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Abstract
Owing to their advantages, such as a high energy density, low operating potential, high abundance, and low cost, rechargeable 
silicon (Si) anode lithium-ion batteries (LIBs) have attracted considerable interest. Significant advancements in Si-based LIBs 
have been made over the past decade. Nevertheless, because the cycle instability is a crucial factor in the half/full-battery 
design and significantly affects the consumption of active components and the weight of the assembled battery, it has become 
a concern in recent years. This paper presents a thorough analysis of the recent developments in the enhancement methods 
for the stability of LIBs. Comprehensive in situ and operando characterizations are performed to thoroughly evaluate the 
electrochemical reactions, structural evolution, and degradation processes. Approaches for enhancing the cycle stability of 
Si anodes are systematically divided from a design perspective into several categories, such as the structural regulation, 
interfacial design, binder architecture, and electrolyte additives. The advantages and disadvantages of several methods are 
emphasized and thoroughly evaluated, offering insightful information for the logical design and advancement of cutting-edge 
solutions to address the deteriorating low-cycle stability of silicon-based LIBs. Finally, the conclusions and potential future 
research perspectives for promoting the cycling instability of silicon-based LIBs are presented.

Keywords Lithium-ion batteries · Si-based anodes · Cycling stability · Failure mechanisms · In situ characterization 
methods · Modification strategies

1 Introduction

Traditional fossil fuels face several challenges, including 
resource depletion, exploration difficulties, and environmen-
tal pollution [1–3]. Multiple efforts have been made toward 
finding alternative energy sources, and countries such as 

Germany, France, and England have developed plans to 
phase out fueled vehicles [4, 5]. Lithium-ion batteries (LIBs) 
have gained widespread attention owing to their excellent 
energy density and long lifespan [6–8]. According to the 
research on energy trends, the worldwide revenue share of 
electric vehicles is anticipated to increase by 10% by 2025 
[9–12]. The current level of LIB industrialization cannot 
satisfy the rapidly increasing demand for electric and hybrid 
vehicles; therefore, it is critical to promote ultrahigh energy 
density LIBs.

Silicon (Si) has attracted considerable interest as an anode 
because it exhibits excellent characteristics such as abundant 
resources, environmental friendliness, outstanding revers-
ible capacity, and a relatively suitable operating potential 
[13–17]. However, Si anodes exhibit large volume changes 
(> 300%) during lithiation. This large volume expansion 
causes the bulk Si particles to bear significant tensile stress, 
which causes surface cracking, fracturing, and pulveriza-
tion. In addition, it can easily lead to a dynamic electrode-
electrolyte interface, further worsening and thickening the 
solid electrolyte interphase (SEI) [18–20]. Mechanical 
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deterioration and SEI instability ultimately result in electri-
cal isolation, poor reversibility, and cyclic capacity decay 
[21–25]. To date, several approaches have been adopted to 
address these challenges as much as possible, including the 
nanomaterial design [26–32], morphology control [33–42], 
carbon coatings [43–47], and matching suitable battery sys-
tems [48–61].

The challenge of cycle instability in LIBs has recently 
gained growing interest because stability is a key factor in 
full cell elaboration that significantly affects the availabil-
ity of active ingredients and the overall mass of the battery 
after assembly [62–71]. Consequently, the development 
of Si-based electrodes with enhanced stability has been 
the focus of recent studies to overcome this constraint and 
achieve superior electrochemical performance [71–77]. 
Although considerable attempts have been made to decrease 
the mechanical strain, few studies have focused on stability 
[68, 78–81]. Nonetheless, high-quality research has been 
conducted in relation to the considerable progress of LIBs 
over recent years; to the best of our knowledge, no special 
overview has been published that systematically analyzes 
and categorizes studies that address the problem of the low 
cycling stability of LIBs. From the perspective of actual 
implementation, the stability of LIBs is a significant cri-
terion for the energy density when assembling LIBs into 
complete batteries. Therefore, current research on resolv-
ing the stability problem of Si anodes should be extensively 
analyzed and summarized [82, 83].

This review is the first to comprehensively analyze typical 
research from the perspective of LIB stability. The failure 
mechanism during lithiation is analyzed in detail, and the 
electrochemical reaction process and structural evolution 
are discussed for various in situ characterization techniques. 
In addition, we summarize each aspect of the enhanced 
stability studies with regard to architectural elaboration, 
interface engineering, innovative binders, and electrolyte 
additive architectures. Finally, the conclusions and future 
prospects for the commercialization of Si-based anodes are 
presented (Fig. 1).

2  Causes of Instability in Si‑Based Anodes

Although Si has an extremely high theoretical capacity 
(Fig. 2a), its cycling properties are quite unstable and it 
exhibits rapid capacity decay owing to its intrinsic proper-
ties (Fig. 2b) [84–86]. Figure 2c depicts the charge-discharge 
plots of an Si nanoparticle (SiNP) anode at 100 mA  g−1. 
Substantial irreversibility was observed during the initial 
(de)lithiation process. To analyze the causes of the poor 
cycling performance, several groups have studied the failure 
mechanisms of Si anodes [13, 87, 88]. Based on the specific 

failure process, the failure mechanisms can be divided into 
mechanical and chemical instabilities.

2.1  Mechanical Instability

Si undergoes a structural transition during initial lithiation, 
with crystalline Si (c-Si) evolving into amorphous  LixSi and 
then into amorphous Si (a-Si) [19, 91–93]. The anisotropic 
volume changes during lithiation and the shrinkage after 
delithiation cause the disintegration of Si particles and even 
disconnect the Si parts from the current collectors or from 
one another (Figs. 3a and 3b), which is also the main reason 
for their cycling instability [94–96].

2.2  Chemical Instability

The durability of the SEI at the Si-liquid electrolyte interface 
is also a major cause of Si anode failure [58, 97–101]. As 
shown in Fig. 3c, during the first lithiation step, the Si par-
ticles shrink, the thin SEI layer dissolves into independent 
fragments, and the fresh Si anode surface is fully immersed 
in the electrolyte [102–106]. In the subsequent cycles, a new 
SEI layer is generated on the freshly uncovered Si surface. 
A thick SEI layer can increase the electrode impedance/
polarization, resulting in a considerably shorter cycle life 
[107–109].

From this perspective, based on the analysis of the 
failure mechanism above, we provide the following opin-
ions (Fig. 4). (I) In the first few cycles, the key reason 
for the rapid capacity decay is the consumption of the Li 

Fig. 1  Scheme of the current advancements in Si-based anode materi-
als



Electrochemical Energy Reviews            (2024) 7:11  Page 3 of 36    11 

inventory. This is primarily due to SEI formation, growth, 
recombination, and the generation of dead Li. (II) During 
the subsequent cycling process, the relatively slow decay 
of the capacity results from the fracture of the Si anodes. 
(III) The cycling instability in the subsequent long-term 
cycles is primarily due to the deterioration and flaking of 
the electrode materials.

3  Advanced In Situ/Operando 
Characterizations of Silicon‑Based Anodes

The failure mechanism of the cycling instability should 
be thoroughly analyzed by combining various characteri-
zation techniques. The two main problems addressed by 

Fig. 2  a, b Characteristics of 
Si-based anodes.  Reproduced 
with permission from Ref. [89]. 
Copyright © 2004, Elsevier. c 
The initial discharging/charg-
ing curve of pristine micro-Si 
anode materials. Reproduced 
with permission from Ref. [90]. 
Copyright © 2022, Elsevier

Fig. 3  Primary failure mechanisms of Si-based anodes during (de)lithiation: a material pulverization; b electrical isolation and thickness swell-
ing; c continuous SEI growth.  Reproduced with permission from Ref. [110]. Copyright © 2022, Wiley-VCH
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advanced characterizations are (1) the evaluation of the 
morphology and the mechanical performance before and 
after cycling, and (2) the qualitative or even quantitative 
analysis of the chemical composition (Fig. 5).

3.1  Characterizations of Morphology 
and Crystalline Structure

As mentioned in Sect. 2, the instability of the Si anode 
structure should be thoroughly analyzed during the cycling 
process. Therefore, the morphological variations, crystal 
evolution, and  Li+ diffusion modes should be studied. Tech-
niques such as synchrotron X-ray tomography (XRT), X-ray 

diffraction (XRD), and atomic force microscopy (AFM) can 
be used to monitor these behaviors. Through these charac-
terizations, researchers can further explain the degradation 
mechanisms associated with the lithiation process, thereby 
enhancing the stability of Si anodes.

3.1.1  In Situ Transmission Electron Microscopy

Considering the several microscopic assessment techniques, 
transmission electron microscopy (TEM) has become a 
direct and convenient tool for studying the phase and crystal 
revolution owing to the abundant information on transmis-
sion electrons and diffraction. Real-time and atomic-scale 
changes in SiNPs have been successfully observed by using 
TEM. The diffusion and phase transformation of  Li+ can 
also occur during internal  LixSi alloying. In addition, TEM 
can be used with component analysis accessories to evaluate 
the evolution of SEI [74, 111–115].

For Si anodes, mechanical decomposition can be inhib-
ited by using conductive or buffer layers without delaying 
the  Li+ transmission. From this perspective, the influence 
of the protective layer on the electrode materials during (de)
lithiation can be studied by using in situ TEM to explain the 
improved cycling stability. He et al. utilized in situ TEM to 
study the discharging/charging of N-doped carbon coatings 
on SiNPs (Si@NG spheres) [116]. The in situ TEM revealed 
that the quasi-isotropic volume expansion varied from 106.98 
to 125.58 nm during the initial lithiation (Figs. 6a–6c). In 
addition, a 2–3-nm SEI layer was generated, which was sta-
ble after 200 s of lithiation (Figs. 6d–6f). In addition, the 
morphological changes in the NG layer were observed in 
real time. As shown in Figs. 5g–5i, when a tungsten wire was 
pressed close to the NG shell, it was compressed along the 

Fig. 4  Scheme of probable failure mechanisms of Si-based anodes 
during (de)lithiation

Fig. 5  Advanced in situ/operando characterizations of failure mechanisms
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section of the gold wire and slid sideways. However, when 
the tungsten wire was removed, the coating layer bounced 
back without complete deformation, indicating that the coat-
ing layer exhibited excellent elastic performance and toler-
ated certain stresses.

3.1.2  X‑Ray Tomography

In terms of the Si nano-/microparticle accumulation, cycling 
instability may occur in different mass directions, which 
are difficult to determine by using traditional methods and 
require the destruction of thin samples. The analysis of the 
failure mechanism owing to phase transitions in the dis-
charge/charge process, particularly for heterogeneous com-
posite materials, presents the same challenge. Moreover, 
in nanostructured Si anodes, the large surface area facili-
tates a noticeable SEI in the three-dimensional (3D) pores, 
resulting in the formation of invalid “dead Si”. Tomograms 

were obtained to follow the structural alterations in the par-
ticle distributions associated with the applications. This 
is because they have a crucial effect on understanding the 
aging principles of these microscopic structures on a 3D 
scale.

