
Vol.:(0123456789)1 3

Journal of Membrane Computing (2020) 2:179–193
https://doi.org/10.1007/s41965-020-00049-9

REGULAR PAPER

Simulating reversible computation with reaction systems

Attila Bagossy1 · György Vaszil1

Received: 14 March 2020 / Accepted: 19 August 2020 / Published online: 8 September 2020
© The Author(s) 2020

Abstract
Reaction systems are a formal model of computation providing a framework for investigating biochemical reactions inside
living cells. We look at the functioning of these systems as a process producing a series of different possible sets of entities
representing states which can be changed by the application of reactions, and we study reversibility and its simulation in
this framework. Our goal is to establish an Undo-Redo-Do-like semantics of reversibility with environmental control over
the direction of the computation following a so-called no-memory approach, that is, without introducing modifications to
the model of reaction systems itself. We first establish requirements the systems must satisfy in order to produce processes
consisting of states with unique predecessors, then define reversible reaction systems in terms of reversible interactive pro-
cesses. For such reversible systems, we also construct simulator systems that can traverse between the states of reversible
interactive processes back and forth based on the input of a special “rollback” symbol from the environment.

Keywords Reaction Systems · Natural computing · Reversible computing

1 Introduction

Natural computing is a research area concerned with com-
putational models which may be either inspired by some
natural phenomenon, or designed to help us better under-
stand natural processes in terms of information processing
[16, 29].

Reversible computation is a paradigm extending the
standard notion of the forwards-only mode of computation
with the ability to be executed also in the reverse direction,
such that computations can run backwards as naturally as
they can run forwards.[20, 22, 30].

In this paper, we study reversibility and its simulation in
the framework of reaction systems, a natural computational
model by Ehrenfeucht and Rozenberg [12] aiming to provide
a formal framework for investigating the biochemical reac-
tions inside living cells. Computation in this model goes for-
ward by applying reactions to a set of entities (called a state),

creating a new set (a new state). The way this model works
is also interactive in the sense that each state may also incor-
porate input, capturing the idea that living cells do not act
in isolation but always operate in some environment which
may influence their behavior (and thus, the computation).
In contrast to previous results, such as those in [5], we aim
to investigate how to introduce reversibility in reaction sys-
tems without losing its openness (its ability to incorporate
input from the enclosing environment), and without making
modifications on the model itself.

The rest of the paper is organized as follows. In Sect. 2 we
discuss the main paradigms concerning the implementation
of reversibility in the context of computational models of
our interest. Sect. 3 comprises a concise introduction to the
fundamental notions of reaction systems, then in Sect. 4 we
present our notion of reversibility and provide necessary and
sufficient conditions for reaction systems to be reversible. In
Sect. 5 we show how to construct the “reverse” of a set of
reactions, and then use these ideas to construct reaction sys-
tems which are able to simulate the forward and backward
computations of reversible reaction systems. Finally, Sect. 6
ends the paper with some conclusions.

 * György Vaszil
 vaszil.gyorgy@inf.unideb.hu

 Attila Bagossy
 bagossy.attila@inf.unideb.hu

1 Department of Computer Science, Faculty of Informatics,
University of Debrecen, Kassai út 26, Debrecen 4028,
Hungary

http://orcid.org/0000-0003-1213-8616
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-020-00049-9&domain=pdf

180 A. Bagossy, G. Vaszil

1 3

2 Paradigms of reversibility

Reversible computation is a field attracting interest from the
points of view of several possible applications and much
work is also devoted to establish its solid theoretical founda-
tions. For more information on applications of reversibility,
see the monograph [26], for a state-of-the-art survey of the
area, see the recent collection [30].

A number of theoretical aspects of reversible computing
have been studied over the years, see [6] for a survey sum-
marizing recent results concerning categorical foundations
of reversibility, foundations of programming languages and
term rewriting, various models of sequential and concurrent
computations, and addressing some of the challenges posed
by quantum computation (which is in part also naturally
reversible).

As reaction systems are biochemically inspired compu-
tational models, we would also like to mention some of the
topics of reversible computation motivated by this area. In
most of the cases, biochemical reactions are modeled by
distributed systems of concurrent processes and this poses
special types of questions with respect to their reversibility.
Opposed to sequential processes (like the computations of
Turing machines or most types of conventional automata)
where the order of the execution of the computational steps
can easily be reversed by undoing the last action, the defini-
tion of the backward execution of a collection of concur-
rently executing distributed processes is not straightforward
at all, since there is no definite notion of the “last action”
which should be undone first. To overcome this difficulty,
the concept of causal-consistent reversibility was introduced
in [10] as a suitable definition of reversibility for a concur-
rent scenario, which intuitively says that any action can be
undone provided that all its consequences, if any, are undone
already. Interestingly, besides the usual “backtracking” type
and the more sophisticated causal-consistent type of revers-
ibility, out-of-causal-order reversibility can also be defined,
and as it may sound strange, it is important since it might
make possible to get to states which cannot be reached by
forward execution alone [27].

Another interesting aspect is the controlled vs. uncon-
trolled nature of reversibility. We speak of external control
of reversible computation when some other process is in
charge of controlling it by deciding whether it has to go
backward or forward [18]. In Section 5 we will follow a
similar approach when we present simulations of reversible
reaction systems being able to switch between simulating
forward or backward computations based on external input
from the environment.

For a survey of causal consistent and controlled revers-
ibility, see also [19].

As we already noted, biochemically inspired computa-
tional models, even when they are abstract and very much
simplified, naturally include some kind of concurrency and
parallelism appearing between its different possible compu-
tational processes. Suitable examples are membrane systems
[24, 25] which deal with multisets of symbols processed in
the compartments of hierarchical structure of membranes
according to some multiset rewriting rules: some of the sym-
bols are changed in parallel according to the rules associ-
ated with their containing regions, while the others remain
unchanged (and can be used in the subsequent steps) or get
moved to other regions of the membrane structure. Concern-
ing the reversibility of membrane systems, [1, 2] defines it
as a form of duality, while in [4] the reversibility of bio-
chemical reactions in parallel rewriting systems are inves-
tigated (which can easily represent classes of models such
as membrane systems, or Petri nets). In a more recent paper
[28], membrane system configurations are enriched with a
memory recording the information necessary for reversing
steps.

The situation in the case of reaction systems, however, is
different. Although, they are motivated by (and in a certain
sense can also be used to model) biochemical processes, they
represent a qualitative model. As opposed to systems being
able to “count” by dealing with entities having multiplicities
(as in multisets, for example), reaction systems deal with
sets, which distinguishes them from the above mentioned
models by (i) a threshold assumption: if a resource is pre-
sent, it is always present in a sufficient amount necessary for
any reaction; (ii) no permanency assumption: if an entity is
not produced at a certain step, it will not be available for
use at the next step [12]. As we will see later in more detail,
such a way of functioning leads to a sequential model, very
close in fact to finite transition systems (or finite automata).
The concept of reversibility in the context of these types of
computational models is rather straightforward. A model is
reversible if it is “backward deterministic”, that is if each
of its computational configurations (or states) has at most
one predecessor, or in other words, no state is accessible
from two distinct states1. As simple as this definition is, it
gives rise to different implementational paradigms among
the actual models, some of which we will shortly review in
the following. Our presentation is based mostly on [22, 26].

As an automaton is reversible if it preserves information
so that its computation can be retraced back in time [6],
information preserving and reversibility are very closely
related concepts. Landauer argued in [17] that any logical
operation with information loss necessarily results in heat

1 A similar approach is also possible in the case of membrane sys-
tems by considering deterministic variants, as done in [3, 15], or in
[23] where reversible register machines are simulated.

181Simulating reversible computation with reaction systems

1 3

dissipated by the system performing the operation, and as
there exist irreversible computations, he also claimed that
there are computations where heat generation is inevita-
ble. Inspired by these claims, Bennett created a universal
reversible Turing machine, proving that irreversibility is
not an inherent property of computation [8]. When con-
structing his model, he developed the so-called Compute-
Copy-Uncompute paradigm, which comprises the follow-
ing steps: The machine first performs a reversible forward
computation, resulting in the desired output. Then, a copy
is made from this output. Finally, the reverse execution
of the forward steps (which is also reversible) cleans up
the effects of the forward computation, leaving the origi-
nal input and the copy of the corresponding output on
the tapes. (See [26] for a more detailed and systematic
treatment of this paradigm.) This result spawned extensive
research interest in the field of reversible computing since
it proved that reversible computing is the tool to overcome
the performance constraints of traditional irreversible sys-
tems [13]. A more recent and rigorous treatment of revers-
ibility concerning Turing machine computations can also
be found in [7].

While the Compute-Copy-Uncompute paradigm fits
the power consumption related study of reversibility well,
it might be too static for others, since the outcome of the
computation is of most importance, as opposed to the actual
process of the computation itself. If we place our focus on
the processes, however, we can discover another significant
implication of reversibility: it allows for exploration and
experimentation. Since every configuration has at most one
predecessor, we can freely undo any previous computation
and proceed by choosing a different computational route.

