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Abstract
Reaction systems are a formal model of computation providing a framework for investigating biochemical reactions inside 
living cells. We look at the functioning of these systems as a process producing a series of different possible sets of entities 
representing states which can be changed by the application of reactions, and we study reversibility and its simulation in 
this framework. Our goal is to establish an Undo-Redo-Do-like semantics of reversibility with environmental control over 
the direction of the computation following a so-called no-memory approach, that is, without introducing modifications to 
the model of reaction systems itself. We first establish requirements the systems must satisfy in order to produce processes 
consisting of states with unique predecessors, then define reversible reaction systems in terms of reversible interactive pro-
cesses. For such reversible systems, we also construct simulator systems that can traverse between the states of reversible 
interactive processes back and forth based on the input of a special “rollback” symbol from the environment.

Keywords Reaction Systems · Natural computing · Reversible computing

1 Introduction

Natural computing is a research area concerned with com-
putational models which may be either inspired by some 
natural phenomenon, or designed to help us better under-
stand natural processes in terms of information processing 
[16, 29].

Reversible computation is a paradigm extending the 
standard notion of the forwards-only mode of computation 
with the ability to be executed also in the reverse direction, 
such that computations can run backwards as naturally as 
they can run forwards.[20, 22, 30].

In this paper, we study reversibility and its simulation in 
the framework of reaction systems, a natural computational 
model by Ehrenfeucht and Rozenberg [12] aiming to provide 
a formal framework for investigating the biochemical reac-
tions inside living cells. Computation in this model goes for-
ward by applying reactions to a set of entities (called a state), 

creating a new set (a new state). The way this model works 
is also interactive in the sense that each state may also incor-
porate input, capturing the idea that living cells do not act 
in isolation but always operate in some environment which 
may influence their behavior (and thus, the computation). 
In contrast to previous results, such as those in [5], we aim 
to investigate how to introduce reversibility in reaction sys-
tems without losing its openness (its ability to incorporate 
input from the enclosing environment), and without making 
modifications on the model itself.

The rest of the paper is organized as follows. In Sect. 2 we 
discuss the main paradigms concerning the implementation 
of reversibility in the context of computational models of 
our interest. Sect. 3 comprises a concise introduction to the 
fundamental notions of reaction systems, then in Sect. 4 we 
present our notion of reversibility and provide necessary and 
sufficient conditions for reaction systems to be reversible. In 
Sect. 5 we show how to construct the “reverse” of a set of 
reactions, and then use these ideas to construct reaction sys-
tems which are able to simulate the forward and backward 
computations of reversible reaction systems. Finally, Sect. 6 
ends the paper with some conclusions.
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2  Paradigms of reversibility

Reversible computation is a field attracting interest from the 
points of view of several possible applications and much 
work is also devoted to establish its solid theoretical founda-
tions. For more information on applications of reversibility, 
see the monograph [26], for a state-of-the-art survey of the 
area, see the recent collection [30].

A number of theoretical aspects of reversible computing 
have been studied over the years, see [6] for a survey sum-
marizing recent results concerning categorical foundations 
of reversibility, foundations of programming languages and 
term rewriting, various models of sequential and concurrent 
computations, and addressing some of the challenges posed 
by quantum computation (which is in part also naturally 
reversible).

As reaction systems are biochemically inspired compu-
tational models, we would also like to mention some of the 
topics of reversible computation motivated by this area. In 
most of the cases, biochemical reactions are modeled by 
distributed systems of concurrent processes and this poses 
special types of questions with respect to their reversibility. 
Opposed to sequential processes (like the computations of 
Turing machines or most types of conventional automata) 
where the order of the execution of the computational steps 
can easily be reversed by undoing the last action, the defini-
tion of the backward execution of a collection of concur-
rently executing distributed processes is not straightforward 
at all, since there is no definite notion of the “last action” 
which should be undone first. To overcome this difficulty, 
the concept of causal-consistent reversibility was introduced 
in [10] as a suitable definition of reversibility for a concur-
rent scenario, which intuitively says that any action can be 
undone provided that all its consequences, if any, are undone 
already. Interestingly, besides the usual “backtracking” type 
and the more sophisticated causal-consistent type of revers-
ibility, out-of-causal-order reversibility can also be defined, 
and as it may sound strange, it is important since it might 
make possible to get to states which cannot be reached by 
forward execution alone [27].

Another interesting aspect is the controlled vs. uncon-
trolled nature of reversibility. We speak of external control 
of reversible computation when some other process is in 
charge of controlling it by deciding whether it has to go 
backward or forward [18]. In Section 5 we will follow a 
similar approach when we present simulations of reversible 
reaction systems being able to switch between simulating 
forward or backward computations based on external input 
from the environment.

For a survey of causal consistent and controlled revers-
ibility, see also [19].

As we already noted, biochemically inspired computa-
tional models, even when they are abstract and very much 
simplified, naturally include some kind of concurrency and 
parallelism appearing between its different possible compu-
tational processes. Suitable examples are membrane systems 
[24, 25] which deal with multisets of symbols processed in 
the compartments of hierarchical structure of membranes 
according to some multiset rewriting rules: some of the sym-
bols are changed in parallel according to the rules associ-
ated with their containing regions, while the others remain 
unchanged (and can be used in the subsequent steps) or get 
moved to other regions of the membrane structure. Concern-
ing the reversibility of membrane systems, [1, 2] defines it 
as a form of duality, while in [4] the reversibility of bio-
chemical reactions in parallel rewriting systems are inves-
tigated (which can easily represent classes of models such 
as membrane systems, or Petri nets). In a more recent paper 
[28], membrane system configurations are enriched with a 
memory recording the information necessary for reversing 
steps.

The situation in the case of reaction systems, however, is 
different. Although, they are motivated by (and in a certain 
sense can also be used to model) biochemical processes, they 
represent a qualitative model. As opposed to systems being 
able to “count” by dealing with entities having multiplicities 
(as in multisets, for example), reaction systems deal with 
sets, which distinguishes them from the above mentioned 
models by (i) a threshold assumption: if a resource is pre-
sent, it is always present in a sufficient amount necessary for 
any reaction; (ii) no permanency assumption: if an entity is 
not produced at a certain step, it will not be available for 
use at the next step [12]. As we will see later in more detail, 
such a way of functioning leads to a sequential model, very 
close in fact to finite transition systems (or finite automata). 
The concept of reversibility in the context of these types of 
computational models is rather straightforward. A model is 
reversible if it is “backward deterministic”, that is if each 
of its computational configurations (or states) has at most 
one predecessor, or in other words, no state is accessible 
from two distinct states1. As simple as this definition is, it 
gives rise to different implementational paradigms among 
the actual models, some of which we will shortly review in 
the following. Our presentation is based mostly on [22, 26].

As an automaton is reversible if it preserves information 
so that its computation can be retraced back in time [6], 
information preserving and reversibility are very closely 
related concepts. Landauer argued in [17] that any logical 
operation with information loss necessarily results in heat 

1 A similar approach is also possible in the case of membrane sys-
tems by considering deterministic variants, as done in [3, 15], or in 
[23] where reversible register machines are simulated.
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dissipated by the system performing the operation, and as 
there exist irreversible computations, he also claimed that 
there are computations where heat generation is inevita-
ble. Inspired by these claims, Bennett created a universal 
reversible Turing machine, proving that irreversibility is 
not an inherent property of computation [8]. When con-
structing his model, he developed the so-called Compute-
Copy-Uncompute paradigm, which comprises the follow-
ing steps: The machine first performs a reversible forward 
computation, resulting in the desired output. Then, a copy 
is made from this output. Finally, the reverse execution 
of the forward steps (which is also reversible) cleans up 
the effects of the forward computation, leaving the origi-
nal input and the copy of the corresponding output on 
the tapes. (See [26] for a more detailed and systematic 
treatment of this paradigm.) This result spawned extensive 
research interest in the field of reversible computing since 
it proved that reversible computing is the tool to overcome 
the performance constraints of traditional irreversible sys-
tems [13]. A more recent and rigorous treatment of revers-
ibility concerning Turing machine computations can also 
be found in [7].