Recently, synchronized XRT has attracted considerable 
attention because it enables the visualization of 3D struc-
tural variations in Si nanorods during the discharge/charge 
process. Zhao et al. studied the rapid failure of SiNP anodes 
and focused on the 3D morphological changes under vari-
ous periodic capacity conditions to illustrate the root cause 
of failure [37]. This study presents a new concept for the 
research and application of nanoalloys as electrode mate-
rials. In addition, computed tomography (CT) is a simple 
time-discrimination technique for identifying the hetero-
geneity of 3D crystals on large electrodes. Finegan et al. 
applied a micrometer resolution to study the dynamic pro-
cess of an Si-graphite hybrid material [117]. The spatial 

Fig. 6  a Simple schematic diagram of in  situ TEM. Volumetric 
changes in a single Si@NG structure at b 15 s and c 120 s in the dis-
charge process. d, e HRTEM pictures of a fracture in the NG shell’s 
inner layer. f Illustration of an inner layer fracture and the integrity of 

the outside layer of the Si@NG NG shell. g Schematic representation 
of N-doped C subjected to in situ TEM test. TEM pictures of an NG 
shell h pushed by a tungsten probe and i after pressing [116].  Copy-
right © 2020, Elsevier
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distribution of crystalline Si,  LixSi, and  LiC12 was evident, 
and the presence of  LixSi indicated that the energy density 
decreased, resulting in an insufficient battery capacity. In 
addition, the spatial heterogeneity of single materials (Si 
and graphite) was confirmed. This suggests that significant 

progress has been made regarding the spatiotemporal reso-
lution and decomposition of charge during the operation of 
the electrode particles, which is likely to serve as a foun-
dation for future studies on chemical heterogeneity during 
cycling.
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3.1.3  In Situ X‑Ray Diffraction

The evaluation of the phase structural variations relied heav-
ily on XRD. These are not confined to thin-film samples and 
may provide a vast quantity of information on bulk Si materi-
als. Moreover, in situ XRD facilitates extensive analysis of 
the bulk phase changes in real cells involving liquids with 
volatile electrolytes, as well as the detection of in situ crystal-
line transitions at high temperatures. Therefore, in situ XRD 
is commonly employed to describe LIB transitions during 
lithiation/delithiation. Furthermore, high loads from high-
speed charges introduce stress deformations, which require 
characterization. In situ XRD can accurately detect stress 
deformation and residual stress through variations in the dif-
fraction peak, thus revealing a multiphase strain distribution 
and stress-induced fading mechanism.

The discharging/charging process velocity of the lithium 
ions varies significantly with the direction of the lithium-ion 
penetration, with < 111 > being the least rapid and < 110 > the 
quickest. Zhang et al. [118] evaluated the crystalline structure 
evolution of Si nanoribbons (SiNRs) (Fig. 8a) and SiNPs 
(Fig. 8b) during initial cycling via in situ XRD. For the 
SiNRs, the Li–Si alloy exhibited phase transitions resem-
bling those of Si during the discharge procedure. The crys-
talline plane spacing gradually increased with increasing Li 
insertion on the (110) surface, which is consistent with the 
directionally constrained expansion of the SiNRs. The study 
concluded that restricting the invasion direction of  Li+ in 
the < 110 > range was beneficial for retaining the durability 
of the atomic order. In contrast, the new SiNP peak of the 
Li–Si alloy exhibited an amorphous structure and relative 
homogeneity. No clear angular shifts or maximum Si peaks 
were observed. In addition, in situ TEM experiments were 
conducted to further analyze the dynamics of the discharg-
ing/charging process. As shown in Fig. 7c, the maximum 

thickness and width of the SiNRs were 17 and 168 nm, 
respectively. When in close contact with Li, the Li ions 
rapidly diffused into the SiNRs with a significant increase 
in thickness (Figs. 8c2 and 8c3). At 40 s, the thickness and 
width of the SiNRs increased to 43 and 182 nm, respectively 
(Fig. 8c4). Therefore, during the discharging process, the 
SiNR first expanded along the t-axis and then retained its 
original thickness along the l- or w-axis. During the charg-
ing process, the SiNR shrunk uniformly, and the thickness 
decreased from 43 to 28 nm (Figs. 8c5–8c8). The change in 
the crystal structure of SiNR during the (de)lithiation pro-
cedure further elucidated its excellent cycle durability and 
provided a useful concept for the study of other alloy-based 
anode materials.

3.1.4  In Situ Raman Spectroscopy

Because Raman spectroscopy is sensitive to symmetric struc-
tures, the structural revolution of electrode materials related 
to voids, defects, and phase changes can be demonstrated. In 
addition, Raman spectroscopy can be used to study low-crys-
tallinity amorphous composites without a neat arrangement 
of long-distance structures, making it superior to XRD. For 
instance, Si and  LixSi can be observed as amorphous forms 
during the discharging/charging process.

Zhou et al. studied the discharging/charging process of 
Si-Ge electrode materials using in situ Raman spectroscopy 
[119]. The Raman signal changes of Si-Ge and Si during 
the initial lithiation process are demonstrated in Figs. 9a–9c. 
With the continuous insertion of  Li+, the Raman peak of 
Ge began to weaken at 0.6 V, and the Raman peak of Si 
gradually weakened below 0.4 V and almost disappeared 
at the end. These results show that the alloying lithiation of 
Ge occurred before that of the Si-Ge composites, and that 
of the Si anodes occurred below 0.4 V. In contrast, for the 
Si anodes, the Raman peaks of Si weakened after charg-
ing and then gradually became stronger. Nevertheless, the 
Raman peak was still observed until the end of the discharge, 
indicating that the conductivity and ion diffusion of Si were 
lower than those of the Si-Ge composites. Therefore, the Ge 
additives could reduce the Li potential barrier of Si, thereby 
improving the stability of the Si anode cycle.

Wang et al. elucidated the growth of SEIs using in situ 
Raman spectroscopy [120]. The Raman peaks located at  
1 090 and 1 097  cm−1 are attributed to  CO3

2−, which may 
be due to the radical polymerization (Fig. 9d). The fluoro-
ethylene carbonate (FEC) and ethylene carbonate (EC) first 
reacted with the FEC-containing electrolyte before radical 
polymerization and discharged below 1.3 V. The intensities 
of these two Raman peaks increased significantly and then 
remained relatively unchanged with decreasing potential, 
indicating SEI growth at higher voltages. The correspond-
ing mapping (Fig. 9e) depicted the changing trend.

Fig. 7  X-ray nano-tomography quantified material density 3D visu-
alizations and fictitious cross sections of electrodes cycling in a 
steady state at a 1 000 mAh  g−1 and b 2 000 mAh  g−1. c Relationship 
between standardized X-ray absorption and the distance to the current 
collector.  Reproduced with permission from Ref. [37]. Copyright © 
2020, Elsevier. Image of an Si-graphite anode taken by using XRD-
CT: d an XRD-CT slice recorded at the start of the charge process 
displaying a phase-distribution pattern of crystalline Si (green),  LixSi 
(blue), and  LiC12 (red), where the teal is a blend of green (Si) and 
blue (lithiated Si) based on complementary color mixing; e magni-
fied zones of focus revealing massive  LixSi phase components in the 
graphite substrate with crystalline Si centers (1–3) and smaller  LixSi 
particles (4). f Charge gradient and associated phases. g Over oper-
ating and open-circuit times, the d-spacing corresponds to the (002) 
reflection of the  LixC6 architecture. h Magnified time span of Zone 
1 demonstrating the incorporated peak regions of the  LixC6 phases 
upon delithiation. i Magnified zone of concern displaying the c-lattice 
value of the solid-solution graphite phase over activation and open-
circuit (green). Reproduced with permission from Ref. [117]. Copy-
right © 2019, American Chemical Society

◂
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3.1.5  In Situ Atomic Force Microscopy

In terms of multiple microscopic techniques, atomic force 
microscopy (AFM) has a high resolution and high surface 
sensitivity. Advancements in AFM technology have acceler-
ated the study of Si anodes, particularly the volume evolu-
tion, with the aid of the instantaneous visualization of struc-
tures in three dimensions.

For most Si-based anode materials, the volume expan-
sion during cycling is the main failure mechanism; how-
ever, the electrochemical-mechanical coupling behavior 
remains unclear. Liu et al. applied in situ AFM to moni-
tor real-time morphological changes in micro-Si (μSi) 

(Fig. 10) [121]. In addition, the significant mechanical 
evolution of the electrode materials was successfully visu-
alized, including the early comminution, initiation and pat-
terning of cracks, irreversible volume changes, formation 
of a fresh SEI at the crack surface, and particle insulation. 
Moreover, in situ AFM has demonstrated that limiting the 
limiting voltage, such as 0.7 V versus Li/Li+, can sup-
press the mechanical defects at the μSi anodes and improve 
the capacity stability by reducing the battery impedance. 
These results prove that in situ AFM has potential for the 
application in monitoring the electrochemical mechanical 
behavior of a variety of electrode materials in the “real-
world” electrode level.

Fig. 8  a Si nanoribbon and b SiNP anode structure development in 
two-dimensional contour plots of in situ XRD during the initial (de)
lithiation at C/10 in a half cell. c Consecutive in  situ TEM images 
depicting the SiNR discharge procedure at 0, 20, 30, and 40 s, respec-

tively, and the SiNRs’ delithiation process at 0, 20, 30, and 40 s, with 
modification.  Reproduced with permission from Ref. [118]. Copy-
right © 2021, Elsevier
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3.2  Characterizations of Chemical Composition

With the rapid development of surface sensing methods such 
as photoelectron energy spectroscopy and secondary ion 
mass spectroscopy, the surface makeup of electrode materials 
can potentially be evaluated. Quantitative measurements of 
the electrode material and electrolyte composition have also 
been taken possible by using bulk-level techniques including 
nuclear magnetic resonance (NMR), diffraction spectroscopy, 
and absorption spectroscopy. Typically, these detection tech-
niques are used in conjunction in laboratories. Furthermore, 
the use of recently created high-energy sources enables a 
more in-depth analysis and dynamic tracking of batteries. 
Using these characterization approaches, researchers study-
ing batteries can evaluate the enhancement caused by the 
material modification and cycling instability linked to the 
compositional augmentation of anodes and electrolytes.

3.2.1  Hard X‑Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS), which has been 
widely used to examine electrode-electrolyte interfaces, is 
the foundation of a novel method referred to as hard X-ray 
photoelectron spectroscopy (HAXPES). However, the fre-
quent generation of dense SEI with repeated cycling makes 
it difficult to evaluate the bulk Si material beneath the SEI 
in Si anodes. An external Si-oxide coating that mitigates 
the XPS response and hinders the evaluation of the  LixSi 
alloying procedure is often present when the growth of a 

thick SEI film is related to the formation of  LixSi. Given that 
high-energy photons can provide further details regarding 
the exterior and evaluate tightly bound essential electrons, 
such as Si 2p, this HAXPES technique has been proposed to 
fully identify the cyclic properties linked to SEI formation 
and  LixSi alloying.

Electrolyte components can affect the cycling proper-
ties related to SEI development in Si-based LIBs. HAXPES 
is currently used to examine the impact of various solvent 
salts on lithiation/delithiation;  LixSi production may also 
be examined in future studies [122]. The Si anode can 
retain approximately 1 200 mAh  g−1 for 100 cycles with 
this electrolyte composition. Extended cycling resulted in 
an increase in the  SiOx content and a reduction in the silicon 
particle size. This electrolyte and its breakdown products 
do not cause any adverse side effects on the active Si mate-
rial, unlike  LiPF6-based electrolytes. These findings confirm 
the benefits of SEI-generating compounds. Polycarbonates 
and significant LiF concentrations in the SEI are preferable 
to other carbonates created by the breakdown of EC and 
dimethyl carbonate (DMC). This research demonstrates 
that LiTDI is a promising salt for Si anodes when combined 
with the examined additives. The spectra with cross-linking 
characteristics obtained using the HAXPES technique effec-
tively show how the electrolyte species may alter the cycling 
stability and assist in the creation of new electrolytes for 
Si-based LIBs.

