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Abstract
The structure formation of particleswith induced dipoles dispersed in a viscous fluid, under a spatially and temporarily uniform
external electric or magnetic field, is investigated by means of Brownian Dynamics simulations. Dipole–dipole interactions
forces, excluded volume forces and thermal fluctuations are accounted for. The resulting structures are characterized in terms
of average orientation of their inter-particle vectors (second Legendre polynomial), network structure, size of particle clusters,
anisotropy of the gyration tensor of every cluster and existence of (cluster) percolation. The magnitude of the strength of the
external field and the volume fraction of particles are varied and the structural evolution of the system is followed in time.
The results show that the characteristic timescale calculated from the interaction of only two dipoles is also valid for the
collective dynamics of many-particle simulations. In addition, the magnitude of the strength of the external field in the range
of values we investigate influences only the magnitude of the deviations around the average behavior. The main characteristics
(number density of branch-points and thickness of branches) of the structure are mainly affected by the volume fraction. The
possibility of 3D printing these systems is explored. While the paper provides the details about the case of an electric field,
all results presented here can be translated directly into the case of a magnetic field and paramagnetic particles.

Keywords suspensions · external field · dipoles structure formation

1 Introduction

When dielectric or conductive particles are exposed to an
external electric or magnetic field, dipoles are induced to the
particles due to the difference in the dielectric permittivity
or magnetic susceptibility between them, and the medium
(Jones 1995). Due to these dipoles, the particles interact
(Jones 1995) and the result of this interaction is the formation
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of structures of particles (Klingenberg et al. 1989). Depend-
ing on the field conditions, the particles can arrange into
strings (Martin et al. 1998), that evolve, and aggregate in
time (Martin et al. 1998), planes (Martin et al. 2000), or net-
works (Martin and Snezhko 2013). In addition, the short-time
aggregation dynamics has been studied (Dominguez-Garcia
et al. 2007; Promislow et al. 1995), as well the manipulation
of a single particle (Lee et al. 2020). The enhancement of
the properties of the material in the direction along which
the structures are created originates from the arrangement of
the particles (Martin et al. 2000; Martin and Gulley 2009).
The transport properties are greatly affected by the structures
formed, due to enhancement bypercolation paths (Martin and
Snezhko 2013). The suspensions that contain filler particles
responsive to an external field, are called electro-/magneto-
rheological fluids and have been a subject of research due
to their unique characteristics. Their rheological response
occurs inO(1s) timescales and is exploited in force-feedback
sensors (Zhang et al. 2018) and in robotics (Karasawa and
Goddard 1989). The rapid viscosity increase in the direction
perpendicular to the applied field has also been widely inves-
tigated in the past (Klingenberg et al. 1989; Bonnecaze and
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Brady 1990, 1992; Klingenberg et al. 1991a, b; Mohebi et al.
1996). The response of these systems under shear has been
a topic of extensive research (Ginder and Davis 1994; Satoh
et al. 1998). The effect of the Mason number (Melle et al.
2000), which is the ratio of viscous to magnetic forces, has
been studied for the investigation of mixing on micrometer
scales (Gao et al. 2012;Melle et al. 2003;Calhoun et al. 2006)
with a rotating field. The behavior of such systems under the
influence of an oscillating magnetic field has been investi-
gated extensively over the past decade (Sánchez and Rinaldi
2010; Liu et al. 2019; Soto-Aquino and Rinaldi 2015; Ido
et al. 2016; Jonasson et al. 2019; Ruta et al. 2015). The struc-
tures created in a spatially uniform external field have also
been studied at large timescales both athermally (no Brow-
nian motion) (Martin et al. 1998), and thermally (including
Brownian motion) (Martin 2001).

Additivemanufacturing is nowadays a subject of extended
research (Ngo et al. 2018), although it has been on the sur-
face for a long time (Yan and Gu 1996). The materials used
include metals (Visser et al. 2015), polymers (Ligon et al.
2017), ceramics (Warnke et al. 2010) and combinations of
them (Ngoet al. 2018). Printingof polymer-matrix composite
materials is used for various purposes such as rapid proto-
typing (temporary substitutes for parts of higher mechanical
performance) (Czyzewski et al. 2009), or topology optimiza-
tion (introduction of shape memory in a passive matrix)
(Maute et al. 2015). They have a wide range of applica-
tions: aerospace applications (cabin interiors) (Raja et al.
2010), medicine (mimics of living tissue) (Villar et al. 2013),
anthropology (reconstruction of medieval skulls) (Massimil-
iano and deCrescenzio Francesca 2008) and design (spatially
dependent elasticity) (Oxman et al. 2012).Another reason for
using composite systems is the incorporation of dielectric,
magnetic or conductive functionality to the matrix material
(Castles et al. 2016; Kokkinis et al. 2015; Czyzewski et al.
2009). Additionally, if the microstructure of the composite
can be controlled during printing by the use of an external
electric or magnetic field, one can achieve specific structures
of particles inside a complex geometry. This can be an impor-
tant application of this work, especially if photo-reactive
resins (Anastasio et al. 2018) filled with electrically of mag-
netically active particles are concerned. Resins are widely
used as media for particles (Kim et al. 2003; Kim and Shkel
2004), so that the structure of the particles is captured with
the solidification of the resin. The low viscosity of the resins
before curing makes the structure formation possible within
the usual timescales (O(1s)) of 3D printing. The targeted
technique is stereolithography (SLA) (Bártolo 2011). Poten-
tial uses of these systems in applications include personalized
hearing aids (Dodziuk 2016), flat lenses with a gradient of
concentration of particles that have the functionality of their
curved counterparts (Kurochkin et al. 2018; Viskadourakis
et al. 2018), piezoelectric or Hall effect sensors (Quanlu

2002), and direction-specific thermally or electrically con-
ductive composites (Martin and Snezhko 2013; Subramanian
et al. 2019). In the following, we focus on the physical behav-
ior of these systems, in terms of structural evolution.

The motion of particles serving as dipoles inside a fluid
can be simulated with a variety of methods depending on
the effects (hydrodynamic interactions) and scales (length or
time) that one desires to resolve. The most accurate tech-
nique is molecular dynamics, as it simulates the motion of
the atoms (Frenkel and Smit 2002; Vogiatzis and Theodorou
2014) by integrating the (frictionless) Newton’s equations of
motion. However, the system we are interested in, exhibits
disparity in length- and timescales, as it consists ofmonomers
of the liquid matrix whose average size is on the order of nm
and particles whose size is on the order of μm. Molecular
Dynamics can resolve the nano-scales in time and space. The
effect of the matrix on the particles is governed by the colli-
sion of the monomers on the surface of the particle, and can
be effectively represented by thermal fluctuations on the μm
scale. Stokesian Dynamics (Bonnecaze and Brady 1990) is
another option for simulating these systems and especially
resolving the hydrodynamic interactions at close distances.
One of the best known techniques is the Brownian Dynamics
(BD) (Soto-Aquino and Rinaldi 2010), where the equations
of Newton are solved in the overdamped limit, so no accel-
eration is present (i.e., correlations in velocity vanish within
a single timestep of the integration) (Dhont 1996). However,
the great advantage with respect to the system in discussion
is the incorporation of thermal fluctuations. BD can resolve
spatial effects on the order of the size of the particle and
times of up to O(10s). The Finite Element method (Gao
et al. 2012; Kang et al. 2008) is also suitable for solving the
equations describing the problem, although with this method
the system is treated either as a macroscopic medium, or
at a much finer spatial resolution than the size of the par-
ticles. The macroscopic approach is totally neglecting the
microstructure, i.e., solving the equations of Maxwell for
resolving the electromagnetic response of thematerial and/or
the Navier–Stokes equations for the rheological response.
The finer resolution approach solves the same equations
implementing the mass and momentum balance equations,
but also resolves the local effects of non-uniformities of the
electromagnetic field and/or the flow field, respectively. The
downside of this method is the “limited” number of particles
that can be studied due to the computational cost. To study
the structures in short/intermediate timescales, the BD tech-
nique is used. The motion of the particles is mainly affected
by the dipole–dipole interactions (Jones 1995; Klingenberg
et al. 1989; Parthasarathy and Klingenberg 1996).

