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Abstract
Gene Regulatory Networks (GRNs) represent the interactions among genes regulating the activation of specific cell func-
tionalities, such as reception of (chemical) signals or reaction to environmental changes. Studying and understanding these 
processes is crucial: they are the fundamental mechanism at the basis of cell functioning, and many diseases are based on 
perturbations or malfunctioning of some gene regulation activities. In this paper, we provide an overview on computational 
approaches to GRN modelling and analysis. We start from the biological and quantitative modelling background notions, 
recalling differential equations and the Gillespie’s algorithm. Then, we describe more in depth qualitative approaches such 
as Boolean networks and some computer science formalisms, including Petri nets, P systems and reaction systems. Our aim 
is to introduce the reader to the problem of GRN modelling and to guide her/him along the path that goes from classical 
quantitative methods, through qualitative methods based on Boolean network, up to some of the most relevant qualitative 
computational methods to understand the advantages and limitations of the different approaches.
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1  Introduction

Gene Regulatory Networks (GRNs) [81] are the mechanism 
that allows cells to react to environmental changes such 
as the availability of a new nutrient or the reception of a 
(chemical) signal from other cells. A cell activates a new 
function by starting synthesizing different proteins. Indeed, 
proteins are the actuators of cell functions and each pro-
tein plays a rather specific role. The synthesis of proteins 
is based on genes, through the transcription (synthesis of 

RNA from DNA) and translation (synthesis of proteins from 
RNA) processes. The activation of a new cell function cor-
responds to the activation of the transcription and translation 
mechanisms. With a little simplification, each gene can be 
considered in active or inactive state depending on whether 
the corresponding protein is expressed (i.e. synthesized) or 
not. This allows mapping cell functionalities to specific con-
figurations of genes activation.

Since each cell functionality is often associated to a large 
number of genes, its activation has to be properly coordi-
nated. This is obtained through a distributed process in 
which genes mutually regulate their activation. Interactions 
among genes via proteins, in which each gene promotes (i.e. 
stimulates) or inhibits the activation of one or more other 
genes, can be described in terms of a network. In this kind 
of network, nodes represent genes and (oriented) connec-
tions (of different types) represent the influence that each 
gene has on each other. This qualitative way of describing 
gene regulation activities is the most common approach to 
the representation of GRNs. It is a simplification of a more 
complex and quantitative process which involves RNA and 
protein synthesis, chemical interactions, and so on, and 
that could be described in terms of Ordinary Differential 
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Equations (ODEs) defined in accordance with standard 
chemical kinetic laws. Quantitative models often require too 
much (unavailable) information to be constructed, and their 
analysis often becomes unfeasible. Instead, qualitative mod-
els are much easier to analyze and, although simplified, they 
can provide useful information about the GRN functioning.

Studying and understanding GRNs is very important. 
They are the fundamental mechanism at the basis of cell 
functioning and many diseases are based on perturbation or 
malfunctioning of some gene regulation activities. Cancer, 
for instance, is often due to gene mutations that force the 
unnecessary activation of cell proliferation processes.

Discovering how a gene influences other genes usually 
requires performing a large number of lab experiments in 
which cells are placed in different environments or in which 
their genes are artificially turned on or off to observe how 
this changes the activation of other genes (i.e. the synthesis 
of the corresponding RNA and proteins). Once mutual gene 
influences have been inferred, they can be used to construct 
a model of the regulatory network that can then be analyzed 
by using mathematical and computational means. Several 
databases with gene expression data collected through lab 
experiments are nowadays available on public databases 
such as Expression Atlas [73] and Gene Expression Omni-
bus (GEO) [32].

Many notations and formalisms have been applied to 
model GRNs. In the first part of the paper, we analyse ODEs 
and Gillespie’s algorithm, which both guarantee a detailed 
description of the network dynamics. In the second part, 
we described different logical models that are able to point 
out the qualitative basic principles that characterize the bio-
logical mechanisms under analysis, revealing their emergent 
behaviour. Among them, the most common approaches are 
those based on Boolean networks [97]. A Boolean network 
is essentially a set of Boolean variables whose values are 
periodically updated. The updated value of each variable is a 
function of its current value and of the values of a number of 
other variables. Typically, the update process can be either 
synchronous (all variables are updated at the same time) 
or asynchronous (one variable at a time is updated). Each 
Boolean variable represents the activation state of a different 
gene, and update functions express the influences of other 
genes. Starting from an initial configuration of active genes, 
Boolean networks can be used to simulate the evolution of 
such configuration over time. Moreover, by considering all 
possible gene configurations, Boolean networks allow key 
configurations (e.g. attractors) to be identified.

In addition to Boolean networks, several other computer 
science notations have been successfully applied to the 
modelling and analysis of biological systems. For example, 
Hybrid systems [4, 52, 60], process calculi such as the �
-calculus [88], the Bio-ambients calculus [87], Bio-PEPA 
[30], Beta-binders [85], CLS [13], and the k-calculus [35].

In this paper, as relevant formalisms applied in the con-
text of GRNs, we consider Petri nets [70, 89], P systems 
[75], and reaction systems [38]. In particular, the qualita-
tive analysis provided by Petri nets can reveal finer detail to 
metabolic and signalling networks [54], and can therefore 
be used to examine specific behaviours as the reachability 
of a given state. Among bio-inspired formalisms, we include 
P systems, because of their diffusion as modelling tools for 
biological systems. Finally, we present reaction systems 
because they represent an innovative and emergent approach 
[33].

All of these approaches try to capture and describe gene 
interactions in a different way to provide different viewpoints 
and enabling different analysis methods. Moreover, several 
software tools are available for the analysis for GRNs, such 
as BioTapestry [62], Virtual Cell [61], and GIN-sim [24].

The aim of this paper is to provide a survey on com-
putational approaches to GRN modelling and analysis, by 
starting from the biological and quantitative modelling back-
ground notions, and by describing more in depth qualitative 
approaches such as Boolean networks and some computer 
science formalisms.

The paper is structured as follows: in Section 2 we pro-
vide the necessary biological background; in Section 3 we 
recall quantitative modelling approaches, which are based 
on standard chemical kinetic laws; in Section 4 we describe 
Boolean networks and their application to the modelling of 
GRNs; in Section 5 we survey the applications to GRNs of 
other computer science formalisms such as Petri nets [49, 
69, 83], membrane systems [16, 76] and reaction systems 
[8]; and, finally, in Section 6 we draw our conclusions.

2 � Biological background

Cells are complex systems made of many connected com-
ponents having different functions and characteristics [63], 
as the ability to interact each other by way of a variety of 
chemical and mechanical signals.

Nearly every cell contains long DNA molecules, essential 
to build and maintain the organism. A gene is a portion of 
the DNA, and it is the basic physical and functional unit of a 
cell. Each cell expresses (i.e. turns on) only a fraction of its 
genes. This phenomenon, known as gene regulation, affects 
the cell differentiation, representing how a cell becomes of 
a specialized type. Most genes contain the instructions to 
synthesize proteins, that are large bio-molecules perform-
ing a wide range of activities, such as catalysis of chemical 
reactions, DNA replication, molecules transportation, cell 
membrane preservation, among others. Hence, the DNA 
represents the information storage of the cell, while pro-
teins are the real actuators and contribute actively to the 
cell functioning.
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The information flow from the DNA to proteins is a cru-
cial principle of molecular biology, often called the central 
dogma [31], which consists of two main steps, transcription 
and translation, known together as gene expression:

DNA transcription
����������������������������������������→

 RNA translation
���������������������������������→

 Protein
Each protein has a corresponding gene in the DNA. 

Transcription is the biochemical process in which a specific 
segment of DNA is copied into RNA, by the enzyme RNA 
polymerase, resulting in a messenger RNA (mRNA) that is 
a single-stranded copy of one gene. Then, during the trans-
lation process, the mRNA is read and used to assemble the 
chain of amino acids that form a protein.

The cell behavior can be modified by processes or exter-
nal events regulating protein synthesis. Regulation activi-
ties can consist in either promoting or inhibiting the DNA 
transcription or the RNA translation, or by favoring or 
hampering the chemical reactions in which the proteins are 
involved. These activities all together constitute the so called 
Gene Regulatory Networks (GRNs), that hence are the mech-
anisms that allow cells to react to environmental changes.