For Si-based anodes, the cycling stability primarily 
relies on binders because a robust binder can prevent the 

Fig. 9  In situ Raman spectra of Si-Ge in a lithiation process and b 
delithiation process and c corresponding enlarged images (the orange, 
discharge; the blue, charge). Reproduced with permission from Ref. 
[119].  Copyright © 2019, Royal Society of Chemistry. d, e In  situ 

Raman spectra and mapping of Si@MoSe2 throughout the (de)lithi-
ation procedure. Reproduced with permission from Ref. [120]. Copy-
right © 2022, American Chemical Society
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pulverization of SiNPs, leading to electrical isolation. To 
learn more about the effect of binders in the substrate mate-
rial on the early development of the SEI layer, Young et al. 
performed HAXPES on new electrodes, cycled at a lower 
voltage, or cycled completely [123]. To determine the modi-
fications to the SEI that occurred after the initial creation, 
they also examined the electrodes that were cycled 5, 10, and 
20 times. Moreover, they estimated the thickness of the SEI 
based on the number of cycles, showing that polyacrylic acid 
(PAA) formed the weakest SEI, followed by carboxyl methyl 
cellulose (CMC)-PAA, CMC, and polyvinylidene fluoride 
(PVDF) to increase the layer thickness.

3.2.2  Time‑of‑Flight Secondary Ion Mass Spectroscopy

Time-of-flight secondary ion mass spectrometry (TOF-
SIMS) was used to measure the percentages of various ions 
(exact parts per million) using small quantities of secondary 

ions drawn from the sample surface. Utilizing its sensitiv-
ity to Li signals, TOF-SIMS can also be used to evaluate 
Li-Si discharging/charging processes. The cause of cyclic 
deterioration in Si anodes requires further study. In addition 
to cyclic mechanical destruction, the interfacial chemistry 
(such as the  Li+-consuming process) should be considered 
when analyzing the SEI stability. Owing to the difficulty in 
monitoring lithium species and microscopic activity, such 
research continues to encounter obstacles. TOF-SIMS was 
used in this context to determine the SEI generation reac-
tions linked to the Li-involved process and to decipher its 
relevance in evaluating these reactions.

Electrolyte components can impact the cycle behavior 
involved in the SEI development of Si-based LIBs, and a 
small quantity of water in the electrolyte is one of the ele-
ments that is unfavorable for the electrochemical properties. 
However, attempts to stabilize SEI for better electrochemi-
cal properties have been hindered by insufficient expertise 

Fig. 10  a Pattern depicts the voltage profile acquired from the in situ 
AFM half-cell for the first two cycles. b In  situ AFM pictures were 
captured throughout the first two (de)lithiation processes (i–iii). c 
Pattern depicts a 3D representation of a typical Si particulate and 
its volumetric variations from (ii) to (vii). The transformation of Si 

particle contacts: cross-sectional height measurements and 3D visu-
alized images were collected d, e before crack development, f, g 
immediately following fracture generation, and h, i after resting for 
2 h. Reproduced with permission from Ref. [121]. Copyright © 2022, 
American Chemical Society
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on the basic and mechanical concepts of SEI generation, 
development, and characteristics in the absence of water. 
Therefore, Ha et al. used TOF-SIMS to evaluate the SEI 
established in a Gen2 electrolyte (1.2 mol  L−1  LiPF6 in eth-
ylene carbonate/ethyl methyl carbonate, 3:7 by weight) with 
and without additional water (50 μmol  mol−1) at different 
voltages [59]. The SEI exhibited either potential- or liquid-
concentration-related variations in the shape and chemical 
content. Excess water in the electrolyte led to disruptive 
reactions that began at approximately 1.0 V and ended with 
a reduction in the constituent parts of the electrolyte and the 
formation of an insulating fluorophosphate-rich SEI. Fur-
thermore,  LiPF6 degradation produces hydrofluoric acid, 
which interacts with the surface oxide layer of the Si elec-
trode to produce a scarred and irregular SEI structure.

Moreover, a steady interface between the Si electrodes 
and electrolytes is crucial for achieving outstanding elec-
trochemical performance in LIBs. Ha et al. used molecular 
layer deposition (MLD) to deposit a Zn polymer layer on 
an Si anode, which acted as an artificial SEI [124]. TOF-
SIMS was used to evaluate the effect of the zincone coating 
on the structure and thickness of the SEI. The Si@10-ZC 
anode exhibited a lower SEI than the basic sample (> 300 s). 
This may have been the cause of the Si@10-ZC electrode’s 
decreased SEI resistance of RSEI (Figs. 11a and 11b). In 
addition, the  ZnO− signal was consistent underneath the 
SEI, showing that metallic zinc was uniformly distributed 
throughout the basic sample. The poor Si signal in Fig. 11c 
suggests that the SEIs covered the surface of the Si@10-ZC 
anode. Figure 11d shows the Si signal attaining saturation 
after 220 s of sputtering, suggesting that Si was entirely illu-
minated. Metallic zinc was equally dispersed throughout the 
electrode. Remarkably, LiF shows scattered accumulation, 
which may be attributed to its porous structure. The result-
ing 3D reconstructions (Fig. 11e) clearly show the electrode 
structure. Metallic zinc was spread equally across the elec-
trode, similar to columnar LiF. This pattern of dispersion 
is essential for increasing the electron/ion transport in Si 
electrodes.

3.2.3  X‑Ray Absorption Near‑Edge Structure Spectroscopy

X-ray absorption near-edge structure (XANES) can be used 
to assess the oxidation state, site symmetry, and covalent 
bond forces of an intended component. As a result of this 
characterization, we can evaluate the chemical bonding 
states linked to the compositional alteration of the electrode 
materials, which is important for evaluating the battery 
capacity and cycling stability [125].

XANES was used to identify the bonding changes 
related to cyclic deterioration in the silicon monoxide 
(SiO) hybrid anodes. Xu et al. established a simple and 
low-cost method for producing an in situ graphene-coated 

SiO anode utilizing coal-derived HA and employed STXM 
and XANES spectra to evaluate the shape and chemical 
content of P-SiO with D-SiO@G particulates [126]. The 
Si-atom-sensitive structure of the cycled particles, obtained 
by combining STXM image sequences at the Si K-edge, is 
shown in Figs. 11g (P-SiO) and 11i (D-SiO @G). The con-
centrations of the anode materials and SEI constituents in 
D-SiO@G and P-SiO were chemically mapped by matching 
the STXM stack with the Si K-edge XANES spectra, and 
the conclusions are shown in Figs. 11h and 11j, respectively. 
Analyses revealed that these two components were spatially 
separated in both samples. P-SiO (Fig. 11j) contains more 
nonanode particle Si-containing species than D-SiO@G 
(Fig. 11h), implying a more unstable SEI layer. These find-
ings suggested that the graphene layer accelerated the devel-
opment of a robust SEI layer during cycling. The Si K-edge 
XANES spectra of bulk P-SiO and D-SiO@G (the red in 
Figs. 11h and 11j) and the SEI of P-SiO and D-SiO@G are 
depicted in Fig. 11k (the green in Figs. 11h and 11j). The 
XANES adsorption peak at 1 840 eV was assigned to the Si 
phase, whereas that at 1 847 eV was ascribed to oxidized Si, 
including  SiO2 and  Li2SiO3. Figure 11l shows the identifica-
tion of  Li2CO3, a durable SEI, in the carbon-based anodes 
using O K-edge XANES spectra and STXM images of the 
cycled D-SiO@G anodes. This advanced D-SiO@G elec-
trode could retain approximately 1 937.6 mAh  g−1 at 0.1 A 
 g−1 with an initial Coulombic efficiency (ICE) of 78.2%. 
These new XANES findings are expected to aid researchers 
in having a better understanding of the causes of instability 
in Si-based anodes.

3.2.4  Synchrotron Radiation Spectroscopy

A powerful synchrotron radiation light source (SRL), 
with constantly changing wavelengths, exceptional inten-
sity, and resolution, has promoted detailed research on the 
local biochemical and geometrical conditions in materials. 
Advancements in synchrotron radiation have enabled a com-
prehensive and high-quality analysis of the components of 
electrode materials. As noted previously, the components 
across the electrode in Si-based LIBs can interact during the 
lithiation/delithiation process, complicating our understand-
ing of the failure mechanism. Considering this, synchrotron 
radiation photoelectron spectroscopy (SRPES) has been 
applied, which enables continuous and detailed profiling of 
the electrode makeup at tunable photon energy. SRPES has 
been used to evaluate the electrode surface reactions caused 
by passive materials in Si anodes during aging.

Jeschull et al. demonstrated the rapid transformation of 
a native  SiOx coating into hazardous  SiOxFy in Si anodes 
created from a sodium carboxymethyl cellulose (CMC-
Na) binder and acetylene black (AB) or ketjen black (KB) 
[127]. This study deduced that adverse surface reactions 
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Fig. 11  Depth pattern of several secondary ion species obtained by 
sputtering: a Si@10-ZC electrode and b blank sample. TOF-SIMS 
patterns of Si@10-ZC anode after sputtering for c 20 s and d 220 s. 
e, f Approximate volume reconstructed versions in three dimensions 
that correlate to the depth profiles.  Reproduced with permission from 
Ref. [124]. Copyright © 2021, Wiley-VCH. Architecture of g P-SiO 

and i D-SiO@G after 50 cycles and h, j corresponding chemical 
mapping, respectively. k Si K-edge XANES spectra of the four sam-
ples. l Morphology of cycled D-SiO@G particles and corresponding 
selected regions mapping, with modification. Reproduced with per-
mission from Ref. [126]. Copyright © 2021, Wiley-VCH
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caused rapid deterioration and unsatisfactory comprehensive 
properties of KB-based electrodes. Owing to the preserva-
tion of CMC-Na, traditional AB-containing anodes retain 
a large portion of their  SiOx coatings. SRPES can probe 
valence states and hydrogen bonds with a high resolution 
and is an effective approach for exposing the fading process 
related to the development of surface components. Further-
more, Hirata et al. observed Si-containing architectures in 
extremely disorganized and homogeneous SiO components 
using both local and global data, adding necessary proof that 
a-SiO suffers from dispersion by producing Si- and Si-diox-
ide-like zones [128]. Owing to its distinguished capacity to 
perceive Si oxidation states, synchrotron HEXRD supports 
compositional evaluations and increases our understanding 
of the chemical mechanisms underlying its electrochemical 
properties.

3.2.5  Solid‑State Nuclear Magnetic Resonance 
Spectroscopy

Nuclear magnetic resonance (NMR) technology offers sub-
stantial chemical information because of its susceptibility 
to localized short-range material architectures. NMR analy-
sis is widely employed to study electrodes and electrolytes 
because it can be used for both bulk and liquid materials. 
Furthermore, it is possible to ascertain the chemical con-
stitution of the SEI and binder, including the organic sub-
stances and Li compounds produced during the lithiation/
delithiation process, which depends on the influence of 
particular local environments on the chemical shift of the 
characteristic peak.

NMR can demonstrate the discharging/charging process of 
Si anodes, which involves crystallized-to-amorphous phase 
transitions. The Li-Si configuration assessment is crucial for 
battery advancement because the evolution from crystalline 
 LixSi to amorphous  LixSi, which is frequently observed in 
the lithiation process, may result in capacity loss. The short-
range structural evolution that occurs during the discharging/
charging process may be difficult to discern from the diffrac-
tion patterns, owing to the amorphous nature of  LixSi. There-
fore, NMR spectroscopy was used to examine  LixSi phase 
transitions. Kitada et al. evaluated the  LixSi phases that occur 
during the discharge (charge) of SiO and compared their 
findings with those of a pristine Si electrode [129]. When 
lithiating a-SiO with a considerable Li amount at x = 3.4–3.5, 
in situ 7Li and 29Si solid-state NMR coupled with a thorough 
electrochemical study revealed that a distinctive metal-based 
 LixSi phase is formed/decomposed by means of an uninter-
rupted structural change related to the amorphous states that 
vary in their level of Si-Si interaction (Figs. 12a–12d). In 
contrast with pristine Si electrodes, which create the final 
component crystalline  Li15Si4, the structural history differs 
via a double-phase procedure. In contrast, the dimensions of 

the structured Si domains in pure SiO determine the reaction 
pathway. A phase resembling  Li15Si4 occurred in a matrix of 
 SiO2 when crystalline domains larger than 3 nm were present, 
although this phase had a higher overpotential. The constant 
formation/decomposition of amorphous  LixSi components 
lacking hysteresis, with the phase shift related to the synthe-
sis of c-Li15Si4 and the partially electrochemically activated 
 SiO2/LixSi buffering layer, is required for the a-SiO cycling 
performance.