Ourmethod results in a structure of particles, and our char-
acterization depends on the nature of these structures. As
already mentioned, one can get various structures depend-
ing on the field conditions, like strings (Martin et al. 1998),
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planes (Martin et al. 2000), or networks (Martin and Snezhko
2013). The goal of characterizing such structures is to extract
their main features and to describe these features in a quanti-
tative manner. For example, for strings, one should know
the size, orientation, thickness and correlations between
these measures, for planes the size and orientation, and
for networks the number density of branch-points (BP),
the degree of BP, the thickness of the branches, the num-
ber of clusters present, and the existence of percolation.
There are a lot of techniques used for the characterization
of an ensemble of points/particles, like studying their gyra-
tion tensor (eigenvalues and eigenvectors) (Theodorou and
Suter 1985) and Voronoi tesselation (Voronoi 1908). The
Voronoi tessellation is widely used in the characterisation
of disordered systems (Montoro and Abascal 1993), poly-
mers (Greenfield and Theodorou 1993; Starr et al. 2002;
Damasceno et al. 2012; Vogiatzis and Theodorou 2014),
colloidal gels (Varadan and Solomon 2003), and granular
materials (Li and Li 2009). Other techniques like the (radial
or cylindrical) pair-correlation function, bond-angle distri-
bution (Hütter 2000), and quermass integrals (Hütter 2003)
have also been developed for the characterization of the struc-
ture of networks. Here, the gyration tensor of clusters, the
Voronoi polyhedra, and a previously developed skeletoniza-
tionmethod (Kerschnitzki et al. 2013; Kollmannsberger et al.
2017; Manikas et al. 2020) are employed for the quantitative
characterization of the structures.

In this paper, we useBDwith dipole–dipole interactions to
simulate themotion of particles (dipoles) within a fluid under
a spatially uniform field. The characterization of the struc-
tures is performed by grouping particles in clusters and by
reducing the structure to its skeleton (skeletonization). Our
goal is to identify the most relevant physical parameters, and
relate the corresponding physical input with the structure and
eventually the transport properties, specifically the thermal
conductivity of the material. The paper is organized as fol-
lows. Section 2 provides the basic methodological tools that
were used for the production of the structures. Moreover, we
present a dimensionless analysis with all the relevant dimen-
sionless groups. In Sect. 3, we introduce the tools we use to
characterize the obtained structures. In Sect. 4, we present
the structural evolution in time in dimensionless terms, and
the characteristic features of our formed structures. Finally,
the paper is concluded with a discussion in Sect. 5.

2 Methodology

In this section, our methodology is discussed, including the
simulation details and dimensionless analysis. Our system
consists of particles with particle radius Rp and volume frac-
tion φ, and the monomeric fluid that serves as medium with
constant viscosity η in a finite box of edge-length L , where

periodic boundary conditions are applied in all three spatial
directions. The system is influenced by an external field that
is applied to the system. In the current paper, the system
consists of particles that have dipoles induced by a uniform
external electric or magnetic field. The interactions govern-
ing the dynamics are the dipole–dipole interactions (Jones
1995; Klingenberg et al. 1989). One can define the potential
energy of N particles with induced dipoles under an external
field (Jones 1995; Gao et al. 2012),

U em = −
N∑

i

[pi (ri ) · Ee(ri )]

− 1

4πεm

N−1∑

i

N∑

j>i

p j (r j ) · C(ri j ) · pi (ri ) , (1)

where pi is the dipole moment of particle i , defined in Eq.
(2), Ee(ri ) is the field intensity at the position ri , εm is the
dielectric permittivity of the medium, C(r) = ∇r∇r

1
r =

1
r3

( 3
r2
rr − I) is the second derivative of the position with

r = |r|, and ri j = ri − r j is the inter-particle separation
vector. The appearance of dipole moments is a result of the
polarization induced by the external field (Jones 1995)

pi (Ee) = 4πεmK R3
pEe , (2)

where K = εp−εm
εp+2εm

is the Clausius–Mossotti constant
(Böttcher 1973), with εp the dielectric constant of the par-
ticles.

The gradient of the potential energy with respect to the
position ri , results in the expression for the forces

Fem
i = −∂U em

∂ri
= ∇ri [pi (ri ) · Ee(ri )]

+ 1

4πεm

N∑

j �=i

∇ri [p j (r j ) · C(ri j ) · pi (ri )] . (3)

In Eq. (3), one can observe that dipole i is different from
dipole j , however, in our study, we only considered dipoles
that are induced by the field, so all the dipoles are identical
(pi = p j = p) since no local polarization is considered, only
a spatially uniformfield is studied, and only particles are used
that are identical in size, shape, and dielectric permittivity
(or magnetic permeability). For the rest of this paper, we are
using different indices for different dipoles, as it corresponds
to the general case.

The presented form of the energy, Eq. (1), is the point-
dipole approximation (Calhoun et al. 2006; Keaveny and
Maxey 2008). The validity of this approximation depends
on the dielectric mismatch εp/εm, and the volume fraction
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(Yang et al. 2006); the lower these two values, the better is the
approximation. In the current paper, we neglect the multipo-
lar interactions (Keaveny and Maxey 2008; Jones 1995) that
become significant at close distances (ri j < 4Rp). At these
distances, the dipole approximation is not adequate, as it
neglects the spatial variation of the field around the particles,
which at close distances is significant and the importance
of higher order multipoles increases. The dipole approxi-
mation is also ignorant of the polarization arising from the
neighboring dipoles; the dipoles can influence the field inten-
sity locally, causing an alternation of the polarization of the
neighboring dipoles.Mathematically, this is considered in the
mutual dipole approximation (Keaveny and Maxey 2008),
where the dipole moments depend on their relative positions
of the dipoles within the system. Despite the limitations of
Eq. (1), it is still used it in this paper to simulate the structure
formation of particles under a spatially uniform field for two
reasons. First, the systems considered in this paper have a
low dielectric mismatch, which will be absorbed in a dimen-
sionless group further below. And second, this approximate
interaction is appropriate at the low volume fractions studied
here, while at the higher values of volume fraction, it never-
theless can give a qualitative picture of the overall behavior
of the many-particle system. Also, it is mentioned in the
literature that the calculation of the multipole interactions
is computationally inefficient with respect to the accuracy
obtained in comparison to the simple dipole approximation
(Keaveny and Maxey 2008).

In Eq. (1), we present the potential energy in terms of
electric dipoles. However, if one uses magnetic dipoles, m
instead of p, the equivalent expression of the field intensity,
He instead of Ee, and adjusts the prefactor of the second
term of the right-hand side of Eq.(1), εm replaced by 1/μm,
one directly obtains the equivalent case for magnetic dipoles
in the presence of a magnetic field (Gao et al. 2012). The
nature of the interactions is similar when the particles used
exhibit magnetization that remains parallel to and linear in
terms of the applied field, e.g., paramagnetic particles, and
therefore, in terms of dimensionless parameters the differ-
ence between the two cases becomes obvious. However, one
should be careful with ferromagnetic behavior (Morimoto
and Maekawa 2000), as it is not included in the potential
energy presented in Eq. (1).

Due to the finite size of the simulation box, every interac-
tion is truncated at a certain cut-off radius, rcut < L/2, with
L being the edge-length of the simulation box. The problem
of finite truncation of the interactions is dealt with by calcu-
lating the forces neglected outside a sphere of radius rcut, and
correcting the final result (tail corrections). If one deals with
electrostatics or pairwise potentials that have n < 4 in 1/rn

in terms of energy, c.f. Eq. (1), then the neglected energy is
infinite and one should account for long-range corrections
with other methods; the same translates to the forces as well.

