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Abstract
Catalyst layer (CL) is the core component of proton exchange membrane (PEM) fuel cells, which determines the performance, 
durability, and cost. However, difficulties remain for a thorough understanding of the CLs’ inhomogeneous structure, and its 
impact on the physicochemical and electrochemical properties, operating performance, and durability. The inhomogeneous 
structure of the CLs is formed during the manufacturing process, which is sensitive to the associated materials, composi-
tion, fabrication methods, procedures, and conditions. The state-of-the-art visualization and characterization techniques 
are crucial to examine the CL structure. The structure-dependent physicochemical and electrochemical properties are then 
thoroughly scrutinized in terms of fundamental concepts, theories, and recent progress in advanced experimental techniques. 
The relation between the CL structure and the associated effective properties is also examined based on experimental and 
theoretical findings. Recent studies indicated that the CL inhomogeneous structure also strongly affects the performance and 
degradation of the whole fuel cell, and thus, the interconnection between the fuel cell performance, failure modes, and CL 
structure is comprehensively reviewed. An analytical model is established to understand the effect of the CL structure on 
the effective properties, performance, and durability of the PEM fuel cells. Finally, the challenges and prospects of the CL 
structure-associated studies are highlighted for the development of high-performing PEM fuel cells.
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List of symbols
a	� Electrochemical surface area [cm2 mgPt

−1]
A	� Area [m2]
c	� Concentration [kg m−3]
d	� Diameter [m]
D	� Diffusion coefficient [m2 s−1]
E	� Young’s modulus [MPa]
f	� Stress [MPa]
F	� Faraday’s constant [C kmol−1]
g	� Gravity acceleration [m s−2]
I	� Current [A]
j	� Current density [A cm−2]
j0	� Reference exchange current density [A cm−2]
Jm	� Mass flux [kg m−2 s−1]
Jn	� Molar flux [kmol m−2 s−1]
kB	� Boltzmann constant [J K−1]

kele	� Electronic conductivity [S m−1]
kion	� Ionic conductivity [S m−1]
kth	� Thermal conductivity [W m−1 K−1]
K	� Permeability [m2]
K0	� Intrinsic permeability [m2]
Kc	� Kozeny constant
Kr	� Relative permeability
l	� Length [m]
m	� Mass [kg]
M	� Molecular weight [kg kmol−1]
p	� Pressure [Pa]
pc	� Capillary pressure [Pa]
q	� Heat flux [W m−2]
Q	� Volumetric flow rate [m3 s−1]
r	� Radius [m]
Ru	� Universal gas constant [8 314 J kmol−1 K−1]
T	� Temperature [K]
u	� Superficial velocity [m s−1]
U	� Electrical potential [V]
V	� Volume [m3]
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Greek letters
α	� Transfer coefficient
β	� Non-Darcy coefficient [m−1]
δ	� Thickness [m]
ε	� Porosity
η	� Over potential [V]
θ	� Contact angle [rad]
λ	� Mean free path [m]
μ	� Dynamic viscosity [Pa s]
v	� Poisson’s ratio
ρ	� Density [kg m−3]
σ	� Surface tension [N m−1]
τ	� Tortuosity
Φ	� Volume fraction
ω	� Volume fraction of ionomer in catalyst layer

Subscripts
act	� Activation
an	� Anode
b	� Bulk properties
c	� Capillary
ca	� Cathode
eff	� Effective
ele	� Electronic
eq	� Equivalent
g	� Gas phase
geo	� Geometric
Kn	� Knudsen
in	� Inlet
ion	� Ionic
l	� Liquid water
m	� Membrane
mw	� Membrane water
out	� Outlet
p	� Pore
ref	� Reference state
s	� Solid phase
sat	� Saturation
st	� Standard specimen
sub	� Substrate
t	� Test specimen
w	� Water

1  Introduction

Cost, performance, and durability are the major barriers to 
the high-volume manufacturing of catalyst layers (CLs) for 
proton exchange membrane (PEM) fuel cells. It is estimated 
that the cost of CLs and their applications can be around 
42% in a PEM fuel cell stack with a high-volume production 
of 500 000 systems per year [1]. The cost reduction of CLs 
can be achieved by two pathways: improving performance/

durability and reducing noble catalyst loadings. However, 
performance, durability, and catalyst loading are usually in 
a trade-off relation, which requires rigorous optimizations 
with multiple design parameters, including the materials, 
formulation, and microstructure of CLs.

In a PEM fuel cell, hydrogen fuels and oxidants are sup-
plied into the flow channels, gas diffusion layers (GDLs), 
and CLs. In anodic CLs, hydrogen molecules are firstly 
adsorbed on the catalyst surface, where the hydrogen–hydro-
gen bond (H–H) is broken and produces adsorbed atomic 
hydrogen (H*) [2]. Subsequently, each adsorbed hydrogen 
atom gives up an electron (e−) and a proton (H+). The gener-
ated electrons and protons will be transported by electron-
conducting components (e.g., carbon supports) and iono-
mers, respectively, releasing the occupied catalyst surface, 
which is known as the hydrogen oxidation reaction (HOR). 
Protons are transported through membrane to cathodic CLs, 
while electrons are blocked by the membrane and have to 
move into the external circuit, where electricity is gener-
ated. In cathodic CLs, the oxygen reduction reaction (ORR) 
occurs via two major pathways under different conditions: 
dissociative and associative pathways [2, 3]. For the disso-
ciative pathway (a.k.a. the four-electron pathway), oxygen 
is adsorbed by the catalyst surface, where the oxygen–oxy-
gen bond (O=O) is broken and generates adsorbed atomic 
oxygen (O*). Each adsorbed oxygen atom is protonated by 
H+ and reduced by e− to give the surface bonded hydroxyl 
(OH*) groups. The OH* can be further reduced and proto-
nated to form water. When the water is removed from the 
catalyst surface, the reaction sites are released and will be 
ready for the next reactions. For the associative pathway 
(a.k.a. the peroxide or two-electron pathway), oxygen is 
firstly adsorbed by the catalyst surface while the O=O bond 
may remain unbroken. The adsorbed oxygen reacts with pro-
tons and electrons to finally form hydrogen peroxide (H2O2). 
Therefore, the ORR is more complicated, and generally 
more sluggish than the HOR [4]. It should be mentioned that 
water is formed at the triple phase boundary (TPB) in the 
cathodic CLs, where catalyst, ionomer, and reactants meet. 
The electrochemical reaction cannot be facilitated effectively 
unless most catalyst surface is concurrently accessible to the 
reactants, protons, and electrons, with excellent capabilities 
of liquid water release. Otherwise, excessive liquid water 
products can either occupy the reactive surface or block the 
reactant transport, which is known as water flooding in PEM 
fuel cells.

A poor selection of catalysts or the poor design of the 
CL structure may result in the generation of a large amount 
of H2O2 during the cell operation, which can attack and 
decompose ionomer, polytetrafluoroethylene (PTFE), or 
carbon supports. The most prevalent catalyst employed in 
PEM fuel cells is Pt based due to its excellent capability 
to facilitate the dissociative pathway reactions, to enhance 
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reaction rates, and to reduce the Gibbs function of activa-
tion [5, 6]. Compared with other metal catalysts, pure Pt has 
a more suitable oxygen binding energy for ORR. In addi-
tion to pure Pt, substitute catalysts, including binary (e.g., 
PtCo), ternary (e.g., Pt–Cr–Ni), or even quaternary (e.g., 
Pt–Ru–Ir–Sn) Pt–transition metal alloys, are widely inves-
tigated in order to improve the ORR activity of catalysts 
and simultaneously reduce the cost resulted from expensive 
catalysts [7]. In the past decade, the mass activity of various 
types of Pt-based electrocatalysts has been enhanced sig-
nificantly (e.g., in the range from 0.2 to 14 A mgPt

−1 [8]) by 
reducing particle size, controlling particle shapes, alloying 
Pt with transition metals, and optimizing CL formulation. 
However, the comprehensive performance with catalysts 
employed in an actual fuel cell is not improved as much 
as expected due to the limited reactant transport capabil-
ity and low utilization of catalysts under practical operating 
conditions. As a result, carbon-supported Pt (Pt/C) remains 
the most commonly used catalyst for commercial PEM fuel 
cells. To further reduce the cost, many efforts have also been 
devoted to non-precious metal (NPM) catalysts [2, 9–15] for 
PEM fuel cells; however, their performance, reliability, and 
durability need to be further verified.

Therefore, a well-designed CL should be (1) chemically 
active to activate the oxygen, (2) easy to release the product 
water from the catalyst surface, (3) stable under corrosive 
operating conditions, (4) easy to transport reactants and 
products, and (5) easy to transport the electrons, protons, and 
transfer heat, which requires an optimized structure resulted 
from the manufacturing processes [5]. Unfortunately, the 
CL structure and its impact on the reaction pathways, rates, 
and component durability have not been fully understood, 
and there is still no agreement on what the best CL structure 
should be and how the CL structure affects the short- and 
long-term performance. Therefore, the understanding of the 
CL structure, properties, performance, and their relation-
ships is urgently needed.

The CL structure covers a wide range of length scales, 
involving the CL thickness from a few nanometers to tens 
of microns, the pore sizes at the levels of nanometers and 
microns, the agglomeration of the Pt/C with ionomer of a 
few microns, Pt particles of several nanometers, and the 
accompanied local reactant, water, and charged species 
transport within the multi-scale solid and porous structure. 
Examples of typical multi-scale structure-related features 
in CLs are shown in Fig. 1 based on the characteristic 
dimensions.

Many efforts have been devoted to developing low-cost, 
high-performance, and high-durability CLs for the PEM fuel 
cells; however, the CL still requires improvements to further 
enhance the mass transport capability and the utilization of 
catalyst to enhance the performance and reduce the cost of 
CLs for mass production. The CL performance is determined 

by its physicochemical and electrochemical properties, 
which are resulted from its structure at multi-scale levels; the 
multi-scale structure of the CLs will be deteriorated during 
the long-term cell operation, causing gradual and irrevers-
ible performance degradation. Therefore, the CL structure 
is of great significance for the development of electrochemi-
cal devices. In this review article, the CL structure forma-
tion, visualization, and characterization have been compre-
hensively reviewed, and the state-of-the-art experimental 
techniques and results have been scrutinized. The relation 
between the CL structure and its physicochemical and elec-
trochemical properties has been reviewed along with the 
corresponding experimental methods for their characteriza-
tion. Finally, the interconnection among the CL multi-scale 
structure, physicochemical and electrochemical properties, 
performance, and durability is examined and discussed.

2 � Formation, Visualization 
and Characterization of Catalyst Layer 
Structure

The practical structure of CLs, which is conventionally com-
posed of carbon-based platinum (e.g., Pt/C), ionomer (e.g., 
Nafion polymer), and void regions (i.e., porous space) [3], 
can be determined by various manufacturing parameters, 
including material specification (e.g., nature of catalyst and 
ionomer materials, size and shape of particles, and composi-
tion), catalyst ink composition, preparation procedures, ink 
application techniques, and drying and hot-pressing condi-
tions [23–25]. The development of novel catalyst and iono-
mer materials and the optimization of CL composition have 
gained significant attention, while little progress has been 
made to the understanding of CL structure formation and the 
effect on the PEM fuel cell performance. The highly random 
and delicate nature of CL structure typically ranging from a 
few nanometers to a few micrometers makes it challenging to 
capture all details of the CLs using the existing visualization 
and characterization techniques. Recent innovative fabrica-
tion methods have modified traditional CL materials and 
composition, e.g., plasma sputtering [26], ion-beam-assisted 
deposition [27], and atomic layer deposition [28], making 
the corresponding structure more complicated. Therefore, 
the major factors affecting the CL structure formation and 
the recent progress in advanced experimental techniques for 
CL structure visualization and characterization are reviewed 
in this section.