3.2.6  Cryo‑TEM

Although traditional TEM can produce fundamentally pre-
cise images of structures, it is unsuitable for SEI analysis 
because of the chemical reactivity of the SEI layer and 
its sensitivity to electron beam irradiation. Consequently, 
most information on SEIs derived through classical TEM 
is restricted to the micron scale and lacks comprehensive 
crystallographic structures. Nonetheless, some studies have 
recently used cryogenic electron microscopy (cryo-EM) to 
analyze the atomic resolution patterns of SEIs in their origi-
nal state by freezing the desired object in liquid nitrogen to 
maintain its initial form.

The instability of the Si electrode SEI has restricted its 
industrialization; however, this SEI characteristic remains 
unexamined because of the difficulty in defining the 
nanoscale passivation layer. Huang et al. used atomic-resolu-
tion cryogenic (scanning) TEM [cryo-(S)TEM] and electron 
energy loss spectroscopy (EELS) to examine the structure 
and chemistry of SEI, revealing their progression throughout 
the first cycle [130]. Because of the strong reversibility of 
the SEI, we observed the genesis of the Si SEI instability in 
EC electrolytes (Figs. 12e–12h). The involvement of the key 
electrolyte FEC in extending the cyclability of an Si anode 
by depositing a magnetically indestructible polyethylene 
coating on its surface was elucidated. Such studies provide 
insight into the unreliability of Si anodes in conventional 
EC-based electrolytes and the impact of additives on the 
SEI stability.

Zhang et al. employed cryo-TEM to demonstrate SEI 
development and its interaction with engaged Si during 
the first discharging/charging process [131]. The findings 
showed that the SEI occurred electrochemically prior to and 
throughout Si lithiation and broke down after delithiation 
(Figs. 12i–12p). It consumed more than 10% of the charge 
and, when separated from the electrical network, caused the 
development of inactive  LixSi. FEC has been observed to be 
advantageous as an electrolyte additive for creating a largely 
steady SEI, thereby extending the cycle life. These results 
provide a thorough understanding of SEI development and 
explain the relationship between SEI stability and cycling 
properties.
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Overall, these advanced technologies provide insights 
into the charging-discharging process and failure modes of 
Si anodes, promote structural modification, and establish 
Si-based batteries with cycling stability and long lifetimes. 
Despite the in situ assessments using techniques such as 
Raman spectroscopy, AFM, angle X-ray scattering (AXS), 
and NMR being useful for considering multiple reaction pro-
cedures of Si electrodes, more sophisticated characterization 
techniques and simulation methods should be established 
to gain a deeper understanding of prospective structural 
engineering.

4  Design Strategies of High Energy Density 
Si‑Based Electrodes

Currently, research is being conducted on sound engi-
neering of Si-based electrodes to address the significant 
technical challenges associated with their electrochemi-
cal properties. The first part of this section discusses the 

structural design solutions for minimizing the mechanical 
stress in high-capacity anodes. Subsequently, an interface 
engineering strategy for compensating for the capacity 
loss and increasing the ICE is presented. Finally, novel 
elastic/conductive binders and electrolyte additions that 
enhance ion and electron transport kinetics and maintain 
SEI growth are discussed (Fig. 13 and Table 1).

4.1  Structural Design

As previously reported, the fragile characteristics and 
poor mechanical behavior of bulk and microsized Si cause 
cracks and pulverization. Therefore, Si-based nanomaterial 
anodes with different structures, such as hollow and porous 
frameworks, have been shown to effectively provide suf-
ficient open space to contain volume changes, thereby alle-
viating mechanical strain. The following sections describe 
the manufacturing process and applications of Si anodes 
[132–135].

Fig. 12  a–d 7Li in situ NMR results for four electrodes.  Reproduced 
with permission from Ref. [129]. Copyright © 2019, American 
Chemical Society. e HRTEM image of Si NW during (de)lithiation. 
f Enlarged HRTEM pattern of Si NW SEI. g EEL image of the C 
K-edge from the Si NW during (de)lithiation. h Si NW STEM EELS 
mapping at 1 V delithiation. Reproduced with permission from Ref. 

[130]. Copyright © 2019, Elsevier. HRTEM with the corresponding 
EDS images i, m after the initial discharge process and j, n initial 
charge process in FEC-free electrolyte, and k, o after initial lithiation 
and l, p initial delithiation in the FEC-containing electrolyte. Repro-
duced with permission from Ref. [131]. Copyright © 2021, Elsevier
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4.1.1  Hollow Structures

Hollow Si architectures are innovative alternatives for long-
lifetime LIB anodes, and their interior void areas can sup-
port volume expansion and significant mechanical strain 
during (de)lithiation. Furthermore, the thin surface layers 
offer narrow diffusion pathways for Li ions. Considering 
the aforementioned problems, Zhang et al. demonstrated a 
narrative-integrated hollow Si/C nanosphere composed of 
Si and significantly increased the amorphous carbon coating 
generated by incorporating  CO2 as an ecofriendly carbon 
source in magnesiothermic reduction to expedite the com-
mercialization of Si anodes [136]. Interconnected carbon 
chains were formed in the Si intervals because of the reac-
tion involving  CO2 with the abundant Mg vapor and MgO 
cores. Furthermore, after acid etching of the MgO tem-
plates produced in situ, a hollow architecture was achieved 
(Figs. 14a–14d). The enhanced Li-ion transit and electron 
transfer kinetics, with the volume butter effects of the hollow 

design, led to a novel linked Si/C catalyst with excellent 
electrochemical performance. This novel synthetic approach 
is cheap, readily scalable, and will likely assist in the com-
mercial deployment of Si/C composites for high-energy 
LIBs. Recently, our research team produced an interlinked 
hollow Si/C nanosphere/graphite hybrid for LIBs [137]. 
The  SiO2 particles were attached well to the graphite inter-
face when polyvinyl alcohol (PVA) was used as the optimal 
surfactant. After  CO2 was added to the magnesiothermic 
reduction, a homogeneous distribution of both hollow Si/C 
nanospheres and graphite within the mixed materials was 
achieved, implying that the interoperability of the active 
ingredients was dramatically enhanced owing to the amor-
phous carbon strategically generated by  CO2, which is essen-
tial, with the characteristic eco-friendly carbon substance 
(Figs. 14e–14h). After 200 cycles, the Si/C anode displayed 
a supreme electrochemical property (1 065 mAh  g−1 at 0.1 
A  g−1 after 500 cycles).

Furthermore, the void-preserving  SiOx/C electrode mate-
rials are potential candidates for anodes. Nevertheless, the 
simple and controlled fabrication of the evenly distributed 
 SiOx and carbon components with adequate space remains 
a significant challenge. Zhou et al. designed a molecular 
polymerization technique to create  SiOx/C hollow parti-
cles for LIBs (Fig. 14i) [138]. As silicon and carbon pre-
cursors, 3-aminopropyltriethoxysilane and dialdehyde 
molecules were carefully tailored to form hollow polymer 
spheres (PHSs) via one-step aldimine condensation without 
a framework or additive. Different PHSs were created by 
using the cross-linkers terephthalaldehyde, glutaraldehyde, 
and glyoxal, illustrating the adaptability of the approach. 
Furthermore, nanocluster-scale homogeneous  SiOx integra-
tion of 5 nm in hollow carbon capsids was made possible 
by the in situ pyrolysis of the PHSs (Figs. 14j–14r). The 

Fig. 13  Widely used methods for enhancing the stability of Si anodes

Table 1  Summary of the structure regulation and corresponding electrochemical performance of Si-based electrodes reported previously

Electrode material Structure Cutoff voltage [Capacity/(mAh  g−1)]/[current density/
(mA  g−1)]/cycle number/capacity retention

Refs.

Si/C Hollow nanospheres 0.01–1.5 730/0.5/200/56.5% [121]
Si-C Nanospheres 0.01–1.5 662/0.5/200/65.7% [122]
SiOx/C Porous composites 0.005–2.0 530/0.5/450/80.0% [123]
p-Si@C Porous composites 0.01–1.5 1 562/0.1/100/99.0% [125]
p-CoNC@Si Hollow porous cubic 0.01–3.0 1 008/0.5/500/83.5% [126]
GP-Si A core-shell gradient porous structure 0.01–3.0 1 059/2.0/500/89.6% [127]
Si@Ti3C2Tx@G Dense porous sphere 0.01–1.5 984.9/1.0/800/63.1% [129]
P-Si/C@C Porous microsphere 0.01–2.0 708.6/1.0/820/87.1% [131]
Si@C Core-shell structure 0.01–1.2 2 514/0.1/360/75.8% [133]
YS-SiOx/C@C Yolk-shell structure 0.01–3.0 770.5/0.5/500/78.2% [134]
H-SiNS/C Carbon-coated porous sphere 0.01–1.5 1 040/0.5/500/90.4% [135]
Si/Li2SiO3/C Core-shell structure 0.01–2.0 1 583/3.0/200/70.2% [138]
Li/B-SiOx@C Carbon-coated 0.01–2.0 1 184/0.5/200/85.4% [141]
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prepared  SiOx/C electrode material exhibited outstanding 
electrochemical properties such as cycle stability, Coulom-
bic efficiency, and rate. These superior characteristics were 
attributed to the carbon substrate’s well-dispersed  SiOx 
nanostructures and hollow architecture. This molecular 
polymerization technique enables the controlled production 
of template-free hollow structures and makes Si-based hol-
low hybrids practical and scalable anode materials.

4.1.2  Porous Structures

Electrodes with porous Si structures exhibit better cyclabil-
ity and stabler SEI layers. Meso-/macropores in Si electrode 
materials, as earlier stated, were successfully observed to 
offer open regions for variation without cracking or pulveri-
zation [139]. Furthermore, the pores are naturally linked and 
offer rapid diffusion pathways for  Li+ to penetrate the elec-
trolyte. These benefits provide porous Si anodes with out-
standing electrochemical performance. In contrast, the large 
number of meso-/macropores in bulk Si materials diminishes 

the gravimetric and volumetric energy densities. Template-
assisted methods are often used to create porous Si struc-
tures that are then etched or reduced. Etching or reduction 
is possible without the use of a template.

Liu et al. presented an advanced preparation technique 
by prolonging the widely used Mg thermal reduction tech-
nique for the production of porous Si/C structures (p-Si@C) 
with interrelated conductive networks and a hierarchical 
mesoporous framework, conferring it with a satisfactory 
structure and characteristics (Figs. 15a–15c) [140]. Detailed 
characterization using numerous methods in conjunction 
with DFT calculations showed that the p-Si@C nanoarchi-
tecture stabilized the SEI, enabling fast  Li+ electron diffu-
sion. This Si@C anode had a significant electrochemical 
performance of 1 078.68 mAh  g−1 at 1 A  g−1 after 500 
cycles (Fig. 15d). Kim et al. used SiNP-enclosed hollow-
porosity N-doped Co-integrated CNTs (p-CoNC@SiX) as 
anode materials for LIBs (Fig. 15e) [141]. These hollow 
nanocubic materials were prepared by the simple anneal-
ing of various amounts of SiNP-encased Zn/Co-bimetallic 

Fig. 14  a Scheme of the preparation mechanism of Si/C hollow 
structures. b, c TEM and d HRTEM patterns of Si/C electrode mate-
rials.  Reproduced with permission from Ref. [136]. Copyright © 
2021, Elsevier. e Scheme of hollow Si-C/graphite composites. f TEM 
and g, h HRTEM patterns of Si-C/G-A electrode materials. Repro-

duced with permission from Ref. [137]. Copyright © 2022, Elsevier. 
i Scheme of  SiOx/C HS (GA, GL). SEM and TEM images of j–l 
 SiOx/C HS-TA, (m–o)  SiOx/C HS-GA, and p–r  SiOx/C HS-GL with 
modifications. Reproduced with permission from Ref. [138]. Copy-
right © 2021. Wiley-VCH
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zeolitic imidazolate structures (ZIF@Si) to obtain self-sac-
rificial frameworks (Figs. 15f–15m). This study presents a 
unique perspective on the fabrication of highly reversible 
Si-based anodes for rechargeable LIBs.