In the case of the presence of partial charges, this problem is
known for almost a century (Ewald 1921), and has been dealt
with themethod of Ewald summation. TheEwald summation
resolves the issue by turning part of the forces (and/or poten-
tial) in the reciprocal space with a Fourier transform, taking
advantage of the periodicity of the system. No estimations
are made, the solution results from an analytical transforma-
tion. Other techniques have been developed like the reaction
field method or the Wolf summation (Allen and Tildesley
1987; Fukuda and Nakamura 2012), however, these tech-
niques treat the system as a medium making approximations
in the calculation of the quantities, which exhibit systematic
errors (Allen and Tildesley 1987). In reciprocal space, the
sum converges much faster with the use of wave vectors.
Studies about the accuracy of the method have been per-
formed both for charges (de Leeuw et al. 1980; Perram et al.
1988; Karasawa and Goddard 1989), and dipoles (Wang and
Holm 2001). In this paper, the Ewald summation method is
used to account for the long-range corrections of the forces,
and we use the parameter α = 7.5 L−1 that defines the split
between real and reciprocal space, where L is the box length,
and k = 10, where k is the amount of wave vectors used.

The potential that was chosen is purely attractive and there
is need for an extra force that will prevent the particles from
overlapping. This problemwas encountered in the past (Klin-
genberg et al. 1989). The choice is usually made between a
power law ( 1/r12), and an exponential ( e−κ(ri j /(2Rp)−1)).
Our choice is the exponential, Eq. (4) and has to do with the
particle configurations observed experimentally. The power
law alters the potential in close distances preventing parti-
cles from formatting chains that are thicker than one time the
particle diameter (Klingenberg et al. 1989). The form of the
force for preventing particles from overlapping is

Fexv
i = − 3p2

32πεmR4
p

∑

j �=i

e
−κ

( ri j
2Rp

−1
)

r̂i j , (4)

where κ = 30, is a constant that determines the interaction
range of the excluded volume, while the pre-exponential fac-
tor defines the overall strength of the interaction (Gao et al.
2012), and r̂ is the unity vector of r. One can observe that
the softness of the particles (hard particles are difficult to
handle numerically) depends on the magnitude of the dipole
moments, which is rather unexpected due to the different
physical origin of the excluded volume and dipole–dipole
interactions. This forcefield has been used extensively in
other studies in the literature (Martin et al. 1998;Mohebi et al.
1996; Gao et al. 2012; Melle et al. 2003). As the excluded-
volume force (4) depends on the dipole moments, it vanishes
for infinitely weak dipole moments; however, the expres-
sion (4) is suitable for the cases in this paper, where dipole
moments always have finite values, because there is always
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an imposed external field that induces the dipoles. Addition-
ally, the magnitude of the excluded volume force is always
larger than the other physical phenomena, i.e., Brownian
and dipole–dipole interaction forces; therefore, it produces
results very similar as if an alternative excluded-volume force
was used.

Themotion of a particle inside a fluid is influenced by fric-
tion forces, originating from the collisions of the molecules
of the surrounding fluid with the particle. These forces can
be incorporated by a drag force,

Fd
i = −ζvi = −6πηRpvi , (5)

where ζ = 6πηRp is the friction coefficient, and vi is the
velocity of particle i . In our case,we use the Stokes drag force
(Larson 1999), while many-particle hydrodynamic interac-
tions are neglected. The reason for neglecting the latter is
that otherwise the computational cost would be prohibitive,
in particular, since themain goal of this paper is to conduct an
extensive study of the effect of dipole–dipole interactions and
thermal fluctuations on the structure evolution and to resolve
the physical behavior of the system.We expect that correctly
accounting for hydrodynamics will influence primarily the
time scale, however, there could also be an effect of hydro-
dynamic interactions on the structure formed. Lubrication
forces are much larger than those predicted by Stokes’ law,
but are only important at small particle-separations where
the particles are already locked into their local structure
by the dipole–dipole forces. Hence, lubrication effects are
not expected to significantly influence the structures formed
(Klingenberg et al. 1989).

The Brownian force is given by

FB
i = √

2kBT ζ
dWi

dt
, (6)

where kB is theBoltzmann constant, T is the temperature, and
W is aWiener process and dW its increment (Öttinger 1996).
This has the properties 〈dW(t)〉 = 0 and 〈dW(t)dW(t ′)ᵀ〉 =
δ(t − t ′)dtdt ′1. So its increment can be expressed as dWi =√
dtξ i , where ξ i is a vector whose components are drawn

from a random-number distribution with mean value of 0
and standard deviation of 1. The realization of the thermal
noise through a Wiener process is such that the Brownian
force has a mean value of zero, and it is uncorrelated in time.

For all the above, we have chosen to use Brownian dynam-
ics (BD) simulations (Dhont 1996). This kind of simulations
is an approach to the mathematical modeling of molecu-
lar systems by the use of stochastic differential equations
(Öttinger 1996). The effect of inertia is considered negligible
for systems where the relaxation time for the particle veloc-
ity, τp = m/ζ , withm being themass of the particle and ζ the
friction coefficient, ismuch smaller than the other timescales.

Using m = 24.57 × 10−15kg (ρ ∼ 5.5g/cm3 (Opalin-
ska et al. 2015)), Rp = 1¯m, and η = 0.5 Pa s, one finds
τp = 2.607 × 10−9s 	 tc ∼ 1s, where tc is the characteris-
tic timescale for structure formation tc = 8π2εmηRpr5c /p

2
c

(see further details below, Eq. (12)). For values of rc, Eq. (8),
corresponding to φ = 1 − 30%, εm = 4ε0, and Rp = 1¯m,
the timescale is on the order of O(1s). BD describe a sys-
tem of N particles and positional coordinates r = r(t) with
the stochastic differential equation (Öttinger 1996; Gardiner
2004)

dri = (Fem
i + Fexv

i )/ζdt + √
2kBT /ζdWi . (7)

In Eq. (7), the index i = 1, . . . , N indicates the particle. The
differential equation Eq. (7) is solved with the predictor–
corrector algorithm of first order (Öttinger 1996).

To reduce the set of physical parameters that influence
the behavior of the system, and to introduce dimension-
less quantities with physical meaning, we re-write Eq. (7) in
dimensionless form. The procedure that is followed begins
by introducing scaling quantities for the principal variables
of the problem,

r∗
i = ri

rc
, rc = 1

3
√
nd

, (8)

p∗
i = pi

pc
, pc = 4πεmK R3

pEc , (9)

Ec =
√

〈E2(r)〉sp , (10)

t∗ = t

tc
. (11)

Here, nd is the number density, and the index “sp” refers to
the spatial average over the simulation box. For the length-
scale rc, our choice is based on the system properties. We
would like the lengthscale to be independent of the sys-
tem size (box length), and the size of the particles (radius
or diameter), so we select the third root of the average vol-
ume per particle in the system. This quantity is a measure
of the inter-particle distances in the system, and indepen-
dent of extensive variables of the system. For the scaling of
the dipole moments, we choose the dipole moment that cor-
responds to an induced dipole with the characteristic field
intensity value. For the characteristic value of E, we choose
the spatially (“sp”) averaged field intensity in the simulation
box. Finally, the timescale is chosen such so that the elec-
tromagnetic effects occur on a dimensionless timescale of
order unity in Eq. (7), so the prefactor of this term is set to 1
(Dantzig and Tucker 2001), see Eq. (12). It has to be noted
that the excluded volume forces have the same scaling with
the dipole–dipole interactions (square of themagnitude of the
dipolemoment). The characteristic timescale is thus given by

tc = 8π2εmηRpr5c
p2c

. (12)
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As a result, Eq. (7) turns into (Öttinger 1996; Gardiner
2004)

dr∗
i = (Fem∗

i + Fexv∗
i )dt∗ + B∗√dt∗ξ i , (13)

with

Fem∗
i =

∑

j

1

r∗
i j
4

[
r̂i j (p∗

i · p∗
j ) − 5r̂i j (p∗

i · r̂i j )(p∗
j · r̂i j )

+(p∗
i · r̂i j )p∗

j + (p∗
j · r̂i j )p∗

i

]
, (14)

Fexv∗
i = − r4c

8R4
p

∑

j �=i

e
−κ

(
r∗i j rc
2Rp

−1

)

r̂i j , (15)

B∗ =
√
2kBT tc

ζr2c
. (16)

If there was an externally imposed flow, e.g. imposed
simple-shear deformation, another characteristic timescale
associated with that flow would enter the analysis. However,
imposed flow is not considered in this study. Furthermore, we
neglect hydrodynamic interactions, i.e., the effect of the flow
created by the movement of one particle on the neighboring
particles is neglected (see also discussion after Eq. (5)).