While the Compute-Copy-Uncompute paradigm fits 
the power consumption related study of reversibility well, 
it might be too static for others, since the outcome of the 
computation is of most importance, as opposed to the actual 
process of the computation itself. If we place our focus on 
the processes, however, we can discover another significant 
implication of reversibility: it allows for exploration and 
experimentation. Since every configuration has at most one 
predecessor, we can freely undo any previous computation 
and proceed by choosing a different computational route.

This very idea serves as the basis of the Undo-Redo-Do 
paradigm, depicted in Fig. 1. Below, we briefly describe the 
flow of computation in this paradigm, as discussed in [26].

– The Do operation corresponds to normal forward com-
putation.

– At any state, we can choose to Undo our previous step, 
essentially reversing the execution, taking us back to the 
single predecessor of the current state.

– Later, if we wish to recover our prior computation (thus, 
visiting the same states as before), we can perform a 
Redo.

– Instead of recovering previous actions, if we want to 
experiment by taking a different route, we can dismiss 
any undone steps yet to be redone, and continue with a 
Do operation.

A similar approach was taken in [14] where reversible non-
deterministic automata were investigated, and although in a 
different context, the idea of exploration and experimenta-
tion was also discussed in [11].

When considering reversibility in the case of (sequential) 
models with an emphasis on interaction with some external 
environment (such as reaction systems), the implementation 
of a paradigm like Undo-Redo-Do seems to be more suit-
able than, for example, Compute-Copy-Uncompute since it 
is well-aligned with the dynamic and exploratory character-
istics of these models. Moreover, as we already mentioned, 
the process-focused nature of the paradigm (in contrast to 
the result oriented focus of Compute-Copy-Uncompute) also 
motivates its use in the following investigations.

3  Preliminaries

In what follows, we are going to briefly introduce the most 
important notions and notations concerning reaction sys-
tems. Our presentation is based on [9].

Reaction systems model biochemical reactions occurring 
inside a living cell. The intuition behind the model stems 
from the idea of facilitation and inhibition.

A reaction  a  is a tr iplet of three finite sets 
a = (Ra, Ia,Pa) . The set Ra contains the reactants, Ia con-
tains the inhibitors, while Pa consists of the products. The 

Fig. 1  Altering the flow of computation in the Undo-Redo-Do paradigm
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set of reactants and the set of inhibitors must be disjoint 
( Ra ∩ Ia = � ) and the set of products must not be empty 
( Pa ≠ ∅).

If Ra, Ia,Pa ⊆ S for some reaction a = (Ra, Ia,Pa) and 
finite set S, then a is a reaction over S. The set of all reac-
tions over S is denoted by rac(S).

Intuitively, we can say that a reaction takes place if all of 
its reactants and none of its inhibitors are present. In such a 
case the reactants react, and the product set is created, just 
like in the case of biochemical reactions.

Remark 1 In what follows, if a is a reaction, then we will 
denote its components as Ra, Ia and Pa without explicitly 
writing out the complete triplet form a = (Ra, Ia,Pa).

We also note that we use the symbols ⊆ and ⊂ to denote 
set inclusion and set inclusion in the strict sense (that is, 
when equality is excluded), respectively.

Given a set of entities (that can be arbitrary symbols) S 
and a reaction a ∈ rac(S) , we can always tell whether a can 
take place or not. For a finite set T ⊆ S , the reaction a is 
enabled by T, if Ra ⊆ T and Ia ∩ T = � . The result of a on T, 
denoted by resa(T) is defined as resa(T) = Pa if a is enabled 
by T, or resa(T) = � if a is not enabled by T.

In the previous definitions, we only considered a single 
reaction. It is quite rare, however, that a single reaction can 
capture the behavior of a complex process. Consequently, the 
concepts above should be generalized to multiple reactions.

Let A be a finite set of reactions over a set of enti-
ties S, and let T ⊆ S be a finite set. Then enA(T) 
denotes the set of all reactions in A enabled by T, thus 
enA(T) = {a ∈ A ∣ a is enabled by T} , and the result of A on 
T, denoted by resA(T) , is defined as resA(T) =

⋃
a∈A resa(T).

The previous definition reflects two vital aspects of the 
model. Reactions can be enabled and applied even if their 
reactant sets overlap. Hence, there are no conflicts: each 
enabled reaction is allowed to produce its result. The results 
are also non-conflicting, which means that even if two or 
more reactions produce the same entity (because of inter-
sections in their product sets), there will be no “multiple 
occurrences” in the result set. This qualitative nature comes 
from the fact that reaction systems use sets instead of multi-
sets (these can be viewed as the quantitative counterparts of 
sets). Thus, in this model, an entity (which might be repre-
senting some chemical or biological resource) is either pre-
sent in an amount that is sufficient or it is missing altogether.

In the following sections, we are going to work with finite 
sets of reactions. Therefore, we now introduce a shorthand 
notation for the reactants and products of these sets.

Notation 1 Let A be a finite set of reactions. Then, we denote 
by RA and PA the union of the reactant sets and product sets, 
respectively: RA = ∪a∈ARa , PA = ∪a∈APa.

We can further generalize the concept of enabled reac-
tions and results, thus formalizing every possible enabled 
subset of reactions and the results of those.

Notation 2 Let A be a finite set of reactions over the finite 
set S. We denote by ENA(S) the set that contains the sets of 
reactions which can be enabled simultaneously, that is, every 
E ⊆ A for which there exists a subset of S enabling every 
reaction in E. Formally

In other words, ENA(S) contains the sets of reactions where 
the members of each set are simultaneously enabled for 
some subset S′ of S.

Further, we denote by RESA(S) the set that contains the 
results of applying every set of reactions in ENA(S) to the 
appropriate subsets of entities, or formally

Example 1 Let us consider the set of reactions A = {a, b, c} 
over S = {1, 2, 3} where

Here, we have

since there is no set of elements such that a and c is enabled 
together (as Ra ∩ Ic ≠ �).

The elements of RESA(S) are the product sets produced 
by the reactions in the sets of ENA(S) applied to appropriate 
subsets of S, that is,

Having established the most important notions, we can 
now recall the definition of a reaction system, which is an 
ordered pair A = (S,A) such that S is a finite set (called 
the background set) and A ⊆ rac(S) (called the set of 
reactions).

Remark 2 Given a reaction systems A = (S,A) , we assume, 
without loss of generality, that A does not contain different 
reactions having the same set of reactants and the same set 
of inhibitors. (If a, a� ∈ A are reactions with a = (R, I,P1) 
and a� = (R, I,P2) , then they are always enabled and applied 
simultaneously, so they can be replaced by a single reaction 
(R, I,P1 ∪ P2) having the same effect.)

Let A = (S,A) be a reaction system and let n ≥ 0 be an 
integer. An interactive process in A  is a pair � = (� , �) of 
finite sequences, such that

ENA(S) = {E ⊆ A ∣ there exists S� ⊆ S, such that enA(S
�) = E}.

RESA(S) = {resE(S
�) ∣ S� ⊆ S,E ⊆ A, such that enA(S

�) = E}.

a = ({1}, �, {2}), b = ({2}, �, {3}), c = ({3}, {1}, {1}).