Furthermore, the durability and tap density of Si materi-
als are often reduced by the traditional porous architectures. 
Si has a high melting point and stable chemical composition; 
thus, few methods are available to manufacture porous struc-
tures. A technique for creating core-shell graded porous Si 
with a robust core and a high-porosity layer was reported by 
Yang et al. [142]. This massive volume-change strain can be 
mitigated using a high-strength core. Its rich porous nature 
guaranteed the continual survival of the SEI (Figs. 15n–15s). 
This Si anode had a significant electrochemical performance 
of 1 059 mAh  g−1 at 2 A  g−1 after 500 cycles (Fig. 15t). 
Three appealing characteristics exist in the core-shell graded 

porous architecture. (I) The porous structure of the shell 
provides sufficient room for Si to expand in volume during 
the discharge (charge) process, maintaining the stability of 
the SEI. (II) The improved  Li+ transmission efficiency of 
the gradient pore structure was largely due to the increased 
porosity of the shell.

4.1.3  Surface Coatings

A viable approach to address these limitations is the con-
struction of nanostructured silicon surfaces (yolk-shell, 
core-shell, and composite materials). Surface coatings are 
currently demonstrated to be effective in eliminating the 
immediate contact between Si and the electrolyte, prevent-
ing SEI formation, allowing Li ions and electrons to move 
quickly, and decreasing the mechanical stress induced by 

Fig. 15  a Scheme of the design and synthesis procedure and b, c 
SEM images of p-Si. d Rate behavior of the p-Si and p-Si@C anodes.  
Reproduced with permission from Ref. [140]. Copyright © 2021, 
Elsevier. e Scheme of the design and synthesis of the hollow porous 
p-CoNC@SiX. SEM patterns of f ZnCo-ZIF, g ZnCo-ZIF@Si50, h 
ZnCo-ZIF@Si80, i ZnCo-ZIF@Si100 before pyrolysis, j p-CoNC,  k 
p-CoNC@Si50, l p-CoNC@Si80, and m p-CoNC@Si100 after pyrol-

ysis process. Reproduced with permission from Ref. [141]. Copyright 
© 2022, American Chemical Society. Preparation of n GP-Si and o 
NP-Si. Von Mises Stress distribution and volume change for GP-Si 
p before discharge, and at discharge times of q 10 h, r 20 h, and  s 
30 h (full discharge), with modifications. t Volume-specific capacity 
of two samples. Reproduced with permission from Ref. [142]. Copy-
right © 2021, Wiley-VCH
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volumetric changes. Si nanostructures have been coated with 
a range of substances such as carbon, graphene, a series of 
polymers, metallic substances, and metal oxides. The sur-
face engineering of Si anodes using various techniques is 
discussed in detail in the following sections.

Carbon Coating Owing to its capacity to enhance electri-
cal conductivity and dampen variations in the Si volume, car-
bon is extensively utilized as a covering material [143–146]. 
It has been proven that encasing Si particles, nanorods, and 
nanosheets in a uniform carbon layer enhances electrochemi-
cal performance. Typically, polymers that carbonize, such as 
polydopamine or polyaniline, are used to cover the surfaces 
of Si nanostructures [147]. For example, a hydrothermal 
technique was used to create submicron core-shell Si@C 
interlaced with carbon nanowires (CNWs) and graphene 
nanosheets [148]. This Si anode had a significant cycling 
stability of 1 548 mAh  g−1 at 0.1 C after 360 cycles. The 

authors conducted COMSOL Multiphysics and MD simula-
tions to determine the volume expansion during lithiation. 
The findings showed that lamellar-micron silicon could pro-
duce a steady reversible capacity of more than 2 100 mAh 
 g−1, which was in good agreement with the experimental 
findings. Additionally, Luo et al. suggested an elaborate plan 
for creating a yolk-shell structure to improve electrochemi-
cal performance of the silicon oxide-based anode (Fig. 16a) 
[149]. Organosilicon nanoparticles were created by hydro-
lyzing a silane coupling agent, followed by self-condensa-
tion. A one-step carbonization process was used to create 
an  SiOx/C@C composite with a yolk-shell structure (YS-
SiOx/C@C), which was combined with polydiallyldimeth-
ylammonium bromide manipulation and a polymeric meth-
acrylate layer (Figs. 16b–16e). This pyrolysis method may 
effectively ease the volume fluctuation of the  SiOx electrode 
owing to modification with polydiallyldimethylammonium 

Fig. 16  a Synthesis process for  SiOx/C@C composites with different 
structures; b TEM, c HAADF pattern, and d–f corresponding EDS 
mapping for YS-SiOx/C@C electrode.  Reproduced with permission 
from Ref. [149]. Copyright © 2022, American Chemical Society. g 
Scheme of synthesis process for H-SiNS/C material. h–j TEM, k, l 
HRTEM, and m cycling property of H-SiNS/C material. Reproduced 
with permission from Ref. [150]. Copyright © 2022, Wiley-VCH. n 

Synthesis procedure of LHGF/SiO materials. Scheme of the struc-
tural change in o pristine SiO anode and p LHGF/SiO anode. Repro-
duced with permission from Ref. [158]. Copyright © 2022, Springer 
Nature. q Galvanostatic charge/discharge plots of the two electrodes. 
r Rate behavior of LHGF/SiO-75% anode. s Scheme of SiO with two 
different metal hydrides  (TiH2 and LiH). Reproduced with permission 
from Ref. [159]. Copyright © 2022, Elsevier
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chloride, and the carbon coating could boost the overall 
conductivity. Consequently, the YS-SiOx/C@C electrode 
demonstrated exceptional electrochemical properties (770 
mAh  g−1 after 500 cycles, 0.5 A  g−1). The findings of this 
research will aid in the fabrication of materials for yolk-shell 
electrodes and the progress of outstanding-durability  SiOx 
electrodes.

Entrapping significant amounts of SiNPs in a thin carbon 
coating is an interesting alternative technique for increasing 
the tap density while enhancing the cycle stability, along-
side the previously proposed elaborate architectures. For 
instance, An et al. demonstrated the large-scale fabrica-
tion of an intriguing micro/nanostructured pore-rich Si/C 
microsphere formed by SiNPs securely immobilized onto 
a micron-sized interconnected C framework covered with 
a thin C coating (P-Si/C@C) [133]. This P-Si/C@C hybrid 
had considerable porosity, offering a sufficient tiny interior 
space to compensate for the massive volume changes in the 
Si anodes. The thin and sturdy C coating improved the over-
all structure and rigidity of the SEI. SiNPs placed in a micro-
sized cross-linked C matrix demonstrated outstanding elec-
trical conductivity and structural stability. This P-Si/C@C 
anode demonstrated exceptional electrochemical properties 
with a significant discharge capacity of 708.6 mAh  g−1 after 
820 cycles (1.0 A  g−1), surpassing the stated findings for 
Si/C hybrid anode materials.

Double-carbon-shell-coated Si (DCS-Si) nanoparti-
cles have also been fabricated and used as anode materi-
als. Wang et al. prepared a new H-SiNS/C architecture by 
using a straightforward method (Fig. 16g) [150]. Many 
small Si nanograins were present in the composite as a 
tiny mesoporous Si core, which was then covered with a 
carbon layer (Figs. 16h–16l). During repeated (de)lithi-
ation operations, this mesoporous Si core with extensive 
tiny inner spaces can efficiently adapt to volume fluctua-
tions and reduce mechanical strain. In addition, the carbon 
layer can operate as a rigid physical-mechanical buffer to 
constrain volume changes and ensure structural stability. 
Consequently, the H-SiNS/C anode exhibited a significant 
electrochemical performance (Fig. 16m).

Metal/Metal Oxide Coating Coating Si particulates with 
different metals has been demonstrated to be an effective 
technique for increasing electrical conductivity, decreasing 
polarization, and changing the buffer volume [151–153]. 
An appropriate metal coating should be electrolyte-inert to 
enable  Li+ penetration into Si. Metal (Ag and Au) and tran-
sition metal (Ge, Cu, and Fe) particles are frequently used 
to replace Si electrode materials. For instance, magnetron 
sputtering was used to create an Si@Cu composite anode 
material that was subsequently used in LIBs [154]. The Cu 
component, which has a greater intrinsic conductivity, sig-
nificantly increased the conductivity. Compared to the nano-
materials, the irregularly shaped microsized Si particles had 

a lower agglomeration impact. A carbon layer was added to 
eliminate the volume impact of the Si electrodes throughout 
the (dis)charge process, which increased their conductiv-
ity and electrochemical properties. The Si@Cu@C anode 
exhibited significantly improved electrochemical proper-
ties (1 130 mAh  g−1 after 100 cycles). Both processes that 
were employed to create the Si@Cu and Si@Cu@C anodes 
can be used for mass production, which is advantageous for 
achieving reasonable assignments. Furthermore, the magne-
tron sputtering technology employed for composite powder 
preparation has numerous applications in the manufacturing 
of microsized composite materials.

Covering Si anodes with metal oxides is another use-
ful method for improving their electrochemical properties. 
 TiO2 is a potential coating material owing to its low volume 
variation (4%), good electrochemical performance, and good 
thermal properties. Wang et al. created pomegranate-shaped 
microspheres from SiNPs covered with a  TiO2 coating (Si@
TiO2@rGO) [155]. The anatase phase layer of  TiO2 was more 
resistant to the structural distortion of Si. After lithiation, the 
new offspring formed by the  TiO2 coating acted as a fast-
speed diffusion channel for  Li+. The porous microspheres 
offered an adaptable area for Si volume expansion, whereas 
enveloping the Si@TiO2 nanoparticles in the flexible gra-
phene decreased the intrinsic tension and increased the con-
ductivity. This layer provided an outstanding electrochemical 
performance (1 228.7 mAh  g−1 after 400 cycles at 0.5 A  g−1). 
This study provides an efficient method for promoting the 
application of SiNPs as anodes in real life.

Hybrid composites  3D Si architectures can intrinsically 
afford space for volume changes, leading to significantly 
enhanced electrochemical capabilities for matching Si anodes 
[156]. Owing to its inherent properties, the volume growth 
of the  SiOx anode during the cycling procedure could not 
be prevented. Chen et al. exploited this apparent disadvan-
tage to improve the cycling properties of the  SiOx anodes. 
 PbZr0.52Ti0.48O3 (PZT) was used as an effective inclusion rea-
gent because of the piezoelectric action caused by the  SiOx 
volume expansion [157]. In particular, significant volume 
changes may be communicated to the PZT particles, leading 
to polarization. A piezoelectric potential was created to facili-
tate the  Li+ movement. A sol-gel technique and high-inten-
sity ball-milling approach were used to create the  SiOx-C/
PZT. The  SiOx-C/PZT electrode demonstrated exceptional 
electrochemical properties, with a remarkable electrochemi-
cal performance of 570 mAh  g−1 after 200 cycles (0.5 A  g−1). 
These noteworthy findings suggest that employing PZT pie-
zoelectric materials can enhance the electrochemical charac-
teristics of  SiOx anode materials. Additionally, this deduction 
will facilitate the application of PZT and other piezoelectric 
materials in alloy-based anodes.