The BD algorithm employed in our work has already been
used in several studies before (Hütter 1999; Zakhari et al.
2017, 2018a, b), without the dipole interactions. Here, the
dipole–dipole interactions are tested by considering some
limiting cases. The alignment of two particles in the absence
of Brownian forces is tested and compared with the analyti-
cal solution. In Fig. 1, one can see the interparticle distance
versus time for an attractive (interparticle vector aligned
with external field) and a repulsive case (interparticle vector
perpendicular to the external field) for a simulation of two
particles with no Brownian motion and no excluded volume
interactions. Good agreement between the BD simulations
and the analytical solutions is obtained. In “Appendix B”,
the simulation of many particles is shown in the absence of
dipole interaction, but with Brownian motion and excluded
volume interactions included. The obtained structures agree
with the expectation.

For solving Eq. (13), one should use time discretization,
with a finite value for the time increment dt . The timestep
is set, so that important information of the fastest physical
process is preserved. In the current study, the fastest process
is governed either by the dipole–dipole interactions or the
excluded volume interactions. At large distances, the forces
decay, so one should consider only the case with the largest
forces, which is the case of particles at small distance. In this
case,we are going to consider r∗

i j = 1.9Rp, in viewof thermal
fluctuations. For determining which of the two interactions is
dominant,we checkEqs. (14), (15). If one calculates the char-
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Fig. 1 a Particle alignment for two particles with interparticle vector
parallel to the external field, and comparison with analytical solution.
b Particle repulsion of two particles with interparticle vector perpen-
dicular to the external field, and comparison with analytical solution

acteristic timescales for the two effects (Dantzig and Tucker
2001), one gets t∗c,dip = r∗

i j
4 and t∗c,exv = 8R4

p/(r
4
c e

κ∗0.05).
If one estimates these timescales for φ = 30%, and the
chosen value of r∗

i j , then one gets t∗c,dip = 3.87607 × 10−1

and t∗c,exv = 5.30915 × 10−2. The timescale concerning the
excluded volume interaction is faster, so one should consider
the excluded volume effect for the choice of timestep. In
the dimensionless form of the model used here, the resulting
timescale corresponding to the excluded volume depends on
the average characteristic distance between the particles, so
one should estimate the timescale value for different volume
fractions. Taking this fact into account, we select a timestep
of dt∗ = 2.4× 10−4, which is sufficient for all volume frac-
tions considered in this study. The details of this choice are
presented in “Appendix A”.

3 Characterisation of morphology

In this section, we are discussing the measures employed for
the morphology characterisation, which we categorize with
respect to the amount of particles participating in the calcu-
lation of these quantities. Structures similar to our resulting
structures of particles have been studied before (Kim and
Shkel 2004; Martin et al. 1998; Martin and Snezhko 2013).
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It has to be mentioned, that the tools we apply only need the
position vectors (Cartesian coordinates) of the particles.

Most measures concern two particles, see Sect. 3.1.
Although most of the times two-particles measures are not
enough to resolve the whole structure characteristics, so one
can look either in the neighbourhood (nearest neighbours),
see Sect. 3.2, or clusters/structures of particles, see Sect. 3.3.
If one has in mind particles organised in strings, then one
would think in terms of touching particles (bonded) creating
an anisotropic structure. This characteristic of the structure
led to the distinction of the particles to clusters. The condi-
tion for characterising twoparticles as bonded is ri j ≤ 2.2Rp.
This choice was based on the ratio U exv/kBT , where at dis-
tance of 2.2 Rp this ratio is lower than 10%. This means that
the effect of the excluded volume has ceased and the dis-
placement due to Brownian motion is dominant at this limit.

3.1 Measures for pairs of particles

There exist a lot of measures concerning two-particle proper-
ties, the most well known being the pair-correlation function
(Allen and Tildesley 1987). However, due to the nature of
our structures (anisotropic) in this paper, we discuss a mea-
sure of the orientation of the inter-particle direction, S2, with
respect to an external direction, that being the external field,
Ê

S2 = 3

2
〈(r̂i j · Ê)2〉 − 1

2
. (17)

This is the second Legendre polynomial for every pair of
particles in the system independent of the distance between
them, however, periodic boundary conditions are applied and
only the primary image is considered. Eq. (17) is sensitive
to the orientation of the inter-particle distances with respect
to the direction of the field. S2 measure has a value of 1 if
the average orientation is parallel to the external direction, a
value of 0 if there is a random orientation with respect to the
direction of the field, and a value of−1/2 if the orientation is
perpendicular to the external direction. If two, parallel with
the field, one-particle-thick strings are present, then the value
depends on the distance between them. However, despite the
fact that they are ideally oriented the value of the measure is
lower than 1, as the inter-particle vectors between particles
belonging to different strings are also considered.

3.2 Measures for nearest neighbours of a particle

If a neighbourhood of particles is to be considered, then the
average volume per particle comes up naturally. The Voronoi
polyhedron of a particle is uniquely defined by the positions
of its neighbours. This quantity is the essence of the calcula-
tion of the Voronoi polyhedra (Voronoi 1908).

The Voronoi tessellation is widely used in the literature
(Theodorou and Suter 1985; Vogiatzis and Theodorou 2014;
Damasceno et al. 2012; Starr et al. 2002; Montoro and Abas-
cal 1993). The result of the tessellation is polyhedra. The
volume, shape (number of faces), and orientation of these
polyhedra can give us insight on characteristic features of
the underlying particle structure. The characteristics of the
polyhedra depend on the relative positions of their first neigh-
bours. We choose to use Mitrich’s method (Mirtich 1996), to
calculate the gyration tensor of the polyhedra, and extract
information as the main direction of the polyhedron and the
shape of it. The gyration tensor (Theodorou and Suter 1985)

Si = 〈(ri − rcm,i )(ri − rcm,i )
ᵀ〉k , (18)

where the brackets indicate the arithmetic average over the
vertices k of the polyhedron of particle i , and rcm,i is
the position of the center of mass of the Voronoi polyhe-
dron of particle i . The gyration tensor defines an ellipsoid
(Theodorou and Suter 1985). The relative magnitude of the
eigenvalues of the gyration tensor give the relative difference
in size of the three axes of the ellipsoid.

The measures that will be used for characterising the
polyhedra out of the gyration tensor and conclusively the
structures, are the volume of the polyhedron, Vi , and the
relative shape anisotropy (Theodorou and Suter 1985; Dam-
asceno et al. 2012)

κ2 = b2 + 3
4c

2

(λ1 + λ2 + λ3)2
, (19)

where b = (λ1 − 1
2 (λ2 + λ3)) is the asphericity of the ellip-

soid defined by the gyration tensor, c = (λ2 − λ3) is the
acylindricity, and the eigenvalues of the gyration tensor S
are in descending order, λ1 ≥ λ2 ≥ λ3. The value of κ2 for a
sphere is 0, for an infinitely long rod is 1, and for a flat disk
is 1/4.