2.1 � Structure Formation

The CL cannot stand alone and is formed during the fabrica-
tion process, and the CL structure can be affected by many 
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factors, including the CL ingredients, fabrication methods, 
procedures, and conditions, as well as the support substrates.

The CLs for PEM fuel cells made in the 1960s were 
composed of Pt black and PTFE with a high Pt loading of 
17–45 mg cm−2 [29]. PTFE in the CLs not only is a binding 
material to stabilize the catalysts (to avoid being washed 
away by liquid water and reactant gas) but also improves the 
hydrophobicity of the CL to decrease the transport resist-
ance of water and reactants [30]. However, the PTFE content 
should be optimized as excess PTFE material may cover the 
surface of catalyst particles, reducing protonic conductivity 
and active catalytic surface. To reduce the proton transport 
resistance, the PTFE-bounded CLs are routinely impreg-
nated with proton-conductive Nafion polymer. However, 
the utilization of catalyst is still as low as ~ 20%, leading to 
a significant material cost, although excellent durability is 
observed [31].

To decrease the catalyst loading, Ticianelli et al. [32] 
adopted carbon-supported platinum (Pt/C) instead of the Pt 
black in the 1980s. The carbon supports are typically carbon 
black with high surface areas, such as Vulcan XC-72, Ketjen 
black, and Black pearls 2000. Recently, carbon supports 

with different morphology and sizes are actively investi-
gated to support catalyst nanoparticles (e.g., Pt nanoparti-
cles), including nanofiber [33], nanotube [34, 35], graphene 
[36], and composite supports [37]. The carbon supports can 
create an efficient network for electron transport between 
Pt surface and GDLs. The substitution of Pt/C for Pt black 
significantly reduces Pt loading to 0.35 mg cm−2 with fuel 
cell performance equivalent to that of CLs fabricated with 
Pt black [38]. Furthermore, Wilson et al. [39] employed 
hydrophilic Nafion polymer instead of hydrophobic PTFE 
material, which further enhanced the cell performance. By 
this means, the catalyst particles can maintain excellent 
contact with Nafion polymer, not only stabilizing the cata-
lyst particles but also improving the transport of protons 
between the electrode and electrolyte. The binding materi-
als with high dissolubility and diffusivity for reactant gases 
are favorable as the catalyst surface is often covered by a 
thin layer of binding materials. The gas dissolubility and 
diffusivity of the binding materials determine the reactant 
concentration on the catalyst surface, which affects the reac-
tion rate [5, 40]. With Nafion polymer, the power density is 
doubled in comparison with that of the PTFE-bound CLs, 

Fig. 1   Multi-scale catalyst layer structure with representative phe-
nomena. Adapted with permission from Ref. [16]. Copyright © 
2012, Elsevier. Adapted with permission from Ref. [17]. Copyright 
© 2004, the Electrochemical Society. Reprinted with permission 
from Ref. [18]. Copyright © 2015, Elsevier. Adapted with permission 

from Ref. [19]. Copyright © 2013, John Wiley and Sons. Adapted 
with permission from Ref. [20]. Copyright © 2008, Springer Nature. 
Reprinted with permission from Ref. [21]. Copyright © 2007, Else-
vier. Reprinted with permission from Ref. [22]. Copyright © 2006, 
the Electrochemical Society
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and the electrochemical surface area (ECSA) is increased 
from 22% (PTFE-bounded CLs) to 45.4% (ionomer-bounded 
CLs). It should be noted that ionomer-bounded CLs are usu-
ally thinner than 50 µm with reduced overall mass transport 
resistance through CLs. The ionomer-bonded CL fabrica-
tion methods are often referred to as thin-film methods [41], 
which are widely employed in the industry.

According to the types of coating substrates and experi-
mental procedures, three types of thin-film methods are 
widely used for CL fabrications, i.e., catalyst coated on 
GDL substrate (CCS) [42, 43], catalyst coated on mem-
brane (CCM) [42, 44], and decal transfer method (DTM) 
[41, 45], as shown in Fig. 2. For CCS methods, the cata-
lyst ink (a mixture of Pt/C, ionomer, and solvent) is firstly 
coated on one side of GDL to form a gas diffusion elec-
trode (GDE), and then, the prepared GDEs are assem-
bled with a membrane in between to form the membrane 
electrode assembly (MEA) [43]. It should be mentioned 
that the GDL can have a two-layer structure, including a 
layer of PTFE-treated carbon fiber and a microporous layer 
(MPL) composed of a mixture of carbon particles and 
PTFE. The CCS method is easy for implementation; how-
ever, it remains challenging to minimize the penetration of 

catalyst ink into GDLs, which can cause catalyst isolation 
and pore blockage. Zhao et al. [42] sprayed the catalyst 
ink on the surface of MPLs and observed catalyst penetra-
tion into MPLs and GDLs, reduced porosity, and increased 
mass transport resistance. For CCM methods, catalyst ink 
is directly coated on both sides of the membrane, with two 
GDLs covering on the outer sides of CLs to form the MEA 
[44]. The CLs fabricated by the CCM methods demon-
strate excellent interfacial properties between the CLs and 
membrane, resulting in superior cell performance. How-
ever, the swelling of membrane caused by the solvent has a 
detrimental influence on the CL microstructure; therefore, 
a vacuum table is often used during the fabrication process 
to hold the membrane in place, which increases the com-
plexity of the manufacturing system [44, 46]. For DTM 
methods, the catalyst ink is coated onto a decal substrate, 
followed by a hot-pressing process to transfer the CLs onto 
the membrane to form the CCM. The DTM method often 
requires experienced operators or high-precision automa-
tion systems to avoid the non-uniform and incomplete 
transference of catalysts from substrate to membrane; thus, 
this method may be limited when the catalyst loading is 
further reduced to much less than 0.1 mg cm−2 [47].

Fig. 2   Three major approaches 
of the thin-film methods for 
the catalyst layer fabrication. 
Adapted with permission from 
Ref. [48]. Copyright © 2019, 
the author(s)
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As can be seen, the structure of the thin-film CLs is pri-
marily formed during the ink coating process. The coating 
of catalyst ink can be implemented by various techniques, 
including blading [49–51], brushing [31], spraying [44, 52, 
53], rolling [54], screen printing [55, 56], and inkjet print-
ing [56, 57] as shown in Fig. 3a–f. Many methods have been 
recently developed and employed to achieve ultra-low-Pt-
loading thin-film CLs, including ultrasonic spraying [58], 
electrospraying [59–62], and electrospinning [63], which 
are summarized and illustrated in Fig. 3g, h. Currently, the 
catalyst ink-based thin-film CLs with balanced performance, 

durability, and cost are the most commonly used in the 
industry as the catalyst loading and thickness have been 
significantly reduced [64].

To further reduce catalyst loading and increase catalyst 
utilization, direct deposition of Pt on GDLs or membrane 
without carbon supports and with Nafion polymer partially 
covered is widely investigated. Typical methods employed 
for direct deposition of Pt to form an ultra-thin CL (typi-
cally thinner than 1 μm with an ultra-low Pt loading of much 
lower than 0.1 mg cm−2) include sputtering deposition [66, 
67], ion-beam [68–70], and atomic layer deposition (ALD) 

Fig. 3   Schematic of various catalyst ink coating techniques. a Doc-
tor blading. b Brushing. c Spraying. d Rolling. (c, d) Reprinted with 
permission from Ref. [54]. Copyright © 2009, Springer Nature. e 
Screen printing. Reprinted with permission from Ref. [25]. Copyright 

© 2011, Elsevier. f Inkjet printing. g Ultrasonic spraying. (a, f, g) 
Reprinted with permission from Ref. [65]. Copyright © 2018, Else-
vier. h Electrospinning and electrospraying. Reprinted with permis-
sion from Ref. [63]. Copyright © 2014, Elsevier
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[71–74] as shown in Fig. 4. In the past decade, the order 
structural CLs have been actively investigated in the lit-
erature due to their excellent capabilities of minimizing Pt 
loadings and improving reactant transport. Yao et al. [75] 
developed porous Pt–Ni nanobelt arrays by following a pro-
cedure of hydrothermal processing, magnetron sputtering, 
decal transferring, and acid treatment. In comparison with 
traditional CCM methods, the new developed CLs with 
ultra-thin, ionomer-free, porous and oriented microstruc-
ture demonstrated better catalytic activity and mass transport 
capabilities. Ozkan et al. [76] developed titania nanotubes 
for cathode CLs. It was found that longer nanotubes (10 μm) 
demonstrated better performance than shorter ones (5 μm), 
and in comparison with photodeposition, ALD methods can 
create more uniform and better dispersed Pt distribution on 
nanotube surfaces. Murata et al. [77] developed vertically 
aligned carbon nanotubes for cathode electrodes, and the 

MEA produced superior performance of 2.6 A cm−2 at 0.6 V 
with ultra-low cathode Pt loading of 0.1 mg cm−2 due to 
enhanced transport capabilities of oxygen, protons, elec-
trons, and water. Recently, the ionomer-free ultra-thin CLs, 
e.g., 3 M nanostructured thin-film (NSTF) CLs prepared 
by sputtering, have gained significant attention to reduce 
the Pt cost for PEM fuel cells with plausible stability [78]. 
A comparison of the NSTF electrodes and traditional Pt/C 
electrodes is shown in Fig. 5, demonstrating that the NSTF 
electrodes are much thinner and have smaller pore volume 
and no ionomer coverage in comparison with traditional 
Pt/C electrodes. However, due to the nature of hydrophilic 
NSTF surface, liquid water tends to accumulate in cathode 
CLs during the actual fuel cell testing. In addition, as no 
ionomer is applied in the ultra-thin layer of NSTF catalysts, 
the proton conductivity is relatively low. To overcome these 
drawbacks, a thin “interlayer” of dispersed catalysts and 

Fig. 4   Schematic of various fabrication techniques for ultra-low-Pt-
loading catalyst layers. a Plasma sputtering. Reprinted with permis-
sion from Ref. [26]. Copyright © 2004, Elsevier. b Ion-beam-assisted 
deposition. Reprinted with permission from Ref. [27]. Copyright 

© 1992, American Vacuum Society. c Atomic layer deposition. 
Reprinted with permission from Ref. [28]. Copyright © 2009, Ameri-
can Chemical Society

Fig. 5   Cross-sectional scanning electron microscopy (SEM) images of a traditional Pt/C electrode, b NSTF electrode, and c enlarged view of 
NSTF electrode structure. Reprinted with permission from Ref. [78]. Copyright © 2014, the Electrochemical Society
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ionomers were applied between the NSTF layer and the 
MPL by Kongkanand et al. [79]. However, as the Pt loading 
is very low, the durability of the ultra-thin CLs may be a 
problem although the material cost can be reduced. There-
fore, efforts have been continuously made to further improve 
these techniques for enhanced manufacturing efficiency and 
durability for industrial applications [80].

2.2 � Structure Visualization

The CL structure is complicated at different length scales 
from atomic to macroscale levels [81]. It is vital to visual-
ize the multi-scale multi-dimensional structure of CLs to 
identify any morphology defects, to recognize the catalyst 
crystallinity, shape, and size, to inspect carbon agglomera-
tion and connectivity, to check the ionomer coverage, and to 
understand pore structure. The typical CL thickness ranges 
from several nanometers to tens of microns, which often 
requires a combination of two or more microscopy tech-
niques to visualize the exterior and interior structure of CLs 
at different scales. The commonly used microscopy tech-
niques for CLs are reviewed in this section based on differ-
ent dimensions: 2D, 3D, and 4D techniques. 2D techniques 
are the most commonly used for CL structure visualization 
from the exterior sample surface, including optical micros-
copy, scanning electron microscopy (SEM), transmission 
electron microscopy (TEM), and atomic force microscopy 
(AFM). The interior structure of CLs can be visualized by 
3D techniques, such as focused ion-beam/scanning electron 
microscopy (FIB/SEM) and 3D X-ray computer tomography 
(3D X-ray CT). Recently, 4D techniques have been devel-
oped to obtain more detailed information about the CLs, and 
the fourth dimension can be chemical composition, time, 
temperature, or other physical parameters in addition to 3D 
spatial structure.