ENA(S) = { {a}, {b}, {c}, {a, b}, {b, c} },

RESA(S) = { {2}, {3}, {1}, {2, 3}, {1, 3} }.
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– �  is the context sequence  of �  ,  defined as 
� = C0,C1,…Cn , where Ci ⊆ S for all 0 ≤ i ≤ n − 1 , and 
Cn = �,

– � is the result sequence of � , defined as � = D0,D1,…Dn , 
where D0 = � and Di = resA(Di−1 ∪ Ci−1) for all 1 ≤ i ≤ n,

– sts(�) is the state sequence of �  , defined as 
sts(�) = W0,W1,…Wn , where Wi = Ci ∪ Di for all 
0 ≤ i ≤ n.

The first few states of an interactive process are visualized in 
Fig. 2. Note that even though the figure shows the context set 
Ci and the result set Di of the same state as non-overlapping 
rectangles, they do not have to be disjoint.

The way interactive processes are defined has two sig-
nificant consequences. An interactive process is finite since 
the prior choice of n determines its length. Thus, we can 
think of an interactive process as a finite state sequence. In 
this sequence, new states are created rather than transformed 
from the previous states. This leads us to the concept of no 
permanency: The next state is created from the products of 
the enabled reactions and the context set. Therefore, if an 
entity in the current state is not produced by any reaction 
and is not present in the next context set, then it will disap-
pear. The intuition behind this idea comes from the realm of 
biochemistry where entities are produced and sustained by 
active, energy-consuming processes (not to be confused with 
our formal interactive processes). Thus, if there is no such 
process to sustain a given entity, then it will vanish. More 
information on the motivation behind this concept (and on 
reaction systems in general) can be found in [12].

4  Reversible reactions systems

We start by presenting a possible application of the con-
cept of reversibility for the special case of reaction systems. 
Based on the discussions in Sect. 2, our aim is to interpret 

the notion of backward determinism in this framework. In 
reaction systems state sequences correspond to interac-
tive processes, so we start by defining how the concept of 
unique predecessors can be applied to the states of interac-
tive processes.

Definition 1 Let A = (S,A) be a reaction system and 
� = (� , �) be an interactive process in A  , such that 
� = C0,C1,…Cn and sts(�) = W0,W1,…Wn.

A state Wi , 1 ≤ i ≤ n , has multiple predecessors if 
there exists W �

i−1
,C�

i−1
⊆ S such that W �

i−1
≠ Wi−1 , but 

resA(W
�
i−1

) ∪ C�
i−1

= Wi . If there is no such W �
i−1

 , then Wi has 
a unique predecessor.

The interactive process � is reversible, if every state Wi , 
1 ≤ i ≤ n , has a unique predecessor.

In the following, we will discuss the conditions that are 
necessary for obtaining reversible interactive processes. It is 
clear that if different reactions produce the same result, then 
we can arrive at the same state from different predecessor 
states. Moreover, since a state is the union of a context set 
and a result set, the property of having a unique predeces-
sor does not only depend on the reactions and the results of 
the reactions, but also on the context sets which are added 
in each step of the interactive process. Even if every result 
set was unique, identical states could be created with well-
chosen contexts. In order for an interactive process to be 
reversible, there must be at most one way to produce each 
context-result union, so the unique predecessor property of 
Definition 1 depends not only on the reactions of the sys-
tem, but also on the context sets of the process. Since this 
dependency is rather involved, we are going to follow a step 
by step approach and introduce lemmas for describing the 
different requirements related to the reversibility of interac-
tive processes.

First, let us consider the following. According to the 
general notion of reversibility, every state must have 

Fig. 2  The first four states of an interactive process � = (� , �) in some reaction system
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a unique predecessor. Yet, when a given state does not 
enable any reactions, then the process continues with an 
empty result. We can then augment this empty result with 
a non-empty context, essentially restarting the process. 
Reversing execution from such an empty or restarting state 
would be equivalent to obtaining “something from noth-
ing” which does not fit the concept of reversibility. There-
fore, in what follows, we will only consider processes in 
which this restart does not occur.

Definition 2 Let A  be a reaction system and � = (� , �) be 
an interactive process in A  such that � = D0,D1,…Dn . The 
interactive process � is non-restarting if Di ≠ ∅ , 1 ≤ i ≤ n . 
If the opposite holds, then � is restarting.

Remark 3 If � = (� , �) is an interactive process with 
� = D0,D1,…Dn  and  sts(�) = W0,… ,Wn  in  some 
A = (S,A) , then (since the product sets of the reactions are 
nonempty) Di = � is only possible, if enA(Wi−1) = � for 
some 1 ≤ i ≤ n . Thus, � is non-restarting, if and only if, 
enA(Wi) ≠ � for all i, 0 ≤ i ≤ n − 1.

We already noted that reversibility implies the unique-
ness of result sets. This comes from the fact that regardless 
of the context, if there are multiple ways to produce the 
same set of entities, then it is not possible to recover the 
predecessor.

Example 2 Let S = {0, 1, 2, 3, 4} be a set of entities and 
A = {a, b, c} be a set of reactions where

If we consider the set W = {3, 4} , we can see that there are 
multiple subsets of reactions in A producing W, for example 
{a, b} and {c} . As a consequence, just by looking at W, we 
are unable to determine which reactions produced it. Equiva-
lently, if W was a state in some interactive process, then this 
process would not be reversible, since we could not recover 
the predecessor of W.

Deriving from the above example, we can impose the 
following requirement on the set of reactions. If we take 
every possible subset of reactions in which each reaction 
is enabled, then no two subsets should produce the same 
result. As the following lemma states, if the same result 
set is produced by two different enabled reaction sets, then 
there exists a state with multiple predecessors.

Lemma 1 Let A = (S,A) be a reaction system. If there exist 
E1,E2 ∈ ENA(S) with E1 ≠ E2 , such that PE1

= PE2
 , then 

there exists a state W in some interactive process in A  , such 
that W has multiple predecessors.

a = ({0}, �, {3}), b = ({0, 1}, �, {4}), c = ({2}, �, {3, 4}).

Proof Let A = (S,A) be a reaction system. Assume, that 
there exists E1,E2 ∈ ENA(S) , E1 ≠ E2 , such that PE1

= PE2
 . 

Because E1,E2 ∈ ENA(S) , we have T1, T2 ⊆ S satisfying 
enA(T1) = E1 and enA(T2) = E2 . In addition, since E1 ≠ E2 , 
we also have T1 ≠ T2 . This means that there exist T1, T2 ⊆ S 
such that T1 ≠ T2 and resA(T1) = resA(T2) , since PE1

= PE2
.

Thus, given some context set C ⊆ S , if resA(T1) ∪ C = W , 
then we also have resA(T2) ∪ C = W  with T1 ≠ T2 . That 
being so, if W is a state in some interactive process, then W 
has multiple predecessors.

To see that such an interactive process always exists, 
consider � = W0,W1,…Wn , n ≥ 0 , with W0 = C0 , where 
C0 = T1 (or C0 = T2 ) is the initial context set. Then, since 
W1 = resA(C0) ∪ C1 , the state W1 in the interactive process � 
is a state with multiple predecessors.   ◻

Now, one might be tempted to conclude, that the 
assumption of Lemma 1 provides a sufficient condition 
for reversibility in the case of context-independent interac-
tive processes (those with empty contexts except for C0 ). 
Since there is a single reaction set producing every result 
set and the context is always empty (hence, Wi = Di for all 
i ≥ 1 ), every state should have a unique predecessor. How-
ever, because of the no permanency assumption in reaction 
systems, this is not necessarily the case. According to the 
no permanency assumption, entities not sustained by at 
least one reaction will disappear, which can result in states 
with multiple predecessors even in context-independent 
interactive processes.