Silicon monoxide (SiO) is a fascinating anode material 
for future-oriented LIBs because of its incredible specific 
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capacity of 2 680 mAh  g−1. Until now, research has been 
confined with a very modest mass loading (3.5 mg  cm−2), 
severely limiting the areal capacity and its application 
in commercial systems. The mass loading of such high-
capacity electrodes should be maximized to maximize their 
potential in practical technologies. Zhong et al. proposed 
3D monolithic large-sheet holey graphene structure/SiO 
(LHGF)/SiO electrodes (Fig. 16n) [158]. They developed 
LHGF exhibited super elasticity and excellent mechanical 
resilience by employing large-sheet holey graphene building 
blocks, which are critical for absorbing the significant vol-
ume variation of SiO and preserving its structural integrity 
even under ultrahigh mass loading. Furthermore, this 3D 
porous topology enabled good electron and ion transport 
(Figs. 16o and 16p). This LHGF/SiO material exhibited 
exceptional electrochemical properties with a significant dis-
charge capacity of 35.4 mAh  cm−2 at 8.8 mA  cm−2, signifi-
cantly outperforming that of advanced industrial or research 
devices (Figs. 16q and 16r).

Anode materials based on SiO have been intensively stud-
ied as high energy density electrodes for LIBs; however, they 
possess relatively small ICE. Although the solid-state prelith-
iation of SiO with lithium hydride (LiH) has demonstrated 
the potential for overcoming the aforementioned problem, 
further advances in long-term electrochemical properties 
are necessary before commercialization. For example, Jeong 
et al. proposed a double-buffer-phase-embedded Si/TiSi2/
Li2SiO3 material generated using the phase-selective reac-
tion of SiO with metal hydrides to enhance electrochemical 
properties [159]. In addition to its excellent cycling capabil-
ity, the Si/TiSi2/Li2SiO3 electrode exhibited increased ther-
mal endurance at higher temperatures and higher rate perfor-
mance, which could be linked to the recently incorporated 
 TiSi2 buffer phase (Fig. 16s).

4.2  Interface Engineering Strategy

As stated previously, alloy- and conversion-type electrode 
materials exhibit high irreversible capacity depletion and 
poor ICE as intrinsic defects. These events are caused by 
the strong reactivity of the Si material in contact with the 
electrolyte. As a result of these issues, many interfacial 
engineering concepts have emerged. Relevant findings from 
promising studies on prelithiation and artificial SEI creation 
are reviewed in the following sections.

4.2.1  Prelithiation Technique

A considerable preliminary irreversible capacity loss after 
SEI production is unavoidable for Si anodes and has a sig-
nificant detrimental effect on their lifespan and properties. 
The addition of Li to Si materials through regulated prelithi-
ation is an intriguing possibility. The excess Li not only offers 

insufficient depletion ions for SEI stability but also positively 
affects the ICE and boosts the working voltage [63–68]. The 
ability to lithiate an active material/composite anode with the 
most uniform lateral and in-depth distribution is vital for suc-
cessful prelithiation using Li. Despite a significant amount of 
research on several prelithiation procedures, the precise man-
agement of the lithium quantity while maintaining a homog-
enous lithium distribution remains difficult. For instance, 
Adhitama described the thermal evaporation of Li metal as a 
unique prelithiation process for pure Si anodes, which enables 
fine control of the degree of prelithiation and homogenous Li 
deposition at the surface [160]. The effects of Li nucleation, 
mechanical cracking, and continuous phase transitions were 
investigated. Finally, several electrochemical procedures were 
used to establish a direct association between pre-SEI creation 
and the electrochemical properties of prelithiated Si.

The poor ICE of  SiOx anodes owing to the irreversible 
production of  Li2O and  LiySiOz during the discharging 
procedure restricts their application in high energy density 
LIBs. Li et al. presented a molten-salt-driven thermochemi-
cal prelithiation approach to control the electrochemical 
Si/O ratio of  SiOx, thereby increasing the ICE (Figs. 17a 
and 17b) [63]. Bulk  SiOx microparticles were converted 
into pomegranate-like prelithiated microcluster composites 
(M-Li-SiOx) featuring an  SiOx core and nanosized accumu-
lations of  Li2Si2O5,  SiO2, and Si on the exterior. To accom-
plish prelithiation, molten LiCl may initiate reactions and 
enhance diffusion through the constant extraction of oxy-
gen components from the  SiOx particles via the study of 
the reaction intermediates. This level of prelithiation could 
be controlled by varying the exterior quantity of the  LiNH2 
coating, and the resulting M-Li-SiOx exhibited a significant 
enhancement in the ICE from 58.73% to 88.2% (Fig. 17c).

Li-containing organic molecules, such as Li-biphenyl 
and Li-arene complexes, have the potential to enhance the 
ICE when employed in chemical lithiation. Nevertheless, 
the production of Li-containing organic compounds required 
for chemical prelithiation requires metallic Li. The cautious 
management of exceptionally reactive Li-containing organic 
substances and complex activities, such as cleaning the 
remaining reactants and extinguishing lithiation, presents 
a challenge in the realistic success of the chemical lithia-
tion procedure. Thus, exploring an Li-metal-free, safe, and 
scalable lithiation technique for high-capacity electrodes 
with high ICE is extremely desirable. Chung et al. reported 
an elaborate SiO-based anode exhibiting an elevated ICE 
(90.5%) created by Li metal-free solid-state lithiation using 
the LiH dehydrogenation reaction (Fig. 17d) [62]. Through 
the interaction of the released Li vapor with SiO, LiH was 
used as an Li source to create Li silicate phases in advance. 
The substantially greater melting temperature of LiH 
(692 °C) than Li metal, which results from an intense ionic 
connection involving Li with H in LiH, should make the 
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prelithiation of SiO simpler and safer. Hydrogen liberated 
from LiH would also be extremely beneficial for establish-
ing a reductive environment for the prelithiation of SiO. 
The dehydrogenation-induced lithiation of SiO using LiH 
led to the formation of 3D Si-Li silicate materials, which 
were imaged using LA-APT and STEM (Figs. 17e and 17f). 
They provided a capacity of 1 203 mAh  g−1 and an ultra-
high ICE of 90.5%. Full-cell studies using prelithiated SiO 
demonstrated a 50% increase in the energy density over pure 
SiO, with an outstanding lifespan beyond 800 cycles.

4.2.2  Artificial SEI Technique

With the prelithiation method, the deliberate production of 
an artificial SEI layer is an interesting alternative strategy 
for addressing early capacity loss, increasing the initial CE, 
and stabilizing the SEI development. As mentioned earlier, 
nanostructures have been demonstrated to efficiently prevent 
pulverization and reduce the pressure caused by significant 
volume growth. However, these topologies dramatically 
increase the surface area, which can significantly expand the 
scale of the SEI. Poor operating voltage, severe irreversible 
capacity decay, and poor cyclability have been associated 
with considerable SEI. Therefore, an artificial SEI layer acts 
as an insulating barrier, preventing materials from falling 
into close contact with the electrolyte and encouraging the 
establishment of a robust spontaneous SEI layer surrounding 

the Si material, thereby reducing the capacity loss [70, 124, 
161–165]. Electrolyte additives, binders, surface coatings, 
and other materials can be used to fabricate artificial SEI 
layers. The desired artificial SEI layers should demonstrate 
outstanding chemical resistance and mechanical durability 
to limit the disintegration of the SEI constituents in the elec-
trolyte and avoid the fracturing of the artificial SEI.

Ai et  al. used a lithium-conducting covalent organic 
framework (COF) as the surface layer for SiNPs that acted 
as an artificial SEI for Si anodes (Figs. 18a–18d) [70]. This 
COF coating minimized the electrolyte breakdown, which 
significantly improved the CE and cycling performance. Fur-
thermore, the enhanced  Li+ conductivity of the COF can 
improve the  Li+ transit dynamics. The elaborate Si anode 
exhibited an outstanding electrochemical performance  
(1 864 mAh  g−1 after 1 000 cycles at 2 A  g−1). They pro-
posed a new technique for enhancing lithium-ion diffusion 
kinetics by employing a COF coating as an artificial SEI, 
providing insights into the commercialization of Si anodes.

Cao et al. proposed adding electrolytes to develop arti-
ficial SEI layers [166]. The reasonable creation and fab-
rication of steady artificial interfaces for Si anodes has 
significant potential for protecting materials from inher-
ent volume variations and mitigating adverse effects, both 
of which are required for high-capacity Si-based anodes. 
When the electrodes were dried at an elevated tempera-
ture, a multifunctional SEI precursor consisting of a 

Fig. 17  a Scheme of the preparation of M-Li-SiOx. b Schematic reac-
tion process of M-Li-SiOx from  SiOx. c Initial (dis)lithiation curves of 
pristine  SiOx,  SiOx-LiCl, G +  SiOx, and G + M-Li-SiOx.  Reproduced 
with permission from Ref. [63]. Copyright © 2021, Springer Nature. 
d Scheme of Li metal-free prelithiation induced phase change. e 

Results of the isosurface (atomic content of Si > 75%) investigation of 
SiO and prelithiated SiO materials. f Orthographic view of clipped 
volume, 2D contour plot of Si and O for the clipped volume, and 
clipped volume of prelithiated SiO (Li/Si = 0.67). Reproduced with 
permission from Ref. [62]. Copyright © 2021, Elsevier
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4-trifluoromethylphenylboronic acid (TFPBA) nanolayer 
was designed and rapidly polymerized to create 2,4,6-tri-
fluoromethylphenyl) boroxine (TTFPB) on the exterior. 
After one-electron reduction, the B–O bonds of the TTFPB 
molecule ruptured, leading to the creation of revolution-
ary molecules and the beginning of random polymeriza-
tion to produce poly-4-trifluoromethylphenylboronic acid 
(PTFPBA) with repeated B–O chains (Figs. 18e and 18f). 
Polymerized nanolayers not only exhibit the desired arti-
ficial SEI because of their high resilience and flexibility in 
tolerating volume changes, but also significantly increase 
the electrolyte absorbency of the electrode, providing 
faster  Li+ kinetics. This steady scheme produced by PTF-
PBA enabled the majority retention of  LiPF6 molecules 
with electron-deficient boron (B) species, which produced 
a constant and thick SEI rich in benzene rings and inor-
ganic compounds (Fig. 18g). Consequently, the acquired 
Si@TTFPB anode exhibited improved electrochemical 
performance (1 778.7 mAh  g−1 after 500 cycles at 0.2 C) 
(Fig. 18h).

4.3  Novel Binder Design

Binders are necessary components in the manufacturing of 
electrodes, serving to glue the active ingredient, conductive 
carbon, and current collector together while staying intact 
[167–178]. Despite their small fraction (5%), they are critical 
for Li ions. The long-term cycling stability of a battery is cru-
cial. Conventional CMC/SBR or PVDF binders can satisfy 
the application requirements for graphite anodes because of 
the minor volume expansion (10%) throughout the (de)lithi-
ation procedure. However, silicon-based anodes exhibit sig-
nificant volume variations (up to 300%), which places higher 
demands on the thorough characteristics of the binder. The 
high-performance polymer binder efficiently suppresses vol-
ume expansion, maintains conductivity and integrity during 
the discharging/charging process, and considerably improves 
the cycling stability [179–188]. The following subdivisions 
discuss advances in innovative conductive, elastic, and self-
healing binders that have the potential to improve the durabil-
ity of Si-based anodes (Fig. 19 and Table 2).