This very idea serves as the basis of the Undo-Redo-Do
paradigm, depicted in Fig. 1. Below, we briefly describe the
flow of computation in this paradigm, as discussed in [26].

– The Do operation corresponds to normal forward com-
putation.

– At any state, we can choose to Undo our previous step,
essentially reversing the execution, taking us back to the
single predecessor of the current state.

– Later, if we wish to recover our prior computation (thus,
visiting the same states as before), we can perform a
Redo.

– Instead of recovering previous actions, if we want to
experiment by taking a different route, we can dismiss
any undone steps yet to be redone, and continue with a
Do operation.

A similar approach was taken in [14] where reversible non-
deterministic automata were investigated, and although in a
different context, the idea of exploration and experimenta-
tion was also discussed in [11].

When considering reversibility in the case of (sequential)
models with an emphasis on interaction with some external
environment (such as reaction systems), the implementation
of a paradigm like Undo-Redo-Do seems to be more suit-
able than, for example, Compute-Copy-Uncompute since it
is well-aligned with the dynamic and exploratory character-
istics of these models. Moreover, as we already mentioned,
the process-focused nature of the paradigm (in contrast to
the result oriented focus of Compute-Copy-Uncompute) also
motivates its use in the following investigations.

3 Preliminaries

In what follows, we are going to briefly introduce the most
important notions and notations concerning reaction sys-
tems. Our presentation is based on [9].

Reaction systems model biochemical reactions occurring
inside a living cell. The intuition behind the model stems
from the idea of facilitation and inhibition.

A reaction a is a tr iplet of three finite sets
a = (Ra, Ia,Pa) . The set Ra contains the reactants, Ia con-
tains the inhibitors, while Pa consists of the products. The

Fig. 1 Altering the flow of computation in the Undo-Redo-Do paradigm

182 A. Bagossy, G. Vaszil

1 3

set of reactants and the set of inhibitors must be disjoint
(Ra ∩ Ia = �) and the set of products must not be empty
(Pa ≠ ∅).

If Ra, Ia,Pa ⊆ S for some reaction a = (Ra, Ia,Pa) and
finite set S, then a is a reaction over S. The set of all reac-
tions over S is denoted by rac(S).

Intuitively, we can say that a reaction takes place if all of
its reactants and none of its inhibitors are present. In such a
case the reactants react, and the product set is created, just
like in the case of biochemical reactions.

Remark 1 In what follows, if a is a reaction, then we will
denote its components as Ra, Ia and Pa without explicitly
writing out the complete triplet form a = (Ra, Ia,Pa).

We also note that we use the symbols ⊆ and ⊂ to denote
set inclusion and set inclusion in the strict sense (that is,
when equality is excluded), respectively.

Given a set of entities (that can be arbitrary symbols) S
and a reaction a ∈ rac(S) , we can always tell whether a can
take place or not. For a finite set T ⊆ S , the reaction a is
enabled by T, if Ra ⊆ T and Ia ∩ T = � . The result of a on T,
denoted by resa(T) is defined as resa(T) = Pa if a is enabled
by T, or resa(T) = � if a is not enabled by T.

In the previous definitions, we only considered a single
reaction. It is quite rare, however, that a single reaction can
capture the behavior of a complex process. Consequently, the
concepts above should be generalized to multiple reactions.

Let A be a finite set of reactions over a set of enti-
ties S, and let T ⊆ S be a finite set. Then enA(T)
denotes the set of all reactions in A enabled by T, thus
enA(T) = {a ∈ A ∣ a is enabled by T} , and the result of A on
T, denoted by resA(T) , is defined as resA(T) =

⋃
a∈A resa(T).

The previous definition reflects two vital aspects of the
model. Reactions can be enabled and applied even if their
reactant sets overlap. Hence, there are no conflicts: each
enabled reaction is allowed to produce its result. The results
are also non-conflicting, which means that even if two or
more reactions produce the same entity (because of inter-
sections in their product sets), there will be no “multiple
occurrences” in the result set. This qualitative nature comes
from the fact that reaction systems use sets instead of multi-
sets (these can be viewed as the quantitative counterparts of
sets). Thus, in this model, an entity (which might be repre-
senting some chemical or biological resource) is either pre-
sent in an amount that is sufficient or it is missing altogether.

In the following sections, we are going to work with finite
sets of reactions. Therefore, we now introduce a shorthand
notation for the reactants and products of these sets.

Notation 1 Let A be a finite set of reactions. Then, we denote
by RA and PA the union of the reactant sets and product sets,
respectively: RA = ∪a∈ARa , PA = ∪a∈APa.

We can further generalize the concept of enabled reac-
tions and results, thus formalizing every possible enabled
subset of reactions and the results of those.

Notation 2 Let A be a finite set of reactions over the finite
set S. We denote by ENA(S) the set that contains the sets of
reactions which can be enabled simultaneously, that is, every
E ⊆ A for which there exists a subset of S enabling every
reaction in E. Formally

In other words, ENA(S) contains the sets of reactions where
the members of each set are simultaneously enabled for
some subset S′ of S.

Further, we denote by RESA(S) the set that contains the
results of applying every set of reactions in ENA(S) to the
appropriate subsets of entities, or formally

Example 1 Let us consider the set of reactions A = {a, b, c}
over S = {1, 2, 3} where

Here, we have

since there is no set of elements such that a and c is enabled
together (as Ra ∩ Ic ≠ �).

The elements of RESA(S) are the product sets produced
by the reactions in the sets of ENA(S) applied to appropriate
subsets of S, that is,

Having established the most important notions, we can
now recall the definition of a reaction system, which is an
ordered pair A = (S,A) such that S is a finite set (called
the background set) and A ⊆ rac(S) (called the set of
reactions).

Remark 2 Given a reaction systems A = (S,A) , we assume,
without loss of generality, that A does not contain different
reactions having the same set of reactants and the same set
of inhibitors. (If a, a� ∈ A are reactions with a = (R, I,P1)
and a� = (R, I,P2) , then they are always enabled and applied
simultaneously, so they can be replaced by a single reaction
(R, I,P1 ∪ P2) having the same effect.)

Let A = (S,A) be a reaction system and let n ≥ 0 be an
integer. An interactive process in A is a pair � = (� , �) of
finite sequences, such that

ENA(S) = {E ⊆ A ∣ there exists S� ⊆ S, such that enA(S
�) = E}.

RESA(S) = {resE(S
�) ∣ S� ⊆ S,E ⊆ A, such that enA(S

�) = E}.

a = ({1}, �, {2}), b = ({2}, �, {3}), c = ({3}, {1}, {1}).

ENA(S) = { {a}, {b}, {c}, {a, b}, {b, c} },

RESA(S) = { {2}, {3}, {1}, {2, 3}, {1, 3} }.

183Simulating reversible computation with reaction systems

1 3

– � is the context sequence of � , defined as
� = C0,C1,…Cn , where Ci ⊆ S for all 0 ≤ i ≤ n − 1 , and
Cn = �,

– � is the result sequence of � , defined as � = D0,D1,…Dn ,
where D0 = � and Di = resA(Di−1 ∪ Ci−1) for all 1 ≤ i ≤ n,

– sts(�) is the state sequence of � , defined as
sts(�) = W0,W1,…Wn , where Wi = Ci ∪ Di for all
0 ≤ i ≤ n.

The first few states of an interactive process are visualized in
Fig. 2. Note that even though the figure shows the context set
Ci and the result set Di of the same state as non-overlapping
rectangles, they do not have to be disjoint.

The way interactive processes are defined has two sig-
nificant consequences. An interactive process is finite since
the prior choice of n determines its length. Thus, we can
think of an interactive process as a finite state sequence. In
this sequence, new states are created rather than transformed
from the previous states. This leads us to the concept of no
permanency: The next state is created from the products of
the enabled reactions and the context set. Therefore, if an
entity in the current state is not produced by any reaction
and is not present in the next context set, then it will disap-
pear. The intuition behind this idea comes from the realm of
biochemistry where entities are produced and sustained by
active, energy-consuming processes (not to be confused with
our formal interactive processes). Thus, if there is no such
process to sustain a given entity, then it will vanish. More
information on the motivation behind this concept (and on
reaction systems in general) can be found in [12].

4 Reversible reactions systems

We start by presenting a possible application of the con-
cept of reversibility for the special case of reaction systems.
Based on the discussions in Sect. 2, our aim is to interpret

the notion of backward determinism in this framework. In
reaction systems state sequences correspond to interac-
tive processes, so we start by defining how the concept of
unique predecessors can be applied to the states of interac-
tive processes.

Definition 1 Let A = (S,A) be a reaction system and
� = (� , �) be an interactive process in A , such that
� = C0,C1,…Cn and sts(�) = W0,W1,…Wn.