Example 3 Let S = {0, 1, 2} be a set of entities and A = {a, b} 
be a set of reactions where

so Lemma 1 is not applicable to this system.
Consider the sets W1 = {0, 1, 2} and W2 = {0, 1} . 

If we apply the reactions in A to these sets, we get 
resA(W1) = resA(W2) = {1, 2} . Thus, if W = {1, 2} is a state 
in some context-independent interactive process, then W has 
multiple predecessors.

In the above example, the non-uniqueness of the pre-
decessor was caused by a vanishing entity (the entity 2), 
one that was not a reactant of any of the enabled reactions. 
Given this observation, we might conjecture that the pres-
ence of entities not contained by the reactant sets of any 
of the reactions should imply the existence of states with 
multiple predecessors. The following example shows that 
this is not necessarily so.

Example 4 Let S = {0, 1} be a set of entities and A = {a, b} 
be a set of reactions where

a = ({0}, �, {1}), b = ({0, 1}, �, {2}),
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Consider the set W1 = {0} . If we apply the reactions in A 
to W1 , we get resA(W1) = {0, 1} . Given this result set, we 
can deduce that the applied reactions were a and b, and can 
restore the original set W1.

Now, let us take the set W2 = {0, 1} . Since the entity 1 is 
not a reactant of the reactions, it will disappear when any 
of the above reactions are applied. In this case, however, 
we can only apply a since 1 is an inhibitor of b, so we get 
resA(W2) = {0} . Even though the element 1 has vanished 
because it was not sustained by any of the reactions, we can 
deduce its presence in the predecessor set of {0} because it 
inhibited the reaction b.

As the above example demonstrates, facilitation (being 
a reactant) is not the only thing that leaves a trace. Since 
inhibitors also affect the result of reaction application, we 
might be able to recover them from the result set. Thus, the 
presence of an entity which is not a reactant of any applied 
reaction in some state of an interactive process does not 
necessarily imply the existence of multiple predecessors. 
With this in mind, we can reformulate our previous obser-
vation: The “problematic states” are those, which contain 
entities whose presence or absence does not affect the set 
of enabled reactions. This is expressed in the following 
statement.

Lemma 2 Let A = (S,A) be a reaction system. If there exits 
a set T ⊆ S , enA(T) ≠ � , and an entity e ∈ T  , such that

then the there is a state W in some interactive process in A  , 
such that W has multiple predecessors.

Proof Assume, that there exist T1 ⊆ S , e ∈ T1 , such that 
enA(T1⧵{e}) = enA(T1) , and let T2 = T1⧵{e} . This means, 
that resA(T1) = resA(T2) , so if W = resA(T1) ∪ C is a state 
of an interactive process for some context set C ⊆ S , then 
T1 ≠ T2 , but both T1 and T2 are predecessors of W.

To see that such an interactive process always exists, 
consider � = W0,W1,…Wn , n ≥ 0 , with W0 = C0 , where 
C0 = T1 (or C0 = T2 ) is the initial context set. Then, since 
W1 = resA(C0) ∪ C1 , the state W1 in the interactive process � 
is a state with multiple predecessors.   ◻

The lemma above implies that whenever the same set 
of reactions is enabled by two or more different sets of 
entities, then there is a state with multiple predecessors in 
the corresponding interactive processes.

a = ({0}, �, {0}), b = ({0}, {1}, {1}).

enA(T ⧵ {e}) = enA(T),

Corollary 1 Let A = (S,A) be a reaction system. If there exist 
T1, T2 ⊆ S , T1 ≠ T2 , such that enA(T1) = enA(T2) ≠ � , then 
there exists a state W in some interactive process in A  such 
that W has multiple predecessors.

As we briefly noted, when discussing Definition 1, the 
notion of unique predecessor depends on both the reac-
tions of the containing system and the context sets of the 
enclosing process. Given an appropriate set of reactions, 
it might still be possible to construct states with multi-
ple predecessors, even if none of the above lemmas are 
applicable. To see this, consider the following. When 
assembling a new interactive process, we can make arbi-
trary choices regarding the elements of the contexts sets. 
Consequently, for every pair of distinct result sets, we can 
always choose an appropriate context set, so that the union 
of these sets will be equal.

Example 5 Let S = {0, 1} be a set of entities and A = {a, b, c} 
be a set of reactions where

None of the previous lemmas are applicable to this sys-
tem, but it still produces a state with multiple prede-
cessors. Consider the states W = {1} and W � = {0} . 
As resA(W) = {0} and resA(W �) = {0, 1} , if we have a 
state Wi = {0, 1} of an interactive process for some i ≥ 1 
with Ci = {1} , then Wi has multiple predecessors: Since 
Wi = resA(W) ∪ Ci = resA(W

�) ∪ Ci = {0, 1} , the predeces-
sor of Wi can be any of the states W or W ′.

If the context sets can be arbitrary subsets of the back-
ground set (even the background set itself can be a con-
text), then regardless of how well-chosen our reactions are, 
an appropriate context set can turn a state into one with 
multiple predecessors. Thus, we need to restrict which 
entities may appear in the contexts, or in other words, there 
have to be entities which cannot appear in any context set. 
To this aim, we write the background set S of a reaction 
system as the union of two not necessarily disjoint sets, the 
product alphabet Σp ⊆ S (entities that appear in the prod-
uct sets of the reactions) and the context alphabet Σc ⊂ S 
(entities that can appear in the context sets). The model 
we obtain this way is similar to the one called context 
restricted reaction systems in [21].

Notice, however, that if restricting the sets of possible 
contexts, then there might be states which are not “reach-
able” in the sense that they cannot appear in any interac-
tive process.

Definition 3 Let A = (S,A) be a reaction system with 
S = Σp ∪ Σc , that is, the background set being the (not 

a = ({0}, {1}, {0, 1}), b = ({1}, {0}, {0}), c = ({0, 1}, �, {1}).
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necessarily disjoint) union of Σp , the entities that are allowed 
to appear as products of reactions and Σc , the entities that are 
allowed to appear in the context sets.

A state W ⊆ S is reachable if there exists an interac-
tive process W0,W1,… ,Wn in A  with W = Wi for some 
0 ≤ i ≤ n , such that Wi = Di ∪ Ci with Di ⊆ Σp , Ci ⊆ Σc , 
and D0 = Cn = �.

The following statement establishes a relationship 
between the properties of the reaction sets, the context alpha-
bet, and the existence of states with multiple predecessors.

Lemma 3 Let A = (S,A) be a reaction system with 
S = Σp ∪ Σc (where Σp and Σc are not necessarily dis-
joint). If there exist R1,R2 ∈ RESA(S) such that R1 ≠ R2 , 
R1 = resA(W) for some state W ⊆ S which is reachable in 
A  , and

then there exists a state with multiple predecessors in some 
interactive process in A .

Proof Let A = (S,A) be a reaction system with S = Σp ∪ Σc . 
Assume that there exist R1,R2 ∈ RESA(S) satisfying the con-
ditions of the statement. As R1 and R2 are in RESA(S) , there 
exist W, T ⊆ S such that resA(W) = R1 , resA(T) = R2 , and W 
is a reachable state in A  . (Note that W ≠ T  , since given 
a fixed set of reactions, different result sets may only be 
created from different states.) Furthermore, since R1 ≠ R2 
but R1⧵Σc = R2⧵Σc , if we choose the context set C as 
C = (R1 ∩ Σc) ∪ (R2 ∩ Σc) , then we have

so there exist W, T ⊆ S , W ≠ T  , and C ⊆ Σc such that,

for some state W ′ ⊆ S.
Since W is reachable in A  , there is an interac-

tive process � , such that W ′ is a state in � , and as 
W � = resA(W) ∪ C = resA(T) ∪ C with W ≠ T  , the state W ′ 
in � has multiple predecessors.   ◻

To see the condition of the previous statement from a 
different point of view, we may also formulate it as follows.