2.2.1 � 2D Microscopy Techniques

The exterior structure of the CLs is commonly investigated 
by a variety of 2D microscopy techniques including opti-
cal microscope, SEM, TEM, AFM, and other techniques to 
obtain information about catalyst dispersion, carbon support 
connectivity, ionomer coverage, and pore structures from 
the surface. Table 1 summarizes the commonly used 2D 
microscopy techniques for CL visualization.

Optical microscopy (a.k.a. light microscopy) utilizes a 
system of lenses to magnify images of small objects based 
on visible lights with a typical resolution of ~0.2 μm. Optical 
microscopy is commonly used in characterizing the mor-
phology of the CL surface, e.g., the dispersion of the cata-
lyst, the catalyst agglomerates, pinholes, cracks, and even 
ice crystals, which are in the size of a few microns [16, 84]. 
SEM is frequently used to generate magnified images of CLs 

with higher resolution (around 10 nm) than optical micros-
copy by using focused electron beams instead of light waves 
as probing species [85]. SEM is very helpful and widely 
used for the characterization of the CL structure at the 
nano- and microscale levels [86, 87], e.g., micro-cracks and 
agglomerates of Pt/C particles in the CLs in a few nanom-
eters [82]. Traditional SEM performs imaging in a vacuum 
environment for better resolution, and environmental SEM 
(a.k.a. ESEM) allows visualizing the samples in their natural 
state in wet and gaseous environments, which can be used 
to visualize the tiny water drops on the surface of CLs [83]. 
TEM is suitable for imaging specimens at the atomic level 
with a maximum resolution of 0.5 nm by focusing a beam 
of high-energy electrons onto the specimen [41]. TEM is 
broadly used to visualize the nano- and microstructure of the 
electrocatalysts and ionomer in CLs, e.g., the catalyst parti-
cle size, shape, and dispersion of Pt nanoparticles with tiny 
size of 0.33 nm [37], ionomer coverage [88], three-phase 
microstructure of the Pt, ionomer, and carbon [22]. AFM 
utilizes a cantilever with a probing tip to detect the surface 
of the specimen with a maximum resolution of 0.5 nm [89, 
90]. When the probing tip scans over the specimen surface, 
the cantilever will be deflected in response to the forces 
between the tip and specimen. This technique is suitable 
for the detection of the sample surface at atomic levels, e.g., 
roughness, cracks, holes, although it is limited to recognize 
the interior structure of a specimen [17].

2.2.2 � 3D Microscopy Techniques

Due to the complex manufacturing process, the near-sur-
face and interior structure of the CLs may be significantly 
different. To investigate the interior structure of the CLs, 
3D microscopy technologies have been applied to CLs to 
investigate their morphology and topology. The most com-
monly used techniques for CLs in PEM fuel cells have been 
reviewed in this section, such as FIB/SEM and 3D X-Ray 
CT.

(1)	 Focused ion-beam/scanning electron microscopy
	 FIB/SEM utilizes a focused ion beam to etch the sam-

ple and SEM to visualize the exposed interior surface, 
as shown in Fig. 6a. During the practical visualization 
process, a cubic fiducial mark is first milled on the sam-
ple. The specimen is then milled in a particular tiny 
thickness (e.g., 10 nm), after which SEM is used to take 
an image for the exposed surface. The cycling of the 
milling and imaging processes is repeated until a suf-
ficient number of SEM pictures are achieved. The mill-
ing direction is often perpendicular to the ion beam, 
and the SEM images are aligned with the fiducial mark, 
which will be used to reconstruct the 3D images. The 
FIB window is demonstrated in the dash-line region, 
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Table 1   Comparison of 2D microscopy techniques for CL solid struc-
ture characterization. (Adapted with permission from Ref. [16]. Cop-
yright © 2012, Elsevier. Reprinted with permission from Ref. [82]. 
Copyright © 2012, the Electrochemical Society. Adapted with per-

mission from Ref. [83]. Copyright © 2005, Elsevier. Reprinted with 
permission from Ref. [22]. Copyright © 2006, the Electrochemical 
Society. Adapted with permission from Ref. [17]. Copyright © 2004, 
the Electrochemical Society)

Method Principle Typical resolution Remark Example of CL image Ref.

Optical micros-
copy

Visible lights ~0.2 μm Suitable for observing ice cov-
erage, pinholes with a diam-
eter of ~ 100 μm, cracks with 
a few microns, dispersion of 
catalysts, and agglomerates 
of about 10 μm

[16]

SEM Focused electron 
beams

~10 nm Suitable for imaging specimens 
at atomic levels with a maxi-
mum resolution of 0.5 nm by 
focusing a beam of high-
energy electrons onto the 
specimens (often in a vacuum 
condition)

[82]

Environmental 
SEM

Focused electron 
beams

~10 nm Suitable for imaging samples 
in wet and gaseous environ-
ments

[83]

TEM High-energy elec-
trons

~0.5 nm Suitable for catalyst particle 
size, shape, and dispersion 
of Pt nanoparticles with a 
tiny size of 0.33 nm, ionomer 
coverage, three-phase micro-
structure of the Pt, ionomer, 
and carbon

[22]

AFM Cantilever with a 
probing tip

~0.5 nm Suitable for the detection of 
sample surfaces at atomic 
levels, e.g., roughness, 
cracks, and holes

[17]
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which protects the small fiducial mark from the FIB 
bombardment [91].

	   Sabharwal et al. [92] reconstructed the 3D pore-
solid network of the CLs prepared by inkjet methods 
utilizing the FIB/SEM technique, as shown in Fig. 6b. 
The red and blue voxels represent the void and solid 
regions, respectively. Based on the 3D structure, the 
pore size distribution (PSD) is computed and compared 
with experimental results, which yield good agree-
ments. Gao et al. [18] reconstructed the CLs using FIB/
SEM techniques at the resolution of 15 nm in a region 
of 1 μm × 1 μm × 1 μm, as shown in Fig. 6c. The dark 
blue, light blue, and red voxels represent the void, solid, 
and platinum, respectively. Inoue et al. [93] combined 
continuous 2D cross-sectional SEM images to form the 
3D structure of the CLs using FIB/SEM, and the inte-
rior solid and pore structure of CLs can be visualized 
as shown in Fig. 6d. It should be noted that FIB/SEM is 
a destructive method to visualize the interior structure 
of a specimen by etching the solid materials, meaning 
that the samples will be damaged after imaging using 
this method. Other disadvantages include the lack of 
visible areas, curtaining artifacts resulted from different 

milling speeds at the material and pore phases, as well 
as the heat generated during the imaging process [94].

(2)	 X-ray computer tomography
	 X-ray CT is a nondestructive and noninvasive visuali-

zation method to detect the interior characteristics of 
a solid or porous material. X-ray tomography devices 
are typically composed of an X-ray source and a detec-
tor, as shown in Fig. 7a. The photons generated by the 
X-ray source pass through the specimen and a portion 
of photons that are not absorbed by the specimen will 
be collected by a photon detector, where the X-rays are 
converted to visible lights. The visible lights are fur-
ther converted to an electric current that can be used to 
generate digital images. The specimen is often rotated 
to obtain multiple 2D projected images, which can be 
used to reconstruct a 3D image [95].

Hack et al. [96] utilized the X-ray CT technique to visual-
ize the 3D structure of the cathode electrode, Nafion mem-
brane, and anode electrode, which are prepared by two dif-
ferent methods: hot pressed and not hot pressed before and 
after accelerated stress tests. According to the top cathode 
CL surface of the end-of-test (EOT) images, it is observed 

Fig. 6   CL structure visualiza-
tion by FIB/SEM. a Schematic 
of a FIB/SEM nanotomography. 
Reprinted with permission from 
Ref. [91]. Copyright © 2014, 
Elsevier. b 3D CL structure 
(red: pore region; blue: solid 
network). Reprinted with 
permission from Ref. [92]. 
Copyright © 2016, John Wiley 
& Sons. c CL structure at the 
resolution of 15 nm (dark blue: 
void; light blue: solid; red 
voxels: platinum). Reprinted 
with permission from Ref. [18]. 
Copyright © 2015, Elsevier. d 
CL pore structure by Inoue et al. 
[93]. Reprinted with permission 
from Ref. [93]. Copyright © 
2016, Elsevier
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that the CL is delaminated from the membrane for the non-
hot-pressed CLs, which increases the interfacial resistance 
to proton flow. Jhong et al. [19] studied the structure of CLs 
coated onto GDLs with hand-painting and air-brushing, as 
shown in Fig. 7b. It is found that the structure of the CLs 
in the electrodes is quite different: in the hand-printed elec-
trodes, the catalysts penetrated through the cracks of sup-
porting GDLs, while in the air-brushed electrodes, the CL 
is uniformly coated on the GDL surface. The different struc-
tures of the CL fabricated by different coating methods result 
from the rapid evaporation of the solvent in catalyst ink dur-
ing the atomization at the air-brush nozzle and GDL surface. 
Epting et al. [97] visualized the structure of CLs with a vol-
ume of 3 μm × 3 μm × 3 μm using X-ray CT techniques, as 
shown in Fig. 7c. However, unlike the FIB/SEM technique, 
the X-ray CT is difficult to distinguish the ionomer film cov-
ered on the catalyst particles. Moreover, it should be noted 
that the porosity obtained by analyzing images from TEM, 
FIB/SEM, or X-ray CT is lower than the calculated porosity 
based on the composition and thickness. The discrepancy is 
likely resulted from the micropores that cannot be detected 
by these imaging techniques. It should be pointed out that 
the quality and accuracy of the 3D images rely on not only 
the experimental methods but also the microstructure recon-
struction methods, even though the quantitative analysis of 
the effect of the algorithm on the reconstruction accuracy is 
limited. Further, the spatial resolution of X-ray CT is still 
not sufficient to study single agglomerates.

2.2.3 � 4D Microscopy Techniques

In addition to three spatial dimensions, the information about 
the chemical composition [98], temperature [99], and time-
dependent structure changes [100, 101] of the CLs in PEM 

fuel cells has become more and more important to funda-
mentally scrutinize the local transport, electrochemical, and 
degradation phenomena. The combination of the additional 
one dimension with the 3D geometrical data is often referred 
to as 4D imaging [102, 103]. For instance, Wu et al. [98] 
utilized a multi-energy X-ray spectro-tomography technique 
to investigate the 3D distribution of chemical species of the 
cathode CL for PEM fuel cells. The chemical map of each 
component in the specimen is taken at multiple angles and 
quantitatively converted to carbon support or ionomer, and 
the images of the chemical map are then aligned to form 3D 
images for each component. By combining the 3D datasets 
of ionomer and carbon particles, 4D (or chemically sensitive 
3D) images are generated. It should be noted that the expo-
sure time of the CLs in the imaging instrument should be 
well controlled to avoid potential ionomer damages, which 
may distort the actual CL structure [98].