2.1 � Example of GRN: the lac operon

Escherichia coli is a bacterium usually present in the intes-
tine of many animal species. As most bacteria, it adapts its 
internal functioning to the environmental changes by modi-
fying the kind of proteins it produces [101, 106]. Among 
the proteins it synthesizes, there are enzymes necessary 
for metabolizing nutrients. Different enzymes are involved 
in the processes (metabolic pathways) executed to extract 
energy from different nutrients. To save energy, E. coli syn-
thesizes the enzymes for lactose metabolism only if lactose 
is actually present in the environment. The regulation of 
enzymes for lactose degradation is performed by the group 
of genes known as the lac operon.

The lac operon is a sequence of six genes in the DNA 
of E. coli that are responsible for the synthesis of three 
enzymes involved in the metabolism of lactose. The first 
three genes of the operon (called i, p, and o) regulate the pro-
duction of the enzymes, and the last three genes (called z, y, 
and a, and known as structural genes) are transcribed into a 
single mRNA that is then translated into beta-galactosidase, 
lactose permease, the transacetylase (the three enzymes). In 
particular, beta-galactosidase splits lactose into glucose and 
galactose; lactose permease is a protein that is incorporated 
in the membrane of the bacterium and actively transports 
the sugar into the cell; and transacetylase has a marginal 
role. These three proteins should be synthesized only when 
lactose is present in the environment.

As shown in Fig. 1, gene i is used to synthesize a protein 
called lac repressor. When lactose is not present, the lac 
repressor, binds to gene o (called operator gene) which is 
located in the middle of the operon. In this way, the lac 

repressor becomes an obstacle for the RNA polymerase, 
which is the enzyme responsible for transcribing the DNA 
into the RNA, and that usually binds the DNA at the location 
of gene p (called promoter gene) to start the transcription. 

On the other hand, when lactose is present, it binds to the 
lac repressor and removes it from the DNA, allowing the 
RNA polymerase to scan the operon and transcribe the genes 
corresponding to the three proteins for lactose degradation. 
When lactose has been consumed, the lac repressor rebinds 
to the DNA, and the synthesis of the three enzymes stops.

This process is a small example of GRN, in which the 
synthesis of proteins is under the control of the lac repressor, 
which acts preventing the expression of other genes.

2.2 � Inferring GRNs from gene expression data

GRNs control many different aspects of cell development 
and life, like differentiation, proliferation and metabolism. 
Moreover, GRNs often involve dozens of genes influenc-
ing each other in different ways. For these reasons, under-
standing the mechanisms underlying these networks is very 
challenging.

As reviewed in [51, 80], detecting the individual aspects 
of regulatory interactions requires multiple experimental 
approaches, combining distinct observations that include:

–	 Spatial and temporal gene expression data, which neces-
sitate analysis performed at multiple time points and 
phases of development;

–	 Identification of functional interactions among genes to 
determine how these factors regulate each other’s expres-
sion. In particular, this can be achieved in two ways: by 
trans-perturbation, perturbing the transcription factor, 
and by cis-perturbation, mutating the binding sites for 
specific genes.

–	 Identification of physical interaction between transcrip-
tion factors and binding sites.

Fig. 1   The regulation process in the lac operon. In the presence of 
lactose (case a) the lac repressor binds the gene o and precludes the 
RNA polymerase from transcribing genes z, y, and a. When lactose is 
present (case b) it binds to and inactivates the lac repressor
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The mentioned techniques give us information on different 
levels of analysis. However, assembling several experimental 
data does not reveal the functional regulatory interaction, 
which can only be hypothesized in the generation of a GRN 
model [2]. Hence, the analysis of GRNs with computational 
methods, as the ones we will review in the next sections, 
can also be seen as a way to validate GRNs inferred from 
data against observed behavioral phenomena, as described 
in [39, 99].

3 � GRNs as chemical reaction networks

We have seen that GRNs involve processes, such as DNA 
transcription and translation, binding of proteins with DNA 
or other molecules, etc., that are essentially chemical reac-
tions. Hence, a GRN can be seen as a chemical reaction 
network, and standard methods from the theory of chemical 
reaction kinetics can be used to model the dynamics of such 
GRN.

A Chemical Reaction Network (CRN) is a set of transfor-
mations involving one or more chemical species, in a spe-
cific situation of volume and temperature [41]. The chemical 
elements that are transformed are called reactants, and those 
that are the result of the transformation are called products. 
A chemical reaction can be represented as an equation, 
showing all the species involved in the process. A simple 
example of chemical reaction is the following:

In this case, A, B, C and D are the species involved in the 
process: A and B are the reactants, C and D are the products. 
The parameters a, b, c and d are called stoichiometric coeffi-
cients and represent the multiplicities of reactants and prod-
ucts participating in the reaction. The symbol k1 , referred to 
as kinetic constant, is a positive real number giving informa-
tion about how fast the process occurs.

Actually, according to the law of mass action, the rate 
of a chemical reaction is proportional to its kinetic constant 
and to the concentrations of its reactants (counted as many 
times as expressed by their stoichiometric coefficients). For 
example, the rate of reaction 1 is

where [s] denotes the concentration of the molecular spe-
cies s.

Reaction rates can be used to construct a dynamical 
model of a CRN in terms of Ordinary Differential Equations 
(ODEs): one equation for each considered chemical species 
and having the rates of the reactions as terms. The rate of 
each reaction will appear as a positive term in the equations 
of its products, and as a negative term in the equations of 

(1)aA + bB
k1
⟶ cC + dD

(2)k1[A]
a[B]b

its reactants. Moreover, in each equation the rate will be 
multiplied by the stoichiometric coefficient of that reactant 
or product [14].

For example, let us consider again the lac operon GRN we 
introduced in Section 2.1. To describe the model as a CRN, 
we refer to the simple and illustrative example described in 
[105], and consisting of the reactions reported in Table 1. 
Here, i represents the gene for the inhibitor protein, rI the 
associated mRNA, I the inhibitor protein, and RNAP is the 
binding site. For the sake of simplicity, the lac operon is 
represented as a single entity, denoted as Op, and the mRNA 
transcript from the operon is denoted by r, and this codes for 
all three lac proteins.

As explained above, according to the standard mass 
action kinetics, we obtain the system of ODEs shown in 
Fig. 2. (See [101, 106, 107] for more details.)

A common method to study systems of ODEs is by means 
of numerical integration [14, 37], that allows us to obtain 
the dynamics of the concentrations of all the molecules of 
the CRN over time, starting from given initial values. In 
the case of the ODEs of the lac operon, by assuming the 
initial concentrations reported in Table 2, it is interesting 
to study how the dynamics of the concentration of the beta-
galactosidase enzyme (denoted Z in the ODEs) depends on 
the availability of lactose. As shown in Fig. 3a, when lactose 
is present ( [Lactose]0 = 1000 ), beta-galactosidase starts to 

Table 1   The chemical reactions and kinetic constants of the lac 
operon GRN (See [105] for more details)

Chemical reactions Kinetic constants

i
k1
⟶ i + rI

k1 = 0.02

rI
k2
⟶ rI + I

k2 = 0.1

I + Lactose
k3
−⇀
↽−

k4

ILactose
k3 = 0.005 , k4 = 0.1

I + Op
k5
−⇀
↽−

k6

IOp
k5 = 1 , k6 = 0.01

Op + RNAP
k7
−⇀
↽−

k8

RNAPo
k7 = 0.1 , k8 = 0.01

RNAPo
k9
⟶Op + RNAP + r

k9 = 0.03

r
k10
⟶ r + Z

k10 = 0.1

Lactose + Z
k11
⟶Z

k11 = 0.01

rI
k12
⟶

k12 = 0.01

I
k13
⟶

k13 = 0.002

ILactose
k14
⟶Lactose

k14 = 0.002

r
k15
⟶

k15 = 0.01

Z
k16
⟶

k16 = 0.001
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be synthesized, reaching a concentration peak after 350 time 
units, and then by decreasing back towards zero due to the 
consumption of all the available lactose. On the other hand, 
when lactose is absent ( [Lactose]0 = 0 ), the concentration of 
beta-galactosidase remains low due to the regulation activity 
performed by the lac repressor.

As we have seen, ODEs can be used to study the dynam-
ics of GRNs. However, ODEs suffer from an approximation 

problem that becomes particularly relevant in the case of 
GRNs. The problem is that ODEs variables are real num-
bers, assumed to model concentrations of molecules. In 
GRNs, instead, most of the molecules are genes, which are 
present in very small numbers (e.g. a single instance) and 
that change their state (e.g. bound/unbound to some protein) 
in a discrete way.