A state Wi , 1 ≤ i ≤ n , has multiple predecessors if
there exists W �

i−1
,C�

i−1
⊆ S such that W �

i−1
≠ Wi−1 , but

resA(W
�
i−1

) ∪ C�
i−1

= Wi . If there is no such W �
i−1

 , then Wi has
a unique predecessor.

The interactive process � is reversible, if every state Wi ,
1 ≤ i ≤ n , has a unique predecessor.

In the following, we will discuss the conditions that are
necessary for obtaining reversible interactive processes. It is
clear that if different reactions produce the same result, then
we can arrive at the same state from different predecessor
states. Moreover, since a state is the union of a context set
and a result set, the property of having a unique predeces-
sor does not only depend on the reactions and the results of
the reactions, but also on the context sets which are added
in each step of the interactive process. Even if every result
set was unique, identical states could be created with well-
chosen contexts. In order for an interactive process to be
reversible, there must be at most one way to produce each
context-result union, so the unique predecessor property of
Definition 1 depends not only on the reactions of the sys-
tem, but also on the context sets of the process. Since this
dependency is rather involved, we are going to follow a step
by step approach and introduce lemmas for describing the
different requirements related to the reversibility of interac-
tive processes.

First, let us consider the following. According to the
general notion of reversibility, every state must have

Fig. 2 The first four states of an interactive process � = (� , �) in some reaction system

184 A. Bagossy, G. Vaszil

1 3

a unique predecessor. Yet, when a given state does not
enable any reactions, then the process continues with an
empty result. We can then augment this empty result with
a non-empty context, essentially restarting the process.
Reversing execution from such an empty or restarting state
would be equivalent to obtaining “something from noth-
ing” which does not fit the concept of reversibility. There-
fore, in what follows, we will only consider processes in
which this restart does not occur.

Definition 2 Let A be a reaction system and � = (� , �) be
an interactive process in A such that � = D0,D1,…Dn . The
interactive process � is non-restarting if Di ≠ ∅ , 1 ≤ i ≤ n .
If the opposite holds, then � is restarting.

Remark 3 If � = (� , �) is an interactive process with
� = D0,D1,…Dn and sts(�) = W0,… ,Wn in some
A = (S,A) , then (since the product sets of the reactions are
nonempty) Di = � is only possible, if enA(Wi−1) = � for
some 1 ≤ i ≤ n . Thus, � is non-restarting, if and only if,
enA(Wi) ≠ � for all i, 0 ≤ i ≤ n − 1.

We already noted that reversibility implies the unique-
ness of result sets. This comes from the fact that regardless
of the context, if there are multiple ways to produce the
same set of entities, then it is not possible to recover the
predecessor.

Example 2 Let S = {0, 1, 2, 3, 4} be a set of entities and
A = {a, b, c} be a set of reactions where

If we consider the set W = {3, 4} , we can see that there are
multiple subsets of reactions in A producing W, for example
{a, b} and {c} . As a consequence, just by looking at W, we
are unable to determine which reactions produced it. Equiva-
lently, if W was a state in some interactive process, then this
process would not be reversible, since we could not recover
the predecessor of W.

Deriving from the above example, we can impose the
following requirement on the set of reactions. If we take
every possible subset of reactions in which each reaction
is enabled, then no two subsets should produce the same
result. As the following lemma states, if the same result
set is produced by two different enabled reaction sets, then
there exists a state with multiple predecessors.

Lemma 1 Let A = (S,A) be a reaction system. If there exist
E1,E2 ∈ ENA(S) with E1 ≠ E2 , such that PE1

= PE2
 , then

there exists a state W in some interactive process in A , such
that W has multiple predecessors.

a = ({0}, �, {3}), b = ({0, 1}, �, {4}), c = ({2}, �, {3, 4}).

Proof Let A = (S,A) be a reaction system. Assume, that
there exists E1,E2 ∈ ENA(S) , E1 ≠ E2 , such that PE1

= PE2
 .

Because E1,E2 ∈ ENA(S) , we have T1, T2 ⊆ S satisfying
enA(T1) = E1 and enA(T2) = E2 . In addition, since E1 ≠ E2 ,
we also have T1 ≠ T2 . This means that there exist T1, T2 ⊆ S
such that T1 ≠ T2 and resA(T1) = resA(T2) , since PE1

= PE2
.

Thus, given some context set C ⊆ S , if resA(T1) ∪ C = W ,
then we also have resA(T2) ∪ C = W with T1 ≠ T2 . That
being so, if W is a state in some interactive process, then W
has multiple predecessors.

To see that such an interactive process always exists,
consider � = W0,W1,…Wn , n ≥ 0 , with W0 = C0 , where
C0 = T1 (or C0 = T2) is the initial context set. Then, since
W1 = resA(C0) ∪ C1 , the state W1 in the interactive process �
is a state with multiple predecessors. ◻

Now, one might be tempted to conclude, that the
assumption of Lemma 1 provides a sufficient condition
for reversibility in the case of context-independent interac-
tive processes (those with empty contexts except for C0).
Since there is a single reaction set producing every result
set and the context is always empty (hence, Wi = Di for all
i ≥ 1), every state should have a unique predecessor. How-
ever, because of the no permanency assumption in reaction
systems, this is not necessarily the case. According to the
no permanency assumption, entities not sustained by at
least one reaction will disappear, which can result in states
with multiple predecessors even in context-independent
interactive processes.

Example 3 Let S = {0, 1, 2} be a set of entities and A = {a, b}
be a set of reactions where

so Lemma 1 is not applicable to this system.
Consider the sets W1 = {0, 1, 2} and W2 = {0, 1} .

If we apply the reactions in A to these sets, we get
resA(W1) = resA(W2) = {1, 2} . Thus, if W = {1, 2} is a state
in some context-independent interactive process, then W has
multiple predecessors.

In the above example, the non-uniqueness of the pre-
decessor was caused by a vanishing entity (the entity 2),
one that was not a reactant of any of the enabled reactions.
Given this observation, we might conjecture that the pres-
ence of entities not contained by the reactant sets of any
of the reactions should imply the existence of states with
multiple predecessors. The following example shows that
this is not necessarily so.

Example 4 Let S = {0, 1} be a set of entities and A = {a, b}
be a set of reactions where

a = ({0}, �, {1}), b = ({0, 1}, �, {2}),

185Simulating reversible computation with reaction systems

1 3

Consider the set W1 = {0} . If we apply the reactions in A
to W1 , we get resA(W1) = {0, 1} . Given this result set, we
can deduce that the applied reactions were a and b, and can
restore the original set W1.

Now, let us take the set W2 = {0, 1} . Since the entity 1 is
not a reactant of the reactions, it will disappear when any
of the above reactions are applied. In this case, however,
we can only apply a since 1 is an inhibitor of b, so we get
resA(W2) = {0} . Even though the element 1 has vanished
because it was not sustained by any of the reactions, we can
deduce its presence in the predecessor set of {0} because it
inhibited the reaction b.

As the above example demonstrates, facilitation (being
a reactant) is not the only thing that leaves a trace. Since
inhibitors also affect the result of reaction application, we
might be able to recover them from the result set. Thus, the
presence of an entity which is not a reactant of any applied
reaction in some state of an interactive process does not
necessarily imply the existence of multiple predecessors.
With this in mind, we can reformulate our previous obser-
vation: The “problematic states” are those, which contain
entities whose presence or absence does not affect the set
of enabled reactions. This is expressed in the following
statement.

Lemma 2 Let A = (S,A) be a reaction system. If there exits
a set T ⊆ S , enA(T) ≠ � , and an entity e ∈ T , such that

then the there is a state W in some interactive process in A ,
such that W has multiple predecessors.

Proof Assume, that there exist T1 ⊆ S , e ∈ T1 , such that
enA(T1⧵{e}) = enA(T1) , and let T2 = T1⧵{e} . This means,
that resA(T1) = resA(T2) , so if W = resA(T1) ∪ C is a state
of an interactive process for some context set C ⊆ S , then
T1 ≠ T2 , but both T1 and T2 are predecessors of W.

To see that such an interactive process always exists,
consider � = W0,W1,…Wn , n ≥ 0 , with W0 = C0 , where
C0 = T1 (or C0 = T2) is the initial context set. Then, since
W1 = resA(C0) ∪ C1 , the state W1 in the interactive process �
is a state with multiple predecessors. ◻

The lemma above implies that whenever the same set
of reactions is enabled by two or more different sets of
entities, then there is a state with multiple predecessors in
the corresponding interactive processes.

a = ({0}, �, {0}), b = ({0}, {1}, {1}).

enA(T ⧵ {e}) = enA(T),

Corollary 1 Let A = (S,A) be a reaction system. If there exist
T1, T2 ⊆ S , T1 ≠ T2 , such that enA(T1) = enA(T2) ≠ � , then
there exists a state W in some interactive process in A such
that W has multiple predecessors.