Table 2 summarizes the typical 4D microscopy tech-
niques that are particularly used in CL studies. Chemical 
composition-based 4D microscopy has been applied to CL 
structure to investigate the distribution and dispersion of var-
ious material components, e.g., carbon support and ionomer, 
using scanning transmission X-ray microscope (STXM) [20, 
98]. The dispersion and distribution of chemical elements 
can be observed by this technique, as shown in Fig. 8a, b. 
Saida et al. [104] developed a 4D technique by combining 
the X-ray computed laminography (XCL) and X-ray absorp-
tion near-edge structure (XANES) spectroscopy to visualize 
the 3D structure and Pt distribution of the cathode CLs in 
PEM fuel cells (see Fig. 8c). This nondestructive technique 
can be used to analyze the chemical states of the Pt in elec-
trodes under both fresh and degraded conditions.

The time-dependent structural degradation of the CLs 
under actual cell operation is of significant interest in fuel 

Fig. 7   CL structure visualization by X-ray micro-tomography. a 
Schematic of an X-ray micro-tomography device. Reprinted with 
permission from Ref. [95]. Copyright © 2010, Elsevier. b Structure 
of hand-painted and air-brushed electrodes by X-ray CT. Adapted 

with permission from Ref. [19]. Copyright © 2013, John Wiley and 
Sons. c CL structure using X-ray CT by Epting et al. [97] (gray: solid; 
transparent: pores). Reprinted with permission from Ref. [97]. Copy-
right © 2012, John Wiley and Sons
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cell studies, and X-ray CT provided a promising technical 
pathway to monitor the interior of the fuel cell without dam-
aging its original structure. Singh et al. [105] used X-ray CT 
to visualize the growth of in situ cracks in cathode CLs at 
the same location after a few thousand cycles of accelerated 
stress tests, as shown in Fig. 8d. Similarly, White et al. [106] 
used a micro-X-ray CT to investigate the CL thinning and 
crack growth under accelerated stress tests, which provided 
unique insights on the compactness of pore structure and 
electrode failure mechanism during fuel cell operation. The 
temperature distribution in gel phantoms was studied in [99] 

by using thermocouples and ultrasound imaging techniques, 
and 2 °C isosurfaces in gel phantoms at 25, 50, and 75 s after 
heating commenced can be determined by backscattered 
ultrasound. This technique may be potentially used for CLs 
as a noninvasive tool for real-time temperature variation, 
which requires careful design and validation for thin CLs.

2.3 � Structure Characterization

The multi-scale structure of the CLs can be qualitatively 
visualized by various microscopy techniques; however, 

Table 2   Summary of 4D 
microscopy techniques

Specimen Technique applied Fourth dimension Ref.

Carbon support + ionomer STXM Chemical composition [98]
Polystyrene microspheres + poly-

acrylate polyelectrolyte ionomer
STXM Chemical composition [20]

Pt/C XCL + XANES spectroscopy Chemical composition [104]
Electrode + membrane X-ray CT Time [105]
Pt/C + ionomer X-ray CT Time [106]
Gel phantoms Backscattered ultrasound Temperature [99]

Fig. 8   4D visualization of the catalyst layer structure. a Chemical 
composition (gray: polystyrene and glass components; blue/green: 
polyacrylate polyelectrolyte ionomer). Adapted with permission from 
Ref. [20]. Copyright © 2008, Springer Nature. b Chemical composi-
tion distribution of CLs [green: perfluorosulfonic acid (PFSA); blue: 
carbon support] visualized with a STXM by Wu et al. [98]. Adapted 
with permission from Ref. [98]. Copyright © 2018, Elsevier. c Pt 

distribution in cathode CLs visualized with XCL and XANES spec-
troscopy by Saida et  al. [104] (the intensity represents the quantity 
of Pt catalysts). Adapted with permission from Ref. [104]. Copyright 
© 2012, Wiley. d Time-dependent degradation at the same location 
of cathode CLs visualized using X-ray CT by Singh et  al. [105]. 
Adapted with permission from Ref. [105]. Copyright © 2019, Else-
vier
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the quantitative analysis of the CL structure is essential to 
analyzing the transport, electrochemical, and degradation 
phenomena in PEM fuel cells. Many transport and electro-
chemical coefficients, e.g., effective diffusion coefficient, 
permeability, thermal and electrical conductivity, and cap-
illary pressure, are a strong function of structural properties, 
such as porosity, tortuosity, and PSD. However, since the 
structure of the CLs is essentially random, irregular, and 
inhomogeneous, which contains closed, blind, cross-linked, 
and through pores (see Fig. 9), it is important to understand 
the key structural parameters of CLs, which are usually 
determined by various experimental techniques.

In this section, the most commonly used experimental 
methods for pore structure and solid structure of the CLs 
are reviewed. The experimental methods for characterizing 
pore structure include the method of standard porosim-
etry (MSP), the method of mercury porosimetry (MMP), 
Brunauer–Emmett–Teller (BET), densometer (based on 
Archimedes principles), and other methods, and the experi-
mental methods for solid structure characterization include 
X-ray diffraction (XRD), electron diffraction (ED), Raman 
spectroscopy, thermogravimetric analysis (TGA), X-ray 
photoelectron spectroscopy (XPS), energy-dispersive X-ray 
spectroscopy (EDX), and other techniques.

2.3.1 � Experimental Methods for Pore Structure 
Characterization

The pore structure of CLs is highly inhomogeneous and 
irregular, even though many studies ideally treat the pores 
in the shapes of cylinders, spheres, slits, and cavities [108]. 
The critical pore structure-related parameters, including 
PSD, porosity, mean pore size, and surface area, which can 
be experimentally determined, are all vital to understanding 
the transport and electrochemical phenomena in CLs.

The pores in the CLs are conventionally assumed as 
cylinders of different sizes when PSD is studied according 
to the International Union of Pure and Applied Chemistry 
(IUPAC) [108]. The PSD represents the distribution of pore 
sizes in a porous specimen [109], while the porosity is the 
volumetric ratio of the pores to the bulk specimen. The void 

volume of the specimen can be determined by the MSP [42], 
MMP [110], BET [108], or densometer [111], while the total 
volume of the specimen depends on the exterior geometry 
and the thickness of the CL specimen. Traditional CL thick-
ness is determined by a micrometer, which is suitable for 
the thickness of more than 10 μm. To improve measurement 
uncertainty, a few layers of CL samples are often stacked 
together with slight compression [4, 112]. With the cur-
rent trend to fabricate ultra-thin CLs, the micrometer may 
not be capable to detect such a layer thinner than 1 μm, 
and stacking too many thin layers may bring errors from 
imperfect contact between layers or excessive compression 
when a micrometer is applied. Therefore, SEM microscope 
is also used to measure the CL thickness [112]. However, 
the thickness of the CLs may not be uniform, especially for 
those with ultra-low catalyst loading, making it challeng-
ing to determine the nominal thickness. The uniformity of 
the CL thickness should be carefully taken into account 
when calculating the porosity and other effective properties 
of CLs. In addition, pore surface area is also an important 
structural parameter for a porous medium. The value of 
the surface area is dependent on not only the nature of the 
porous media but also the measurement methods employed. 
For instance, the measured value of the surface area can 
be significantly varied due to the different sizes of “ruler” 
(i.e., different probing liquid or gas molecules) [113]. There-
fore, the comparison of surface area for various specimens 
should be conducted by using identical methods under the 
same assumptions. Typical experimental methods used for 
surface area measurements include BET [113], MSP [42], 
and MMP [114]. The mean pore size is an artificial indicator 
representing the mean size of channels in CLs for reactant 
and water transport, which depends on the pore surface area 
and volume, while it has different expressions with different 
assumptions of equivalent pore shapes (e.g., cylindrical or 
spherical) [115, 116].

The CLs are traditionally composed of hydrophobic and 
hydrophilic materials (e.g., ionomer and Pt/C, respectively), 
and it is important to understand the hydrophobic and hydro-
philic pore structure, which is important for the CLs’ capa-
bility to repelling excess liquid water. Li et al. [117] added 
hydrophobic dimethyl silicone oil to the traditional cathode 
to enhance the hydrophobicity of the CLs, and their results 
demonstrated that this addition can significantly prevent 
the water flooding at high current densities. However, the 
mechanism of the improvement is still under investigation 
due to the lack of direct experimental evidence. The direct 
measurement of hydrophobicity of pores is challenging as 
the wetting angles are difficult to measure if the CLs cannot 
be prepared to form a smooth surface with uniform local 
materials, composition and pore size distribution. Volfko-
vich and Bagotzky [118] analyzed the hydrophobicity of 
various pores in fuel cell electrodes using MSP and found 

Fig. 9   Schematic of different types of pores. Reprinted with permis-
sion from Ref. [107]. Copyright © 2006, John Wiley and Sons
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that the hydrophobicity of the pore structure can be affected 
by the local materials, composition, as well as local pore 
sizes. However, it is difficult to further verify their statistical 
analysis due to the lack of other experimental techniques. 
Yu et al. [119] applied ESEM techniques to study the time-
dependent microscale hydrophobicity and hydrophilic-
ity of the CL structure; however, the wettability is mostly 
measured on and near the CL surfaces but not in the inte-
rior pores. Therefore, the hydrophobicity of the CLs is not 
discussed further in this section, and the measurement of 
wettability is detailed in Sect. 3.4.

In this section, commonly employed experimental meth-
ods for pore structure characterization are reviewed, includ-
ing the MSP, MMP, BET, densometer, and many other 
techniques.

(1)	 Method of standard porosimetry
	 The MSP, established based on capillary equilibrium, 

is one of the most commonly employed methods to 
measure the PSD of CLs due to its nondestructive 
characteristics and capability of measuring PSD under 
room conditions [53, 118, 120–123]. The principles 
of MSP are shown in Fig. 10. Based on the capillary 
equilibrium, the standard and test specimens, closely 
contacted with each other in liquid (e.g., octane and 
water) for a sufficiently long time, have the identical 
capillary pressure.

	   The total pore volume (Vp) of the test specimen in 
[m3] can be calculated from the mass change between 
its saturated and dry states:

(1)Vp =
msat−mdry

�

where msat is the weight of liquid saturated specimens 
in [kg], mdry is the weight of dry specimens in [kg], and 
ρ is the density of probing liquid in [kg m−3].

	   The bulk volume (Vb) of the test specimen in [m3] 
can be calculated from its geometric dimensions:

where A is the cross-sectional area in [m2] from the 
top view of the CL specimen, and δ is the thickness 
of the CLs in [m]. Therefore, the porosity (ε) can be 
calculated as follows.

	   The pore surface area can be derived from the cumu-
lative PSD curve assuming cylinder-shaped pores via 
the following equation [53, 123, 124]:

where Sp is the pore surface area in [m2], and r is the 
radius of cylindrical pores in [m].

	   The mean pore size (rmean) of cylindrical pores in [m] 
can be estimated as follows [115].

	   Zhao et al. [42] tested the pore structure of catalyzed 
electrodes fabricated using CCM and CCS techniques 
with different Pt loadings of 0.1–0.4 mg cm−2 using 
MSP. The electrode specimens are disk-shaped with a 
diameter of 2.3 cm. The MSP measurements are con-

(2)Vb = A�

(3)� =
Vp

Vb

(4)Sp = 2∫
rmax

rmin

1

r

dVt

dr
dr

(5)rmean =
4Vp

Sp

Fig. 10   a Experimental procedures and b principles of the method of 
standard porosimetry. Curve 1 denotes the PSD of the standard sam-
ple from the manufacturer. Curve 2 is the measured pore volume of 

the standard (Vst) versus test (Vt) samples. Curve 3 is the measured 
PSD of the test sample. Adapted with permission from Ref. [118]. 
Copyright © 1994, Elsevier



Electrochemical Energy Reviews (2023) 6:13	

1 3

Page 15 of 61  13

ducted by (1) removing air and moisture from test sam-
ples, (2) weighing samples before and after immersing 
samples in octane, (3) clamping test samples between 
two standards, (4) recording the mass change after the 
new equilibrium is achieved, and (5) plotting the PSD 
curve by comparing test samples with the standards. 
The experimental results indicate that the electrodes 
prepared by CCS methods are thinner with higher 
porosity, less surface area, lower permeation and diffu-
sion resistance, and worse performance, in comparison 
with that prepared by CCM methods. The significant 
performance drop is caused by the loss of catalyst par-
ticles, deposited in the interior GDL structures. The 
penetration of catalyst particles is visualized by Jhong 
et al. [19].