Corollary 2 Let A = (S,A) be a reaction system with 
S = Σp ∪ Σc (where Σp and Σc are not necessarily dis-
joint). If there exist R1,R2 ∈ RESA(S) such that R1 ≠ R2 , 
R1 = resA(W) for some state W ⊆ S which is reachable in 
A  , and

R1⧵Σc = R2⧵Σc,

R1 ∪ C = R2 ∪ C,

resA(W) ∪ C = resA(T) ∪ C = W �

then there exists a state with multiple predecessors in some 
interactive process in A .

Since computation in reaction systems is done using inter-
active processes, we can naturally formalize the definition of 
reversible reaction systems based on the reversibility of inter-
active processes.

Definition 4 A reaction system A  is reversible, if every non-
restarting interactive process in A  is reversible.

Based on the lemmas above, we can formulate the neces-
sary and sufficient conditions for the reversibility of a reaction 
system as follows.

Theorem  1 Let A = (S,A) be a reaction system with 
S = Σp ∪ Σc (where Σp and Σc are not necessarily disjoint). 
The system A = (S,A) is reversible, if and only if the follow-
ing conditions hold. 

(1) For all E1,E2 ∈ ENA(S) , 

(2) For all T1, T2 ⊆ S , enA(T1) ≠ � , 

(3) For all R1,R2 ∈ RESA(S) such that R1 = resA(W) for 
some state W ⊆ S which is reachable in A  , 

Proof According to the Lemma 1, Corollary 1, and Lemma 
3, no reaction system can be reversible if any of the above 
conditions does not hold.

To also see that the conditions imply the reversibility 
of a system, let us assume indirectly that there is a reac-
tion system A = (S,A) (where S = Σp ∪ Σc ) which satisfies 
all three conditions of the theorem, but is not reversible. 
As A  is not reversible, there is a non-restarting interactive 
process � = (� , �) in A  with sts(�) = W0,… ,Wn , where 
Wi = Di ∪ Ci with Di ⊆ Σp, Ci ⊆ Σc , 0 ≤ i ≤ n , such that 
there is an i ≥ 1 for which Wi has multiple predecessors, that 
is,

with W ⊆ S , and C,Ci ⊆ Σc.
Since W ≠ Wi−1 , we have enA(W) ≠ enA(Wi−1) according 

to condition (2), and then PenA(W) ≠ PenA(Wi−1)
 , that is,

(R1 ∪ R2)⧵(R1 ∩ R2) ⊆ Σc,

E1 ≠ E2 implies PE1
≠ PE2

.

T1 ≠ T2 implies enA(T1) ≠ enA(T2).

R1 ≠ R2 implies R1⧵Σc ≠ R2⧵Σc.

(1)
resA(W) ∪ C = resA(Wi−1) ∪ Ci = Wi for some W ≠ Wi−1,
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according to condition (1). Since Wi−1 is reachable in A  , 
condition (3) is applicable, which implies

This means that resA(W) and resA(Wi−1) differ also in entities 
that are not in Σc , therefore, there is no C,C� ⊆ Σc such that

which contradicts our assumption at (1), and thus completes 
the proof.   ◻

Example 6 Let A = (S,A) be the reaction system with 
S = Σc ∪ Σp , Σp = {1, 3, 5} being the product alphabet, 
Σc = {0, 2, 4} being the context alphabet, and A = {a, b, c} 
being the set of reactions, where

According to Theorem 1, A  is reversible as it satisfies all 
three conditions.

In a reaction system satisfying the conditions of Theo-
rem 1, every non-restarting interactive process is reversible, 
even in the presence of input from the environment in the 
form of context sets. Therefore, given any state of some non-
restarting interactive process, the predecessor of this state is 
unique and can be restored. Using this environmental input, 
however, one can only control the forward computation of 
the system. In the next section, we are going to extend these 
results so that the environment can also trigger backward 
computation.

5  Simulating reversible reaction systems

As discussed in Sect. 2, we believe that the Undo-Redo-Do 
paradigm fits well to the reversible variants of computational 
models with environmental interaction, as opposed to other, 
more static paradigms (such as Compute-Copy-Uncompute). 
The reversible reaction systems of Theorem 1, however, do 
not support this kind of controlled reversibility. To enable 
interactive environmental control over the direction of the 
computation inside a reaction system, we discuss in this sec-
tion the interactive simulation of such systems. To this aim, 
we also need to be able to construct “reverse reactions”, 
reactions which execute the backward computations of 
reversible reaction systems.

When creating simulating systems, we are going to make 
extensive use of interactive processes and consequently, 

resA(W) ≠ resA(Wi−1)

resA(W)⧵Σc ≠ resA(Wi−1)⧵Σc.

resA(W) ∪ C = resA(Wi−1) ∪ C�

a = ({0}, {1, 2, 3, 4, 5}, {1}), b = ({1, 2}, {0}, {3}),

c = ({1, 4}, {0}, {5}).

finite sequences of sets. To ease notation, here we will intro-
duce some new notations regarding such sequences.

Notation 3 Let W = W0,W1,… ,Wn be a finite sequence of 
n + 1 sets. Then

– the length of W is denoted by |W|,
– the reverse of W is denoted by 

↼

W and is defined as 
↼

W = Wn,Wn−1,… ,W0.

For a finite set D, the finite sequence obtained by sub-
tracting Dfrom each set in W is denoted by W⧵D , that is, 
W⧵D = W0⧵D,W1⧵D,… ,Wn⧵D.

For a finite sequence of sets M = M0,M1,… ,Mm where 
m ≤ n , we say that W contains M , denoted by M ⊆ W , if 
M is a consecutive subsequence of W , or formally, there 
exists 0 ≤ i ≤ n − m , such that for all 0 ≤ j ≤ m we have 
Wi+j = Mj.

For finite sequences of sets V0,V1,… ,Vn , n ≥ 0 , the finite 
sequence W obtained by concatenating these sequences is 
denoted by W = V0,V1,… ,Vn.

The intuition behind the simulator reaction systems is 
rather simple. If we take some interactive process in the 
simulator, then state sets of this process can be divided into 
one or more shorter subsequences. The first subsequence 
always represents a forward computation of the simulated 
system. Then, the second subsequence corresponds to a 
backward computation of the simulated system, undoing 
some actions previously computed by the first subsequence. 
Afterwards, another forward subsequence follows which is 
in turn equivalent to a series of Redo and Do operations. 
Backward computation does not occur by accident but is 
controlled by the environment using a special auxiliary 
symbol � . When � is present in the context, the simulator 
undoes its last computation, simulating a backward step of 
the original simulated system. This intuition is formalized 
in the following two definitions.

Definition 5 Let A  be a reaction system, � = (� , �) be 
an interactive process in A  , with � = C0,C1,… ,Cn , 
� = D0,D1,… ,Dn , and let � ∈ S be a special entity in the 
background set. We say that the interactive process � is a 
well-formed simulating interactive process if the following 
conditions hold for every 0 ≤ i ≤ n:

– If Di = � or Di ⊆ Σc , then � ∉ Ci.
– If � ∈ Ci , then Ci = { � }.