As we briefly noted, when discussing Definition 1, the
notion of unique predecessor depends on both the reac-
tions of the containing system and the context sets of the
enclosing process. Given an appropriate set of reactions,
it might still be possible to construct states with multi-
ple predecessors, even if none of the above lemmas are
applicable. To see this, consider the following. When
assembling a new interactive process, we can make arbi-
trary choices regarding the elements of the contexts sets.
Consequently, for every pair of distinct result sets, we can
always choose an appropriate context set, so that the union
of these sets will be equal.

Example 5 Let S = {0, 1} be a set of entities and A = {a, b, c}
be a set of reactions where

None of the previous lemmas are applicable to this sys-
tem, but it still produces a state with multiple prede-
cessors. Consider the states W = {1} and W � = {0} .
As resA(W) = {0} and resA(W �) = {0, 1} , if we have a
state Wi = {0, 1} of an interactive process for some i ≥ 1
with Ci = {1} , then Wi has multiple predecessors: Since
Wi = resA(W) ∪ Ci = resA(W

�) ∪ Ci = {0, 1} , the predeces-
sor of Wi can be any of the states W or W ′.

If the context sets can be arbitrary subsets of the back-
ground set (even the background set itself can be a con-
text), then regardless of how well-chosen our reactions are,
an appropriate context set can turn a state into one with
multiple predecessors. Thus, we need to restrict which
entities may appear in the contexts, or in other words, there
have to be entities which cannot appear in any context set.
To this aim, we write the background set S of a reaction
system as the union of two not necessarily disjoint sets, the
product alphabet Σp ⊆ S (entities that appear in the prod-
uct sets of the reactions) and the context alphabet Σc ⊂ S
(entities that can appear in the context sets). The model
we obtain this way is similar to the one called context
restricted reaction systems in [21].

Notice, however, that if restricting the sets of possible
contexts, then there might be states which are not “reach-
able” in the sense that they cannot appear in any interac-
tive process.

Definition 3 Let A = (S,A) be a reaction system with
S = Σp ∪ Σc , that is, the background set being the (not

a = ({0}, {1}, {0, 1}), b = ({1}, {0}, {0}), c = ({0, 1}, �, {1}).

186 A. Bagossy, G. Vaszil

1 3

necessarily disjoint) union of Σp , the entities that are allowed
to appear as products of reactions and Σc , the entities that are
allowed to appear in the context sets.

A state W ⊆ S is reachable if there exists an interac-
tive process W0,W1,… ,Wn in A with W = Wi for some
0 ≤ i ≤ n , such that Wi = Di ∪ Ci with Di ⊆ Σp , Ci ⊆ Σc ,
and D0 = Cn = �.

The following statement establishes a relationship
between the properties of the reaction sets, the context alpha-
bet, and the existence of states with multiple predecessors.

Lemma 3 Let A = (S,A) be a reaction system with
S = Σp ∪ Σc (where Σp and Σc are not necessarily dis-
joint). If there exist R1,R2 ∈ RESA(S) such that R1 ≠ R2 ,
R1 = resA(W) for some state W ⊆ S which is reachable in
A , and

then there exists a state with multiple predecessors in some
interactive process in A .

Proof Let A = (S,A) be a reaction system with S = Σp ∪ Σc .
Assume that there exist R1,R2 ∈ RESA(S) satisfying the con-
ditions of the statement. As R1 and R2 are in RESA(S) , there
exist W, T ⊆ S such that resA(W) = R1 , resA(T) = R2 , and W
is a reachable state in A . (Note that W ≠ T , since given
a fixed set of reactions, different result sets may only be
created from different states.) Furthermore, since R1 ≠ R2
but R1⧵Σc = R2⧵Σc , if we choose the context set C as
C = (R1 ∩ Σc) ∪ (R2 ∩ Σc) , then we have

so there exist W, T ⊆ S , W ≠ T , and C ⊆ Σc such that,

for some state W ′ ⊆ S.
Since W is reachable in A , there is an interac-

tive process � , such that W ′ is a state in � , and as
W � = resA(W) ∪ C = resA(T) ∪ C with W ≠ T , the state W ′
in � has multiple predecessors. ◻

To see the condition of the previous statement from a
different point of view, we may also formulate it as follows.

Corollary 2 Let A = (S,A) be a reaction system with
S = Σp ∪ Σc (where Σp and Σc are not necessarily dis-
joint). If there exist R1,R2 ∈ RESA(S) such that R1 ≠ R2 ,
R1 = resA(W) for some state W ⊆ S which is reachable in
A , and

R1⧵Σc = R2⧵Σc,

R1 ∪ C = R2 ∪ C,

resA(W) ∪ C = resA(T) ∪ C = W �

then there exists a state with multiple predecessors in some
interactive process in A .

Since computation in reaction systems is done using inter-
active processes, we can naturally formalize the definition of
reversible reaction systems based on the reversibility of inter-
active processes.

Definition 4 A reaction system A is reversible, if every non-
restarting interactive process in A is reversible.

Based on the lemmas above, we can formulate the neces-
sary and sufficient conditions for the reversibility of a reaction
system as follows.

Theorem 1 Let A = (S,A) be a reaction system with
S = Σp ∪ Σc (where Σp and Σc are not necessarily disjoint).
The system A = (S,A) is reversible, if and only if the follow-
ing conditions hold.

(1) For all E1,E2 ∈ ENA(S) ,

(2) For all T1, T2 ⊆ S , enA(T1) ≠ � ,

(3) For all R1,R2 ∈ RESA(S) such that R1 = resA(W) for
some state W ⊆ S which is reachable in A ,

Proof According to the Lemma 1, Corollary 1, and Lemma
3, no reaction system can be reversible if any of the above
conditions does not hold.

To also see that the conditions imply the reversibility
of a system, let us assume indirectly that there is a reac-
tion system A = (S,A) (where S = Σp ∪ Σc) which satisfies
all three conditions of the theorem, but is not reversible.
As A is not reversible, there is a non-restarting interactive
process � = (� , �) in A with sts(�) = W0,… ,Wn , where
Wi = Di ∪ Ci with Di ⊆ Σp, Ci ⊆ Σc , 0 ≤ i ≤ n , such that
there is an i ≥ 1 for which Wi has multiple predecessors, that
is,

with W ⊆ S , and C,Ci ⊆ Σc.
Since W ≠ Wi−1 , we have enA(W) ≠ enA(Wi−1) according

to condition (2), and then PenA(W) ≠ PenA(Wi−1)
 , that is,

(R1 ∪ R2)⧵(R1 ∩ R2) ⊆ Σc,

E1 ≠ E2 implies PE1
≠ PE2

.

T1 ≠ T2 implies enA(T1) ≠ enA(T2).

R1 ≠ R2 implies R1⧵Σc ≠ R2⧵Σc.

(1)
resA(W) ∪ C = resA(Wi−1) ∪ Ci = Wi for some W ≠ Wi−1,

187Simulating reversible computation with reaction systems

1 3

according to condition (1). Since Wi−1 is reachable in A ,
condition (3) is applicable, which implies

This means that resA(W) and resA(Wi−1) differ also in entities
that are not in Σc , therefore, there is no C,C� ⊆ Σc such that

which contradicts our assumption at (1), and thus completes
the proof. ◻

Example 6 Let A = (S,A) be the reaction system with
S = Σc ∪ Σp , Σp = {1, 3, 5} being the product alphabet,
Σc = {0, 2, 4} being the context alphabet, and A = {a, b, c}
being the set of reactions, where

According to Theorem 1, A is reversible as it satisfies all
three conditions.

In a reaction system satisfying the conditions of Theo-
rem 1, every non-restarting interactive process is reversible,
even in the presence of input from the environment in the
form of context sets. Therefore, given any state of some non-
restarting interactive process, the predecessor of this state is
unique and can be restored. Using this environmental input,
however, one can only control the forward computation of
the system. In the next section, we are going to extend these
results so that the environment can also trigger backward
computation.

5 Simulating reversible reaction systems

As discussed in Sect. 2, we believe that the Undo-Redo-Do
paradigm fits well to the reversible variants of computational
models with environmental interaction, as opposed to other,
more static paradigms (such as Compute-Copy-Uncompute).
The reversible reaction systems of Theorem 1, however, do
not support this kind of controlled reversibility. To enable
interactive environmental control over the direction of the
computation inside a reaction system, we discuss in this sec-
tion the interactive simulation of such systems. To this aim,
we also need to be able to construct “reverse reactions”,
reactions which execute the backward computations of
reversible reaction systems.