In the ODEs modelling the lac operon, for example, there 
are two variables, Op and IOp, corresponding to the con-
centration of operator when it is unbound and bound to the 
repressor, respectively. According to the ODEs dynamics, 
these two variables continuously take values in [0, 1] ⊆ IR , 
with [Op] + [IOp] = 1 . A more accurate description of 
the state of gene Op would instead require one of the two 
variables to be equal to 1 and the other to 0, with discrete 
switches between the two opposite configurations.

Although the approximation introduced by ODEs is 
often considered acceptable to obtain a more accurate 
quantitative representation of the GRN dynamics it is pref-
erable to switch to the stochastic simulation approach [46]. 
In particular, Gillespie’s Stochastic Simulation Algorithm 
[45] (or one of its numerous variants) is the most used 
method. Gillespie’s algorithm is formalized on the basis 
of the molecular collision theory and it allows simulating 
the dynamics of chemical reactions like the ones in Fig. 1 
(but sometimes with slightly different kinetic constants) 
by assuming discrete quantities of molecules (rather than 
concentrations) and by considering reaction rates as sto-
chastic rates rather than deterministic ones.

In Fig. 3b we show the results of stochastic simulation 
of the lac operon reactions, reported in Fig. 1. As before, 
in the presence of lactose the quantity of beta-galactosi-
dase enzymes synthesized is higher, but now the dynam-
ics shows irregular peaks due to the stochastic aspects of 
chemical reactions that are now taken into account.

Observing these examples, we can notice that the quan-
titative models of GRNs (ODEs and stochastic models) 
give a precise description of the gene regulation dynamics. 
Unfortunately, many details and parameters necessary for 
these models are often not precisely known or can vary 






d[i]
dt

= 0,
d[rI ]
dt

= k1[i]− k12[rI ],
d[I]
dt

= k2[rI ]− k3[I][Lactose] + k4[ILactose]− k5[I][Op] + k6[IOp]− k13[I],
d[Lactose]

dt
= k4[ILactose]− k3[I][Lactose] + k14[ILactose]− k11[Lactose][Z],

d[ILactose]
dt

= k3[I][Lactose]− k4[ILactose]− k14[ILactose],
d[Op]
dt

= k6[IOp]− k5[I][Op]− k7[Op][RNAP ] + (k8 + k9)[RNAPo],
d[IOp]

dt
= k5[I][Op]− k6[IOp],

d[RNAP ]
dt

= (k8 + k9)[RNAPo]− k7[Op][RNAP ],
d[RNAPo]

dt
= k7[Op][RNAP ]− (k8 + k9)[RNAPo],

d[r]
dt

= +k9[RNAPo]− k15[r],
d[Z]
dt

= +k10[r]− k11[Lactose][Z]− k16[Z].

Fig. 2   ODEs modelling the kinetics of the lac operon interpreted as 
a CRN

Table 2   Initial concentrations of the lac operon CRN ( [Lactose]
0
 is in 

the text), given as number of molecules per cell

Initial concentrations

[i]0 = 1

[rI]0 = 0

[I]0 = 50

[Op]0 = 1

[IOp] = 0

[RNAP]0 = 100

[RNAPo]0 = 0

[r]0 = 0

[Z]0 = 0

[Lactose] = 1000

[ILactose] = 0

Fig. 3   Simulation results of 
the lac operon model with 
parameters and initial values as 
reported in Tables 1 and 2. The 
graphs show the dynamics of 
the concentration of beta-galac-
tosidase in the presence (Z) and 
in the absence ( Z

s
 ) of lactose
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significantly from case to case. Moreover, although opti-
mized and approximate variant of these methods are avail-
able [37, 46], these models still have scalability problems 
because of the problems of numerical integration and 
stochastic simulation algorithm with stiff systems, and of 
the huge number of simulations that often have to be per-
formed to investigate the system dynamics.

4 � GRNs as Boolean models

Quantitative methods, such as the ODEs and stochastic 
simulation presented in Section  3, are extremely use-
ful to study cell dynamics when mechanistic details and 
kinetic parameters are known. On the other hand, the noisy 
nature of biological data makes difficult (often impossi-
ble) to exactly determine parameter values [72]. Moreover, 
analysis of quantitative models is often computationally 
unfeasible. Then, more abstract (qualitative) models are 
often preferable, since they can provide useful information 
on the system dynamics in reasonable times.

4.1 � Boolean network models

The most common qualitative modelling frameworks for 
GRNs are based on Boolean networks [97], which are able 
to describe biological phenomena such as oscillations, 
multi-stationary events, long-range correlations, switch-like 
behaviour stability and hysteresis. A Boolean network con-
sists of a set of Boolean variables (the nodes of the network) 
each associated with a Boolean function defined on a sub-
set of the variables. In the context of GRNs, each variable 
represents the activation state of one gene, which can be 1 
(active) or 0 (inactive) [103]. Moreover, the Boolean func-
tion associated to a variable represents the influence of other 
genes on the activation state of the gene described by such 
a variable. In practice, such a function will be periodically 

used to update the corresponding Boolean variable, allowing 
the dynamics of the GRN to be simulated.

As usual, Boolean functions can be equivalently repre-
sented as logic formulas with and, or, and not operators, 
or by truth tables. In this paper we will denote a Boolean 
function associated to a Boolean variable Y and defined on 
Boolean variables X1,...,Xn as an assignment operation of 
the form 

Y:= f(X1,...,Xn)

 where f is expressed as a logic formula.
Boolean networks describing GRNs are often repre-

sented as directed graphs, where each node corresponds to 
a Boolean variable and each edge represents the influence 
of one variable on another one (that is, the influence of one 
gene on another gene). Edges can be of two types, promotion 
or inhibition, corresponding to a positive or negative influ-
ence, respectively [55]. In the graphical representation of a 
Boolean network, the two types of edges are usually depicted 
by using arrows with different shapes or colors. In this paper 
we will represent promotion edges as green solid arrows and 
inhibition edges as red dotted arrows, as shown in Fig. 4a.

The graph representation of a Boolean network is actu-
ally quite abstract. Let us consider, for example, the graph 
in Fig. 4b. It represents a network with four genes A, B, C 
and X, in which A and B have a positive influence on X, and 
C has a negative influence on the same gene. This suggests 
that in the formula expressing the condition for the activa-
tion of X there will be a positive (not negated) occurrence of 
A and B while there will be a negative (negated) occurrence 
of C. This is because the truth of A and B favors the truth 
of X, while the truth of C disfavors the truth of X. However, 
the graph representation is very abstract: it does not specify 
the way the genes influence each other. Indeed, there are 
several different Boolean functions, that can correspond to 
configuration of edges of Fig. 4b, such as 

Fig. 4   Examples of Boolean 
networks



213A survey of gene regulatory networks modelling methods: from differential equations, to Boolean…

1 3

X:= A and B and not C
X:= (A or B) and not C
X:= (A and not C) or B
X:= ...

 In all the previous Boolean functions A and B have a 
positive influence on X, while C has a negative influence on 
X. As a consequence, several different Boolean networks 
can correspond to the same graphical representation. On the 
other hand, starting from a generic Boolean function it is 
not always possible to obtain a clean and simple graphical 
representation. While it is easy to do it for formulas in which 
occurrences of each gene are either all positive (not negated) 
or negative (negated), for formulas containing a gene having 
both positive and negative occurrences the translation into 
graphical representation is not straightforward. This hap-
pens, for instance, in the following case: 

X:= (A and B) or (not A and C)

 in which A has either a positive or a negative influence 
on X depending on the activation states of B and C. This 
formula cannot be trivially represented in graphical form 
because the type of the arc connecting A with X cannot be 
determined. A possible solution is to create an extended 
graph with include nodes representing combinations of 
genes rather than single genes as discussed in [12].

Even if the graph representation does not give any infor-
mation on the way genes interact, it is often what is obtained 
from the lab experiments performed to infer a GRN (see Sec-
tion 2.2). Hence, a critical step for the accuracy of the model 
is then to choose a consistent method to translate combina-
tions of positive and negative influences into Boolean func-
tions. Indeed, as pointed out in [36], Boolean networks are 
easy to interpret and they offer a simple dynamic approach 
for GRN [34]. Moreover, under specific circumstances, the 
predicted behaviour of Boolean networks is qualitatively 
similar to that obtained by using an ODE model of the net-
work, as described in [84]. On the other hand, the predic-
tions of Boolean models can become unrealistic for larger 
networks when compared to those of the corresponding 
ODE models.

