 
is as follows:

where the activation function f (⋅) is usually the tanh func-
tion, and g(⋅) is the linear function. � is the leaky rate and 
contains a value between 0 and 1, representing the propor-
tion of the state x(n − 1) of the reservoir at the previous time 
to the state x(n) of the reservoir at the current time. � = 1 
means we completely ignore the state of the reservoir at the 
previous time. � = 0 means that all the state x(n − 1) of the 
reservoir at the previous time is assigned to the state x(n) 
of the reservoir at the current time. The training method of 
ESN can adopt simple linear regression method, i.e., solving 
the formula linear equation:

where B is a T-rows matrix which each row vector is 
[u(n); x(n)] (T represents the number of training samples). 
Each row of matrix ȳ is the output vector of the system, 
t = 1,… , T  . is the output connection weight matrix that 
needs to be solved. Three parameters need to be set to con-
struct an ESN: n, �max and � . As mentioned above, n is the 

(1)
x(n) = �f

(

W ⋅ x(n − 1) +W in ⋅ u(n)
)

+ (1 − �)x(n − 1)

(2)y(n) =g
(

Wout [u(n);x(n)]
)

(3)ȳ = wB

Fig. 1  Structure of the echo state network
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number of neurons in the reservoir. The spectral radius �max 
of the reservoir is defined by the formula:

The ESN’s echo state property can be guaranteed only if 
𝜆max < 1 . The echo state property means that the state of 
the neurons in the reservoir can not be affected by the initial 
value after some iterations.

The sparsity � of the reservoir determines the percentage 
of non-zero terms. The training goal of ESN is to minimize 
the error between the output of the model and the actual 
output of the system. This situation can also be extended to 
the data that has not been trained.

Because the structure of the echo state network enriches 
the theory of traditional neural networks, and the parameter 
learning is simpler and faster, it has become an effective 
tool for studying time series data. Coulibaly et al. used the 
echo state network to predict the monthly average water 
level of four lakes in the United States as an example. In the 
hydrological time series prediction problem, it proved that 
the echo state network method is superior to the traditional 
recurrent neural network [17]. Regarding the incoming traf-
fic load of the mobile network, Bianchi et al. used the echo 
state network to predict and obtained a better prediction 
effect [18]. Through the improvement of the echo state net-
work, Liu et al. applied it to the production process of iron 
and steel enterprises, and they were also satisfied with the 
prediction results of the amount of blast furnace coal. A 
hybrid echo state network with complex network charac-
teristics was proposed by Cui et al. The complex network 
theory is introduced on the basis of the traditional echo state 
network, which effectively improves the accuracy of time 
series prediction [19]. Najibi et al. proposed three new types 
of echo state networks. These three networks use K-means, 
PAM and Ward algorithms to construct the structure of the 
reservoir. The prediction effect on the chaotic time series is 
significantly better than that of the traditional network [20].

2.2  Tissue‑like P system

P system is distributed computational parallel models, 
inspired by the structure and functions of cells, tissues and 
organs [21]. The P system contains communication rules to 
realize various functions [22]. Communication between cells 
is realized by the exchange between objects. The execution 
of rules within cells meets the maximum parallelism, and 
each cell can operate independently, which makes P system 
with the maximum parallelism [23, 24]. The original tissue-
like P system was defined as

(4)�max = max{abs(w)}

(5)� = (O,�1,�2,… ,�m, ch, i0)

where O represents finite non-empty alphabets of objects; 
ch ⊆ {1, 2,… ,m} × {1, 2,… ,m} , ch represents the commu-
nication channel between cell i and cell j; i0 ⊆ {1, 2,… ,m} 
represents that cell i is the output cell of the system, used 
to output the results of the computation; �1,�2,… ,�m are 
strings within m cells, m is the number of cells, and its spe-
cific form is defined as

where Qi is a finite set of states; si,0 ⊆ Qi represents the ini-
tial state of the cell; wi,0 ⊆ O represents the multiple sets of 
objects contained in cell i in the initial state; Ri is the set of 
rules inside the cell.

In the study of tissue P system, a large number of scholars 
have studied the computing power of this system and its 
variants, which has a strong computing efficiency in solving 
practical problems [25]. Song et al. [26] proposed a one-
way tissue P system with symport rules (MTS P system), 
in which two regions communicate only in one direction. It 
is proved that the MTS P system still has strong computing 
capability under the restriction of unidirectional. Most rule 
application strategies in P system adopt maximum paral-
lelism. This rule synchronization strategy is considered in 
[27], and the tissue P system with synchronous symport/
antiport port rules is proposed. It is proved that the system 
can also solve the SAT problem under the rule of cell divi-
sion. Cells can also work asynchronously. Pan et al. [28] 
studied the computing power of local synchronization in 
asynchronous tissue P systems with symport/antiport rules 
at the three levels of rules, channels and cells. The steady-
state mechanism is introduced in [29]. The environment no 
longer provides energy to cells, and the multi-set rewriting 
rules are introduced into tissue P system, a steady tissue P 
system is constructed, and proved to be an effective solution 
to the NP-complete problem.