(2)	 Method of mercury porosimetry
	 MMP, a.k.a., mercury intrusion porosimetry (MIP), is 

developed based on a modified Young–Laplace equa-
tion (or Washburn equation) with the assumption of 
cylinder-shaped pores, and the capillary pressure can 
be calculated based on surface tension, pore radius, and 
contact angle:

where ∆p is the pressure drop in [Pa] across the liquid–
gas interface, r1 and r2 are the interfacial curvatures 
in [m], and rp is the radius (or half pore size) of the 
associated pores in [m].

	   To obtain the pore–size–volume relation of the 
porous specimen, the size and volume of pores should 
be measured simultaneously. The size of pores can be 
estimated from the pressure difference according to 
Eq. (6) with known surface tension and contact angle. 
The pressure drop is one of the most important vari-
ables that determine the measurement uncertainties, 
which may cover five orders of magnitudes [107]. Due 
to the multi-scale nature of the pore sizes in CLs, a 
wide range of pressure is needed to be applied dur-
ing the measurement. The wide range of pressure may 
require more than one single pressure transducer (see 
Fig. 11) to ensure the measurement accuracy and suf-
ficient resolution over the entire measurement range. 
However, particular attention should be paid to meas-
urement errors at the switchover points between differ-
ent transducers. The surface tension of mercury can be 
experimentally determined on different surfaces, and 
in practice, a constant value of 0.485 N m−1 at 25 °C is 
widely employed to determine PSD. The effects of tem-
perature and pressure on the value of mercury surface 
tension on solid surfaces can affect the results to some 
extent; however, corrections are generally not applied 

(6)Δp = �

(
1

r1
+

1

r2

)

=
2�cos �

rp

to the data interpretation, where the uncertainty from 
the contact angle is deemed as minimal [107]. The con-
tact angle can be measured from a drop of mercury 
on the specimen surface by either fitting the shape or 
measuring the height of mercury drops. It should be 
pointed out that the MMP is performed in the air or oil 
environment, where the values of the contact angle on 
the specimen and surface tension of mercury should be 
adjusted accordingly.

	   The volume of pores with a particular size can be 
determined by measuring the capacitance between a 
mercury column in a glass capillary and a metal shield 
covering the capillary. The measurement uncertainty 
may result from bad electrical contacts, contamina-
tions, or glass chips [107]. The pore volume can also 
be estimated from a syringe which is used to pressurize 
the mercury into the pores under given pressures (see 
Fig. 11). By increasing the applied pressure incremen-
tally, a particular volume of mercury is continued to 
be injected into CL pores, which can help establish the 
pore–size–volume relation. It should be noted that it is 
necessary to regularly calibrate the MMP instruments 
against “standard” samples, which contain a variety of 
well-defined pores [23, 125, 126].

	   Rootare and Prenzlow [114] established an equation 
to calculate the surface area based on MMP:

where p is the external pressure in [Pa].
(3)	� Method of Brunauer–Emmett–Teller

The interior surface area of the porous media is broadly 
measured by BET method, established based on the 
physical adsorption of gas molecules on pore surface. 

(7)Sp = −
1

�Hg-aircos � ∫
V

0

pdV

Fig. 11   Schematic of the method of mercury porosimetry. Reprinted 
with permission from Ref. [127]. Copyright © 2007, Elsevier
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Nitrogen is the most frequently employed probing sub-
stance for BET measurement, although argon, carbon 
dioxide, and oxygen can also be employed [128]. For 
the nitrogen-based BET method, the surface area of 
a porous medium can be calculated by analyzing the 
nitrogen adsorption at the temperature of 77 K under 
various relative pressure. The number of molecules 
adsorbed on pore surface can be calculated from the 
physisorption isotherm based on the BET theory [108] 
as follows:

where n denotes the quantity of adsorbed substances in 
[mol] under the relative pressure of p/p0, nm is the mon-
olayer capacity in [mol], and C is a coefficient calcu-
lated from the shape of the isotherm curve. According 
to Eq. (8), a linear relation between p/[n(p0 − p)] and 
p/p0 can be established from a BET plot (see Fig. 12 
for example). The slope of the BET plot is equal to 
(C − 1)/(nmC), and the intercept value can be expressed 
as 1/(nmC), and thus the monolayer capacity, nm, can be 
calculated. The BET surface area (SBET) in [nm2] can 
be calculated as follows:

w h e r e  N A i s  t h e  Avo g a d r o  c o n s t a n t 
(6.022 × 1023 mol−1), and AN2

  is the equivalent cross-
sectional area of a single probing molecule ( AN2

 = 0.162 
nm2 for close-packed nitrogen at 77 K) [108, 128, 129].

	   Many studies suggested good correlations between 
surface areas measured by different experimental meth-
ods [114, 130]. Zhao et al. [113] measured the surface 
area of the fuel cell electrode (including a CL and a 
GDL) using MSP and BET methods, respectively. The 
experimental results identified a significant difference 
in pore surface area determined by MSP and BET 
methods, and the fractal dimension theory suggests that 
the difference results from the different sizes of “rul-
ers”, i.e., the different probing molecules (nitrogen for 
BET, and octane for MSP) of various molecular sizes, 
employed in the respective method. The experimental 
data suggest that the pore surface area is very sensi-
tive to the minimum pore sizes under investigation, 
and the pores with small sizes dominate surface area 
of a specific porous medium. It should also be noted 
that the actual shape and dimension of pores can be 
very different from the ideal scenarios; therefore, the 
interpretation of experimental data collected by various 
porosimetry methods should be carefully performed 
[107].

(8)
p

n
(
p0 − p

) =
1

nmC
+

C − 1

nmC

p

p0

(9)SBET = nmNAAN2

Fig. 12   BET isotherm curves based on different substances. 
Reprinted with permission from Ref. [128]. Copyright © 1938, 
American Chemical Society

Fig. 13   Schematic of the 
experimental setup for porosity 
measurement based on the 
Archimedes principle by Shukla 
et al. Reprinted with permis-
sion from Ref. [111]. Copyright 
© 2019, the Electrochemical 
Society
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(4)	 Method of densometer (Archimedes principle)
	 The method of densometer based on the Archimedes 

principle (or buoyancy-based porosity measurement) 
is investigated in various studies [111, 131], which 
enables a direct measurement of a single thin layer, as 
shown in Fig. 13.

	   The typical experimental setup includes a high-pre-
cision balance, working liquid, and a wireframe. The 
specimen is prepared in a specific shape such that the 
bulk volume can be calculated from the exterior geom-
etry. The dry specimen is first weighed in the air using 
the balance, subsequently submerged in the working 
liquid (e.g., octane, water, or silicon oil) in a vacuum 
chamber to remove any existing air bubbles from the 
pores, then carefully placed in the liquid with the help 
of the wireframe, and finally measured the weight 
change after the sample is submerged in the liquid. 
Based on the Archimedes principle, the volume (Vs) 
of the solid components in [m3] can be calculated as 
follows:

where ρl is the density of the liquid (can be experimen-
tally determined or obtained from the manufacturer) in 
[kg m−3], ρair is the air density in [kg m−3], and ms,air 
and ms,l are the weights of solids measured in air and 
liquid in [kg], respectively.

	   The porosity of the specimen can be determined as 
follows.

	   The Archimedes method is advantageous for the 
direct measurement of a thin layer specimen, which is 
of potential to minimize the measurement errors with 
good repeatability [131]. However, the uncertainties 

(10)Vs =
ms,air − ms,l

�l − �air

(11)� =
Vp

Vb

= 1 −
Vs

Vb

from the high-precision balance, the size and hydro-
phobicity of the specimens, the uniformity and errors 
of the thickness, and the potential air bubbles existing 
in the specimen placed in the liquid should be carefully 
controlled.

(5)	 Comparison of different pore structure characterization 
techniques

	 Many other methods can be employed to investigate 
the pore structure of porous media, especially the PSD, 
and these methods can be categorized into fluid- and 
radiation-based methods, as shown in Fig. 14. The 
fluid-based methods include MSP [53, 118, 120–123], 
MMP [132, 133], gas adsorption [134], capillary con-
densation [135], and displacement method [136], while 
the radiation-based methods include small-angle X-ray 
scattering [137], optical microscopy [138], SEM [138, 
139], TEM [138, 140], and AFM [138]. However, par-
ticular attention should be paid to the certain limita-
tions of each technique for measuring CLs in PEM fuel 
cells. For example, the accuracy of the MSP relies on 
the PSD of the standard samples, which are given by 
the manufacturer. The accuracy of standard PSD and 
its effect on the experimental results of the test sample 
remains unclear, although the MSP enables the non-
destructive measurements of CL structure under room 
conditions over a broad range of pore sizes (typically 
from 0.3 nm to 300 μm). However, the MMP may be 
detrimental to the delicate CL microstructure as a high 
external pressure is required to inject mercury into the 
pores of CLs, which can distort the intrinsic CL struc-
ture [118, 122]. The gas adsorption, capillary conden-
sation, and small-angle X-ray scattering are suitable for 
only micro- and meso-pores (< 50 nm), while the dis-
placement method is commonly used for macro pores 
(> 10 μm) [122, 134–137, 141], as shown in Fig. 14. 
The microscopic images are also widely used to quali-
tatively analyze the shape and size of pores (mostly 
near the specimen surface), and quantitative analysis 

Fig. 14   Comparison of the pore 
size ranges that different meth-
ods can be used to determine 
the pore structure of porous 
media. Adapted with permission 
from Ref. [113]. Copyright © 
2019, John Wiley and Sons



	 Electrochemical Energy Reviews (2023) 6:13

1 3

13  Page 18 of 61

of the PSD depends on image-processing algorithms 
[113].

2.3.2 � Experimental Methods for Solid Structure 
Characterization

When a CL is prepared, advanced composition and phase 
analysis techniques are often performed to ensure the manu-
facturing consistency, to check fabrication procedures, and 
to inspect impurity species. The frequently used composition 
and phase analysis techniques include XRD, ED, Raman 
spectroscopy, TGA, XPS, EDX, and many other techniques. 
The principles and applications of each technique are sum-
marized in Table 3.