3.3 Measures for clusters/networks of particles

Here, we discuss morphology measures concerning clus-
ters/structures of particles. First, we introduce the gyration
tensor for clusters of particles (Theodorou and Suter 1985)

SI = 〈(ri − rcm,I )(ri − rcm,I )
ᵀ〉i , (20)

where the brackets indicate the arithmetic average over the
particles i , the index “I” indicates the cluster number, and
rcm,I is the position of the center of mass of the particles
belonging to the cluster I . The gyration tensor defines an
ellipsoid (Theodorou and Suter 1985), and its geometrical
features can give insight about the structure of the clusters.
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The first measure is the same as in Eq. (17), the only
difference being that the average is limited to the particles
belonging to the same cluster

S2,I = 3

2
〈(r̂i j · Ê)2〉I − 1

2
, (21)

where the index I denotes the cluster index, so for cluster
I the average is defined as the average of the particles that
participate in I .

The secondmeasure quantifies the anisotropyof each clus-
ter. For that we calculate the gyration tensor (Theodorou and
Suter 1985). The gyration tensor is calculated per cluster, so
each cluster can be described as an ellipsoid (Theodorou and
Suter 1985), where the eigenvalues of the gyration tensor
give the relative difference in size of the three axes of the
ellipsoid. Therefore, we introduce a measure that quantifies
anisotropy λ∗:

λ∗
I = 1 − det(SI )λ

−3
max,I , (22)

where λmax is the largest eigenvalue of the gyration tensor,
anddet(SI ) is the determinant of the gyration tensor of cluster
I . This measure has a value of 1 if the anisotropy is high, and
a value of 0 if the system is isotropic (sphere). Note that this
measure does not depend on the direction of the anisotropy.

The third measure that we pick, has to do with the size of
the cluster. This measure is,

N∗
I = NI

NL
, (23)

where NI is the number of particles that belong to the clus-
ter I , NL is the minimum amount of particles that stacked
together can span the edge-length of the box in one direc-
tion. This measure has a value of N∗ < 1 if the cluster size
is smaller than the NL, and a value of N∗ ≥ 1 if the particle-
string has enough particles to span the box, even if the box
is not actually spanned in that specific configuration (floccu-
lates). A schematic representation of the described measures
can be found in Fig. 2.

The number of clusters can be retrieved from N∗, if one
knows the volume fraction, φ, and the number of particles,
N : Based on φ and N , one can calculate the ratio L/(2Rp),
which is equal to NL, and identify the average number of
particles per cluster. With this, in turn, the number of clusters
is obtained if one divides the number of particles N by the
average number of particles per cluster. In this paper, the
dimensionless parameters used were chosen with regard to
the characterisation of the resulting structures, e.g. oriented,
anisotropic and percolating clusters. Focus is intentionally
given on single cluster properties in normalized terms from
which other quantities can be inferred.

Fig. 2 Schematic representation of the quantities θ , NL, Ncl, and the
ellipsoid of the gyration tensor that are used in the measures S2, λ∗, and
N∗

The averages of the measures S2,I , λ∗
I , and N∗

I are
reported in the following, and these averages will be denoted
by the same symbol as their per-cluster counterparts, but
without the cluster index. The size of the cluster serves also as
a weighting factor for these averages, so that every particle of
the structure has equal effect on the measured quantity. How-
ever, it is much different from calculating these quantities for
the entire system.

In previous work of ours (Manikas et al. 2020), we intro-
duced a method to characterise large structures of particles,
including networks. That method uses a 3D-binary image of
the initial structure, and thins out this structure to an infinitely
thin skeleton. This procedure is called skeletonization (Koll-
mannsberger et al. 2017), and it results to an ensemble of
voxels (skeleton); there are still complex connections in the
skeleton representing the abstract connectivity inherent to
the actual structure provided as input. This issue is tackled
by several post-processing steps that result in a topologically
equivalent skeleton with essentially the same connectivity
(Manikas et al. 2020). The whole scheme we described,
results to a simplified, and easier to characterise skeleton
structure. The simplified skeleton is characterised in terms
of:

– branch-points (BP) (number density, degree)
– branches (thickness)
– existence of percolation

Details concerning these points follows.
The BPs are identified by the number of their connections

to neighboring voxels in the simplified skeleton. Every voxel
bearing three or more connections is accounted for as a BP.
Therefore, one can identify the number of BPs. A BP reduc-
tion step is required to prevent unphysical results ofBPs lying
in neighboring voxels. This step concerns BPs located inside
the volume of a single primary particle, when BPs like the
ones described are identified they are grouped together as one
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BP. Then, the number density of branch points per volume is
given

nBP = NBP

Np
, (24)

where NBP is the absolute number of BPs, and Np is the
amount of primary particles. Except the number density, also
the average degree ofBPs can be studied, 〈dBP〉. The degree is
defined by counting the bonds of all the BPs in the simplified
skeleton, and then taking their average.

The average thickness of the branches is calculated by cut-
ting a slice of the initial binary image at the position of each
voxel and taking as the normal vector the orientation of the
skeleton at this point (tangent of the skeleton) (Manikas et al.
2020). The percolation in each direction of the box is also
checked. One tries to establish in-box pairing between any
couple of particles each of them being close to two opposite
faces of the simulation box (“close to” implying they have a
bond crossing that respective face of the box).

4 Results

The results of particle-based simulations using the toolsmen-
tioned in Sect. 3, will be reported. At this point, we would
like to note that the error-bars in this section will always refer
to different random numbers sequences. Our system consists
of 1000 particles, and our protocol indicates that we use three
simulationswith different randomnumbers sequences to pro-
duce the error-bars. In the rest of the section, we discuss the
effect of the variation of random initial configurations, see
Sect. 4.1, the B∗ variation, see Sect. 4.2, and the φ variation,
see Sect. 4.3.

4.1 Variation of initial configuration

In this section, we study the effect that different random ini-
tial configurations have on the structure with the measures
introduced before. We obtain the initial configurations by
setting the particles to a simple cubic lattice, and letting
them re-arrange into the box. We use a Brownian Dynam-
ics scheme and the deterministic part for the equilibration
loop consists of the repulsive part of a Lennard-Jones poten-
tial (Jones and Chapman 1924; Smit 1992) with σ = 2Rp/rc,
and ε = 1. This randomness of the structure has been inves-
tigated by examining the number density of particles in a
tessellated box and the pair correlation function. The box
contains 1000 particles, it is tessellated in 125 cubic boxes,
and the number density is defined as the average number of
particles that appear in the cubic box. The average number
density over the cells is constant by definition, so we look
at the standard deviation of this measure over the cells and

Fig. 3 A random configuration of particles (red) is presented with their
Voronoi cells (blue) produced using the Voro++ library (Rycroft 2009)

through (dimensionless) time of 90tc. The samples are equi-
librated, until the standard deviation between the cells shows
a plateau with a value smaller than 0.2, so that a homoge-
neous distribution over the cells is reached.At the same point,
the pair-correlation function is calculated and has the same
characteristics as a Lennard-Jones fluid (Allen and Tildesley
1987). The details can be found in “Appendix B”.

Once these random configurations are obtained, we study
the impact of varying them in the structure evolution in terms
of S2,λ∗, and N∗.We choose thesemeasuresmainly, because
they are applied to the primary structure and no transfor-
mation of the structure has to occur (skeletonization). We
used four different random initial configurations, each of
them evolved by three simulation runs with different random
number sequences. Since the initial structures have the same
characteristics and the same average inter-particle distance,
it is expected to see an impact on the same order of magni-
tude as the thermal noise (error-bars). Our expectation was
not verified, as the variations observed were larger than the
ones produced by different realizations of the thermal noise.
This variation is not trivial, so for the rest of this paper we
are using three different initial configurations in combination
with the different random number sequences, for every set of
parameters. The results can be found in the “Appendix B”,
as they are not essential part of the essence of this paper the
physical behavior of our systems. A random configuration of
particles with their Voronoi cells (Voronoi 1908) is presented
in Fig. 3.

4.2 Variation of B∗

The variation of the single physical dimensionless parame-
ter, B∗, will be discussed in this section. The variation of
the parameter B∗, has to do with varying physical parame-
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ters like the field intensity or temperature and many-particle
simulations are needed to investigate these effects.