2.3  Time series predictions

Time series prediction models have evolved from early linear 
models, such as autoregressive moving average models [30], 
to better nonlinear models, such as neural network mod-
els [31]. The development from linear regression modeling 
method with clear mathematical relations to black box non-
linear modeling method requires researchers to be able to 
adopt more effective theoretical methods, such as machine 
learning [32], fuzzy reasoning [33], heuristic, neural net-
work [34] and other artificial intelligence methods. There 
are obvious differences between various linear and nonlinear 
modeling methods. On the one hand, the difference lies in 
the different mathematical methods adopted by each predic-
tion method. On the other hand, the difference lies in the 
significant differences in the theoretical methods used by 

(6)𝜔i = (Qi, si,0 ,wi,0 ), 1 < i < m
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different prediction methods. In the implementation of the 
algorithm, the computational resources required by different 
prediction methods are also very different. Different predic-
tion methods have different mechanisms for extracting data 
features. The methods for extracting data features can be 
divided into two forms: explicit and implicit. Explicit feature 
extraction method is to build features by directly transform-
ing finite length historical data at each time step. In contrast, 
the implicit feature extraction method is to construct the 
internal dynamic features contained in the historical data 
through machine learning method. This method does not 
need to strictly consider the time relationship of the data in 
the time series. Different forecasting methods can be distin-
guished by forecasting model data characteristics and train-
ing methods. A variety of common time series forecasting 
methods will be introduced in the following sections.

3  Methods

3.1  Framework of deep echo state network

Hinton et al. proposed an unsupervised greedy layerwise 
training algorithm, opening the door of deep learning 
research. Deep ESN is the result of ESN combined with 
deep learning thought. Its essence is multi-layer artificial 
neural network, with simple input layer and output layer, 
and multiple reservoir structures as hidden layer. DESN has 
more reservoir structures and can map more complex time-
series applications. Depth the echo state network (DESN) 
structure, as shown in Fig. 2, the left is the input layer, its 
function is to the external data into the depth of the echo 
state network, the bottom is output layer, its function is the 
depth of the echo state network output the generated data to 
the external, is among multiple hidden layer, each layer is 
a dynamic structure of reservoir. Refer to Ying-Chun Bo’s 

research, we stacked ten reservoirs as hidden layers of the 
DESN.

The DESN works like this: the input layer loads external 
data into the DESN, u(n) ⊆ Rk×l , K is the dimension of the 
input data, which determines the number of neurons in the 
input layer. External data enter DESN and enter the first res-
ervoir after weighted by input weight W (1)

in
⊆ RN1×k , where N1 

represents the number of neurons in the first reservoir. In the 
reservoir neurons of the first layer, the state value of the pre-
vious historical timepoint x(1)(n − 1) inside the reservoir is 
weighted by reservoir weight W (1) ⊆ RN1×N2 . After summing 
with the received weighted input, a new state value is formed 
from the activation function of the neuron, thus updating the 
state value of the first reservoir, denoting as x(1)(n) ⊆ RN1×N2 . 
Like the first reservoir layer, the status of the second reser-
voir is updated from x(2)(n − 1) to x(2)(n) ⊆ RN2×l . The model 
repeats the working process of the reservoir until the state 
value of the neurons in the last reservoir is updated. The 
state value of the last reservoir is denoted as x(L)(n) ⊆ RNL×l , 
where L represents the maximum number of layers, also 
known as the depth. At this point, all the status value of 
reservoir neurons has updated, N = N1 + N2 +⋯ + NL 
is total number of the neurons of DESN reservoirs. 
All state values are sorted together and denoted as 
x(n) = [(x(1)(n))T , (x(2)(n))T ,… , (x(L)(n))T ]T ⊆ RN×1  , 
all of the status value weighted by the output weights 
Wout ⊆ R(M×N) is feed to the output layer. The output layer 
outputs the final result to the network. M represents the 
dimension of output data, and is also the number of neurons 
in the output layer. So far, the flow of data in the network 
is finished.