The main limitation of this approach lies with the discre-
tization step, which can cause the loss of important details 
of the system behaviour. Indeed, gene expression is rarely 
a matter of full-activation or full-silencing, since there are 
often different gene states in between. Moreover, discretiza-
tion forces genes to update their state according to a global 
clock, while in reality genes change their state with different 
frequencies as described in [64].

4.1.1 � Synchronous vs asynchronous dynamics

The dynamics of a Boolean network model is given as a 
sequence of steps in which the value of the Boolean vari-
ables are updated with the values obtained by the associ-
ated Boolean functions. Usually, two alternative updating 
schemes can be considered: synchronous and asynchronous.

The synchronous scheme is deterministic: all the vari-
ables are updated simultaneously according to the associated 
Boolean functions. As described in [40, 94], this approach, 
based on discrete time steps, is computationally efficient and 
easy to implement. Synchronization of updates implicitly 
assumes that all the biological events have similar duration. 
This is often quite a strong assumption from the biological 
viewpoint [43], since in general the timescales of biological 
events can vary from fractions of seconds to hours [74, 103].

To address this problem we can make use of the asyn-
chronous scheme, which assumes that only one variable can 
be updated in a single step, and every variable is equally 
likely to be updated [43]. In this approach, the nodes can 
be updated in any order [27, 50, 103], and the dynamics 
becomes non deterministic.

The asynchronous update strategy is often considered 
more realistic, since the underlying chemical reactions have 
in general different rates, so they happen at different (sto-
chastic) times. In [92], the authors compare the synchro-
nous and the asynchronous schemes to understand which 
one provides a more realistic description of the biologi-
cal system under study. They show that the asynchronous 
update scheme detects the attractors more accurately than 
the synchronous scheme. On the other hand, the synchro-
nous update strategy is in many case preferred since it is 
deterministic and makes the analysis of the network behav-
iours easier.

In [28], the authors propose two new approaches to the 
analysis of Boolean models, which combine continuous-time 
techniques with discrete events, to describe the timescales 
of the genetic processes realistically. By these methods, they 
show how to overcome the limitation of the synchronous 
scheme that can be considered potentially unrealistic and 
may not be suited for intracellular biological processes, due 
to the variety of timescales.

An approach that is alternative to both the synchronous 
and the asynchronous strategies is the one offered by proba-
bilistic Boolean networks [95, 96]. They are Boolean net-
works which permit the quantification of the relative influ-
ence and sensitivity of genes in their interactions with other 
genes through the use of probabilities. This allows the net-
work dynamics to be expressed in terms of a Discrete Time 
Markov Chain, suitable for probabilistic steady state analysis 
or Monte Carlo simulation. Probabilistic Boolean networks 
can be still considered as a qualitative modelling framework, 
although at a slightly lower abstraction level.
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On the same line, a remarkable formalism are Bayesian 
networks, a probabilistic graphical model commonly used 
for the GRN analysis. This approach is particularly suited 
for characterizing time-series gene expression data, which 
are the data results of an experiment in which clusters of 
genes are measured at different, successive time points. An 
interesting analysis of this approach is done in [58], where 
the authors compare the performance of Bayesian networks 
to Probabilistic Boolean networks, and state that the first 
one it is able to identify more gene interactions than Proba-
bilistic Boolean networks. For more details about Bayesian 
networks, we remand to these articles [22, 102].

4.1.2 � Attractor analysis

Given an initial configuration for the Boolean variables, the 
model evolves following either a synchronous or an asyn-
chronous updating scheme. This causes the values of the 
variables to change describing new configurations (or states) 
reached by the modeled GRN. After a number of steps, the 
model typically reaches a state (or sequence of states) known 
as attractor [43]. An attractor can be of one of these three 
types:

–	 Self-loop, which is a single state attractor;
–	 Simple loop, which is a cyclic sequence of states;
–	 Complex loop, which is the alternation of two or more 

simple loops.

When the synchronous update scheme is adopted, it is only 
possible to reach self-loops and simple loops, since the 
dynamics is deterministic. In the asynchronous case, instead, 
it is also possible to reach complex loops.

The simplest type of attractor, the self-loop, corresponds 
to a fixed point of the Boolean functions of the networks. 
All the updates do not change the values of the variables. 
Since the Boolean functions are computed independently 
from each other, a self-loop is the same regardless of the 
chosen updating schemes (synchronous or asynchronous). 
Moreover, in complex networks, the update schemes influ-
ence the probability to reach the same attractors, as shown 
in [40, 92], where the attractors, reached in the synchronous 
models, are not present in the corresponding asynchronous 
models.

Identifying the attractors is biologically very relevant 
because they are often correlated to the gene activation con-
figurations of specific cellular phenotypes, as shown in [43, 
57, 93]. Besides, the analysis of attractors helps to examine 
the system dynamics and compare it with experimental data.

Detecting the attractors is sometimes challenging, in par-
ticular, when the exact initial configurations are unknown or 
when large Boolean models are studied. As regards the first 
aspect, the problem is that it requires testing the model by 

considering 2n possible initial configurations, with n is the 
number of variables in the network. An approach to over-
come this problem is to sample a large number of initial con-
figurations and to calculate the probability to reach certain 
attractors, as in [59, 109].

For larger models, it can be computationally unfeasible to 
identify the attractors [110], in particular when the asynchro-
nous updating scheme is adopted. An interesting approach to 
this problem is described in [43], where the authors propose 
a combined synchronous-asynchronous traversal technique 
to find the attractors of an asynchronous model in run time 
proportional to the synchronous scheme. Several other works 
propose methods for reducing the network to simplify the 
model analysis. In [17, 71, 92], the authors remove certain 
variables (called frozen nodes) that evolve to the same steady 
state independently of their initial values and thus are not 
relevant for attractor identification [103].

4.1.3 � Examples of GRNs as Boolean networks

As shown in [3], a Boolean network can accurately pre-
dict the dynamics of a biological system. For this reason, 
Boolean networks have been applied to model several bio-
logical regulatory networks, such as the yeast cell cycle [57], 
the differentiation of T-helper [68], the signal transduction 
network for abscisic acid-induced stomatal closure [59], the 
mammalian cell cycle [40], and the expression of Drosoph-
ila segment polarity genes [3]. In this paper we show how 
to use GRNs to model the lac operon example we presented 
in Section 2.1.

The lac operon example. As often happens in practice 
to model the lac operon regulation network described in 
Section 2.1, we start by introducing the graph representa-
tion of the Boolean network (see Section 4.1). We associ-
ate each gene (and also lactose, which is the initial stimu-
lus) to a node, which is connected to the others nodes by 
edges describing gene interactions. The result is the graph 
in Fig. 5, which shows that the three genes responsible for 
lactose metabolism, z, y and a, are negatively influenced by 
gene i, from which the Lac repressor is synthesized. Moreo-
ver, gene i is in turn negatively influenced by lactose, which 
binds and inhibits the Lac repressor. 

We remark that the negative influence of lactose on the 
gene i is, in reality, very different from the negative influence 
of the gene i on z, y and a. The former is at the protein level 
(interference with the activity of the lac repressor) while the 
latter is at the DNA level (interference with gene transcrip-
tion). However, this difference is not captured at the abstrac-
tion level of a qualitative model.

To each Boolean variables, we associate a Boolean func-
tion, described as the assignment of a Boolean expression. 
The expression has to be consistent with the influences 
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expressed by the edges of the graph representation. How-
ever, in this case each gene is influenced by only one other 
gene, so defining the Boolean functions is straightforward: 

Lact:= Lact
i:= not Lact
z:= not i
y:= not i
a:= not i

 Let us now consider an initial configuration in which 
lactose is present, that corresponds to the following initial 
values for the Boolean variables: 

as we can notice, the configuration reaches a stable state 
(self-loop attractor) at step 4. 

Lact i z y a

Step 0 1 1 0 0 0
Step 1 1 0 0 0 0
Step 2 1 0 0 1 0
Step 3 1 0 1 1 0
Step 4 1 0 1 1 1

In this case, both the updating schemes reach the same 
stable state, but, as described in Section 4.1.1, this is not 
always the case since in general the two approaches can lead 
to very different configurations.