The well-formedness of simulator interactive processes 
is a necessity, since � cannot appear in the context arbitrar-
ily. If a result set is empty or consists solely of entities from 
the context alphabet of the simulated system, then we have 
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reached an initial state. In this case, backward computation 
makes no sense, as initial states lack predecessors. Addi-
tionally, if � is present in the context, then regardless of any 
other input entity, a simulated backward step will take place. 
As only entities in the product alphabet of the simulated sys-
tem influence the backward computation, any unnecessary 
context entity other than � is forbidden.

Definition 6 Let A = (S,A) and B = (S ∪ {�},B) be two 
reaction systems, with � being an auxiliary symbol in the 
background set of B (forcing the system to compute a simu-
lated backward step).

The system B interactively simulates the interactive pro-
cesses of A  if the following conditions hold. 

(1) For every interactive process � in A  , there is a 
well formed interactive process � in B such that 
sts(�) = sts(�).

(2) For every well-formed simulating interactive process � 
in B , sts(�) can be written as sts(�) = V0,… ,Vk , where 
each Vi is a finite sequence of sets such that:

– V0 = sts(�) for some interactive process � in A .
– If i = 2m for some m ≥ 1 , then there exists an interac-

tive process � in A  such that Vi ⊆ sts(𝜋).
– If i = 2m + 1 for some m ≥ 0 , then � ∈ W  for every 

W in Vi and there exists an interactive process � in 
A  , such that 

↼

Vi ⧵ { 𝜌 } ⊆ sts(𝜋).

According to the above definition, the simulating system 
can compute everything that the original simulated system is 
capable of computing (because of including all of its interac-
tive processes), and, furthermore, the simulator can traverse 
back and forth among the states of the interactive processes 
of the simulated system. Backward computation is initiated 
by the auxiliary symbol � . This notion of back and forth 
traversal is captured by the appropriate subdivision of the 
states of the interactive processes.

Now, our goal is to show that the Undo-Redo-Do para-
digm of reversibility can be achieved for reversible reaction 
systems using the above definition of interactive simulation. 
In what follows, we first show how to construct appropriate 
simulator systems and then prove that they adhere to the 
requirements of Definition 6.

Definition 7 Let A = (S,A) (with S = Σp ∪ Σc ) be a revers-
ible reaction system. A reaction system B , called the inter-
active undo-redo simulator of A  is constructed as follows.

Let B = (S ∪ {�},B) where B =
⇀

B ∪
↼

B such that

where CONTA(S,E) is defined as

and DIA(S,E) is defined as

The set 
⇀

B consists of reactions implementing forward 
computational steps of A  (if � is not present in the context, 
the reactions of A can be performed also in the simulating 
system), while the reactions in 

↼

B implement the simulated 
backward computational steps of A .

The intuition behind the constructions of the backward 
reactions of 

↼

B can be summarized as follows. For each 
simultaneously applicable set of reactions E ∈ ENA(S) , 
the presence of the product set PE of E implies that a 
backward reaction produces the reactants of E, possibly 
together with the elements of DIA(S,E) in addition. The 
set DIA(S,E) contains those entities which might have also 
been necessary to make only the reactions of E simultane-
ously enabled by inhibiting other reactions which could 
have also been applied. This is how DIA(S,E) is con-
structed: It contains the inhibitors of those simultaneously 
applicable sets of reactions which have the same set of 
reactants as E, since these entities must have been present 
in the predecessor state (otherwise not E, but some other 
set of reactions would have been applied). There is also a 
set of inhibitors added to the backward simulating reac-
tions, the set CONTA(S,E) , which is necessary, because 
there might be different sets of simultaneously enabled 
reactions E1,E2 ∈ ENA(S) , such that PE1

⊂ PE2
 , that is, the 

product set of E1 is a subset of the product set of E2 . In 
this case, performing the reactions of E1 backwards should 
only be possible if the elements of E2⧵E1 are not present. 
(The presence of these entities would indicate that state 
for which the predecessor should be produced was not the 
result of applying the reactions of E1 , but the reactions of 
E2 instead.)

Example 7 Consider the reversible reaction system 
A = (S,A) with Σp = {1, 3, 5, 7} being the product alphabet, 
Σc = {0, 2, 4} being the context alphabet, and A = {a, b, c, d} 
being the set of reactions

⇀

B = { (Ra, Ia ∪ { � }, Pa) | a ∈ A },

↼

B = {(PE ∪ {�}, CONTA(S,E), RE ∪ DIA(S,E)) | E ∈ ENA(S)},

CONTA(S,E) =
⋃

F ∈ ENA(S)

PE ⊂ PF

PF ⧵PE

DIA(S,E) =
⋃

F ∈ ENA(S)

E ≠ F, RF = RE

IF⧵IE.
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Based on Definition 7, the interactive undo-redo simula-
torB = (S ∪ {�},B) interactively simulating A  is con-
structed as follows.

Let the {0, 1, 2, 3, 4, 5, 7} ∪ {�} be the background set and 
B =

⇀

B ∪
↼

B be the set of reactions where forward reactions 
are defined as

To construct the backward reactions, consider

Then we compute

and

Based on these, the set of backward reactions is

Just as in the case of reversible reaction systems, we are 
going to take a step-by-step approach to prove that interac-
tive undo-redo simulatorsystems constructed using Defi-
nition 7 are indeed interactive simulators in the sense of 
Definition 6. Taking an arbitrary well-formed simulating 
interactive process � in a simulator system, we subdivide 
the state sequence of � into smaller subsequences and for 
each subsequence of interest, we prove that it satisfies the 
appropriate condition of Definition 6.

Lemma 4 Let A  be a reversible reaction system, let B be 
the interactive undo-redo simulatorof A  , and and let � be a 
well-formed simulating interactive process in B.

Then, the state sequence of � can be written as 
sts(�) = V0V1 , where V0 is a finite sequence, such that 
V0⧵{�} = sts(�) for some interactive process � in A  , that 
is, V0⧵{�} is the state sequence of a forward computation of 
the simulated system A .

a = ({0}, {1, 2, 3, 4, 5}, {1}), c = ({1, 4}, {0, 3, 5}, {5}),

b = ({1, 2}, {0, 5}, {3}), d = ({1, 2}, {0, 3}, {3, 7}).

⇀

B ={ ({0}, {1, 2, 3, 4, 5, �}, {1}), ({1, 2}, {0, 5, �}, {3}),

({1, 4}, {0, 3, 5, �}, {5}), ({1, 2}, {0, 3, �}, {3, 7}) }.

ENA(S) = { {a}, {b}, {c}, {b, d}, {b, c, d} }.

CONTA(S, {a}) = �, CONTA(S, {b, d}) = {5},

CONTA(S, {b}) = {5, 7}, CONTA(S, {b, c, d}) = �,

CONTA(S, {c}) = {3, 7},

DIA(S, {a}) = �, DIA(S, {b, d}) = {0, 3, 5},

DIA(S, {b}) = {3}, DIA(S, {b, c, d}) = {0, 3, 5}.

DIA(S, {c}) = �,

↼

B ={ ({1, �}, �, {0}), ({3, �}, {5, 7}, {1, 2, 3}),

({5, �}, {3, 7}, {1, 4}), ({3, 7, �}, {5}, {1, 2, 5}) }.

Proof Let A = (S,A) ( S = Σp ∪ Σc ) be a reversible reac-
tion system, let B be the interactive undo-redo simula-
torconstructed from A  using Definition 7, and let � be a 
well-formed simulating interactive process in B with 
sts(�) = W0,W1,… ,Wn.

Since � is a well-formed simulating interactive process, 
there exists 0 ≤ m0 ≤ n such that � ∉ Ci , 0 ≤ i ≤ m0 . This 
means that � starts with a finite sequence of states such that 
the length of this sequence is greater than or equal to one, 
and none of the sets in the sequence includes �.