3.2  The tissue‑like P system based on deep echo 
state networks

The membrane structure inside the class organization 
forms a network structure, and the system objects change 

Fig. 2  Structure of the deep 
echo state network
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their positions and states through communication rules 
and evolution rules. This paper applies the internal organ-
ization to the sonic state network, transfers the objects 
between the outer membranes through communication 
rules, and uses evolution rules to complete the state 
changes of the objects.

We constructed a tissue P system with 13 cells, as 
shown in Fig. 3, and its formal definition is

where 

(1) O = {x1, x2,… , xn} is a set of objects, where 
xj(j = 1, 2,… , n) is the jth vector;

(2) �i(i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)  r e p r e -
sents the string inside the cell, its form is as follows: 
�i = (Qi, sti,0,�i ,0,Ri, rij), 1 ≤ i ≤ 13, 1 ≤ j ≤ 13,Qi = (sti,1, s

t
i,2,… , sti,13) , 

where t = (0, 1,… , tmax), s
t
i,0
(i = 1, 2,… , 13) repre-

sents the state of the ith object in membrane i at time t, 
�i,0 ∈ O∗ represents the multiset of initial objects. Ri is 
a finite set of rules, which represents the evolution rules 
in cell i. It will change the state of objects in the cell. 
rij = (i, u∕j, �) is a communication rule. This rule indi-
cates that the string u can be transmitted from the cell i to 
the cell j, and the cell j cannot transmit the cell i. Because 
� is an empty string. In this system, all communication 
rules are one-way transmission rules.

(3) ch = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11) , 
(2, 12), (3, 12), (4, 12), (5, 12), (6, 12), (7, 12), (8, 12), 
(9, 12), (10, 12), (11, 12), (12, 13)} represents the con-
necting channel between different cells. For example, 
cell 2 can only receive information from cell 1, while 
cell 12 can receive information from cells 2 to 11;

(4) i0 = 13 indicates that cell 13 is the output cell of the 
entire system.

(7)� = (O,�1,… ,�13, ch, i0)

3.3  Operating mechanism

Based on the tissue-like P system, the objects of the original 
echo state network will change within the membrane struc-
ture. The rules in each membrane will be executed inde-
pendently and will not affect each other, which will greatly 
improve the calculation efficiency.

(1) Initialization rules
To perform the task of forecasting time series data, the 

system generates all initial objects in the input cell (cell 
1), and each object represents a one-dimensional or multi-
dimensional vector. The dimension of the time series data 
in this article is w × 1 , and then the objects are normalized 
in the input cell, mapped in the range of [ 0 − 1 ], and these 
objects are transmitted to cell 2 through communication 
rules.

(2) Evolutionary rules
The principle of extreme parallelism is adopted when the 

rules in the P system are executed, that is, all the rules that 
meet the conditions are executed in the system. The execu-
tion of the rules in cells 2–11 is done according to Eq. 1. 
Linearly combines the object of the previous cell with the 
object of the current cell and transports it to the next cell. At 
the same time, all the objects in the cell are sent to the cell 
12 for calculation according to Eq. 2. The final result y(n) is 
obtained and transferred to cell 13 for storage. We assume 
that the state in cell 1 is x(1), and the state in cell 2 is x(2). 
In cell 2, x(1) and x(2) are combined according to the weight 
by executing the evolution rule, and the result is output to 
cell 12. The above evolution process iterates multiple times 
in cell 2 to cell 11 until the optimal result is obtained.

(3) Communication rules
The communication rules in this system are all one-way 

transmission rules. There is a one-way communication rule 
in each cell channel. The communication rules for cell 1 and 
cell 12 are specific to one cell only. Cell 1 only transmits 
information to cell 2, and cell 12 only transmits information 

Fig. 3  Structure of the tissue-
like P system
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to cell 13. However, other cells transmit messages to both 
cells separately. One is the next cell and the other is cell 
12. For example, r1,2 = (1, x(1)∕2, �) , r2,3 = (2, x(2)∕3, �) , 
r2,12 = (2, x(2)∕12, �).The rule r1,2 transfers x(1) inside cell 
1 to cell 2. x(2) in cell 2 is transferred to cell 3 through r2,3 , 
and at the same time through r2,12 transfer x(2) into cell 12.

(4) Termination condition and output
After the objects in the former cell 12 complete all the 

evolutionary rules, the cell 12 delivers the final result to the 
output cell (cell 13), the calculation process stops, and the 
membrane terminates the evolution. Finally, all objects in 
the output film are considered the final result.