4.2 � Threshold Boolean networks

A particular class of Boolean networks are the threshold 
Boolean networks [19, 108]. Their main characteristics is in 
the way they infer Boolean update functions from the graphi-
cal representation of the network. The idea is that each edge 
is weighted by an integer number and each node is associated 
to a threshold value. The Boolean function for the update 
of a variable corresponding to a given node is obtained by 

Fig. 5   The Boolean model of 
the lac operon. The lactose has 
a negative influence on the gene 
i, which has a negative influence 
on the genes z, y, and a 

Lact = 1 i = 1 z = 0 y = 0 a = 0

 By adopting a synchronous updating scheme, all vari-
ables are updated at each step. Then, by simulating the 
network, we obtain the sequence of steps described in the 
following table. 

Lact i z y a

Step 0 1 1 0 0 0
Step 1 1 0 0 0 0
Step 2 1 0 1 1 1

As we can notice, the configuration reaches a stable state 
(self-loop attractor) at step 2, in which gene i is not active 
(i.e. the Lac repressor it synthesizes is blocked by the bind-
ing with lactose) and genes z, y and a are active (i.e. the 
enzymes for lactose metabolism are synthesized). This cor-
responds to what already observed with the quantitative 
models described in Section 3.

Keeping the same initial configuration, we can adopt also 
the asynchronous updating scheme, in which a single vari-
able is updated at each time step. Now the dynamics is no 
longer deterministic. A possible evolution is given by the 
sequence of steps described in the following table in which, 

computing a weighted sum of the values of the influenc-
ing nodes. The sum is then compared with the threshold to 
determine the new value of the Boolean variable.

This way of specifying the Boolean functions of the net-
work is a simple and deterministic, and solves the problem 
of mapping graph representations into actual Boolean net-
works we mentioned at the end of Section 4.1. On the other 
hand, this is not a general methodology since not all Boolean 
functions can be specified in terms of weighted sums.

To define threshold Boolean networks, let us denote the 
set of nodes as M = {S1, S2, ..., Sn} . Each node is also a 
Boolean variable and can take 0 and 1 as values. As before, 
these values represent the inactive and the active states of 
the gene modeled by the node. Edges represent positive or 
negative influences between genes, corresponding to positive 
or negative weights. In this paper, we assume the possible 
weights to be restricted to 1 and −1 (although this restricts 
the expressive power), and we denote with aij the weight of 
the edge connecting node Si to node Sj . Let E be the set of 
all weighted edges aij , the pair (M, E) is called threshold 
Boolean network [8].
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Another peculiarity of threshold Boolean networks is that 
nodes in M are partitioned into

self-activating ( Msa ) which remain active until not inhib-
ited by some other node;

non self-activating ( Mnsa ) which become inactive if not 
sustained by some other node. The state of node i at time 
t + 1 , denoted Si(t + 1) , is computed from the states of all 
nodes at time t as follows:

where

–	 aij > 0 if node j promotes node i (we assume aij = 1);
–	 aij < 0 if node j inhibits node i (we assume aij = −1);
–	 aij = 0 if node j has no influence on node i;
–	 the value �i is the threshold parameter for node i (often 

equal to 0).

As a first example of threshold Boolean network consider 
the graph depicted in Fig. 5. Assume that all nodes are 
self-activating; formally we have M = {LACT , i, z, y, a} , 
Msa = {LACT} and Mnsa = {i, z, y, a} , and assume weights 
( aij ) equal to −1 for all the edges. By setting the threshold 
parameter for i, z, y and a to −1 , and 0 for LACT​, we obtain 
a threshold Boolean Network model for the lac operon.

Consider again the case where LACT​ and i are both ini-
tially active. After the first step (Step 1 in the table below), 
gene i becomes inactive because −1 ≯ −1 , LACT​ is active 
because it is self activating and z, y, a are inactive because i 
was active at the previous step and −1 ≯ −1 . At Step 2, z, y 
and a become active because i was inactive at the previous 
step and 0 > −1 . The following table reports the evolution 
of the Boolean network 

Lact i z y a

Step 0 1 1 0 0 0
Step 1 1 0 0 0 0
Step 2 1 0 1 1 1

An additional example of threshold Boolean network in 
graph representation is given in Fig. 6. In addition to stand-
ard Boolean networks, we have also non self-activating 
nodes that are decorated by a (yellow) dashed arrow self 
loop.

In the network in Fig.  6, nodes are M = {A,B,C,D} 
(with Msa = {A,C} and Mnsa = {B,D} ) and the edges are 
as depicted in the figure Thus, A and C are self-activating, 
while B and D are not. Assuming that the threshold parameter 

Si(t + 1) =

⎧
⎪⎪⎨⎪⎪⎩

1 if
∑

j aijSj(t) > 𝜃i
0 if

∑
j aijSj(t) < 𝜃i

Si(t) if Si ∈ Msa ∧
∑

j aijSj(t) = 𝜃i
0 if Si ∈ Mnsa ∧

∑
j aijSj(t) = 𝜃i

for each node is 0, we describe the temporal evolution of the 
network by considering a synchronous update scheme and an 
initial state in which only D is active. We obtain the sequence 
of steps shown in the following table. 

A B C D

Step 0 0 0 0 1
Step 1 1 1 0 0
Step 2 1 1 1 0
Step 3 0 0 1 1
Step 4 0 0 0 1

At the first step, D stimulates the activation of A and B 
because C (which is their inhibitor) is not present. Since D 
is non self-activating, at the second step it is inactive. Then, 
at the third step C is activated by B, which in turn remains 
active thanks to A, which in turn remains active because it 
is self-activating and at step 2 C was inactive. At the fourth 
step, C activates D and inhibits A and B, which become inac-
tive. Finally, C becomes inactive because inhibited by D. The 
last state coincides with the first one, so we reached the end 
of a cycle (simple loop attractor). Different dynamics can be 
obtained by starting from different configurations [8].

It is worth noting that the Boolean function expressing 
the activation of a node i in a threshold Boolean network can 
easily be defined. Consider a combination of active/inactive 
genes such that Si(t + 1) = 1 holds. The conjunction of all 
active genes in the combination together with the conjunction 
of the negation of each gene that was inactive gives a formula 
to obtain the activation of node i. By taking the disjunction of 
such formulas for all possible combinations of active/inactive 
genes such that Si(t + 1) = 1 , we obtain the Boolean function 
for the activation of i. On Section 5.3 such ideas are used to 
propose a naive translation of threshold Boolean network into 
Reaction Systems.

Fig. 6   An example of threshold 
Boolean network representing a 
GRN with four genes. Weights 
of edges are absent since we 
assume weight 1 for positive 
influences and −1 for negative 
ones
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4.2.1 � GRNs as threshold Boolean networks

To show an example of real GRN modeled as a threshold 
Boolean network, we recall here the model of the yeast (S. 
cerevisiae) cell cycle proposed by Li et al. in [57].

The yeast cell cycle control circuit is one of the best 
understood molecular control networks, studied as example 
of robust dynamical process in the cell [19, 29, 66]. Indeed, 
this process, by which one cell grows and divides into two 
daughter cells, is a vital biological process the regulation of 
which is highly conserved among the eukaryotes. It consists 
of 4 phases:

–	 G1 (in which the cell grows and, under appropriate condi-
tions, commits to division);

–	 S (in which the DNA is synthesized and chromosomes 
replicated);

–	 G2 (a “gap” between S and M);
–	 M (in which chromosomes are separated and the cell is 

divided into two).

After the M phase, the cell enters the G1 phase, hence com-
pleting a “cycle”.

Even if this network involves more than 800 genes, Li 
et al. in [57] propose a network of 11 key genes (plus a signal 
node) shown in Fig. 7. Although in principle the biological 
events happening during the cell cycle have very different 
time scales of action, in this system there are gene activation 
configurations that are known to be milestones for the activa-
tion of the different phases of the cycle. This motivates the 
adoption of the synchronous update scheme for the analysis 
of the system dynamics.

In [57], the model has been used to conduct an exhaustive 
attractor analysis. The authors considered all the 211 initial 
states they lead to seven stationary states (self loop attrac-
tors). Moreover, one of these seven states attracts 86% of the 

initial states. The genes that turn out to be active in such an 
attractor are those which have been observed to be expressed 
in phase G1 of the yeast cell cycle (that is also the resting 
phase of the cycle).

The work proposed by Li et al. has the merit of show 
how modelling real biological genetic circuits can predict 
sequence patterns of protein and gene activity, as observed 
in living cells, with much less input (e.g. parameters) than 
other approaches, such as ODEs. In addition, another advan-
tage of this approach is the possibility to observe that the cell 
cycle of the regulatory network in yeast is extremely stable 
and robust, analysing the topology of the network and its 
response to small perturbations.