Fig. 18  a Synthesis of Si@COF NPs. b Cycling properties, c rate 
behavior of pristine Si and Si@COF at 1.0 A  g−1.  Reproduced with 
permission from Ref. [70]. Copyright © 2020, Elsevier. d Potential 
pathways for TTFPB’s electrochemical reductive breakdown. e Illus-

trative diagrams of defense process using implanted TTFPB nano-
layer. f Estimated HOMO and LUMO energy for various molecules. 
g Cycling properties of pristine Si and Si@TTFPB at 0.2 C. Repro-
duced with permission from Ref. [166]. Copyright © 2022, Elsevier
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4.3.1  Conductive Binder

The shielding qualities of traditional binders make it dif-
ficult for the cells to undergo electrochemical reactions. 
Several conductive binders have been proposed to improve 
the performance. Conduit-conducting additives can simul-
taneously function as binders and conductors to shorten the 
ionic/electronic diffusion pathways and boost the energy 
density and surface reactivity [189, 190]. Based on their 
innate characteristics, conductive binders can be classified 
as electronic and ionic conductors. The electrical integrity 
of the entire electrode may be successfully improved, and 
Si detachment from the substrate during volume variations 
can be prevented using a binder that has outstanding con-
ductivity and robust contact with the electrode materials. To 
strengthen their bonds with Si materials, conductive bind-
ers have certain conductive compounds as their structural 

foundation, which are then adorned with additional nonpolar 
or polar groups.

Binders are required to reduce mechanical strain and 
increase the cycle durability of Si anodes. Li et al. developed 
a strain-distributed binder with high electrical conductivity 
(GG-g-PAM) by laminating polyacrylamide (PAM) over an 
ion-conductive guar gum (GG) framework [191]. The strain 
concentration on the attached PAM chain promoted tension 
dispersion in the GG-g-PAM binder, leading to steady elec-
trode-electrolyte contact during (de)lithiation. Peak-force 
AFM and finite element simulations supported the potential 
of the GG-g-PAM binder to dissipate stress (Fig. 20a). The 
remarkable cyclability of the Si anode-based Ah-level pouch 
cells firmly established GG-g-PAM as a suitable binder for 
real-world commercialization.

A conductive binder can address this problem by pre-
serving continuous electron pathways during the Si pulveri-
zation. Kim et al. synthesized poly(3,4 ethylenedioxythio
phene):poly(styrene sulfonate) (PEDOT:PSS) and PVA as 
Si-based electrode materials, which generated a multilay-
ered architecture because of the various chain diameters of 
polyethylene glycol (PEG) and polyethylene oxide (PEO) 
[192]. When PEO or PEG was used, the electrical conduc-
tivity (40%) and stretchability (60%) increased because of 
the extensively dispersed hydrogen linkages and connec-
tions. A silver nanowire (AgNW) architecture paired with a 
polymer binder provides an efficient 3D electrical channel, a 
sufficient empty area to accommodate volume changes, and 
sticky contact with the Cu collector. After 100 cycles, this 
manufactured Si electrode material had a supreme cycling 
property of 1 066 mAh  g−1 at 0.8 A  g−1.

4.3.2  Elastic Binder

Although conductive binders enable quick electronic/ionic 
diffusion pathways, their limited mechanical characteristics 

Fig. 19  Schematic of multiple binders for Si-based electrodes

Table 2  Summary of various novel binders and corresponding electrochemical performance of Si-based electrodes reported previously

Electrode material Binder Cutoff voltage [Capacity/(mAh  g−1)]/[current density/
(mA  g−1)]/cycle number/capacity reten-
tion

Ref.

PNAGA-Si Poly(N-acryloyl glycinamide) 0.01–1.2 2 931/0.42/100/84.0% [152]
Si@CS-g-GA Chitosan-grafted gallic acid 0.01–1.5 1 868/0.5/350/67.0% [156]
SiOx CMC-Na 0.01–1.0 571.8/0.4/500/53.2% [157]
Si/C CMC/EDTA-Ca2+ 0.01–1.5 602.0/1.0/380/80.7% [158]
SiOx/PGA-ECH γ-Polyglutamic acid cross-linked by epichlorohydrin 0.01–3.0 900.5/0.5/500/73.2% [159]
Si-PAA-β-CDp Polyacrylic acid and polymerized β-cyclodextrin 0.01–1.5 2 326/0.2/100/64.6% [160]
Si An endotenon sheath-inspired double-network binder 0.01–1.5 1 115/4.2/300/56.8% [164]
Si-Gr Pyrene-conjugated poly(acrylic acid) and γ-cyclodextrin 

polymer
0.01–1.0 328.6/0.5/200/80.2% [166]

Si/C Alginate-grafted polyacrylamide and aniline tetramer 0.01–3.0 1 623.7/0.5/300/79.2% [167]
Si@CGN Polysaccharide lambda carrageenan 0.01–1.5 770.5/0.5/500/78.2% [170]
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may result in mechanical fractures and disintegration of 
the active substance from the Cu collector. Elastic binders 
have attracted the interest of researchers because of their 

capacity to withstand significant mechanical stresses driven 
by volume variations in Si anodes. The interfacial diffusion 
dynamics improved, electrode fracturing was effectively 
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avoided, and SEI growth was stabilized by the addition of 
Si anodes with elevated elastic modulus polymer binders. 
Binders possess elastic qualities owing to their inherent 
intermolecular interactions, particularly hydrogen bonds, 
which allow them and active materials to repair damage 
and return to their original state. To offer persistent contact 
even after volume fluctuations, it is necessary to strengthen 
the connection between the elastic binders and Si anodes by 
hydrogen or chemical bonding.

Although adhesive polymeric binders, including PAA, 
ameliorate these severe volumetric variations, the cycling 
capabilities of the synthesized Si anodes do not satisfy the 
criteria for potential implementation. Shi et al. described 
a unique polymer binder that included PAA, a chemi-
cal switch  (NH3), and a cross-linker (polyethyleneimine) 
[193]. In this slurry, the interaction between PAA and PEI 
stopped and may have later returned during electrode dry-
ing. After 150 cycles, the Si anode manufactured with the 
PAA-PEI-c binder exhibited an outstanding capacity reten-
tion of 67% compared to the PAA anodes in half-cells. In 
addition, the PAA-PEI-c binder outperformed PAA in the 
full cells. Furthermore, compared to the standard electrode 
lamination technique, this approach requires no additional 
processes, indicating its significant potential for immedi-
ate implementation in large-scale manufacturing. Hu et al. 
reported the development of an interface-adaptive triblock 
polymer binder that interacts with Si and graphite fragments 
to boost component inclinations and binder dissemination 
through the supramolecular engagement of the pi-pi arrange-
ment and hydrogen bonding [194]. The Si/C anode main-
tained a high cycling stability (82.1%) after 400 cycles. This 
elaborate binder method lays a foundation for improving the 
Si/C anodes. Liu et al. designed a polymer binder with an 
exceptionally adaptable and stretchable framework capable 
of accommodating Si volume change [195]. During elec-
trode production, PAA is cross-linked in situ with urethane-
dissolved polymeric monomers consisting of PEG chains 
and 2-ureido-4-pyrimidinone (UPy) units. By establishing 
hydrogen bonds involving the exterior hydroxyl chains, PAA 

can firmly bind to the Si particles within this binder network. 
The PEG chains enabled the polymer matrix to bend more 
easily, whereas the UPy functionalities offered sufficient 
durability to the polymer matrix by creating reversible and 
resilient quadruple H-bonding cross-linkers (Figs. 20d and 
20e). The binder not only accommodates the Si volume fluc-
tuations but also provides adequate compressive assistance 
to efficiently retain the functionality of the Si anode, thereby 
enhancing the cycle stability.

4.3.3  Good Self‑Healing‑Ability Binder

Self-healing is the capacity of a substance to mend itself 
after being destroyed and was first identified as a simple 
method for fixing mechanical cracks in biological structures. 
Natural self-healing is currently implemented in Si anodes 
and is critical for solving similar difficulties [167, 185]. For 
example, by dissolving a suitable quantity of LB in longi-
tudinally polymerized PVA, Zhao et al. created a special 
PVA +  LiBO2 (LB) material that functioned as a self-healing 
binder for outstanding-durability electrode materials [196]. 
The spontaneous cross-linking of PVA and boric acid pro-
duces a 3D network within the PVA + LB binder. The elec-
trochemical properties of the Si anodes utilizing PVA + LB 
as the binder were significantly enhanced compared to those 
of PVDF, CMC, and PVA. It was selected because of its 
improved adaptability and consistency, self-healing features, 
3D network architecture, and suitable content (Figs. 20f and 
20g). According to the results of the electrochemical experi-
ments, the cycling stabilities of the Si (1 773.0 mAh  g−1 at 
400 mA  g−1) and Si/C (861.7 mAh  g−1 at 1 A  g−1) electrode 
materials were enhanced. The capacity of future Si anodes 
can be maintained using the present inorganic cross-linked 
supramolecular binder.

To address the issue, Lee et al. recently announced their 
idea of an “adaptive binder” [197]. When cycling caused 
gradual changes in the microenvironment around the Si par-
ticles, the binders exhibited flexibility. When micro-Si pro-
gressively emerges during the early battery cycles, the long 
flexible binder chains move and are reoriented. Reversible 
hydrogen bonds are the dominant type of chemical interac-
tions between the polymeric binders at this stage. Chemical 
associations demonstrate reversible-to-irreversible changes 
by creating covalent bonds between the binder polymers, 
because micro-Si is firmly formed over numerous cycles. 
Hyaluronic acid is an adaptable binder polymer that has 
not been studied for Si anodes (Fig. 20h). Gallol (1,2,3-tri-
hydroxybenzene), an aromatic component of plants, was 
attached to HA-GA for robust adhesion to the exterior of Si 
particulates. After 600 cycles, the HA-GA binder continued 
to hold a charge capacity approximately 3.3 times greater 
(1 153 mAh  g−1) than that of the nonconjugated HA binder 

Fig. 20  a Potential GG-g-PAM binder function in Si anode.  Repro-
duced with permission from Ref. [191]. Copyright © 2022, Wiley-
VCH. b Synthetic scheme of triblock polymer PSEA. c Scheme of 
π···π interaction between carbon and phenyl groups as well as hydro-
gen bonds between Si particles and carboxyl group of PSEA binder. 
Reproduced with permission from Ref. [194]. Copyright © 2022, 
Wiley-VCH. d Scheme of elastic properties of CPAU and e cycling 
performance of electrode materials. Reproduced with permission 
from Ref. [195]. Copyright © 2021, American Chemical Society. f 
Scheme of self-healing procedure and g cycling performance of elec-
trode materials. Reproduced with permission from Ref. [196]. Copy-
right © 2022, Elsevier. h Comprehensive scheme of a gallol-conju-
gated binder’s molecular mobility in Si-microenvironments (Si-μ-env, 
the blue areas). Reproduced with permission from Ref. [197]. Copy-
right © 2021, Wiley-VCH

◂
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(347 mAh  g−1), suggesting that flexible qualities are vital 
when constructing Si anode binders, even at 1 C.

4.4  Innovative Electrolyte Design

The creation of improved electrolytes with the development 
of multifunctional binders is essential for enhancing cycling 
stability. The mechanical performance of Si anodes during 
cycling can be enhanced using an appropriate electrode 
composition and binders. The significant volume change 
of the Si anode during lithiation caused the SEI coating to 
continuously fracture and rebuild on its exterior. Increas-
ing the thickness of the SEI results in an increase in the 
interface impedance and a reduction in the battery capacity. 
Consequently, the components, architecture, and external 
properties of the SEI have a direct impact on the electro-
chemical behavior. A thick and steady SEI layer is important 
for ensuring electrochemical performance. Thus, modifying 
the electrolyte by adjusting its composition and amount is 
critical for enhancing the electrochemical properties of Si-
based anodes (Table 3) [198–205].