XRD is a nondestructive technique to investigate the 
solid structure of CLs by analyzing the resultant diffraction 
pattern of X-ray photons after interacting with and being 
scattered by electrons surrounding the atoms [142]. XRD 
has been applied to analyze the atomic composition [9], oxi-
dation states of catalysts [143], size and shape of catalyst 

nanoparticles [126, 144, 145], crystal structure of carbon 
supports, non-platinum catalysts [13], and PFSA ionomer 
[146, 147], and pore sizes in well-ordered materials [109, 
148]. Electron diffraction is established based on the analysis 
of elastically scattered electrons, which can be used to ana-
lyze the crystal structure of catalyst or carbon support, e.g., 
single-walled carbon nanotubes [149]. Raman spectroscopy 
is a nondestructive technique based on the inelastic scatter-
ing of monochromatic light, which is widely used to analyze 
the structural changes in carbon materials during accelerated 
stress test, including carbon supports or nonmetal catalysts 
[150]. TGA is a destructive method that analyzes the mass 
changes as temperature rises [151]. TGA is widely used in 
CL analysis, including the thermal stability of the catalyst 
[152] and membrane [153] materials, and the measurement 
of Pt content in Pt/C [154]. XPS is a common technique 
employed for material analysis based on X-ray electrons, 
which is widely used to characterize the surface elemental 
composition [3] for various materials, including inorganic 
compounds, metal alloys [155], Nafion membrane [155], and 

Table 3   Comparison of typical experimental methods for catalyst layer solid structure characterization

Method Probing species/principle Remark Application

XRD Diffraction of X-ray photons Nondestructive analysis technique Atomic composition [9]
Oxidation states of catalysts [143]
Size and shape of Pt [126, 144, 145]
Crystal structure of carbon supports, 

non-platinum catalysts [13], and PFSA 
ionomer [146, 147]

Pore sizes in well-ordered materials [109, 
148]

ED Elastically scattered electrons Usually coupled with SEM or TEM
Stronger reflection due to shorter wave-

length than X-rays

Crystal structure
Single-walled carbon nanotubes [149]

Raman 
spectros-
copy

Inelastic scattering of monochromatic 
light in visible, near-infrared, or near 
ultraviolet range

Nondestructive analysis technique Structure of carbon [150]

TGA​ Mass change over time as temperature 
changes

Destructive analysis technique Decomposition patterns
Adsorbed moisture content
Relative organic composition
Thermal stability of catalysts [152] and 

membranes [153]
Identify Pt content in Pt/C [154]

XPS X-ray electrons Ultra-high vacuum needed to minimize 
errors

Surface elemental composition, empirical 
formula, chemical and electron states of 
the elements existed in a material [3]

Suitable for inorganic compounds, metal 
alloys, semiconductors, polymers, and 
other materials [155]

Decomposition of Nafion materials [155]
Pt and oxidized Pt species [156]

EDX Emitted X-rays Commonly integrated with SEM and TEM Identify and quantify elements [157]
Maps of distributions of elements with 

SEM or TEM [158]
Nanostructures like core–shell and alloy 

nature [159]
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Pt and oxidized Pt species [156]. EDX is another technique 
widely used for material analysis by detecting X-rays emit-
ted from a material surface after interacting with an electron 
beam. EDX is widely used to identify and quantify the ele-
ments [157], to analyze the distributions of elements coupled 
with SEM or TEM [158], and to characterize nanostructure, 
e.g., core–shell and alloy nature [159].

2.4 � Summary

The microstructure of CLs, formed during the fabrication 
process, can be affected by many factors, including materials, 
composition, fabrication methods, conditions and procedures. 
The PTFE-bonded CLs are durable due to the extremely high 
Pt loading applied; however, the high cost resulted from the 
large amount of noble Pt catalyst unfavored this method in 
industrial application. Vice versa, the ultra-low-Pt-loading 
CLs prepared by the plasma sputtering method, ion-beam-
assisted deposition, or atomic layer deposition can considera-
bly decrease the material cost; however, these methods remain 
impractical for large-volume manufacturing due to technical 
challenges in complex fabrication apparatus and unconfirmed 
long-term performance [31]. The ionomer-bounded method 
(a.k.a. the thin-film method) demonstrates a good balance 
between durability and cost, which can be further optimized 
by improving the CL microstructure. The multi-scale structure 
of CLs can be visualized by different microscopy techniques, 
including optical microscopy, SEM, TEM, and AFM, which 
are suitable to identify the morphology and topology of the CL 
surface with different spatial resolution. The interior structure 
can be visualized by FIB/SEM and 3D X-ray CT methods. 
Advanced 4D microscopy techniques have been also adopted 
for fuel cell studies to investigate the fourth “dimension”, e.g., 
chemical composition, temperature, time, and other informa-
tion. Quantitative characterization of the multi-scale CL pore 
structure includes porosity, PSD, surface area, mean pore size, 
tortuosity, and other parameters. The pore structure can be 
characterized by the MSP, MMP, BET, and densometer, and 
other techniques. The solid structure can be studied by XRD, 
electron diffraction, Raman spectroscopy, TGA, XPS, EDS, 
and other methods.

3 � Physicochemical Properties of Catalyst 
Layers

The physicochemical properties, which significantly affect 
the transport of reactants, water, and heat in the CLs, are 
determined by the compositional ingredients and multi-scale 
structure. The performance and durability of CLs can also 
be affected by various transport and mechanical properties, 
such as the effective diffusion coefficient, permeability, cap-
illary pressure, contact angle, effective thermal conductivity, 

and Young’s modulus [123, 160, 161]. Unfortunately, the 
experimental data of these effective properties are very 
limited for the CLs, due to the difficulties in measuring a 
thin layer of porous media. Therefore, various experimental 
techniques specifically designed and potentially applied for 
the CLs have been comprehensively reviewed in this sec-
tion. The physicochemical properties are strongly structure-
dependent, and the relation between these properties and 
structural parameters is scrutinized in this section.

3.1 � Effective Diffusion Coefficient

3.1.1 � Fick’s Law of Diffusion

Diffusion, one of the key mass transfer mechanisms in fuel 
cells, is defined as the net movement of molecules as a result 
of random molecular motion, which can be caused by a gra-
dient of concentration, temperature, pressure, or external 
force [160, 162, 163]. The rate of diffusion is governed by 
Fick’s law of diffusion [164].

where Jm represents the mass flux caused by diffusion in 
[kg m−2 s−1], c denotes the concentration in [kg m−3], x is 
the diffusion distance in [m], and D denotes the diffusion 
coefficient in [m2 s−1].

In the open spaces, the diffusion is driven by the colli-
sions between molecules without the interference by any 
object. The diffusion coefficient is known as the bulk dif-
fusion coefficient, which is governed by not only the gra-
dients of temperature, pressure, and concentration but also 
the nature of the diffusion substances. In porous media, e.g., 
the CLs of PEM fuel cells, the reactant gas molecules can 
collide with a solid CL surface, which slows down the diffu-
sion rates. Therefore, the Fick’s law needs to be modified for 
the diffusion in porous media, where an effective diffusion 
coefficient is used to replace the bulk diffusion coefficient.

where the subscripts, i and eff, denote species i and effective 
properties, respectively. The diffusion coefficient in porous 
media is lower than that in the bulk region as the collision 
with solid surfaces makes the transport of gas species more 
difficult.

It should be noted that with the current trends to fabricate 
CLs with ultra-low loadings much less than 0.1 mg cm−2, the 
thickness of the CLs can be only a few nanometers. There-
fore, the reactant transport resistance, especially for oxygen 
at the cathodes, through pores can be reduced, while that 
through the thin films of ionomer covered on the surface of 

(12)Jm = −D
�c

�x

(13)Jm,i = −Deff

�ci
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catalyst particles becomes dominant. Based on the assump-
tions that the catalyst surface is covered by a thin ionomer 
layer in the interior structure of CLs, the concentration of 
the dissolved reactants at the ionomer–gas interfaces can be 
calculated by Henry’s law [81, 165].

where c is the concentration of gas species in [kmol m−3] 
in the ionomer phase, p is the partial pressure of gas spe-
cies i (i.e., O2 or H2) in [Pa] in the gas phase, and H is 
the Henry’s constant in [Pa m3 kmol−1]. The dissolved gas 
species is transported mainly via the diffusion through the 
ionomer–gas interface to the catalyst surface which is cov-
ered by a thin layer of ionomer. In many numerical studies, 
Henry’s law and Fick’s law of diffusion are combined to 
model the mass transport of the reactants [81, 165]. How-
ever, the experimental data on the Henry’s constant and the 
diffusion coefficients are rarely reported in the literature.

(14)ci =
pi

Hi

3.1.2 � Experimental Methods for Effective Diffusion 
Coefficient

Many experimental methods have been developed to meas-
ure the effective diffusion coefficient of porous media in 
PEM fuel cells based on the modified Fick’s law of diffu-
sion. Kim and Gostick [166] developed a radial diffusivity 
apparatus consisting of a pedestal, a cylinder chamber, and 
an oxygen sensor, as shown in Fig. 15a. The experimental 
apparatus is designed for the thin porous specimens based 
on the transient variation of oxygen concentration at the 
center of the specimens by fitting the analytical solution 
of Fick’s law in a cylindrical system filled by nitrogen–air 
mixture. The experimental results suggest that the broadly 
used Bruggeman correlation for estimating the effective dif-
fusion coefficient of fuel cell components based on porosity 
is generally unsuitable for non-spherical porous materials.

Mangal et al. [167] developed a diffusion bridge apparatus 
to measure the through-plane diffusivity of porous media, as 
shown in Fig. 15b. The apparatus is operated with nitrogen 
and oxygen flowing across the bridge, and an oxygen sensor 
is used to record the oxygen concentration. Experimental 
data are fitted with a combined Fick’s and Darcy’s models 

Fig. 15   Schematic of different diffusivity apparatus. a Radial dif-
fusivity apparatus by Kim and Gostick [166]. Adapted with permis-
sion from Ref. [166]. Copyright © 2019, Elsevier. b Diffusion bridge 
apparatus by Mangal et  al. [167]. Reprinted with permission from 

Ref. [167]. Copyright © 2015, Elsevier. c Modified Loschmidt cell by 
Zhao et al. [123]. Reprinted with permission from Ref. [123]. Copy-
right © 2018, Elsevier
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to calculate the effective diffusion coefficient. By analyzing 
the oxygen flux in the advection–diffusion process, the per-
meability of different thin porous media can be measured.

For CLs, the major challenge to measure the through-
plane effective diffusivity is that the CLs cannot stand alone, 
which requires a porous substrate with known effective dif-
fusivity and thickness. By utilizing the resistance network 
theory, the effective diffusivity of the CLs can be derived 
by measuring the diffusion resistance of the substrate with 
and without CLs coated. Shen et al. [168] measured the 
effective diffusion coefficient of the CLs [30 wt% (wt% 
means the weight percentage) ionomer mixed with Pt/C, 
0.2–0.8 mgPt cm−2, 6–29 μm] deposited on the surface of 
porous Al2O3 using a modified Loschmidt cell, and the 
results indicated that the effective diffusivity of the CL is 
(1.46 ± 0.05) × 10−7 m2 s−1 under room conditions [25 °C 
and 1 atm (1 atm = 101.325 kPa)]. Zhao et al. [123] also 
investigated the effective diffusivity by measuring the 
effective diffusivity of GDL substrate and catalyzed GDL 
(25 wt% ionomer mixed with Pt/C, 0.1–0.4 mgPt  cm−2, 
3–9.4 μm) with the modified Loschmidt cell as shown in 
Fig. 15c. The effective diffusivity is derived based on the 
resistance network theory [169] as follows:

where δ is the thickness in [m], and the subscripts of sub, 
CL, and sub_CL, denote the properties of the substrate, CL, 
and catalyzed substrate, respectively. The experimental data 
suggested that the effective diffusivity of the CLs ranges 
within (2.8×10−7–4.9×10−7 m2 s−1 under room conditions 
and (3.9×10−7–5.1×10−7 m2 s−1 at 75 °C. More details about 
the experimental data on the effective diffusivity of CLs 
are presented in Table 4. It should be mentioned that the 
measured effective diffusivity of CLs in Ref. [123] is about 
2–3 times larger than that in Ref. [168]. This discrepancy is 
likely due to the different composition and structures of the 
CL samples used for the measurement, e.g., resulted from 
the different catalyst types and ionomer ratios.

Recently, many efforts have been devoted to the under-
standing of the oxygen transport resistance in pores and 
ionomers and through the corresponding interfaces. As 
shown in Fig. 16, the CLs, composed of Pt/C particles, 
ionomer-covered agglomerates, and multi-scale pore net-
works, involve complicated oxygen transport pathways 
in the cathode structure [8]. The oxygen in pores can 

(15)Deff
CL

=
(
�sub_CL − �sub

)
(
�sub_CL

Dsub_CL

−
�sub

Dsub

)−1

Table 4   Effective diffusivity of the catalyst layers from experimental results

Catalyst layer composition Thickness/µm Working fluid Effective dif-
fusivity/(10−7 
m2 s−1)

Measurement condition Ref.