5 � Computational models of GRNs

In literature there are many formalisms that can be used to 
describe a biological systems at different abstraction levels. 
In this section, we describe how GRNs can be modeled by 
using Petri nets, P systems, and reaction systems.

5.1 � Petri nets

They are a rigorous mathematical formalism providing also 
an intuitive graphical representation, proposed by Carl Adam 
Petri [82]. They were originally used for describing, design-
ing and studying discrete event-driven dynamical systems 
that are characterized as being concurrent, asynchronous, 
distributed, parallel, random and/or non-deterministic, but 
they have been extended in many different directions.

Petri nets have been successfully used to model biological 
systems (see [49, 69, 83] for an introduction) and in particu-
lar metabolic networks. Petri nets allow modelling quantita-
tive dynamical aspects like mass flow in a network.

In general, Petri nets can be represented as directed 
graphs consisting of two different kinds of node: places and 
transitions. The graph is bipartite, hence each edge connects 
a place to a transition, or vice versa. The game of tokens 
models the dynamical aspects of the model. Each place can 
contain a number of tokens and transitions take tokens from 
places and give token to other places according to edges 
orientation. Each edge has a weight that specifies how many 
tokens are taken/given by the corresponding transition. If 
each source place contains a sufficient number of tokens, 
then the transition is enabled (i.e. it can be fired) and the 
tokens travel along the edges. The state of the system is 
represented by the allocation of tokens to the places and it 
is called marking. A Petri net comes equipped with an initial 
marking which is the initial allocation of tokens to places.

An important advantage of using Petri nets for modelling 
biological networks is that they are supported by theoreti-
cally well-founded techniques and tools for simulation and 

Fig. 7   Boolean network model for the yeast cell cycle control net-
work as defined in [57]



218	 R. Barbuti et al.

1 3

analysis. Indeed, a Petri net can be automatically checked for 
the following properties (see [26] for more details):

–	 Boundedness ensures that the number of tokens in the 
initial marking and in the evolution of the net for each 
place is bounded. For metabolic networks this means that 
products cannot accumulate;

–	 P-invariants are sets of places for which the weighted 
sum of tokens is constant independently of the sequence 
of firings. In metabolic networks, this property corre-
sponds to a mass conservation law;

–	 T-invariants are firing sequences which reproduce a 
marking. In biological terms, T-invariants may represent 
cyclic behaviours;

–	 Reachability of a marking M asserts that there exists an 
evolution from the initial marking to a given marking M. 
This property may be relevant for biological networks, 
as it ensures the existence of an evolution leading the 
system from an initial state to a desired state;

–	 Liveness ensures that it is always possible to ultimately 
fire any transition. Liveness guarantees that a reaction 
can eventually occur.

Petri nets can be used to model GRNs in a qualitative 
way. Due to their asynchronous nature, the adoption of an 
approach analogous to the asynchronous update scheme is 
rather straightforward. The only non-trivial aspect is that the 
model has to include one place for each gene state (hence, 
two per gene).

In Fig. 8, we show a Petri net modelling the lac operon 
GRN, corresponding to the Boolean network represented 
in Fig. 5. Intuitively, the implementation is done as follow: 
each node of the Boolean network corresponds to two com-
plementary distinct places pi and pi , representing its active 
and inactive states, respectively. As a consequence, we have 
the constraint that the sum of tokens in each pair of places 
pi and pi has to be 1. To draw the transitions to pi , we have 
to consider all the combinations of active/inactive genes that 
activate pi in the Boolean network. For each combinations 

we draw the transition to pi . Moreover, we have to draw all 
the transitions from all the combinations that do not activate 
pi to pi . In Fig. 8, we draw the Petri net of the lac operon. In 
this case, the initial marking describes the configuration in 
which lactose is present, gene i is active while genes z, y and 
a are not. According to the enabled transitions, the token in 
place i will be moved into place i , and then the tokens in z , y 
and a will be moved into z, y and a, respectively, describing 
the activation of the genes for lactose metabolism. 

The use of one place for each gene state is necessary to 
model inhibitory influences between genes. Petri net transi-
tions, whose firing models gene state changes, are triggered 
by the presence of some tokens in the proper places. If we 
used one place for each gene, with tokens representing gene 
activation, then a transition modeling a state change (nega-
tively) influenced by an inhibitor would have to be triggered 
when no token is present in the place representing such an 
inhibitor. However, standard Petri nets cannot be used this 
way since they are not able to test for the absence of tokens 
in a place. This possibility is instead offered by Petri nets 
with inhibitory arcs [23] that are, however, in general much 
more difficult to analyze because of their increased expres-
sive power.

In [98], the authors proposed a new technique for con-
structing qualitative and synchronous Petri net models of 
GRNs. Following the approach originally proposed in [25, 
90], the Petri net is constructed by directly translating the 
Boolean formulas into appropriate Petri net control struc-
tures to obtain a compact net that correctly captures the 
original Boolean behaviour of a GRN. Such control struc-
tures contain a number of places and transitions specifically 
added to force the synchronous update strategy. The authors 
apply their method to the GRN controlling sporulation in the 
bacterium Bacillus subtilis and use simulation and model 
checking tools to verify hypotheses on the behaviour of the 
system. The main advantage of the approach proposed in 
[98] is the possibility to handle incomplete and/or incon-
sistent behavioural information exploiting the possibility 
of Petri nets of specifying alternative (non-deterministic) 
behaviours, even in the case of synchronous GRNs. Moreo-
ver, Petri nets modelling enables the application of several 
analysis methodologies and tools that are available for this 
formalism.

Quantitative models of biochemical and metabolic net-
works, can be constructed by using continuous Petri nets 
[44]. They are an extension of Petri nets in which the mark-
ing of a place is no longer an integer, but a positive real 
number (called token value) representing the concentration 
of chemical species. Moreover, each transition is associated 
to a kinetic constant. These features make continuous Petri 
nets fully capable of representing chemical reactions. Fur-
thermore, the dynamics of a continuous Petri net can be 
expressed in terms of ODEs in agreement with the standard 

Fig. 8   The initial marking of the Boolean Petri net of the lac operon. 
For each biological entity, we draw an active and inactive places
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mass action kinetics of chemical reactions that we have 
described in Section 3.

For the quantitative modelling of gene regulatory net-
works, Goss and Peccoudv proposed an approach to model 
stochastic systems in molecular biology using stochastic 
Petri nets [47, 48]. Their approach was illustrated with 
examples of models of genetic and biochemical phenomena 
by using existing software. In their works they use stochastic 
Petri nets also to analyze the stabilizing effect of the protein 
Rom on the genetic network controlling COLE1 plasmid 
replication [48]. This approach is useful because it shows 
how to model biological processes that cannot be modelled 
suitably by a deterministic approach.

Representing continuous values such as the concentration 
of mRNA or proteins is an essential factor in a quantitative 
modelling approach. We have seen that this is captured for 
instance by continuous Petri nets, but not by ordinary Petri 
nets. For this reason, in [1, 65, 67] hybrid Petri nets are 
proposed, which extend Petri nets to allow handling continu-
ous factors without explicitly including them in the model. 
In hybrid Petri nets it is possible to express the relationship 
between continuous and discrete values, while keeping the 
characteristics of ordinary Petri nets soundly.

5.2 � P systems

Although they have been proposed as a model of compu-
tation, P systems are also well-established as a modelling 
notation for biochemical pathways and GRNs [16, 76], in 
particular in the context of systems biology [42, 78]. Indeed, 
since P systems rules are inspired by chemical reactions, 
their application to the modelling of chemical reactions is 
quite straightforward. Moreover, the membrane structure of 
P systems enable the development of compartmental models. 
To this aim, several quantitative extensions of P systems 
have been developed, in both the deterministic [77] and the 
stochastic [78, 79] settings to carefully take reaction rates 
into account. Formally, a P System is a tuple:

where

–	 n is the number of membranes;
–	 � = {c1..., cm} is the alphabet of the biological objects 

(such as proteins, RNA and DNA, chemical species that 
are involved in the system);

–	 � is the membrane structure, composed of n ≥ 1 other 
membranes;

–	 w1...wn are strings over � representing the multisets of 
objects present in the regions of the membrane structure;

–	 Ri is a finite set of multiset rewriting rules associated to 
each membrane.