When creating simulating systems, we are going to make
extensive use of interactive processes and consequently,

resA(W) ≠ resA(Wi−1)

resA(W)⧵Σc ≠ resA(Wi−1)⧵Σc.

resA(W) ∪ C = resA(Wi−1) ∪ C�

a = ({0}, {1, 2, 3, 4, 5}, {1}), b = ({1, 2}, {0}, {3}),

c = ({1, 4}, {0}, {5}).

finite sequences of sets. To ease notation, here we will intro-
duce some new notations regarding such sequences.

Notation 3 Let W = W0,W1,… ,Wn be a finite sequence of
n + 1 sets. Then

– the length of W is denoted by |W|,
– the reverse of W is denoted by

↼

W and is defined as
↼

W = Wn,Wn−1,… ,W0.

For a finite set D, the finite sequence obtained by sub-
tracting Dfrom each set in W is denoted by W⧵D , that is,
W⧵D = W0⧵D,W1⧵D,… ,Wn⧵D.

For a finite sequence of sets M = M0,M1,… ,Mm where
m ≤ n , we say that W contains M , denoted by M ⊆ W , if
M is a consecutive subsequence of W , or formally, there
exists 0 ≤ i ≤ n − m , such that for all 0 ≤ j ≤ m we have
Wi+j = Mj.

For finite sequences of sets V0,V1,… ,Vn , n ≥ 0 , the finite
sequence W obtained by concatenating these sequences is
denoted by W = V0,V1,… ,Vn.

The intuition behind the simulator reaction systems is
rather simple. If we take some interactive process in the
simulator, then state sets of this process can be divided into
one or more shorter subsequences. The first subsequence
always represents a forward computation of the simulated
system. Then, the second subsequence corresponds to a
backward computation of the simulated system, undoing
some actions previously computed by the first subsequence.
Afterwards, another forward subsequence follows which is
in turn equivalent to a series of Redo and Do operations.
Backward computation does not occur by accident but is
controlled by the environment using a special auxiliary
symbol � . When � is present in the context, the simulator
undoes its last computation, simulating a backward step of
the original simulated system. This intuition is formalized
in the following two definitions.

Definition 5 Let A be a reaction system, � = (� , �) be
an interactive process in A , with � = C0,C1,… ,Cn ,
� = D0,D1,… ,Dn , and let � ∈ S be a special entity in the
background set. We say that the interactive process � is a
well-formed simulating interactive process if the following
conditions hold for every 0 ≤ i ≤ n:

– If Di = � or Di ⊆ Σc , then � ∉ Ci.
– If � ∈ Ci , then Ci = { � }.

The well-formedness of simulator interactive processes
is a necessity, since � cannot appear in the context arbitrar-
ily. If a result set is empty or consists solely of entities from
the context alphabet of the simulated system, then we have

188 A. Bagossy, G. Vaszil

1 3

reached an initial state. In this case, backward computation
makes no sense, as initial states lack predecessors. Addi-
tionally, if � is present in the context, then regardless of any
other input entity, a simulated backward step will take place.
As only entities in the product alphabet of the simulated sys-
tem influence the backward computation, any unnecessary
context entity other than � is forbidden.

Definition 6 Let A = (S,A) and B = (S ∪ {�},B) be two
reaction systems, with � being an auxiliary symbol in the
background set of B (forcing the system to compute a simu-
lated backward step).

The system B interactively simulates the interactive pro-
cesses of A if the following conditions hold.

(1) For every interactive process � in A , there is a
well formed interactive process � in B such that
sts(�) = sts(�).

(2) For every well-formed simulating interactive process �
in B , sts(�) can be written as sts(�) = V0,… ,Vk , where
each Vi is a finite sequence of sets such that:

– V0 = sts(�) for some interactive process � in A .
– If i = 2m for some m ≥ 1 , then there exists an interac-

tive process � in A such that Vi ⊆ sts(𝜋).
– If i = 2m + 1 for some m ≥ 0 , then � ∈ W for every

W in Vi and there exists an interactive process � in
A , such that

↼

Vi ⧵ { 𝜌 } ⊆ sts(𝜋).

According to the above definition, the simulating system
can compute everything that the original simulated system is
capable of computing (because of including all of its interac-
tive processes), and, furthermore, the simulator can traverse
back and forth among the states of the interactive processes
of the simulated system. Backward computation is initiated
by the auxiliary symbol � . This notion of back and forth
traversal is captured by the appropriate subdivision of the
states of the interactive processes.

Now, our goal is to show that the Undo-Redo-Do para-
digm of reversibility can be achieved for reversible reaction
systems using the above definition of interactive simulation.
In what follows, we first show how to construct appropriate
simulator systems and then prove that they adhere to the
requirements of Definition 6.

Definition 7 Let A = (S,A) (with S = Σp ∪ Σc) be a revers-
ible reaction system. A reaction system B , called the inter-
active undo-redo simulator of A is constructed as follows.

Let B = (S ∪ {�},B) where B =
⇀

B ∪
↼

B such that

where CONTA(S,E) is defined as

and DIA(S,E) is defined as

The set
⇀

B consists of reactions implementing forward
computational steps of A (if � is not present in the context,
the reactions of A can be performed also in the simulating
system), while the reactions in

↼

B implement the simulated
backward computational steps of A .

The intuition behind the constructions of the backward
reactions of

↼

B can be summarized as follows. For each
simultaneously applicable set of reactions E ∈ ENA(S) ,
the presence of the product set PE of E implies that a
backward reaction produces the reactants of E, possibly
together with the elements of DIA(S,E) in addition. The
set DIA(S,E) contains those entities which might have also
been necessary to make only the reactions of E simultane-
ously enabled by inhibiting other reactions which could
have also been applied. This is how DIA(S,E) is con-
structed: It contains the inhibitors of those simultaneously
applicable sets of reactions which have the same set of
reactants as E, since these entities must have been present
in the predecessor state (otherwise not E, but some other
set of reactions would have been applied). There is also a
set of inhibitors added to the backward simulating reac-
tions, the set CONTA(S,E) , which is necessary, because
there might be different sets of simultaneously enabled
reactions E1,E2 ∈ ENA(S) , such that PE1

⊂ PE2
 , that is, the

product set of E1 is a subset of the product set of E2 . In
this case, performing the reactions of E1 backwards should
only be possible if the elements of E2⧵E1 are not present.
(The presence of these entities would indicate that state
for which the predecessor should be produced was not the
result of applying the reactions of E1 , but the reactions of
E2 instead.)

Example 7 Consider the reversible reaction system
A = (S,A) with Σp = {1, 3, 5, 7} being the product alphabet,
Σc = {0, 2, 4} being the context alphabet, and A = {a, b, c, d}
being the set of reactions

⇀

B = { (Ra, Ia ∪ { � }, Pa) | a ∈ A },

↼

B = {(PE ∪ {�}, CONTA(S,E), RE ∪ DIA(S,E)) | E ∈ ENA(S)},

CONTA(S,E) =
⋃

F ∈ ENA(S)

PE ⊂ PF

PF ⧵PE

DIA(S,E) =
⋃

F ∈ ENA(S)

E ≠ F, RF = RE

IF⧵IE.

189Simulating reversible computation with reaction systems

1 3

Based on Definition 7, the interactive undo-redo simula-
torB = (S ∪ {�},B) interactively simulating A is con-
structed as follows.

Let the {0, 1, 2, 3, 4, 5, 7} ∪ {�} be the background set and
B =

⇀

B ∪
↼

B be the set of reactions where forward reactions
are defined as

To construct the backward reactions, consider

Then we compute

and

Based on these, the set of backward reactions is

Just as in the case of reversible reaction systems, we are
going to take a step-by-step approach to prove that interac-
tive undo-redo simulatorsystems constructed using Defi-
nition 7 are indeed interactive simulators in the sense of
Definition 6. Taking an arbitrary well-formed simulating
interactive process � in a simulator system, we subdivide
the state sequence of � into smaller subsequences and for
each subsequence of interest, we prove that it satisfies the
appropriate condition of Definition 6.

Lemma 4 Let A be a reversible reaction system, let B be
the interactive undo-redo simulatorof A , and and let � be a
well-formed simulating interactive process in B.

Then, the state sequence of � can be written as
sts(�) = V0V1 , where V0 is a finite sequence, such that
V0⧵{�} = sts(�) for some interactive process � in A , that
is, V0⧵{�} is the state sequence of a forward computation of
the simulated system A .

a = ({0}, {1, 2, 3, 4, 5}, {1}), c = ({1, 4}, {0, 3, 5}, {5}),

b = ({1, 2}, {0, 5}, {3}), d = ({1, 2}, {0, 3}, {3, 7}).

⇀

B ={ ({0}, {1, 2, 3, 4, 5, �}, {1}), ({1, 2}, {0, 5, �}, {3}),

({1, 4}, {0, 3, 5, �}, {5}), ({1, 2}, {0, 3, �}, {3, 7}) }.

ENA(S) = { {a}, {b}, {c}, {b, d}, {b, c, d} }.