25 wt% ionomer mixed with Pt/C(60%), 0.1 mgPt 
cm−2

3 N2–O2 4.9 ± 0.3 25 °C and 1 atm, substrate GDL [123]

25 wt% ionomer mixed with Pt/C(60%), 0.2 mgPt 
cm−2

4.8 N2–O2 4.6 ± 0.1 25 °C and 1 atm, substrate GDL [123]

25 wt% ionomer mixed with Pt/C(60%), 0.3 mgPt 
cm−2

7.6 N2–O2 4.4 ± 0.3 25 °C and 1 atm, substrate GDL [123]

25 wt% ionomer mixed with Pt/C(60%), 0.4 mgPt 
cm−2

9.4 N2–O2 2.8 ± 0.1 25 °C and 1 atm, substrate GDL [123]

25 wt% ionomer mixed with Pt/C(60%), 0.1 mgPt 
cm−2

3 N2–O2 5.1 ± 0.4 75 °C and 1 atm, substrate GDL [123]

25 wt% ionomer mixed with Pt/C(60%), 0.2 mgPt 
cm−2

4.8 N2–O2 4.8 ± 0.4 75 °C and 1 atm, substrate GDL [123]

25 wt% ionomer mixed with Pt/C(60%), 0.3 mgPt 
cm−2

7.6 N2–O2 4.5 ± 0.1 75 °C and 1 atm, substrate GDL [123]

25 wt% ionomer mixed with Pt/C(60%), 0.4 mgPt 
cm−2

9.4 N2–O2 3.9 ± 0.1 75 °C and 1 atm, substrate GDL [123]

30 wt% ionomer mixed with Pt/C(46%) 6 N2–O2 1.36 25 °C and 1 atm, substrate Al2O3 [168]
30 wt% ionomer mixed with Pt/C(46%) 9 N2–O2 1.67 25 °C and 1 atm, substrate Al2O3 [168]
30 wt% ionomer mixed with Pt/C(46%) 10 N2–O2 1.24 25 °C and 1 atm, substrate Al2O3 [168]
30 wt% ionomer mixed with Pt/C(46%) 12 N2–O2 1.50 25 °C and 1 atm, substrate Al2O3 [168]
30 wt% ionomer mixed with Pt/C(46%) 14 N2–O2 1.47 25 °C and 1 atm, substrate Al2O3 [168]
30 wt% ionomer mixed with Pt/C(46%) 20 N2–O2 1.62 25 °C and 1 atm, substrate Al2O3 [168]
30 wt% ionomer mixed with Pt/C(46%) 23 N2–O2 1.50 25 °C and 1 atm, substrate Al2O3 [168]
30 wt% ionomer mixed with Pt/C(46%) 29 N2–O2 1.43 25 °C and 1 atm, substrate Al2O3 [168]
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be Fickian or Knudsen diffusion depending on the pore 
sizes, and a portion of oxygen can be dissolved in ionomer, 
acrossing the ionomer–gas interface. The oxygen is then 
diffused in the ionomers from the ionomer–gas interface 
to the ionomer–catalyst interface, where oxygen will be 
adsorbed and react. Many efforts have been devoted to 
separating and quantifying the oxygen transport resist-
ances in different cell components. Xue et al. [170] ana-
lyzed the EIS results performed at a high current density 
of 1.8 A cm−2 by fitting the EIS spectrums with a Warburg 
admittance function and found that the Nafion contents in 
CLs can significantly affect the effective diffusion coef-
ficient of oxygen in CLs although oxygen transport resist-
ances were not separated in pores, ionomers, and through 
interfaces. Choo et al. [171] utilized a limiting current 
technique to separate the contribution of GDLs and CLs to 
the overall oxygen transport resistances. Their experimen-
tal results suggested that the water update in the ionomer 
film can help reduce the oxygen transport resistance in 
the CLs. Nonoyama et al. [172] assumed the total oxygen 
transport resistance is composed of three components: 
pores in GDLs, pores in CLs, and ionomer film in CLs. 
The total resistance is quantified by measuring the limit-
ing current density under controlled conditions ensuring 
no liquid water exists in CL pores, and the experimental 
results suggested that the ionomer film played a significant 
role in oxygen transport resistance at various Pt loadings 
under investigation. It should be mentioned that the oxy-
gen transport resistance in the ionomer film was some-
times reported negligible, especially at high Pt loading and 
high temperature conditions [172]. Due to the nature of 
inhomogeneous coverage of ionomer, irregular shapes of 
catalyst surface, non-uniform oxygen distribution in pores, 
and uncertain local liquid water coverage in the interior 
CL structure, theoretical analysis and optimization of 

oxygen transport resistances through the CL structure still 
need more in-depth investigation and better understanding.

3.1.3 � Empirical Models for Effective Diffusion Coefficient

Three major diffusion mechanisms exist in the porous media: 
surface diffusion, bulk (a.k.a. Fickian or ordinary) diffusion, 
and Knudsen diffusion [173]. Surface diffusion refers to the 
molecular movement on solid surfaces, bulk diffusion is 
molecular motion driven by the collisions between adjacent 
molecules, while Knudsen diffusion is mainly caused by the 
collisions between solid surface and molecules if the pore 
size is less than the mean free path length of the molecules 
[173, 174]. Taking both Fickian diffusion and Knudsen dif-
fusion in pore networks with a broad range of pore sizes into 
account, the effective diffusion coefficient in a porous mate-
rial can be affected by the porosity and tortuosity (defined as 
the ratio of the tortuous length to the straight length) [175]. 
The effective diffusion coefficient of a porous specimen can 
be empirically calculated as follows [175]:

where ε is the porosity, and τ is the tortuosity. The tortu-
osity of unconsolidated substances ranges from 1.5 to 2.0 
[174]; however, for most materials, the values of tortuosity 
are unknown. Therefore, the effective diffusion coefficients 
of porous media have to be measured by experiments. In 
some studies, the ratio of the effective diffusion coefficient 
to the bulk diffusion coefficient is referred to as diffusibility.

In practical conditions, the diffusion process in an operat-
ing fuel cell is difficult to be experimentally studied. There-
fore, the modeling approach has been broadly employed to 

(16)Deff =
�Db

�

Fig. 16   Mass transport resist-
ance network in PEM fuel 
cell cathode electrodes (MPS: 
microporous substrate; RKn: 
Knudsen diffusion resistance; 
RMol: molecular diffusion 
resistance; RI/gas: the contact 
resistance between gas and 
ionomer; RI: the resistance 
through ionomer; RI/Pt: the con-
tact resistance between ionomer 
and Pt catalyst). Adapted with 
permission from Ref. [8]. Copy-
right © 2021, the Author(s)
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study the mass transport in fuel cell porous components, in 
which the transport coefficient based on the structure of the 
porous media is important for the modeling accuracy. Many 
empirical models of effective diffusion coefficients in porous 
media, such as GDLs, MPLs, and CLs, have been devel-
oped based on the CL structure (e.g., porosity and CL com-
position). The most commonly used models for fuel cells 
are summarized in Table 5, including Bruggeman model 
[176, 177], Neale and Nader model [178], Tomadakis and 
Sotirchos model [179], Mezedur model [139], Zamel model 
[177], and Das model [180].

3.2 � Permeability

3.2.1 � Darcy’s Law

The permeability of the porous media in PEM fuel cells rep-
resents the capability of mass transfer via convection driven 
by pressure gradients. The relation between the superficial 
velocity of the fluids penetrating the porous specimens and 
pressure gradient is governed by Darcy’s law as follows:

where u is the superficial velocity in [m  s−1], μ is the 
dynamic viscosity in [Pa s], and K0 is the permeability in 
[m2].

It should be noted that Darcy’s law with a linear rela-
tion between the superficial velocity and pressure gradient 
is valid only when the flow rate is small. However, for high 
flow velocity, the velocity–pressure–gradient relation is 
often nonlinear as the inertial effect cannot be neglected, 
where Darcy’s law has to be modified and Forchheimer 
equation has to be applied [115, 160, 169, 182]:

(23)−
dp

dx
=

�u

K0

where β is the non-Darcy coefficient in [m−1], and ρ is the 
density in [kg m−3]. In some studies, K is called viscous 
permeability in [m2], and 1/β is called inertial permeability 
in [m] [169].

Under certain circumstances, liquid water exists and 
floods in the CL pores, which inhibits the fuel cell perfor-
mance by blocking the reactant transport pathways and the 
reactive surfaces. When liquid water exists, the convective 
gas and liquid flow in the pores will interact with each other, 
and the permeability of the CL for the liquid and gas phases 
will be altered due to the two-phase flow. The actual perme-
ability of the CL for both gas and liquid phases is called rela-
tive permeability, which is usually smaller than the intrinsic 
permeability. For a two-phase flow system, the velocity of 
each phase, governed by Darcy’s law, can be given by the 
following equation:

where ui is the superficial velocity of phase i in [m s−1], K0 
is intrinsic permeability measured by a single-phase flow in 
[m2], Kr,i is the dimensionless relative permeability for phase 
i, μi is the dynamic viscosity in [Pa s], and pi is the partial 
pressure of phase i in [Pa].

For the air–water system in fuel cells, the air velocity 
can be calculated as follows:

where the subscript “air” denotes the properties of air.
The velocity of liquid water can be calculated via the 

following equation:

(24)−
dp

dx
=

�u

K
+ ��u2

(25)ui = −
K0Kr,i

�i

dpi

dx

(26)uair = −
K0Kr,air
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dpair
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Table 5   Models to predict the effective diffusion coefficient of porous materials

Dm is the diffusivity in ionomer, and ω is the volume fraction of ionomer in catalyst layers

Model Effective diffusion coefficient Note Eq. Ref.

Bruggeman Deff = Db�
1.5 Spherical 

particles
(17) [176, 181]

Neale and Nader Deff = Db2�∕(3 − �) Spherical 
particles

(18) [178]

Tomadakis and Sotirchos Deff = Db�[(� − 0.037)∕0.963]0.661 Fibers (19) [179]
Mezedur et al. Deff = Db[1 − (1 − �)0.46] (0 ⩽ � ⩽ 0.65) Tetragonal 

network
(20) [139]

Zamel et al. Deff = Db

{
1 − 2.76� cosh(3� − 1.92)

[
3(1−�)

3−�

]}
for (0.33 ⩽ � ⩽ 1) Fibers (21) [177]

Das et al.
Deff = Db

[

1 −
3(1−�)
3Db

Db−
2�Dm
3−�

−�

]
Catalyst 

layers
(22) [180]
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where the subscript “w” denotes the properties of liquid 
water.

The relation between the gas- and liquid-phase pressure 
can be calculated as follows in terms of capillary pressure.

3.2.2 � Experimental Methods for Intrinsic Permeability

The permeability of the porous material is usually deter-
mined by measuring the pressure difference across the 
specimen with known thickness at given flow rates via 
Darcy’s law [182–191]. Many experimental apparatuses 
have been developed for measuring the intrinsic perme-
ability of fuel cell electrodes in different directions. Gos-
tick et al. [192] developed a test instrument to measure the 
in-plane permeability, as shown in Fig. 17a. During the 

(27)uw = −
K0Kr,w

�w

dpw

dx

(28)pc = pair − pw

experiment, the porous specimen is compressed by two 
plates with adjustable thickness via feeler gauges. The air 
flow rate is monitored by a flow meter at the outlet, and the 
inlet pressure is measured by a pressure transducer assum-
ing atmospheric pressure at the outlet. For low-velocity 
flow, the permeability is calculated by solving Darcy’s law 
by the following equation:

where l is the length of the specimen in [m], and Jm is the 
mass flux in [kg m−2 s−1].