𝛱 =< 𝛴,𝜇,w1...wn,Ri >

Thus, the main elements of this formal language are: mem-
branes (that create compartments used to distribute compu-
tations); multisets (abstractions of chemical entities that are 
used as data); evolution (rewriting) rules (abstractions of 
chemical processes that are used as programs).

The dynamics of a P systems starts from the initial con-
figuration represented by multisets w1, ...,wn , and evolves 
through steps in which rules are applied in a maximally par-
allel way. This means that at each step several rules can be 
applied at the same time (an the same rule can be applied 
more than once) to different objects in a maximal way. This 
form of parallel rule application has two implications: (i) 
rules compete for objects, and (ii) state changes represented 
by different rules are synchronous.

In the context of GRN, by assuming objects to represent 
gene activation states, we have that (i) and (ii) together make 
the modelling of gene state changes difficult. On the one 
hand, we are forced to adopt a synchronous update strat-
egy, and on the other hand a single object representing the 
activation state of one gene cannot be used to promote the 
activation of more than one other genes. For this reason, 
the modelling of GRN is made more natural by the use of P 
systems with promoters and inhibitors [20]. This extension 
allows expressing positive and negative influences between 
genes as rule promoters and inhibitors, respectively, which 
are object that condition the application of the rule without 
being consumed.

Using this extension, the lac operon GRN can be mod-
elled by following P system:

where R consists of the following rules:

where � represents the empty multiset and in which rules 
analogous to the last two, with z replaced by y and a, are 
omitted.

Each pair of rules represents the activation and inactiva-
tion of a gene. Promoters and inhibitors (listed on the right 
side of |, with inhibitors denoted with an over-line) express 
the conditions for the application of the rule. Hence, gene i 
is activated when both i and LACT​ are not present (first rule), 
and it is inactivated when LACT​ is present (second rule). 
Similarly, z is activated when both z and i are not present, 
and z is inactivated when i is present.

In [91], the lac operon is presented as a case study of 
GRN modelling with P systems, further extended in order to 
take quantitative modelling aspects in to account. For each 
implemented membrane four different initial conditions 
are considered: with/without glucose and with/without lac-
tose. Moreover, the authors associate to each rule a finite 
set of attributes which are meant to capture the quantitative 

𝛱 =< {LACT , i, z, y, a}, [_]1, {LACT , i},R >

� → i |
i,LACT

i → � |LACT � → z |
z,i

z → � |i
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aspects that are often necessary to characterise the reality 
of the phenomenon to be modelled like kinetic or stochastic 
constants. By using this approach, the authors are able to 
describe the behaviour of the system, and, in addition to the 
other lac operon models, they take into account also the key 
role played by membranes in the structure and functioning 
of the cells and the discrete and concurrent character of pro-
cesses in bio-systems.

Moreover, in [16], the authors proposed a quantitative 
model of the GRN underlying the quorum sensing ability of 
Vibrio fischeri. Quorum sensing is the ability of some bacte-
ria to perceive their own density in the environment in order 
to express some proteins in a coordinated way, only when 
their population is large enough. By the proposed approach, 
the authors can track the behaviour of each individual bacte-
rium in the colony. On the same line, in [15] Bernardini et al. 
proposed a new variant of P systems inspired by quorum 
sensing and investigate its computing power.

Some papers proposed approaches that make a synergistic 
use of quantitative and qualitative methods. In [53], Hinze 
et al. proposed a bridge between quantitative and qualitative 
modelling of GRNs by describing a transformation of Hill 
kinetics for GRNs into P systems. Moreover, in [5, 86], the 
authors proposed a quantitative model of allelic gene net-
work regulations based on P transducers, that are an exten-
sion of P systems. The model copes discrete aspects of gene 
regulation, such as the one-to-one interactions with DNA 
molecules, with some continuous aspects, such as those 
related to the relationship between gene structure and func-
tional organization.

From the purely qualitative viewpoint, an extension of 
P systems, called logic network dynamic P systems (LNDP 
systems) has been proposed in [100] for the modelling of 
GRNs in which relationships between genes are inferred by 
applying the LAPP logic method [104].

Finally, in the context of synthetic biology, Konur et al. 
in [56] illustrate the use of the Infobiotics Workbench [18], 
a modelling tool based on stochastic P systems, on some 
example of synthetic genetic Boolean gates. The authors 
based their tool on P systems, because this formalism allows 
the specification of sets of reactions in multiple compart-
ments and transport of molecules among them. Thus, this 
approach can facilitate the modelling and rapid prototyping 
of multi-compartment systems.

5.3 � Reaction systems

Reaction systems [21, 38] were introduced by Ehrenfeucht and 
Rozenberg as a novel model for the description of biochemical 
processes driven by chemical reactions occurring inside liv-
ing cells. Reaction systems are based on two opposite mecha-
nisms: facilitation and inhibition. Facilitation means that a 
reaction can occur only if all of its reactants are present, while 

inhibition means that the reaction cannot occur if any of its 
inhibitors is present. The state of a reaction system consists of 
a finite set of objects which can evolve by means of application 
of reactions. The presence of an object in a state expresses the 
fact that the corresponding biological entity, in the real system 
being modeled, is present. Quantities (or concentrations) of 
the entities are not described: reaction systems are hence a 
qualitative modelling formalism.

As described in [33], the approach of reaction systems is 
useful to analyze how the state of the system changes over dis-
crete time steps. Indeed, the evolution of the reaction system is 
regulated by a deterministic assumption, since all the reactions 
take place without any concurrency on the consumption of ele-
ments, and the next step of the system is calculated considering 
its current state.

We recall the basic definition of reaction system [21, 38]. 
Let S be a finite set of symbols, called objects. A reaction is 
formally a triple (R, I, P) with R, I,P ⊆ S , composed of reac-
tants R, inhibitors I, and products P. Reactants and inhibitors 
are assumed to be disjoint ( R ∩ I = � ), otherwise the reaction 
would never be applicable. The set of all possible reactions 
over a set S is denoted by R(S) . A reaction system is a pair 
A = (S,A) , where S is a finite support set, and A ⊆ R(S) is a 
set of reactions. The state of a reaction system is described by 
a set of objects.

Starting from an initial state, the evolution of a reaction 
system is based on application of reactions. A reaction can 
be applied if, in the current state, reactants R are present and 
inhibitors I are absent. The result is that products P will be pre-
sent in the next state. The application of multiple reactions at 
the same time occurs without any competition for the reactants 
(threshold supply assumption). Therefore, each reaction which 
is not inhibited can be applied, and the result of the application 
of multiple reactions is cumulative.

In [7], the authors define a reaction system modelling the 
lac operon. Considering again Fig. 1, they are interested in 
the production of the three enzymes for lactose degradation, 
denoted as a single entity Z, on which the repressor R has a 
negative influence. Then, the repressor R is in turn subject to 
the negative influence of lactose (denoted LACT​). In addition 
to these influences, they model the activity of the RNA poly-
merase (denoted POL), which can bind to the promoter gene p 
and the result of such binding is denoted as Pp. As a result,they 
obtain the following simple reaction system:

AOperon = ({LACT , p,POL,Pp,R, Z}, {a1,… , a6})
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Rules a1 , a2 , and a3 describe the persistence of the promoter 
gene, of the RNA polymerase, and of lactose. Rule a4 and 
a5 describe the activity of the RNA polymerase, namely 
the binding with the promoter gene and the transcription 
of the structural genes. The latter rule has R as inhibitor to 
model the negative influence of the repressor on the tran-
scription and synthesis of the the three enzymes denoted Z. 
Finally, rule a6 models the negative influence of lactose on 
the repressor.

Recently, a systematic translation of threshold Boolean 
networks into closed reaction systems has been proposed [8, 
9]. The dynamics of the reaction system obtained from the 
translation simulates the evolution of the Boolean network. 
This correspondence has two main advantages: on one hand 
it allows to “play” with the reactions (for example by silenc-
ing some genes) to deeply understand the behaviour of the 
network; on the other hand, it enables the application of 
techniques to detect causality relationships between genes 
[10, 11]. Moreover, ancestors formulas, as defined in [6], 
allow characterizing all the initial configurations leading to 
a specific attractor.

To translate a threshold Boolean network into a reaction 
system the following convention is adopted: a gene appears 
in a state if and only if that gene is active. This allows us to 
describe configurations of active/inactive genes by means of 
the corresponding set of active genes.