4.4.1  FEC

Among the most effective and practical methods for pre-
venting substantial volume variations and inadequate ICE 
caused by unconstrained electrolyte breakdown in high 
energy density anodes, such as Li metal and Si anodes, is the 
incorporation of a small quantity of extraneous biodiversity, 
which is referred to as an efficient ingredient. One of the most 
efficient components for boosting the electrochemical prop-
erties of Si anodes is FEC, whose rapid defluorination and 
subsequent polymerization gives the SEI greater versatility 

as well as an elevated LiF concentration [206–213]. The 
inequitable buildup of the SEI on the Si exterior is a sig-
nificant impediment to the cycle stability. According to the 
molecular makeup, ideal reductive and oxidative electrolyte 
additions should possess lower LUMO and higher HOMO 
norms, respectively. There has been considerable interest in 
the addition of certain functional electrolytes, including  CO2, 
ionic additives, silane-type compounds, and nitrogen-con-
taining additives. Recently, various important and effective 
efforts toward the addition of electrolytes for SEI remedia-
tion have been emphasized. Haridas et al. studied the sig-
nificance of FEC and TTMSP as electrolyte additives in the 
design of high-capacity Si-NMC-based FCs [213]. The mSi/
pPAN and NMC532 anodes with multiple TTMSP and FEC 
ratios demonstrated that increasing the TTMSP content had a 
favorable impact on achieving steady electrochemical proper-
ties for the NMC532 cathode, most likely by decreasing the 
HF-mediated transition metal loss. SEM patterns following 
cycling, charge-discharge experiments, and resistance evalu-
ation of the mSi/pPAN anode indicated a nonuniform SEI 
and decreased reversible capacity. According to the experi-
mental data, the passivation coating generated by TTMSP on 
the mSi/pPAN anode may not be uniform in the absence of 
FEC. This demonstrates that the TTMSP additive generates 
a robust and conductive surface coating, which preserves the 
cathode stability and reduces the cell IR by preventing transi-
tion metal loss. Furthermore, the presence of FEC in the elec-
trolyte facilitates the formation of a high energy density mSi/
pPAN anode. The long cycle life of the mSi/pPAN-NMC532 
FC confirmed the synergistic effect of TTMSP and FEC. This 
highlights the necessity of selecting multi-electrolyte addi-
tives in appropriate proportions to passivate both the anode 

Table 3  Summary of various advanced electrolyte additives and corresponding electrochemical performance of Si-based electrodes reported 
previously

Electrode material Electrolyte additives/usage amount Cutoff voltage [Capacity/(mAh  g−1)]/[current density/
(mA  g−1)]/cycle number/capacity reten-
tion

Ref.

Si@HEDP 1-Hydroxyethylidene-1,1-diphosphonic acid/7% by 
weight

0.01–1.0 1 831/0.84/500/82.7% [183]

Si-APTES-5% (3-Aminopropyl)triethoxysilane/5% by weight 0.01–1.0 2 132/0.2/50/83.2% [184]
Si@C/LiNi0.5Mn1.5O4 Lithium difluorophosphate

and 1,3,6-hexanetrinitrile/(1% + 1%) by weight
0.005–2.0 123/0.2/150/91.6% [189]

Si@graphene 2-Isocyanatoethylmethacrylate and fluoroethylene 
carbonate/(1% + 9%) by volume

0.01–1.5 1 373/1.0/500/99.0% [192]

Si-LEDC SiCl4 additive/3% by weight 0.01–1.5 1 617/0.2/100/51.5% [193]
VC-milled Si Vinylene carbonate/2% by weight 0.01–3.0 1 235/0.2/50/49.2% [195]
Si-S@pPAN Lithium difluorophosphate and N,N-dimethyltrif-

luoroacetamide/(2% + 2%) by weight
0.01–1.0 1 400/2.0/1 000/92.1% [196]

Si/C Trifluoropropylene carbonate/10% by weight 0.01–1.5 1 545/0.2/200/52.8% [198]
NMC-111||Si full cells Lactic acid o-carboxyanhydride/2% by weight 3.0–4.3 136.6/0.2/100/51.6% [199]
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and cathode surfaces in mSi/pPAN-NMC532 FCs for high 
capacity and extended cycle performance.

4.4.2  Vinylene Carbonate

Another distinguished electrolyte, vinylene carbonate (VC), 
is currently marketed to boost the cycling properties. VC 
was initially developed to increase the capability of graphite 
anodes; however, it can also be used to regulate SEI film 
formation in Si-based electrodes. Owing to its flexibility, 
VC was more effective than FEC in increasing the longev-
ity and efficiency of both half and whole cells. Salah et al. 
investigated the impact of adding 5% VC to a conventional 
electrolyte on the performance of physically vapor-produced 
Si thin films [203]. Charge/discharge cycling, cyclic voltam-
metry (CV), and electrochemical impedance spectroscopy 
(EIS) were employed to study the variations in the battery 
cycling parameters (i.e., cutoff voltages), revealing that these 
changes had a significant impact on the cycling performance 
of the anodes. Each operation (electrolyte additive and bat-
tery cycling regimen) was studied to determine its influence 
on the initial discharge capacity, irreversible capacity, and 
capacity retention. The Si film with optimal deposition con-
ditions, electrolyte additives, and battery testing techniques 
demonstrated a discharge capacity of 1 740 mAh  g−1 and 
capacity retention of 92% at C/2 after 1 000 cycles.

5  Summary and Outlook

Si-based materials have great potential as anodes for LIBs 
because of their outstanding energy densities, low cost, and 
adequate working voltages. Although they exhibit numerous 
valuable properties, two major obstacles hinder their broad 
application: (i) large lithiation-driven volume changes and 
(ii) unsteady SEI development. In this paper, we addressed 
the key problems and cutting-edge breakthroughs in increas-
ing the stability of Si-based electrodes. First, the failure pro-
cess was thoroughly examined. The second section discussed 
the sophisticated in situ/operando characterization methods 
that are currently used to evaluate electrochemical reac-
tions, structural development, and degradation processes. To 
address these issues, we discussed the concepts of the struc-
tural design, surface/interface engineering, and new bind-
ers/electrolytes. In addition, we highlighted several essential 
points for further research and advancement.

1. The failure mechanisms of Si-based full batteries, and 
not just Si-based anodes, should be thoroughly analyzed 
to provide effective and targeted solutions for enhanc-
ing the cycling stability. The qualitative and quantitative 
evaluation of the in situ responses involving Li with Si 
throughout the (dis)charge procedure is crucial. Despite 

the fact that in situ evaluations such as SEM, TEM, and 
XRD may be helpful for assessing multiple chemical 
reactions on the exterior of Si materials, sophisticated 
analytical techniques (such as in situ FTIR, cryo-EM, 
AFM, and NMR) and computational approaches should 
be constructed and combined to clarify the connections 
between the capacity and structure at the atomic or 
molecular level, which will provide useful knowledge 
and advice regarding subsequent material architecture.

2. Understanding the structure-property connection of the 
interphase is a crucial aspect toward the forthcoming 
architecture of SEI. A practical approach for the reason-
able refinement and customization of the desired chem-
istry and characteristics of the multilayer interphase is 
the prudent construction of an artificial SEI. Predictive 
computer modeling may be used to enhance artificial 
SEI, especially when paired with information and the 
accurate evaluation of pertinent electrode surface-coating 
processes. A uniform thin insulating layer with an even 
thickness and distribution may be applied at the atomic 
level to electrode surfaces using techniques such as 
atomic layer deposition and molecular layer deposition.

3. To inhibit volume variations and stabilize SEI produc-
tion, large amounts of innovative elastic/conductive 
binders and electrolyte additives have been added to Si 
anodes. Elastic binders were demonstrated to success-
fully relieve strain, although only a few binders have 
been studied, such as styrene-butadiene rubber and 
PAA, which are commercially accessible. Therefore, 
additional research on effective binders and electrolyte 
additives that preserve intact structures and encourage 
the creation of steady SEI should be conducted. Moreo-
ver, freestanding membranes and binder-free electrodes 
without current collectors have been demonstrated to 
increase the areal capacity and energy density, while 
also showing potential in flexible electronic devices.

4. These techniques aim to reduce the oxides on the sur-
face of Si anodes. Si oxides undoubtedly cause severe 
irreversible side reactions during the initial discharge 
process, resulting in noticeably lower ICE values. This is 
somewhat debatable, although some studies have shown 
that the presence of partially oxidized Si is advantageous 
for extending the lifetime. To manufacture Si anodes 
with an elevated ICE and outstanding cycle stability, 
novel findings regarding the architecture and controlled 
fabrication of Si with atomic dispersion in graphitic car-
bon and/or Si with protective substances on the exterior 
should be highlighted.

5. Safety is an essential characteristic for assessing the 
performance of batteries. Unavoidable volume changes, 
erratic SEI formation, and electrolyte degradation in 
LIBs can result in significant Li-dendrite production, 
leading to short circuits and cell explosions. Solid-state 
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batteries with solid electrolytes are an optimal solu-
tion to this challenge because they can be produced 
using various methods to power portable and wearable 
devices. Currently, solid-state batteries have insufficient 
electrical and ionic conductivities for mass manufactur-
ing. To address the enormous energy demand of EVs, 
HEVs, and portable devices, this innovation should be 
rapidly enhanced toward practical use.

6. Polarized electrodes, electrolytes, and interphases have 
interfacial processes and related chemistry that are typi-
cally considered separate from one another. Neverthe-
less, mounting data revealed cross-talk between the two. 
This is because of the frequency at which the species 
created on one electrode appear in the opposite com-
partment, often causing unintended negative effects. 
Owing to the severe (electro)chemical conditions pre-
sent in both electrode compartments of Si-based||Ni/Li-
rich batteries, this problem has become critical (e.g., an 
unsteady SEI film on the anode and cathode that actively 
releases oxygen). The repeated cycling of low-working-
voltage (e.g., 0.2 V vs. Li/Li+) (de)lithiation procedures 
promotes the preset voltage of the cathode, which lowers 
the cycling efficiency, encourages capacity decline, and 
increases impedance. Consequently, the development 
of high-energy Si-based electrode materials requires a 
comprehensive analysis of the interactions among the 
electrodes, electrolytes, and interphases, as well as their 
intricate chemistry.

7. Machine learning (ML) approaches, with other research 
instruments, are valuable for sophisticated battery data 
evaluation. Refined ML methods, such as extrapolation, 
with different algorithms, may forecast the cycle life of 
a battery according to data such as the capacity, voltage, 
and current rate. Furthermore, ML-based techniques can 
assist in the prediction of multiple battery material fea-
tures, as well as the elucidation of connections between 
material details (e.g., the thickness of the outermost 
coating of an Si anode) and battery capacity, whether 
certain features have a greater influence than others, and 
even some deeper connections between them.

8. Several forms of mechanical deterioration in batteries 
have been discovered using recently established research 
methods; however, it is difficult to measure the level of 
breakdown during battery operation. One method for 
efficiently quantifying corrosion in batteries is to use 
cutting-edge data-driven modeling to explicitly associate 
the extent of mechanical damage with cycle variables, 
such as the charging rate and cutoff window. Based on 
the insights gained from data-driven simulations, it is 
possible to further cultivate theoretical frameworks to 
forecast the evolution of mechanical damage during bat-
tery operation, similar to the commonly utilized Paris 
law, to characterize fatigue crack growth under cyclic 

mechanical loads. These basic models have the potential 
for application in the battery sector.

9. The development of cycling procedures that enable quick 
and/or deep charging while preventing mechanical bat-
tery degradation is appealing from an industrial perspec-
tive. Utilizing the most recent data-driven methodology 
to enhance charging methods is one such technique. 
This method can overcome the requirement for explicit 
comprehension of the intricate chemomechanical rela-
tionships in batteries that control their performance. 
However, the collection of datasets, such as those of bat-
teries that have intentionally undergone varying degrees 
of mechanical degradation caused by various cycling 
protocols, necessitates the ongoing development of sci-
entific methods that can produce data for research at an 
unprecedented rate.

This review presents a practical method for constructing 
high-energy Si-based LIBs with low cost, high security, and 
superior cycling stability, which can guide further studies 
and construction of alloy-based materials and batteries.
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