Different B∗ = 0.01, 0.0316, 0.1, 0.316 and φ = 1, 2, 5,
10, 20, and 30 values were used to unveil the effect of the
only dimensionless parameter to the structure formation. The
response of the system in terms of our measures (S2, λ∗, and
N∗), is expected to depend on the value of the parameter B∗,
as B∗ defines themagnitudeof the thermal noise, seeEq. (13).
However, B∗ is a parameter introduced based on two-particle
interactions and we expect to observe some deviations in the
generalisation to many-particle systems. In Fig. 4, one can
see the response over dimensionless time for φ = 10%, is
overlapping to a single curve independent of the B∗. This
means that the characteristic timescale governing the two-
particle dynamics is of relevance also for systems with many
particles, and no adaptation of the definition of B∗ is needed
to study the structure formation. In the rest of this paper, we
are going to use the value of B∗ = 0.01. Only one value of φ
is presented here, although we used the same B∗ values for
φ = 1, 2, 5, 10, 20, and 30, we display some characteristic
values of low and high φ in “Appendix C”.

If onewould increase the value of B∗ further, e.g., to values
as high as order unity, one should expect to see “deviations”
from the pattern of Fig. 4, the reason for these “deviations”
being the following. In order for the scalingwith tc to collapse
the simulation results obtained under different conditions, it
is assumed that the dipole–dipole interactions are dominant
over the thermal fluctuations; if this does not hold, the struc-
ture formation will be changed qualitatively. No hard limits
can be defined, however, we believe that for B∗ > 0.5 the
thermal fluctuations dominate, and a straightforward collapse
of the results by scaling can not be achieved anymore.

It should be noted that the simulations presented in Fig. 4,
were completed in dimensionfull units. The difference in
dimensionless time comes from the fact that equal overall
dimensionfull timeswere used.One should expect equal sim-
ulation times in t∗ for the different B∗-values, however, our
simulations results were independent of the B∗-value, as they
overlap onto a single curve. To this end, we concluded that
conducting additional simulations would not be a significant
contribution to the essence of this paper.

4.3 Variation of volume fraction

In this section, we would like to focus on the φ variation
and its impact on the structure. Our goal is to determine
the structures created in different systems, and explore the
applicability of our dimensionless analysis, and morphology
tools. The goal of this study is the determination of structure-
formation timescales and structure that can be achieved.
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Fig. 4 Morphology measures S2 (a), λ∗ (b), and N∗ (c) plotted against
the dimensionless time, t∗. Different lines correspond to different values
of B∗ (0.01, 0.0316, 0.1, 0.316) for φ = 10%

Characterisation of clusters

The volume fraction, φ, was varied (1, 2, 5, 10, 20, and 30)
for the minimum B∗ value (0.01). We expect that structure
formation will occur at the same dimensionless time as φ

increases. This occurs due to the lower inter-particle dis-
tances met in higher φ-values, the timescale is decreasing,
see Eq. (11). However, we also expect significant differences
among different φ-values as our scaling was performed for
two-particle interactions and in this section, we study many-
particle systems with different inter-particle distances. In
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Fig. 5, one can observe that all the φ values used show ini-
tial response in our measures at t∗ ∼ 0.05. That means that
our expectation was correct and the structure formation for
higher φ in terms of time is resolved from the scaling analy-
sis. The difference observed for different φ implies that the
two-particle scaling is not enough to resolve the structural
evolution of many-body systems when the inter-particle dis-
tances are modified. That means that more complex physics
take place. We also observe a significant drop in our mea-
sures as time increases especially for φ > 10%. This can
be justified by the fact that our measures are applied to
whole clusters, and all the particles create a single cluster
in higher φ, see Fig. 5c. For this purpose, further investi-
gation is required, to this end we are going to explore the
neighbourhoods of particles.

At this point, it should be mentioned that the structure
formation occurs in O(1s) for all φ-values, Eq. (12). This
timeframe is suited for applications like 3D printing, and
more specifically stereolithography. In recent studies (Anas-
tasio 2019), it has been observed that the gel-point of acrylate
systems is reached at times within the same order of magni-
tude.

Characterisation of neighbourhood

We study the neighbourhoods of particles through the
Voronoi tessellation technique for the same configurations
we investigated before. Except for the Voronoi volume dis-
tributions, the relative shape anisotropy of the cells, defined
in Eq. (19), is also explored.

The main issue of our tools is the insufficiency for identi-
fying the main characteristics of a structure that is formed by
one cluster (probable network). We expect that the Voronoi
cells of the particles are going to distinguish the core of the
structure (Vcor < 〈Vvor〉 and isotropic shape). We speculate
that particles belonging to the external layer of the structure
will exhibit Vext > 〈Vvor〉, and pretty anisotropic shape (dis-
tant neighbours). Although, conclusions can be drawn about
the structure, no identification of the corewasmade. In Fig. 6,
one can see that the evolution of the structure in time, and
the distributions are far from random (broader), no quan-
titative identification of the characteristics (BP, branches)
is possible. A well-known (Voronoi 1908; Theodorou and
Suter 1985; Montoro and Abascal 1993) technique in many
different fields (Greenfield and Theodorou 1993; Starr et al.
2002;Damasceno et al. 2012;Vogiatzis andTheodorou 2014;
Varadan and Solomon 2003; Li and Li 2009; Duyckaerts and
Godefroy 2000) has proven inefficient for the quantitative
characterisation of our systems.
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Fig. 5 Morphology measures S2 (a), λ∗ (b), and N∗ (c) plotted against
the dimensionless time, t∗. Different lines correspond to different values
of φ, 1, 2, 5, 10, 20, and 30

Characterisation of skeleton

Since, our attempt at identifying the main structure charac-
teristics concerning networks or late stages of the structure
formation did not yield the desirable results, we will focus
at transforming our structure to its bare skeleton with our
previously introduced (Manikas et al. 2020) skeletonization
methodology. This technique gives us the possibility to iden-
tify the main characteristics of the structure and create a
skeleton fromwhichwe can extract all the important informa-
tion (BPs, thickness of branches, existence of percolation).
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Fig. 6 a The distribution of scaled Voronoi volumes is plotted as a
function of dimensionless time for a system of φ = 10% and B∗ =
0.01. The scaling is performed with the average Voronoi volume of
the configuration.The distribution of scaled Voronoi volumes (b), and
relative shape anisotropy (c) are plotted for dimensionless time t∗ =
10tc and φ = 1, 2, 5, 10, 20, and 30. The distributions of a random
configuration of particles, and of an isotropic network (isonet) are also
plotted for comparison

Here,we discuss the results obtained form the skeletoniza-
tion of our structures. This technique uses a 3D-binary image
as an input, in this image the cavities are filled in for avoiding
complications The results concerning the filling of the cavi-
ties (Manikas et al. 2020), are presented in “Appendix D” for
all φ, and B∗ = 0.01. The number density, and degree of BPs
are presented in Fig. 7. The average thickness of branches for
all φ used are presented in Fig. 8.

Weexpect tofind an initial increase ofBPs due to the initial
structure formation and then a decreasing amount of BPs for

increasing t∗. The particles create a structure at early stages,
and after they rearrangemicrostructurally to the optimal con-
figuration with respect to the potential (more compact, less
short branches). One can observe in Fig. 7, that for φ = 10%
our expectation is verified, as after an initial increase until
t∗ = 2, nBP decreases and eventually reaches a plateau. We
also expect the plateau value of nBP to increase with increas-
ing φ, as the smaller the inter-particle distances the more
network-like structures created.Our expectation is confirmed
in the final structure (t∗ = 10), the nBP is increasing with
increasing φ.

As the structure is formed we expect more complex path-
ways being present initially, and the degree of BPs to be
reduced as thicker components and simpler pathways are
formed over time. In Fig. 7b, for φ = 10%, we observe
an initial increase following the same trend as nBP, and after
that, a plateau around its minimum value (three) is reached
within errorbars. We also expect the degree to be unaffected
for varying φ, as the structure at advanced times is evolved
and the complex pathways have been replaced by thicker
components of the structure. In Fig. 7b, no significant influ-
ence of φ is observed for the degree at the final structure
(t∗ = 10) as expected.