A naive translation of threshold Boolean networks into 
reaction systems could be obtained by simply exploiting the 
truth table expressing the activation function of each gene. 
The idea is to consider all the combinations of active/inac-
tive genes that lead to the activation of a certain gene in 
the threshold Boolean network. Consider, for example, the 
threshold Boolean Network depicted in Fig. 9, with E non-
self activating, weight 1 for positive influences and −1 for 

a1 = ({p}, �, {p})

a2 = ({POL}, �, {POL})

a3 = ({LACT}, �, {LACT})

a4 = ({POL, p}, �, {Pp})

a5 = ({Pp}, {R}, {Z})

a6 = (�, {LACT}, {R})

negative ones and threshold parameter equal to 0. The same 
figure shows also the corresponding Boolean function for 
the update of E considering all the different configurations 
of activation/deactivation of genes A, B, C and D. 

Consider for example the fifth row of the table on the 
left which describes a configuration in which just gene B is 
active while all the others are inactive. In the case described 
by this configuration, according to the behaviour of the 
threshold Boolean network on the left, E becomes active 
because B that has a positive influence is active and all inhib-
itors are inactive, therefore 1 > 0 . This result is reported in 
the truth table by setting gene E equal to 1 in the row cor-
responding to the described configuration.

From such table, a reaction system can be easily obtained 
by considering all rows that lead to the activation of E. In 
particular, the configuration A = 0,B = 1,C = 0,D = 0 
described by the fifth row can be translated into the reaction 
({B}, {A,C,D}, {E}) which says that E will be added to the 
next state (the gene will become active) if B was present in 
the previous state and A, C and D were not present. From 
this naive translation we obtain the following five reactions, 
one for each row leading to the activation of E:

It is easy to see that this set of reactions can be simpli-
fied. For example, from reaction ({A}, {B,C,D}, {E}) and 
({A,B}, {C,D}, {E}) we can conclude that E is produced if 
A was present and C and D were absent independently from 
the presence of B. By iterating this process we obtain this 
set of reactions:

In [9], it is shown that this simplified set of reactions can 
be obtained directly from the graphical representation of 

({B}, {A,C,D}, {E})

({A}, {B,C,D}, {E})

({A,B}, {C,D}, {E})

({A,B,D}, {C}, {E})

({A,B,C}, {D}, {E})

({A}, {C,D}, {E})

({B}, {C,D}, {E})

({A,B}, {C}, {E})

({A,B}, {D}, {E})

Fig. 9   Example of threshold 
Boolean network (left side) and 
truth table of the corresponding 
Boolean function for the update 
of E (right side)
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the threshold Boolean network, without passing through 
the construction of the truth tables of the Boolean update 
functions. The translation of threshold Boolean networks 
proposed in [9] is guaranteed to produce a reaction system 
correctly mimicking the behaviour of the network and con-
taining reactions with a minimal number of objects.

The translation of a threshold Boolean network 
(M,  E) with nodes M = {S1, S2,… Sn} and thresholds 
� = {�1, �2,… �n} is defined as follows. For each node Si 
of the threshold Boolean network, let Act(Si) denote the set 
of nodes that activate Si , and In(Si) the set of nodes that 
inhibit it.

The goal of the translation is to produce a set of reactions 
(a reaction system) able to precisely mimic the behaviour of 
the Boolean network. The result of the translation of (M, E) 
is the closed reaction system RS((M,E)) = (M,A) , with a set 
of reactions A obtained by applying the following inference 
rules, where #_ denotes the set size.

The threshold Boolean network (M, E) is simulated by the 
execution of a closed reaction system RS((M,E)) whose 
reactions are obtained by applying either the inference Rule 
1 or the inference Rule 2.

In a Boolean network (M, E) the node Si (at time t + 1 ) 
is activated whenever at time t the number of active nodes 
Pi activating Si minus the number of the active nodes Hi 
inhibiting Si is greater than �i . Intuitively, each (minimal) 
possible combination of the previous set Pi and Hi leading 
to the activation of Si in the Boolean network (such that 
the number of Pi minus the number of Hi is greater than 
�i ) defines a reaction in the reaction system. Indeed, each 
possible activation in (M, E) is simulated by the enabling 
of a corresponding reaction having Si as product, the set Pi 
as reactants and the set Ii = In(Si)�Hi as inhibitors. Note 
that by Rule 1 such reactions may belong to the reaction 
system since (i) Pi is a subset of the elements which may 
activate Si ; (ii) Ii are a subset of the elements which may 
inhibit it; (iii) we know that the number of Pi minus those 
of In(Si)�Ii = Hi must be strictly greater than �i . Note that if 
Pi minus those of In(Si)�Ii = Hi is equal to �i + 1 the reac-
tion is actually defined by Rule 1 and added to the reaction 
system, otherwise, it is possible to see that such reaction 
would be redundant and therefore is not added. Indeed, the 
equality requirement in Rule 1 guarantees that only minimal 
combinations of reactants and inhibitors are considered (see 
the example below for an intuition).

Rule 2 applies only in case of self activating nodes by 
adding a new rule that models the self activation. In this 

1)

P
i
⊆ Act(S

i
) I

i
⊆ In(S

i
)

#Pi − #(In(Si) ⧵ Ii) = 𝜃i + 1

(Pi, Ii, {Si}) ∈ A

2)

S
i
∈ M

sa
P
i
⊆ Act(S

i
) I

i
⊆ In(S

i
)

#Pi − #(In(Si)�Ii) = 𝜃i

(Pi ∪ {Si}, Ii, {Si}) ∈ A

case, the reaction which simulates the self activating behav-
ior has Si as reactant and also as product.

As an example, consider the translation of the threshold 
Boolean network (M, E) presented in Fig.  6. By assuming 
that all threshold parameters are 0, we obtain the closed 
reaction system RS((M,E)) = (M,A) with reactions A 
defined as follows:

The reactions on the first two columns on the left are 
obtained by applying Rule 1, while those in the two col-
umns on the right by applying Rule 2. Note that the require-
ments of Rule 1 guarantee that only minimal combinations 
of reactants and inhibitors are considered. For instance, a 
reaction such as ({A,D}, {C}, {B}) is not present in the set 
of reactions because it is subsumed by ({A,D}, �, {B}) (sec-
ond line on the left), since the latter reaction can be applied 
regardless the presence of C.

The rules obtained from the translation can then be used 
to execute the reaction system that simulate the behaviour 
of the Boolean network. Thus, the following evolution can 
be observed:

As expected, the steps of the execution of the reaction 
system “mimic” the evolution of the Boolean network as 
described in Section 4.2.

In [8], the encoding of the yeast cell cycle Boolean net-
work of Fig. 7 leads to a reaction system of 52 reactions that 
are use to make several virtual experiments of gene knock-
out. In [7] this approach pushed forward by a applying well-
know methodologies and tools to compute predictors and 
ancestor formulas to detect alternative initial configurations 
for the yeast cell cycle and the genes that are necessary for 
such a cycle to be performed.

6 � Conclusions

Gene regulatory networks play a crucial role in many bio-
logical processes, as cell differentiation, metabolism, the 
cell cycle, and signal transduction. Understanding the fun-
damental properties governing these mechanisms is one of 
the main goals of systems biology, and can be achieved by 
applying computational tools.

In this paper, we have provided a survey of computa-
tional approaches to GRN modeling and analysis. After an 
overview of the background notions, we have described how 
the quantitative methods, such as the ODEs and stochastic 

({D}, {C}, {A}) ({D}, {C}, {B}) ({A}, {C}, {A}) ({C}, {D}, {C})

({A,D}, �, {B}) ({B}, {D}, {C}) ({A,D}, {}, {A}) ({B,C}, {}, {C})

({A}, {C}, {B}) ({C}, �, {D})

{D} →A {A,B} →A {A,B,C} →A {C,D} →A {D}
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simulations, can give an exact description of the gene regula-
tion dynamics. However, the main weakness of the quantita-
tive approaches is that they usually require a large number 
of parameters that are arduous to collect, such as kinetic 
constants and concentration of substances. Therefore, in the 
second part, we have described some more abstract qualita-
tive models, such as Boolean networks, Petri nets, P systems, 
and reaction systems, which enable a basic understanding of 
the different functionalities of a system under different con-
ditions. These formalisms are characterized by a lower level 
of resolution, and, for this reason, they are often preferable 
because of their simplicity and low computational complex-
ity. Nevertheless, as discussed throughout this manuscript, 
the provide an approximate description of the modelled 
system dynamics, useful for understanding some internal 
mechanisms, that often require validation against real data.
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