4  Numerical experiments and results 
analysis

4.1  Comparative methods

Many traditional methods, such as ARMA [30] and 
ARIMA [35], have been well applied in stationary time 
series prediction. However, in the our application, time 
series is non-stationary, which limits the application 
of the above stationary method and reduces the gener-
alization ability of the traditional time series prediction 
method. Therefore, we used the deep learning model as 
the benchmark. To evaluate the performance of deep echo 
state networks based on tissue-like P system, we compare 
some well-known RNN [4, 5] prediction models in deep 
learning: convolutional neural network (CNN) [36], long 
short-term memory (LSTM) [4], traditional ESN [6]. In 
the past studies, these models have been achieved the great 

success and widely applied in time series prediction tasks. 
CNN can solve problems, such as regression and classifi-
cation in various application fields. RNN, as a deep learn-
ing model for processing sequence data, also shows good 
performance in time series and speech processing.

4.2  Experimental data and experimental 
environment

This paper selects the benchmark task commonly used in 
time series prediction, the NARMA signal. The non-linear 
auto-regressive (NARMA) data set were originally pro-
posed by Jaeger and included modeling of the following 
R-order system outputs:

The input x(n) of the system is the noise randomly distrib-
uted between [0, 1]. The NARMA task requires memory 
of at least r past time steps, since the output of the system 
y(n + 1) is determined by the input and the outputs of the r 
time steps. 10,000 data points were collected as experimen-
tal data. The first 80% of data points were used to construct 
the training set, and the remaining 20% were used as the test 
set. Figure 4 shows the change trend.

To avoid the influence of value range on the model, 
the input was pre-processed. The original time series data 
were linearly transformed before entering the data to the 
interval [0,1]. The normalization formula is

(8)
y(n + 1) = 0.3y(n) + 0.55y(n)

[ r
∑

i=0
y(n − i)

]

+ 1.5x(n − r)x(n) + 0.1.

Fig. 4  NARMA data set
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In this paper, the tensorFlow open source platform is used 
as the deep learning platform, and Python 3.7 is used to 
write the experimental program. Meanwhile, some third-
party libraries are used, such as Talib to calculate techni-
cal indicators and Keras to build the network structure. The 
experimental operating system is Windows 10.

4.3  Performance assessment

This paper evaluates all prediction models in terms of model 
accuracy. For model accuracy, we choose root mean square 
error (RMSE) as the measurement standard. The calculation 
formula of ERMSE can be expressed as

where yt and ft are, respectively, the observed value and out-
put value of the model at time t, and T is the number of data 
points. In this paper, the fitting and prediction accuracy of 
the model is quantitatively evaluated by calculating RMSE 
values of the training set and the test set, respectively. In this 
article, we do not expand the RMSE value of the training set.

5  Results

We expect to explore the performance of the proposed model 
for time series forecasting in the NARMA signal data set. 
As shown in Figs. 5, 6, 7 and 8and Table 1, for NARMA 
signal, the ESN with a single reservoir architecture achieves 
the same performance as LSTM. The RMSE of the ESN is 
slightly higher than that of the LSTM. As we increase the 
number of the reservoir, the tissue-like p system based on 
deep echo state networks showed significant improvements 
in predictive performance. The proposed model achieves 
much better RMSE than other models. It is worth noting that 
the complexity of NARMA time series is relatively low. In 
the above experiment, we prove that the model we proposed 
is more effective than other RNN in time series prediction. 
The proposed model not only has a great improvement in 
the prediction accuracy, but also has a certain advantage in 
the computation time compared with the traditional DESN.

(9)xnorm =
x − xmin

xmax − xmin

.

(10)RMSE =

√

√

√

√

T
∑

t=1

(yt − ft)
2)∕T ,

Fig. 5  CNN

Fig. 6  LSTM

Fig. 7  ESN
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6  Conclusions

In the field of time series forecasting, we expect to combined 
membrane computing and neural network to build a more 
computationally efficient model that can directly process 
time series. Although we have only made some preliminary 
improvements, some useful conclusions that are helpful to 
the future research have been given in this paper.

In this paper, the tissue-like P system based on deep 
echo state networks model was presented for modeling time 
series. Although the deep ESN model effectively improves 
the accuracy of prediction, it also greatly increases the com-
putational complexity. The parallel and integration of P sys-
tem will greatly improve the efficiency of the model. The 
application of the tissue-like p system framework overcomes 
the inherently low efficiency of deep neural network. There-
fore, the model we proposed has some advantages. Since the 
P system is applied on the basis of the model in this paper, it 
cannot operate independently from the model and is depend-
ent on the original model.

This article focuses on use the tissue-like P system to 
implement the operation process of the neural network. 
However, P system also has many applications in finding 
optimal solutions. We expect to find the application of P 
system in the parameter optimization of neural networks.
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need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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