The evolution of the structure is expected to be followed
by increasing thickness in time. In Fig. 8, for φ = 10%, we
observe an initial increase until the structure is formed (t∗ =
1), and then deviates around a plateau value. An exemption
is observed for φ = 30%, the thickness is increasing until
dimensionless time of approximately 4, and then decreases
to approximately a stable value. This decrease is related with
the filling of the cavities shown in “Appendix D”, as the
volume of cavities filled decreases an order of magnitude
at t∗ > 4 the average distance of a skeleton voxel to an
empty voxel is decreased as the percentage of empty voxels
is larger in the box. Therefore, thinner branches are present.
We also expect an increasing thickness for increasing φ, as
the higher theφ the smaller the inter-particle distances and the
thicker the structures formed. In Fig. 8, for t∗ = 10, one can
observe that indeed the thickness is increasing proportionally
to φ.

The existence of percolation is also checked. It is expected
to achieve percolation along a single direction at the same
time, as N∗ reaches a value of one. Percolation occurs for
lower (1%, 2%, 5%, 10%) φ at time of 1 in the direction
of the field z. Percolation in not reached in the other direc-
tions (x, y), in the limit we investigate in this paper. On the
contrary, the higher φ (20%, 30%), reach percolation in z at
t = 1 and in x, y at t = 2. This is explained by the fact that
the unoccupied space in larger φ is limited and results to the
creation of percolation paths also on the xy plane, which is
perpendicular to the main direction of anisotropy.
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Fig. 7 a Number density of branch-points for φ = 1, 2, 5, 10, 20, and
30 is plotted against time. b Degree of branch-points is plotted against
time for the same φ
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Thermal conductivity

At this point, we would like to present Fig. 9, where
the enhancement factor of the thermal conductivity of the
medium for the principal directions for the φ used in this
article is shown. We did not develop this theoretical analysis
(Martin and Gulley 2009), but we use it to demonstrate the
enhancement that one can achieve by aligning the particles
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Fig. 9 Thermal conductivity enhancement factor (Martin and Snezhko
2013) against φ for final configuration

in a medium. This analysis of the thermal conductivity of
composites produced under an external field (magnetic or
electric) shows that the particle structuring could improve
thermal transport, however, other transport properties have
isomorphic behavior (e.g. electrical conductivity, dielectric
permittivity) (Martin and Snezhko 2013). This theory is an
adaptation and extension of the Maxwell theory that takes
into account spatial correlations between particles (Eucken
1932), it originates from the equivalent theory concerning
the magnetic susceptibility (Martin et al. 2000). In Fig. 9,
one can see how much the thermal conductivity coefficient
Keff can be enhanced by the alignment of particles compared
to random addition of particles and no addition of particles,
Kpoly. The enhancement ratio is calculated as (Martin and
Gulley 2009)

Keff,w

Kpoly
= 1 + 3φ

1 − φ − δwψz
(25)

where the subscript z refers to the direction of the external
field, w is an index that indicates any of the three principal
axes, x , y, or z, of the sample, δx = δy = 1, and δz = 2. This
expression differs from the Maxwell theory only through the
structural order parameter:

ψz = − 1

N

N∑

j=1

∑

i �= j

(2Rp/ri j )
3P2(r̂i j · Ê) , (26)

where P2(x) = 3
2 x

2 − 1
2 is the second Legendre polynomial.

We use Eq. (25), developed in Martin and Gulley (2009),
to relate the actual structure with the thermal conductivity,
as an example of the enhancement of transport proper-
ties due to the structure formation. A more direct way
of calculating the thermal conductivity would be perform-
ing full finite-element method (FEM) calculations, solving
the energy balance (Guan et al. 2014). Another way of
obtaining the thermal conductivity from simulations would
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involve the Fluctuation Dissipation Theorem which relates
thermodynamic response functions to the appropriate time-
autocorrelation functions. The thermal conductivity is related
to the time-autocorrelation function of the heat-flux opera-
tor. The effective contribution of particles towards the overall
thermal conductivity of the system is calculated using the
appropriate Green-Kubo relation in relation to the heat-flux
operator. Once this contribution to the thermal conductiv-
ity is obtained, the parallel model of thermal conductivity is
used to calculate the effective conductivity as described in
Bhattacharya et al. (2004).

4.4 Comparison to literature

In this paper, a relation between the physical input and the
final structure of suspensions under a uniform external field
is made. Our numerical results can be compared to experi-
mental findings as follows. The formation of strings in the
direction of the external field is observed in our simulations,
and it has also been observed experimentally both for a few
particles (Halsey 1993; Loudet and Poulin 2001) and many
particles (Sprecher et al. 1987). Beyond such a general agree-
ment, we would also like to compare experiments with our
numerical results in the regime of volume fractions for which
our model is most appropriate, φ ≤ 10%. In this regime, it
is observed in experiments (at φ ∼ 2%, see Fermigier and
Gast (1992)) that chains form, which then might percolate
depending on the magnitude of the field and the time the sus-
pension is exposed to this field. This behavior is analogous to
the regime of structure formation t∗ ≤ 1 of our suspensions
in Fig. 5. The thickening of the clusters observed in our sim-
ulations has also been observed experimentally (Mohapatra
et al. 2020), where the chains aggregate over time and form
thicker chains. Additionally, taking the experimental param-
eters studied inMohapatra et al. (2020) and using them in the
calculation of the characteristic timescale according to our
procedure, one obtains indeed the times that correspond to the
structure formation observed experimentally in Mohapatra
et al. (2020). This supports our hypothesis that two-particle
scaling is appropriate for describingmany-particle dynamics.

5 Summary and discussion

The structure formation and evolution of electrically/magne-
tically (EM) active particles under a spatially uniform exter-
nal electric ofmagnetic fieldwas studied. EM active particles
create dipoles when exposed to an external field. When two
dipoles are sufficiently close, their interaction results in the
formation of structures, e.g. chains. The physical parameters
of relevance for this formation were organized in dimension-
less groups, and the effect of these dimensionless numbers
on the structure evolutionwas investigated. The possibility of

3D printing these systems with stereolithography (Stansbury
and Idacavage 2016) was explored in terms of the relevant
timescales. In this section, the results concerning the physical
behavior of the system presented in Sect. 4, are discussed.

We used BD simulations to track and characterize struc-
tures of particles under a spatially uniform external field. We
simulate the electro-magnetic interactions with the simple
dipole approximation, the Stokes drag and Brownian force
are used for the interaction with the surrounding medium.
A method was presented to capture the structural dynam-
ics of these systems, with special attention to the effect of
the dipole–dipole interactions on the structure formation and
evolution. We introduced a combination of measures for
quantifying the evolution of the structure in time.

In Sect. 4.1, the initial configuration of the systemwas var-
ied, and exhibited a larger impact on the results than the effect
of the variation in random numbers sequence. The variation
of the initial structure is required for the observation of the
structural evolution of such systems. One should be careful
with that observation, as an initial configuration with spe-
cific structure (e.g., FCC crystal structure) could have a large
impact on a study of this kind.

The observations about B∗-variation were the following.
Our scaling concerned only two-particle interactions, so our
parameters like B∗ and tc are based on that assumption. This
scaling should be obeyed for simulations of two-particle sys-
tems. However, a generalization to many-particle systems
cannot be performed easily, as it is not clear if the same scal-
ing is obeyed. To this end, we performed simulations of 1000
particles with various values of B∗, where we observed that
the scaling is obeyed for many-particle systems as well, and
the magnitude of the thermal fluctuations can be considered
negligible in the regimewe investigated, the only effect being
that the fluctuations around the average increase.