CONTA(S, {a}) = �, CONTA(S, {b, d}) = {5},

CONTA(S, {b}) = {5, 7}, CONTA(S, {b, c, d}) = �,

CONTA(S, {c}) = {3, 7},

DIA(S, {a}) = �, DIA(S, {b, d}) = {0, 3, 5},

DIA(S, {b}) = {3}, DIA(S, {b, c, d}) = {0, 3, 5}.

DIA(S, {c}) = �,

↼

B ={ ({1, �}, �, {0}), ({3, �}, {5, 7}, {1, 2, 3}),

({5, �}, {3, 7}, {1, 4}), ({3, 7, �}, {5}, {1, 2, 5}) }.

Proof Let A = (S,A) (S = Σp ∪ Σc) be a reversible reac-
tion system, let B be the interactive undo-redo simula-
torconstructed from A using Definition 7, and let � be a
well-formed simulating interactive process in B with
sts(�) = W0,W1,… ,Wn.

Since � is a well-formed simulating interactive process,
there exists 0 ≤ m0 ≤ n such that � ∉ Ci , 0 ≤ i ≤ m0 . This
means that � starts with a finite sequence of states such that
the length of this sequence is greater than or equal to one,
and none of the sets in the sequence includes �.

Now we prove by induction on the value of m0 that, given
the previous condition, there exists an interactive process �
in A such that sts(�) = W0,W1,… ,Wm0

 when m0 = n , or
� ∈ Wm0+1

 and sts(�) = W0,W1,… ,Wm0
,Wm0+1

⧵{ � } when
m0 < n . Thus, � might be present in the (m0 + 1) st context,
nevertheless, with � not taken into consideration, the state
can still be part of some interactive process in A .

Given the well-formedness of � , we can be sure that
� ∉ C0 i.e. C0 ⊆ Σc . Hence, for the initial state W0 = C0 of
� there exists some interactive process � in A sharing the
very same initial state. Thus, for m0 = 0 , the previous state-
ment is true.

Assuming that the statement holds for an arbitrary m0 = k ,
we now show that it also holds for m0 = k + 1 . In this case,
we know that there exists some interactive process � in A
such that sts(�) = W0,W1,… ,Wk . This implies that Wk ⊆ S .
Let us now enumerate the reactions applicable to this set. As
� ∉ Wk , one can only apply reactions from

⇀

B , since � takes
the role of a reactant in every reaction of

↼

B . Note, that
⇀

B con-
tains the very same reactions as A with a small difference:
the inhibitor sets were augmented with � . In our current
case however, this role of � is irrelevant, since � ∉ Wk . Con-
sequently, we have that resA(Wk) = resB(Wk) = Dk+1 . Thus,
there exists some interactive process � = (�� , ��) in A such
that �� = D1,D2,…Dk,Dk+1.

Let us now consider the context. As � ∉ Ck+1 we know
that Ck+1 ⊆ S . Since Dk+1 ⊆ S and Ck+1 ⊆ S we have that
Wk+1 ⊆ S and, in turn, there exists some interactive process
� in A such that sts(�) = W0,W1,… ,Wk+1.

We now continue by considering m0 = k + 1 < n , mean-
ing that the next state starts a new, simulated backward com-
putation. In this case Cm0+1

= { � } . On the other hand, since
we proved, that there exists some interactive process in A
such that the state sequence of the process is equal to the
sequence W0,W1,… ,Wm0

 , then it also holds, that extending
this sequence with Wm0+1

= resA(Wm0
) ∪ { � } , there exists

some interactive process in A such that the state sequence
of the process is equal to W0,W1,… ,Wm0

,Wm0+1
⧵{ � }.

This means, that the statement holds for m0 = k + 1
which, in turn, renders our initial statement true. The argu-
ment above also implies that every interactive process in
A is an interactive process in B as well, since both the Ci

190 A. Bagossy, G. Vaszil

1 3

context sets and the length k of the initial forward computing
sequence can be chosen arbitrarily. ◻

Now we continue by showing that after the initial state
sequence simulating a forward computation, the well-formed
simulating interactive processes might continue with the
simulation of backward computations.

Lemma 5 Let A be a reversible reaction system, let B be
the interactive undo-redo simulatorof A , and let � be a well-
formed simulating interactive process in B.

Then, the state sequence of � can be written as
sts(�) = V0V1 , where V0⧵{�} is the state sequence of a for-
ward computation of the simulated system A , and V1 can
be written as V1 = V2V3 where V2 is a finite sequence such
that there exists some interactive process � in A for which
↼

V2⧵{ 𝜌 } ⊆ sts(𝜋) . Thus, V2⧵{�} is a state sequence of a
backward computation of the simulated system A .

Proof Let A = (S,A) (S = Σp ∪ Σc) be a reversible reac-
tion system, let B be the interactive undo-redo simula-
torconstructed from A using Definition 7, and let � be a
well-formed simulating interactive process in B with
sts(�) = W0,W1,… ,Wn = V0V1 , where V0⧵{�} is the state
sequence of a forward computation of the simulated system
A . Since V0 is covered by Lemma 4, we know that there
exists m0 < n such that the finite sequence W0,W1,…Wm0

is the state sequence of some interactive process � in A . In
this case, for some m0 < m1 ≤ n , the well-formedness of �
implies that � ∈ Ci for m0 + 1 ≤ i ≤ m1 , and if m1 < n , then
� ∉ Cm1+1

.
Now we prove by induction on the value of m1 that

there exists some interactive process � in A for which
the V1 = Wm0+1

,Wm0+2
,… ,Wm1

 sequence is such that
↼

V1⧵{ 𝜌 } ⊆ sts(𝜋) holds.
First, let us prove the statement for m1 = m0 + 1 ,

when the sequence consists of a single element. In this
case, � ∈ Cm1

 and, implied by the proof of Lemma 4,
there exists some interactive process � in A such that
sts(�) = W0,W1,…Wm0+1

⧵{ � } . Accordingly, if
↼

V1 = Wm1
 ,

then
↼

V1⧵{ 𝜌 } ⊆ sts(𝜋) . Thus, for m1 = m0 + 1 , the statement
holds.

Let us now assume, that the statement holds if
m1 = m0 + k , and then prove that it also holds for
m1 = m0 + k + 1 . We know that the state sequence
V2 = Wm0+1

,Wm0+2
,…Wm0+k

 is such that
↼

V
2
⧵{ 𝜌 } ⊆ sts(𝜋) for

some interactive process � in A , furthermore, Cm0+k
= { � }

and Cm1
= { � }.

Building on the previous facts, let us continue by defining
Wm1

 . Since � ∈ Wm0+k
 , only reactions in

↼

B can be applied to

Wm0+k
 (as the presence of � forbids the application of reac-

tions in
⇀

B). A is reversible, therefore, no two reaction sets
E1,E2 ∈ ENA(S) produces the same result set. Thus, given an
arbitrary result set D = PE for some E ∈ ENA(S) , we are able
to restore W such that resA(W) = D . In order to do so, we
take every reaction in E and create a new reaction with reac-
tant set equal to D = PE and product set equal to W = RE .
However, care should be taken, as there might be one ore
more F ∈ ENA(S) reaction set such that PE ⊂ PF . If so, then
elements not in PE must be forbidden by including every
element in PF⧵PE in the inhibitor set of the newly created
reaction. This is exactly, how CONTA(E) is defined. That
way, we will not end up falsely applying reactions because
of the subset relationships. Our job is not done yet, however,
since we must also consider inhibitors. As demonstrated in
Example 4, inhibitors might also leave a trace by inhibiting
some reactions and thus affecting the result. Hence, given
the reactant set RE , we need to find reaction sets with the
same reactants. Then, the inhibitors of the reactions in these
sets should also be restored, since their presence denied the
application of these reactions. Such inhibitor entities are
captured by DIA(S,E) in Definition 7, and as a result, we
will have a product set RE ∪ DIA(S,E).

Turning back to the definition of B , we can see, that
reactions in

↼

B are constructed using this very method. What
remains is, to find the reaction in

↼

B that can be applied to
Wm0+k

 . Such a reaction always exists and is always unique:
unique, since A is reversible, which means that there is only
a single way to produce every result set, and exists, since
↼

V2⧵{ 𝜌 } ⊆ sts(𝜋) for some interactive process � in A , which
means that the first set in

↼

V2⧵{ � } , that is, Wm0+k
⧵{ � } was

surely produced from some state by applying some set of
reactions in A. The only case in which the previous would
fail is if Wm0+k

⧵{ � } was the initial state, however, this case
is forbidden by the well-formedness of �.