Now we prove by induction on the value of m0 that, given 
the previous condition, there exists an interactive process � 
in A  such that sts(�) = W0,W1,… ,Wm0

 when m0 = n , or 
� ∈ Wm0+1

 and sts(�) = W0,W1,… ,Wm0
,Wm0+1

⧵{ � } when 
m0 < n . Thus, � might be present in the (m0 + 1) st context, 
nevertheless, with � not taken into consideration, the state 
can still be part of some interactive process in A .

Given the well-formedness of � , we can be sure that 
� ∉ C0 i.e. C0 ⊆ Σc . Hence, for the initial state W0 = C0 of 
� there exists some interactive process � in A  sharing the 
very same initial state. Thus, for m0 = 0 , the previous state-
ment is true.

Assuming that the statement holds for an arbitrary m0 = k , 
we now show that it also holds for m0 = k + 1 . In this case, 
we know that there exists some interactive process � in A  
such that sts(�) = W0,W1,… ,Wk . This implies that Wk ⊆ S . 
Let us now enumerate the reactions applicable to this set. As 
� ∉ Wk , one can only apply reactions from 

⇀

B , since � takes 
the role of a reactant in every reaction of 

↼

B . Note, that 
⇀

B con-
tains the very same reactions as A with a small difference: 
the inhibitor sets were augmented with � . In our current 
case however, this role of � is irrelevant, since � ∉ Wk . Con-
sequently, we have that resA(Wk) = resB(Wk) = Dk+1 . Thus, 
there exists some interactive process � = (�� , ��) in A  such 
that �� = D1,D2,…Dk,Dk+1.

Let us now consider the context. As � ∉ Ck+1 we know 
that Ck+1 ⊆ S . Since Dk+1 ⊆ S and Ck+1 ⊆ S we have that 
Wk+1 ⊆ S and, in turn, there exists some interactive process 
� in A  such that sts(�) = W0,W1,… ,Wk+1.

We now continue by considering m0 = k + 1 < n , mean-
ing that the next state starts a new, simulated backward com-
putation. In this case Cm0+1

= { � } . On the other hand, since 
we proved, that there exists some interactive process in A  
such that the state sequence of the process is equal to the 
sequence W0,W1,… ,Wm0

 , then it also holds, that extending 
this sequence with Wm0+1

= resA(Wm0
) ∪ { � } , there exists 

some interactive process in A  such that the state sequence 
of the process is equal to W0,W1,… ,Wm0

,Wm0+1
⧵{ � }.

This means, that the statement holds for m0 = k + 1 
which, in turn, renders our initial statement true. The argu-
ment above also implies that every interactive process in 
A  is an interactive process in B as well, since both the Ci 
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context sets and the length k of the initial forward computing 
sequence can be chosen arbitrarily.   ◻

Now we continue by showing that after the initial state 
sequence simulating a forward computation, the well-formed 
simulating interactive processes might continue with the 
simulation of backward computations.

Lemma 5 Let A  be a reversible reaction system, let B be 
the interactive undo-redo simulatorof A  , and let � be a well-
formed simulating interactive process in B.

Then, the state sequence of � can be written as 
sts(�) = V0V1 , where V0⧵{�} is the state sequence of a for-
ward computation of the simulated system A  , and V1 can 
be written as V1 = V2V3 where V2 is a finite sequence such 
that there exists some interactive process � in A  for which 
↼

V2⧵{ 𝜌 } ⊆ sts(𝜋) . Thus, V2⧵{�} is a state sequence of a 
backward computation of the simulated system A .

Proof Let A = (S,A) ( S = Σp ∪ Σc ) be a reversible reac-
tion system, let B be the interactive undo-redo simula-
torconstructed from A  using Definition 7, and let � be a 
well-formed simulating interactive process in B with 
sts(�) = W0,W1,… ,Wn = V0V1 , where V0⧵{�} is the state 
sequence of a forward computation of the simulated system 
A  . Since V0 is covered by Lemma 4, we know that there 
exists m0 < n such that the finite sequence W0,W1,…Wm0

 
is the state sequence of some interactive process � in A  . In 
this case, for some m0 < m1 ≤ n , the well-formedness of � 
implies that � ∈ Ci for m0 + 1 ≤ i ≤ m1 , and if m1 < n , then 
� ∉ Cm1+1

.
Now we prove by induction on the value of m1 that 

there exists some interactive process � in A  for which 
the V1 = Wm0+1

,Wm0+2
,… ,Wm1

 sequence is such that 
↼

V1⧵{ 𝜌 } ⊆ sts(𝜋) holds.
First, let us prove the statement for m1 = m0 + 1 , 

when the sequence consists of a single element. In this 
case, � ∈ Cm1

 and, implied by the proof of Lemma 4, 
there exists some interactive process � in A  such that 
sts(�) = W0,W1,…Wm0+1

⧵{ � } . Accordingly, if 
↼

V1 = Wm1
 , 

then 
↼

V1⧵{ 𝜌 } ⊆ sts(𝜋) . Thus, for m1 = m0 + 1 , the statement 
holds.

Let us now assume, that the statement holds if 
m1 = m0 + k , and then prove that it also holds for 
m1 = m0 + k + 1 . We know that the state sequence 
V2 = Wm0+1

,Wm0+2
,…Wm0+k

 is such that 
↼

V
2
⧵{ 𝜌 } ⊆ sts(𝜋) for 

some interactive process � in A  , furthermore, Cm0+k
= { � } 

and Cm1
= { � }.

Building on the previous facts, let us continue by defining 
Wm1

 . Since � ∈ Wm0+k
 , only reactions in 

↼

B can be applied to 

Wm0+k
 (as the presence of � forbids the application of reac-

tions in 
⇀

B ). A  is reversible, therefore, no two reaction sets 
E1,E2 ∈ ENA(S) produces the same result set. Thus, given an 
arbitrary result set D = PE for some E ∈ ENA(S) , we are able 
to restore W such that resA(W) = D . In order to do so, we 
take every reaction in E and create a new reaction with reac-
tant set equal to D = PE and product set equal to W = RE . 
However, care should be taken, as there might be one ore 
more F ∈ ENA(S) reaction set such that PE ⊂ PF . If so, then 
elements not in PE must be forbidden by including every 
element in PF⧵PE in the inhibitor set of the newly created 
reaction. This is exactly, how CONTA(E) is defined. That 
way, we will not end up falsely applying reactions because 
of the subset relationships. Our job is not done yet, however, 
since we must also consider inhibitors. As demonstrated in 
Example 4, inhibitors might also leave a trace by inhibiting 
some reactions and thus affecting the result. Hence, given 
the reactant set RE , we need to find reaction sets with the 
same reactants. Then, the inhibitors of the reactions in these 
sets should also be restored, since their presence denied the 
application of these reactions. Such inhibitor entities are 
captured by DIA(S,E) in Definition 7, and as a result, we 
will have a product set RE ∪ DIA(S,E).

Turning back to the definition of B , we can see, that 
reactions in 

↼

B are constructed using this very method. What 
remains is, to find the reaction in 

↼

B that can be applied to 
Wm0+k

 . Such a reaction always exists and is always unique: 
unique, since A  is reversible, which means that there is only 
a single way to produce every result set, and exists, since 
↼

V2⧵{ 𝜌 } ⊆ sts(𝜋) for some interactive process � in A  , which 
means that the first set in 

↼

V2⧵{ � } , that is, Wm0+k
⧵{ � } was 

surely produced from some state by applying some set of 
reactions in A. The only case in which the previous would 
fail is if Wm0+k

⧵{ � } was the initial state, however, this case 
is forbidden by the well-formedness of �.