Additionally, one can identify three main regimes, in
Fig. 4. During the increase of S2 in Fig. 4a, we have the for-
mation of the chains. After that and until dimensionless time
of 10, the anisotropy stays at the maximum level, Fig. 4b.
The orientation measure S2 reaches a maximum and then
decreases to a plateau, as it is sensitive to thickening of the
strings that are being formed. This conclusion is based on
Fig. 4c, were at the same time the increase begins t∗ ∼ 0.1,
the chains span the box in length, N∗ ∼ 1, after that the
chains keep growing and the S2 drops due to the thickening.
At larger times, t∗ > 8, it seems that the system reaches an
equilibrium state, where S2 exhibits a plateau.

The φ-variation was performed in steps. The first step
involved the same three measures we used before: S2, λ∗,
and N∗. There, we identified that different φ-values exhibit
different behavior, as our two-particle scaling is not enough to
resolve this variation.However, one can see thatwith increas-
ing φ, the S2 and λ∗ decrease to really low values indicative
of isotropy, at similar values of dimensionless time. From
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N∗, we observe that at high volume fractions of particles,
φ > 20%, all particles of the system belong to the same
cluster. These big aggregates are not characterized well by
the above measures. The reason is that these measures were
developed for string-like structure and at this point we do
not have distinct strings. The structures look more like a net-
work. To characterize them, we focused on the investigation
of neighbourhoods of particles using the Voronoi tessella-
tion. Although, some qualitative observations were made,
one could not distinguish particles that belong to the core of
the structure by the characteristics of their Voronoi cells. The
main reason is that toomany particles belong to the layer sur-
rounding the core layer, resulting to large fraction of particles
with the characteristics we are seeking for.

At high volume fractions, attentionwas paid on transform-
ing the structure into a form that is easier to characterize,
namely a skeleton with simplified connectivity. In this way,
we were able to calculate the branch points (BPs), the thick-
ness of branches, and the existence of percolation in all three
directions and study their evolution in time. After the forma-
tion of the structure at early times, the local rearrangement of
particles results inmore compact structures as time advances.
TheBPs and thickness of branches seem tobemainly affected
by the volume fraction φ, the higher φ the higher the number
density of BPs and the thickness of branches. The existence
of percolation and the anisotropy of the structure were inves-
tigated. For φ > 10%, the structures formed percolate in all
three directions (x, y, z). A lower values of φ, the structure
percolates only in the direction of the external field, z.

The thermal conductivity is calculated byway of a theoret-
ical analysis, and it appears to be effectively increased by the
structuring of the particles (see Fig. 9). The relative enhance-
ment ratio increases monotonously with the volume fraction
for the final configurations of our structures. In addition to
that, the thermal conductivity in all directions (x, y, z) is
enhanced in relation to the random arrangement of particles.
It has to be noted that this enhancement is significantly larger
if polydispersity is introduced to the system, as the inter-
particle distances are decreasing and the effective thermal
conductivity coefficient is growing, Eq. (25). In this paper,
the thermal conductivity is presented, however, other effec-
tive properties such as the magnetic susceptibility, dielectric
permittivity, and electrical conductivity exhibit isomorphic
behaviour (Martin and Snezhko 2013).
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Appendices

A Time-step convergence

In Fig. 10, one can see ourmeasures S2,λ∗ and N∗ for various
timesteps. The system that is used is of φ = 10%, and B∗ =
0.01. The timesteps used in dimensionless units (scaled with
Eq. (12)) are dt∗ = 7.1 × 10−6, 3.6 × 10−5, 7.1 × 10−5,
2.4× 10−4, 2.4× 10−4, 3.6× 10−4, 7.1× 10−4, 3.6× 10−3

and 7.1 × 10−2. The largest timestep that our simulation
continues without large overlaps of the particles, that result
in rather large increments in the next steps, can be seen in
the measures as a continuous curve with no discontinuities
for 2.4 × 10−4.

The failure of the simulations occurs, because of really
large forces produced by large overlaps between the particles.
This forces cannot be resolved with longer timesteps than the
one calculated by t∗c,exv.

B Initial configurations

The protocol followed for the creation of equilibrated initial
configuration will be presented here. Initially, we work with
a system of 1000 particles in φ = 40%, so if the configura-
tion is equilibrated for this system it will be also for every
system with the same positions of the particles and lower
volume fraction. We initially place the particles in a simple
cubic lattice. Then, we let them equilibrate with a repulsive
part of a Lennard-Jones potential. On top of that, we use a
higher temperature T = 493K, so that the diffusion timescale
reduces. The equilibration is checked with the standard devi-
ation value of the number density of particles per cubic cell.
We observe the standard deviation, which drops with time,
Fig. 11a. Our criterion for terminating the equilibration loop
is the standard deviation to reach a value lower than 0.2. For
further checking this assumption we calculate the radial dis-
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tribution function, Fig. 11b, and one can observe that it looks
like a Lennard-Jones fluid with excluded volume interaction
(Frenkel and Smit 2002).

As we obtained these random initial configurations, we
studied the effect on the structure formation. The volume
fraction of the selected system for study is φ = 10%. In
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Fig. 10 Evolution of the morphology measures (S2, λ∗ and N∗) with
time for the same configurations under different level of discretization
in time. The errorbars correspond to different random number seeds
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Fig. 11 a Standard deviation as a function of equilibration time for
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same configuration after t = 40 s

Fig. 12, we present the measure introduced in the previous
section for four different initial configurations, indicated by
different colours.

One could observe that in one dimensionless unit of time
the difference in the measured quantities is low compared
to the values of the measures, but visible. If one compares
with the variation of the random numbers (error-bars), the
variation of the initial configurations has a larger impact on
the measured quantities.
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Fig. 12 Morphology measures S2 a, λ∗ b, and N∗ c plotted against
the dimensionless time, t∗. Different colour indicates different initial
configurations

C Variation of B∗ and volume fraction

In this part, we present the results for different B∗, and φ.
These results correspond to the same values used in Sects. 4.2
and 4.3 for B∗ = 0.01, 0.0316, 0.1, 0.316. One can see that
the results for different φ’s presented collapse to a single
master curve as in Fig. 4. The three measures S2, λ∗, and N∗
are presented for φ = 1, 30% in Figs. 13 and 14 respectively.
In Table 1, one can find all the values of B∗ and φ used in
this paper and their relevant location in the paper.
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Fig. 13 Morphology measures S2 (a), λ∗ (b), and N∗ (c) for φ = 1%
plotted against the dimensionless time, t∗
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Fig. 14 Morphology measures S2 (a), λ∗ (b), and N∗ (c) for φ = 30%
plotted against the dimensionless time, t∗

D Filling of cavities

When an image is processed to its skeleton all closed cavities
(cavities that do not connect to the side of the simulation box
with empty voxels) are represented as surfaces of voxels, to
avoid this artefact of the technique it is common to fill the
cavities before processing (Kerschnitzki et al. 2013; Koll-
mannsberger et al. 2017). These cavities are characterized in
terms of number density and volume fraction with respect to
the simulation box, as they are being part of the structure. In
Fig 15, one can see that the φ dominates both the number
density (normalized with number density of primary struc-
ture), and volume fraction of cavities. The number density
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Fig. 15 a Number density of cavities for different volume fractions,
φ = 1, 2, 5, 10, 20, and 30 is plotted against time. b Volume fraction
of cavities is plotted against time for the same φ

Table 1 Overview of the results
concerning the various values of
B∗ and φ used in this paper

φ | B∗ (%) 0.01 0.03 0.1 0.3

1 Sect. 4.3, Appendix C Appendix C Appendix C Appendix C

2 Sect. 4.3 – – –

5 Sect. 4.3 – –

10 Sects. 4.2, 4.3 Sect. 4.2 Sect. 4.2 Sect. 4.2

20 Sect. 4.3 – – –

30 Sect. 4.3, Appendix C Appendix C Appendix C Appendix C
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shows an initial increase, which is interpreted with the struc-
ture formation happening. The general trend is the decrease
of both number density, and volume fraction of cavities are
decreasing in a consistent way, until they reach a plateau and
fluctuate around this plateau.
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