Concluding the previous reasoning, we have that the only
reaction applicable to Wm0+k

 is a uniquely determined reac-
tion b ∈

↼

B for which Rb = Wm0+k
⧵{ � } holds. By applying

this reaction to Rb = Wm0+k
⧵{ � } we obtain Pb = Dm1

 such
that resA(Dm1

) = Wm0+k
⧵{ � } . Since Cm1

= { � } , we have
that Wm1

= Pb ∪ { � } . As a consequence, these states can
be written as a sequence V2 = Wm0+1

,Wm0+2
,… ,Wm0+k

,Wm1

such that V↼

2
⧵{ 𝜌 } ⊆ sts(𝜋) for some interactive process �

in A (as V2 is essentially an appropriate continuation of V1
for which we already proved the same). This means, that the
statement holds for m1 = m0 + k + 1 which, in turn, renders
our initial statement true. ◻

Now we combine the previous two statements to obtain
the following.

191Simulating reversible computation with reaction systems

1 3

Lemma 6 Let A be a reversible reaction system, let B be
the interactive undo-redo simulatorof A , and let � be a well-
formed simulating interactive process in B , such that

– sts(�) = V0V1 , where V0⧵{�} is the state sequence of a
forward computation of A , and

– V1 can be written as V1 = V2V3 , where V2⧵{�} is a state
sequence of a backward computation of A .

Then, if V3 is not of zero-length, then subdividing V3 into
smaller subsequences will result in forward and backward
computations of the simulated system A , analogous to
those covered by Lemmas 4, 5.
Proof Let A = (S,A) (S = Σp ∪ Σc) be a reversible reac-
tion system, let B be the interactive undo-redo simula-
torconstructed from A using Definition 7, and let � be a
well-formed simulating interactive process in B with
sts(�) = W0,W1,… ,Wn = V0V1 , where V0⧵{�} is the state
sequence of a forward computation of A , and V1 = V2V3 ,
where V2⧵{�} is a state sequence of a backward computa-
tion of A .

Since V2 is covered by Lemma 5, we know that
there exists m0 < m1 < n such that the finite sequence
Wm1

⧵{�},Wm1−1
⧵{�},…Wm0+1

⧵{�} is the state sequence
of some interactive process � in A . We now show that the
proof for subsequent sequences in � is analogous to the those
of Lemmas 4, 5.

Now, because of the well-formedness of � , we have that
Cm1

= { � } and � ∉ Cm1+1
 . As a consequence of the for-

mer, we have that Dm1+1
 is the result of a simulated back-

ward step, which means that resA(Dm1+1
) = Wm1

⧵{ � } .
Also, Wm1+1

= Dm1+1
∪ Cm1+1

 . As for the sequence
V4 = Wm0+1

,Wm0+2
,…Wm1

,Dm1+1
 , there exists some inter-

active process � in A such that
↼

V4⧵{ 𝜌 } ⊆ sts(𝜋) , we have
two possibilities regarding Dm1+1

:

– Dm1+1
⊆ Σc , thus Dm1+1

 is equal to a restarting or initial
state of � , or

– there exists some state W in � such that
Dm1+1

⧵Σc = resA(W).

Regardless, the sequence V5 = Dm1+1
 is contained within the

sequence of states of � . Since Dm1+1
 can only be extended

with elements from Σc to form Wm1+1
 then there is going to

be an interactive process � in A such that the sequence of
states of � contains Wm1+1

 . If we now apply the induction
for forward computations (from Lemma 4), then we can say
that given the subsequent contexts do not contain � , then the
newly started sequence of states is going to adhere Defini-
tion 6 (i.e. there exists some interactive process in A with
an appropriate sequence of states containing this sequence).

Now, if some Cj context set contains � , then we can apply
the same induction as in Lemma 5, that is, starting from a set
which is included within the state sequence of some interac-
tive process in A , we can see that only valid backward steps
can be simulated.

Therefore, we have shown, that any further subsequence
of � is either a proper forward or backward computation of
the simulated system A . ◻

Combining the three previous lemmas, we can state the
following.

Theorem 2 For every reversible reaction system A , the
interactive undo-redo simulatorconstructed from A using
Definition 7 interactively simulates the interactive processes
of A .

Proof Let A = (S,A) (S = Σp ∪ Σc) be a reversible reaction
system, let B be the interactive undo-redo simulatorcon-
structed from A using Definition 7, and let � be a well-
formed simulating interactive process in B

Given the previous assumptions, Lemmas 4, 5 and 6
can be applied. In these lemmas, by subdividing the state
sequence of � , we showed that � satisfies the requirements
of condition (2) in Definition 6. Since our choice of � (apart
from the well-formedness) is arbitrary, this also means that
every well-formed interactive process in B satisfies the
requirements of condition (2). When considering the first
subsequence of � in Lemma 4, we also showed, that well-
formed interactive processes in B may start with any inter-
active process in A . Thus, for every interactive process in
A we have an interactive process in B with the very same
state sequence. Consequently B satisfies condition (1) in
Definition 6.

This implies that B interactively simulates the interactive
processes of A . ◻

Based on the above proof, we can construct an interac-
tive simulator system (the interactive undo-redo simulator)
for every reversible reaction system. The method of the
construction is rather straightforward: First, we include
a new symbol � in the original background set and we
create forward reactions by including � in every inhibitor
set. Then we assemble the backward reactions by enumer-
ating the reaction sets which can ever become enabled
(the elements of ENA(S)) and follow the construction of
Definition 7.

The simulators obtained that way may freely perform
the forward and the backward computations of the original
system, allowing for an Undo-Redo-Do-like semantics of
reversibility where the environment has to control over the
direction of the computation.

192 A. Bagossy, G. Vaszil

1 3

6 Conclusion

In this paper, we investigated the reversibility of reac-
tion systems. This area was studied before by Aman and
Ciobanu [5], however, in their work, they did not consider
open interactive processes (processes with non-empty
context sets) and they extended the model with features
implementing a memory to remember vanished entities.
We took a different approach by working with the model
as-is (thus, adding no extensions) and allowing the use of
non-empty context sets. We first identified the require-
ments which are necessary and sufficient for a reaction
system to be reversible, then by showing how to build
reverse reactions, we constructed simulator reaction sys-
tems which are able to simulate reversible reaction systems
with their (forwards-only) computations in both directions,
backwards and forwards.

As reversible reaction systems according to our notion
of reversibility seem to be rather restricted, to study and
determine the class of the possible computations which
they can perform would definitely be of interest for further
research. Since we expect that the class of possible compu-
tations are similarly restricted, some kind of relaxation of
the unique-predecessor concept to arrive to a different, less
restrictive notion of reversibility would also be of interest.
One approach that we would like to explore in the future
is a kind of “lookback” reversibility which is similar to
the usual notion of backward determinism in automata.
An automaton is backward deterministic (and thus, revers-
ible) if the current state and the previously consumed input
symbol together uniquely determine the previous state of
the machine. A similar notion could be defined for inter-
active processes by noticing that the context sets play a
similar role as the input symbols of automata, they are
consumed by the actual step of the computation. Accord-
ing to the proposed reversibility concept, an interactive
process would be reversible if the current state and the
context set used in the previous step (to arrive to the cur-
rent state) together uniquely determine the previous state
of the process.

Acknowledgements This research was supported by the construction
EFOP-3.6.3-VEKOP-16-2017-00002. The project is supported by the
European Union, co-financed by the European Social Fund. Gy. Vaszil
was also supported by Project No. K 120558 of the National Research,
Development and Innovation Fund of Hungary, financed under the K
16 funding scheme. The authors would like to thank the anonymous
reviewers for their valuable comments and suggestions on a previous
version of the paper.

Funding Open access funding provided by University of Debrecen.

Compliance with ethical standards

 Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Agrigoroaiei, O., & Ciobanu, G. (2008) Dual P systems. In:
D.W. Corne, P. Frisco, G. Paun, G. Rozenberg, A. Salomaa (eds.)
Membrane Computing - 9th International Workshop, WMC
2008, Edinburgh, UK, July 28–31, 2008, Revised Selected and
Invited Papers, Lecture Notes in Computer Science, vol. 5391, pp.
95–107. Springer. https ://doi.org/10.1007/978-3-540-95885 -7_7.

 2. Agrigoroaiei, O., & Ciobanu, G. (2010). Reversing computation in
membrane systems. The Journal of Logical and Algebraic Meth-
ods in Programming, 79(3–5), 278–288. https ://doi.org/10.1016/j.
jlap.2010.03.003.

 3. Alhazov, A., Freund, R., & Morita, K. (2012). Sequential and
maximally parallel multiset rewriting: Reversibility and determin-
ism. Search Results, 11(1), 95–106. https ://doi.org/10.1007/s1104
7-011-9267-8.

 4. Aman, B., & Ciobanu, G. (2017). Reversibility in parallel rewrit-
ing systems. Journal of Universal Computer Science, 23(7),
692–703.

 5. Aman, B., & Ciobanu, G. (2018). Controlled reversibility in
reaction systems. In M. Gheorghe, G. Rozenberg, A. Salomaa,
& C. Zandron (Eds.), Membrane computing (pp. 40–53). Cham:
Springer International Publishing.