Concluding the previous reasoning, we have that the only 
reaction applicable to Wm0+k

 is a uniquely determined reac-
tion b ∈

↼

B for which Rb = Wm0+k
⧵{ � } holds. By applying 

this reaction to Rb = Wm0+k
⧵{ � } we obtain Pb = Dm1

 such 
that resA(Dm1

) = Wm0+k
⧵{ � } . Since Cm1

= { � } , we have 
that Wm1

= Pb ∪ { � } . As a consequence, these states can 
be written as a sequence V2 = Wm0+1

,Wm0+2
,… ,Wm0+k

,Wm1
 

such that V↼

2
⧵{ 𝜌 } ⊆ sts(𝜋) for some interactive process � 

in A  (as V2 is essentially an appropriate continuation of V1 
for which we already proved the same). This means, that the 
statement holds for m1 = m0 + k + 1 which, in turn, renders 
our initial statement true.   ◻

Now we combine the previous two statements to obtain 
the following.
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Lemma 6 Let A  be a reversible reaction system, let B be 
the interactive undo-redo simulatorof A  , and let � be a well-
formed simulating interactive process in B , such that

– sts(�) = V0V1 , where V0⧵{�} is the state sequence of a 
forward computation of A  , and

– V1 can be written as V1 = V2V3 , where V2⧵{�} is a state 
sequence of a backward computation of A .

Then, if V3 is not of zero-length, then subdividing V3 into 
smaller subsequences will result in forward and backward 
computations of the simulated system A  , analogous to 
those covered by Lemmas 4, 5.
Proof Let A = (S,A) ( S = Σp ∪ Σc ) be a reversible reac-
tion system, let B be the interactive undo-redo simula-
torconstructed from A  using Definition 7, and let � be a 
well-formed simulating interactive process in B with 
sts(�) = W0,W1,… ,Wn = V0V1 , where V0⧵{�} is the state 
sequence of a forward computation of A  , and V1 = V2V3 , 
where V2⧵{�} is a state sequence of a backward computa-
tion of A .

Since V2 is covered by Lemma 5, we know that 
there exists m0 < m1 < n such that the finite sequence 
Wm1

⧵{�},Wm1−1
⧵{�},…Wm0+1

⧵{�} is the state sequence 
of some interactive process � in A  . We now show that the 
proof for subsequent sequences in � is analogous to the those 
of Lemmas 4, 5.

Now, because of the well-formedness of � , we have that 
Cm1

= { � } and � ∉ Cm1+1
 . As a consequence of the for-

mer, we have that Dm1+1
 is the result of a simulated back-

ward step, which means that resA(Dm1+1
) = Wm1

⧵{ � } . 
Also, Wm1+1

= Dm1+1
∪ Cm1+1

 . As for the sequence 
V4 = Wm0+1

,Wm0+2
,…Wm1

,Dm1+1
 , there exists some inter-

active process � in A  such that 
↼

V4⧵{ 𝜌 } ⊆ sts(𝜋) , we have 
two possibilities regarding Dm1+1

:

– Dm1+1
⊆ Σc , thus Dm1+1

 is equal to a restarting or initial 
state of � , or

– there exists some state W  in �  such that 
Dm1+1

⧵Σc = resA(W).

Regardless, the sequence V5 = Dm1+1
 is contained within the 

sequence of states of � . Since Dm1+1
 can only be extended 

with elements from Σc to form Wm1+1
 then there is going to 

be an interactive process � in A  such that the sequence of 
states of � contains Wm1+1

 . If we now apply the induction 
for forward computations (from Lemma 4), then we can say 
that given the subsequent contexts do not contain � , then the 
newly started sequence of states is going to adhere Defini-
tion 6 (i.e. there exists some interactive process in A  with 
an appropriate sequence of states containing this sequence).

Now, if some Cj context set contains � , then we can apply 
the same induction as in Lemma 5, that is, starting from a set 
which is included within the state sequence of some interac-
tive process in A  , we can see that only valid backward steps 
can be simulated.

Therefore, we have shown, that any further subsequence 
of � is either a proper forward or backward computation of 
the simulated system A  .   ◻

Combining the three previous lemmas, we can state the 
following.

Theorem 2 For every reversible reaction system A  , the 
interactive undo-redo simulatorconstructed from A  using 
Definition 7 interactively simulates the interactive processes 
of A .

Proof Let A = (S,A) ( S = Σp ∪ Σc ) be a reversible reaction 
system, let B be the interactive undo-redo simulatorcon-
structed from A  using Definition 7, and let � be a well-
formed simulating interactive process in B

Given the previous assumptions, Lemmas 4, 5 and 6 
can be applied. In these lemmas, by subdividing the state 
sequence of � , we showed that � satisfies the requirements 
of condition (2) in Definition 6. Since our choice of � (apart 
from the well-formedness) is arbitrary, this also means that 
every well-formed interactive process in B satisfies the 
requirements of condition (2). When considering the first 
subsequence of � in Lemma 4, we also showed, that well-
formed interactive processes in B may start with any inter-
active process in A  . Thus, for every interactive process in 
A  we have an interactive process in B with the very same 
state sequence. Consequently B satisfies condition (1) in 
Definition 6.

This implies that B interactively simulates the interactive 
processes of A  .   ◻

Based on the above proof, we can construct an interac-
tive simulator system (the interactive undo-redo simulator) 
for every reversible reaction system. The method of the 
construction is rather straightforward: First, we include 
a new symbol � in the original background set and we 
create forward reactions by including � in every inhibitor 
set. Then we assemble the backward reactions by enumer-
ating the reaction sets which can ever become enabled 
(the elements of ENA(S) ) and follow the construction of 
Definition 7.

The simulators obtained that way may freely perform 
the forward and the backward computations of the original 
system, allowing for an Undo-Redo-Do-like semantics of 
reversibility where the environment has to control over the 
direction of the computation.
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6  Conclusion

In this paper, we investigated the reversibility of reac-
tion systems. This area was studied before by Aman and 
Ciobanu [5], however, in their work, they did not consider 
open interactive processes (processes with non-empty 
context sets) and they extended the model with features 
implementing a memory to remember vanished entities. 
We took a different approach by working with the model 
as-is (thus, adding no extensions) and allowing the use of 
non-empty context sets. We first identified the require-
ments which are necessary and sufficient for a reaction 
system to be reversible, then by showing how to build 
reverse reactions, we constructed simulator reaction sys-
tems which are able to simulate reversible reaction systems 
with their (forwards-only) computations in both directions, 
backwards and forwards.

As reversible reaction systems according to our notion 
of reversibility seem to be rather restricted, to study and 
determine the class of the possible computations which 
they can perform would definitely be of interest for further 
research. Since we expect that the class of possible compu-
tations are similarly restricted, some kind of relaxation of 
the unique-predecessor concept to arrive to a different, less 
restrictive notion of reversibility would also be of interest. 
One approach that we would like to explore in the future 
is a kind of “lookback” reversibility which is similar to 
the usual notion of backward determinism in automata. 
An automaton is backward deterministic (and thus, revers-
ible) if the current state and the previously consumed input 
symbol together uniquely determine the previous state of 
the machine. A similar notion could be defined for inter-
active processes by noticing that the context sets play a 
similar role as the input symbols of automata, they are 
consumed by the actual step of the computation. Accord-
ing to the proposed reversibility concept, an interactive 
process would be reversible if the current state and the 
context set used in the previous step (to arrive to the cur-
rent state) together uniquely determine the previous state 
of the process.
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