 6. Aman, B., Ciobanu, G., Glück, R., Kaarsgaard, R., Kari, J.,
Kutrib, M., et al. (2020). Foundations of reversible computation
(pp. 1–40)., Lecture notes in computer science Cham: Springer
International Publishing. https ://doi.org/10.1007/978-3-030-
47361 -7_1.

 7. Axelsen, H. B., & Glück, R. (2016). On reversible turing machines
and their function universality. Acta Informatica, 53(5), 509–543.
https ://doi.org/10.1007/s0023 6-015-0253-y.

 8. Bennett, C. H. (1973). Logical reversibility of computation. IBM
Journal of Research and Development, 17(6), 525–532.

 9. Brijder, R., Ehrenfeucht, A., Main, M., & Rozenberg, G. (2011). A
tour of reaction systems. International Journal of Foundations of
Computer Science, 22, 1499–1517. https ://doi.org/10.1142/S0129
05411 10088 42.

 10. Danos, V., & Krivine, J. (2004) Reversible Communicating Sys-
tems. In: P. Gardner, N. Yoshida (eds.) CONCUR 2004 - Concur-
rency Theory, Lecture Notes in Computer Science, pp. 292–307.
Springer, Berlin, Heidelberg . https ://doi.org/10.1007/978-3-540-
28644 -8_19.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-540-95885-7_7
https://doi.org/10.1016/j.jlap.2010.03.003
https://doi.org/10.1016/j.jlap.2010.03.003
https://doi.org/10.1007/s11047-011-9267-8
https://doi.org/10.1007/s11047-011-9267-8
https://doi.org/10.1007/978-3-030-47361-7_1
https://doi.org/10.1007/978-3-030-47361-7_1
https://doi.org/10.1007/s00236-015-0253-y
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-540-28644-8_19

193Simulating reversible computation with reaction systems

1 3

 11. Danos, V., & Krivine, J. (2005) Transactions in RCCS. In: Abadi,
M., de Alfaro, L. (eds.) CONCUR 2005 - Concurrency Theory,
16th International Conference, CONCUR 2005, San Francisco,
CA, USA, August 23-26, 2005, Proceedings, Lecture Notes in
Computer Science, vol. 3653, pp. 398–412. Springer . https ://doi.
org/10.1007/11539 452_31.

 12. Ehrenfeucht, A., & Rozenberg, G. (2007). Reaction systems. Fun-
damenta Informaticae, 75(1–4), 263–280.

 13. Frank, M.P. (2005) Introduction to reversible computing: Motiva-
tion, progress, and challenges. In: Proceedings of the 2nd Confer-
ence on Computing Frontiers, CF ’05, p. 385–390. Association
for Computing Machinery, New York, NY, USA . https ://doi.
org/10.1145/10622 61.10623 24.

 14. Holzer, M., & Kutrib, M. (2017) Reversible nondeterministic
finite automata. In: I. Phillips, H. Rahaman (eds.) Reversible
Computation, pp. 35–51. Springer International Publishing, Cham
. https ://doi.org/10.1007/978-3-319-59936 -6_3.

 15. Ibarra, O. H. (2011). On strong reversibility in P systems and
related problems. International Journal of Foundations of Com-
puter Science, 22(1), 7–14. https ://doi.org/10.1142/S0129 05411
10077 82.

 16. Kari, L., & Rozenberg, G. (2008). The many facets of natural
computing. Communications of the ACM, 51, 72–83. https ://doi.
org/10.1145/14001 81.14002 00.

 17. Landauer, R. (1961). Irreversibility and heat generation in the
computing process. IBM Journal of Research and Development,
5(3), 183–191.

 18. Lanese, I., Mezzina, C.A., & Stefani, J.B. (2013) Controlled
Reversibility and Compensations. In: R. Glück, T. Yokoyama
(eds.) Reversible Computation, Lecture Notes in Computer Sci-
ence, pp. 233–240. Springer, Berlin, Heidelberg . https ://doi.
org/10.1007/978-3-642-36315 -3_19.

 19. Lanese, I., Mezzina, C. A., & Tiezzi, F. (2014). Causal-consistent
reversibility. Bulletin-European Association for Theoretical Com-
puter Science, 114, p. 17.

 20. Lanese, I., & Rawski, M. (eds.) (2020) Reversible Computation:
12th International Conference, RC 2020, Oslo, Norway, July 9-10,
2020, Proceedings. Programming and Software Engineering.
Springer International Publishing . https ://doi.org/10.1007/978-
3-030-52482 -1.

 21. Meski, A., Penczek, W., & Rozenberg, G. (2015). Model check-
ing temporal properties of reaction systems. The Journal of
Information Science, 313, 22–42. https ://doi.org/10.1016/j.
ins.2015.03.048.

 22. Morita, K. (2017). Theory of Reversible Computing. Springer,
Japan,. https ://doi.org/10.1007/978-4-431-56606 -9.

 23. Nishida, T.Y. (2009). Reversible p systems with symport/antiport
rules. In: G. Paun, M. Pérez-Jiménez, A. Riscos-Núñez (eds.) Pro-
ceedings of the 10th Workshop on Membrane Computing, WMC
10, pp. 452–460.

 24. Paun, G. (2000). Computing with membranes. Journal of
Computer and System Sciences, 61(1), 108–143. https ://doi.
org/10.1006/jcss.1999.1693.

 25. Paun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
Oxford handbook of membrane computing. Oxford: Oxford Uni-
versity Press Inc.

 26. Perumalla, K.S. (2013). Introduction to Reversible Computing.
Chapman & Hall/CRC. Computational Science Series. Boca
Raton: CRC Press.

 27. Phillips, I., Ulidowski, I., & Yuen, S.(2013). A Reversible Process
Calculus and the Modelling of the ERK Signalling Pathway. In:
R. Glück, T. Yokoyama (eds.) Reversible Computation, Lecture
Notes in Computer Science, pp. 218–232. Springer, Berlin, Hei-
delberg. https ://doi.org/10.1007/978-3-642-36315 -3_18.

 28. Pinna, M.G. (2018). Reversing steps in membrane systems compu-
tations. In: M. Gheorghe, G. Rozenberg, A. Salomaa, C. Zandron
(eds.) Membrane Computing, Lecture Notes in Computer Science,
pp. 245–261. Springer International Publishing, Cham. https ://doi.
org/10.1007/978-3-319-73359 -3_16.

 29. Rozenberg, G., Bäck, T., & Kok, J. N. (2012). Handbook of
natural computing. Berlin, Heidelberg: Springer. https ://doi.
org/10.1007/978-3-540-92910 -9.

 30. Ulidowski, I., Lanese, I., Schultz, U.P., & Ferreira, C. (eds.):
(2020). Reversible Computation: Extending Horizons of Com-
puting - Selected Results of the COST Action IC1405, Lecture
Notes in Computer Science, vol. 12070. Springer. https ://doi.
org/10.1007/978-3-030-47361 -7.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Attila Bagossy graduated in com-
puter science from the Faculty of
Informatics of the University of
Debrecen in 2019. He started his
PhD in the same year at the Doc-
toral School of Informatics. His
current research interests include
unconventional models of com-
putation, reversible computation,
and WebAssembly.

György Vaszil obtained his PhD
in 2001 at the Eötvös Loránd
University of Budapest. Since
2015, he is full professor at the
Faculty of Informatics of the
University of Debrecen where he
is the head of the Department of
Computer Science. His research
interests include the theory of
formal languages and automata,
unconventional or nature moti-
vated computational models,
such as bio-inspired models like
membrane systems. He has pub-
lished more than 140 papers in
international journals, confer-

ences, or workshops.

https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/11539452_31
https://doi.org/10.1145/1062261.1062324
https://doi.org/10.1145/1062261.1062324
https://doi.org/10.1007/978-3-319-59936-6_3
https://doi.org/10.1142/S0129054111007782
https://doi.org/10.1142/S0129054111007782
https://doi.org/10.1145/1400181.1400200
https://doi.org/10.1145/1400181.1400200
https://doi.org/10.1007/978-3-642-36315-3_19
https://doi.org/10.1007/978-3-642-36315-3_19
https://doi.org/10.1007/978-3-030-52482-1
https://doi.org/10.1007/978-3-030-52482-1
https://doi.org/10.1016/j.ins.2015.03.048
https://doi.org/10.1016/j.ins.2015.03.048
https://doi.org/10.1007/978-4-431-56606-9
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/978-3-540-92910-9
https://doi.org/10.1007/978-3-540-92910-9
https://doi.org/10.1007/978-3-030-47361-7
https://doi.org/10.1007/978-3-030-47361-7

	Simulating reversible computation with reaction systems
	Abstract
	1 Introduction
	2 Paradigms of reversibility
	3 Preliminaries
	4 Reversible reactions systems
	5 Simulating reversible reaction systems
	6 Conclusion
	Acknowledgements
	References