For high velocities, the inertial pressure loss is not neg-
ligible, and the permeability K and the inertial coefficient β 
are determined by fitting the experimental data by the fol-
lowing equation (the integral form of Forchheimer equation).

(29)
(
p2
in
− p2

out

)
Mair

2lRuT
=

�Jm

K

(30)
(
p2
in
− p2

out

)
Mair

2lRuT
=

�Jm

K
+ �Jm

2

Fig. 17   Different types of experimental setups for permeability meas-
urement. a In-plane permeability by Gostick et  al. [192]. Reprinted 
with permission from Ref. [192]. Copyright © 2006, Elsevier. b In-
plane permeability by Feser et  al. [193]. Adapted with permission 
from Ref. [193]. Copyright © 2006, Elsevier. c Through-plane per-

meability by Pant et  al. [169]. Reprinted with permission from Ref. 
[169]. Copyright © 2012, Elsevier. d Through-plane permeability by 
Zhao et al. [161]. Reprinted with permission from Ref. [161]. Copy-
right © 2018, Elsevier
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Feser et al. [193] designed a radial flow apparatus for the 
in-plane permeability measurement, as shown in Fig. 17b. 
The impregnating fluid can be either liquid or gas, and the 
porous sample can be compressed at various levels. For 
gas permeability, air pressure is measured at both inlet and 
outlet, while for liquid permeability, only inlet pressure is 
measured. By integrating Darcy’s law for a radial configu-
ration, the permeability can be calculated by the following 
equation:

where Q is the outlet flow rate in [m3 s−1], δ is the thick-
ness of specimens, and r is the radius. By measuring the 
permeability of the same glass fabric sample using a single-
phase liquid and gas, it is found that the difference in the 
permeability is very small, with the liquid permeability of 
6.02 × 10−13 m2 and the gas permeability of 5.89 × 10−13 m2.

Pant et al. [169] modified a diffusion bridge setup to 
measure the pressure drop across the porous media under 
given mass flow rates, as shown in Fig. 17c. With this appa-
ratus, the viscous and inertial through-plane permeability 
can be derived for GDLs and MPLs. Zhao et al. [161] modi-
fied a Loschmidt cell to measure the through-plane perme-
ability, as shown in Fig. 17d. By measuring the inlet and 
outlet pressure under the controllable flow rate of different 
gases (e.g., N2, O2, and air) under different temperatures, 
the permeability coefficient can be determined. By analyz-
ing the difference between uncatalyzed GDL and catalyzed 

(31)Qout =
πK�

�ln
(
rout∕rin

)

(
p2
in
− p2

out

)

pout

GDLs using a resistance network theory based on the fol-
lowing equation, the permeability of CLs alone is indirectly 
measured in [161] because the CLs cannot stand alone with-
out supports. The measurement uncertainties depend on the 
thickness of the CLs and the nature of the porous supports.

where the subscripts “sub”, “CL”, and “sub_CL” denote 
the properties of the substrate, CL, and catalyzed substrate, 
respectively.

Table 6 summarizes the key data on the intrinsic per-
meability of the CLs from both experimental and mode-
ling input parameters. It should be noted that the existing 
experimental studies are mainly focused on the GDLs, and 
the intrinsic permeability of the carbon paper is around 
6×10−12–70×10−12  m2, and that of the GDLs (i.e., a car-
bon paper + a MPL made of carbon particles and hydro-
phobic agents) is about 0.3×10−12–1.1×10−12  m2 [161]. 
The experimental results in [161] suggest that the intrinsic 
permeability of the CLs is much smaller than that of GDLs. 
The intrinsic permeability of the CLs with the Pt loadings 
of 0.1–0.4 mgPt cm−2 prepared by mixing 25 wt% ionomer 
with different types of Pt/C catalysts (i.e., 30% and 60% Pt 
in Pt/C) is within 1.5×10−15–3.7×10−15 m2 (see Table 6 for 
more details). This minor discrepancy is due to the struc-
tural difference in the CLs using different types of catalyst 
particles.

(32)Keff
CL

=
(
�sub_CL − �sub

)
(
�sub_CL

Ksub_CL

−
�sub

Ksub

)−1

Table 6   Through-plane intrinsic permeability of the catalyst layers from experimental results or modeling input parameters

Catalyst layer composition Thickness/µm Working fluid Through-plane 
permeability/(10−12 
m2)

Experimental 
or for modeling

Ref.

30% Pt/C, 25 wt% ionomer, 0.1 mgPt cm−2 4.4 Dry air 0.001 5 Experimental [161]
30% Pt/C, 25 wt% ionomer, 0.2 mgPt cm−2 11.5 Dry air 0.002 6 Experimental [161]
30% Pt/C, 25 wt% ionomer, 0.3 mgPt cm−2 17.4 Dry air 0.003 6 Experimental [161]
30% Pt/C, 25 wt% ionomer, 0.4 mgPt cm−2 21.4 Dry air 0.003 7 Experimental [161]
60% Pt/C, 25 wt% ionomer, 0.1 mgPt cm−2 3.0 Dry air 0.001 6 Experimental [161]
60% Pt/C, 25 wt% ionomer, 0.2 mgPt cm−2 4.8 Dry air 0.001 5 Experimental [161]
60% Pt/C, 25 wt% ionomer, 0.3 mgPt cm−2 7.6 Dry air 0.002 2 Experimental [161]
60% Pt/C, 25 wt% ionomer, 0.4 mgPt cm−2 9.4 Dry air 0.002 2 Experimental [161]
Composition not given; porosity: 0.6 35 H2 + H2O

Air + H2O
0.1 For modeling [194]

Composition not given; porosity: 0.15 15 H2 + H2O
Dry O2

0.2 For modeling [195]

Anode: Pt/Ru/C = 2:1:2, 15 wt% ionomer, 1.5 mg cm−2

Cathode: Pt/C = 1:4, 30 wt% ionomer, 1.0 mg cm−2
30 (anode)
20 (cathode)

Methanol/water
Air

1.0
1.0

For modeling [196]

Ionomer volume fraction: 0.23; porosity: 0.3 5 (anode)
10 (cathode)

H2 + H2O
Air or O2 + H2O

0.1 For modeling [197]

Composition not given; porosity: 0.4 10 H2 + H2O, O2 + H2O 0.000 1 For modeling [198]



	 Electrochemical Energy Reviews (2023) 6:13

1 3

13  Page 26 of 61

It should be mentioned that the intrinsic permeability of 
the CLs used for modeling significantly varies by several 
orders of magnitude from 10−16 to 10−12 m2 (data sources 
were not provided in these studies) [194–198]. This can 
lead to inaccurate simulation results, especially when the 
transport mechanisms of gas reactants through convection 
is considered. The discrepancy in the permeability values 
between experimental studies and modeling input param-
eters suggested that the accurate experimental data on the 
permeability of CLs are urgently needed to improve model 
development. These values should be carefully implemented 
when convection mass transfer in porous media is important.

3.2.3 � Empirical Models for Intrinsic Permeability

The intrinsic permeability mainly depends on the porous 
structure under dehydrated conditions. To calculate the 
intrinsic permeability of different porous components in 
PEM fuel cells, many models have been established (see 
Table  7). Tomadakis et  al. [179, 186, 199, 200] estab-
lished several models based on porous media made of ran-
dom overlapping or non-overlapping fibers in in-plane or 
through-plane directions, which are a strong function of fiber 
diameter, porosity, and fiber orientation. Models are also 
developed for porous materials made of spherical particles 
[115, 201, 202], which are dependent on particle size and 
porosity. For the CLs, these models may not be suitable as 
the CL structure usually consists of Pt nanoparticles, carbon 
support, and ionomer with different ratios, as well as vari-
ous agglomerates of the Pt/C particles. The complicated CL 

structure makes it challenging to build a universal model for 
CLs unless sufficient experimental data are available.

Klinkenberg [189] indicated that the intrinsic perme-
ability may also be affected by the types of fluids, and the 
experimental data suggested that the intrinsic permeability 
of a glass filter for air is 28% lower than that for hydrogen 
under given conditions. Zamora et al. [203] demonstrated 
that the hydrogen permeability of the MPLs is around 20% 
higher than that of air and oxygen, suggesting that the gas 
with a smaller molecular size can penetrate the same porous 
media with less resistance.

3.2.4 � Experimental Methods for Relative Permeability

In the practical operation of PEM fuel cells, water often 
exists in the form of both liquid and vapor in the CLs. Many 
numerical models apply Darcy’s law to study the convec-
tion of both the liquid and gas phases in the porous fuel cell 
components. For the gas phase flow, the permeability value 
is affected by the presence of liquid due to the gas–liquid 
interaction. The practical permeability of gas and liquid 
flows in the two-phase flow system is lower than the intrin-
sic permeability, and the ratio of the actual permeability to 
the intrinsic permeability is called the relative permeability.

The measurements of the relative permeability of a 
porous material for a multi-phase system can be accom-
plished by steady-state, unsteady-state, capillary pressure, 
centrifuge, and other methods [183, 204]. These methods 
are widely used for rock materials; however, experimental 
studies on the relative permeability for fuel cell compo-
nents are very rare. Hussaini and Wang [183] developed a 
through-plane and an in-plane permeability apparatus to 

Table 7   Models to predict the 
intrinsic permeability of the 
porous media in PEM fuel cells

Kozeny constant is an unknown parameter for most porous materials

Model Material Note Eq. Ref.

K =
�

Kc

(
Vp

Sp

)2 General porous media ε—porosity
Kc—Kozeny constant
Vpore—pore volume
Spore—pore surface

(33) [186]

K =
r2�

4Kc(ln �)
2

Random overlapping fibers r—fiber radius
ε—porosity
Kc—Kozeny constant

(34) [186, 199]

K =
r2�3

4Kc(1−�)
2

Random non-overlapping 
fibers

r—fiber radius
ε—porosity
Kc—Kozeny constant

(35) [186, 200]

K = r2
�(�−0.11)�+2

8(ln �)2(1−�)� [(�+1)�−0.11]2
Fibers r—fiber radius

ε—porosity
α—0.785 through-plane
0.521 in-plane

(36) [179, 186]

K =
d2�3

150(1−�)2
Spherical particles d—particle diameter

ε—porosity
(37) [115, 201]

K =
d2𝜀5.5

5.88
(0.35 < 𝜀 < 0.7) Spherical particles d—particle diameter

ε—porosity
(38) [115, 202]
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measure the relative permeability for a liquid–water–air 
system, as shown in Fig. 18. The relative permeability 
is measured based on steady-state methods, in which the 
fluids are forced to pass through the porous material at a 
given ratio until the saturation and pressure become stable. 
By changing the liquid–gas ratio, the flow rates of each 
phase at various saturation levels can be obtained. Spe-
cifically for the through-plane permeability measurement 
(see Fig. 18a), liquid water and air are premixed through 
a hydrophilic porous plastic material in upstream. The 
homogeneous mixture then flows through the test speci-
mens, across which the pressure drop is estimated by the 
difference of system pressure drop with and without test 
specimens. The pressure drop of the liquid and gas phases 
across the specimen is found to be identical. To ensure 
the measurement accuracy, a few layers of samples are 
often stacked in the test to generate a sufficiently large 
pressure drop. For the in-plane permeability measurement 
(see Fig. 18b), the test specimens are slightly compressed 
to ensure no leakage during the test. Water and air enter 
the specimens from one side, pass through the specimens 

in the in-plane direction, and flow out from the other side 
with mixed water and air. In both test rigs, the test speci-
mens can be quickly removed from the testing appara-
tus for measuring the saturation by an ex situ gravimetric 
method. The saturation is measured by the weight change 
of a wet specimen in comparison with its dry state. The 
average saturation �l can be determined by the following 
equation.

where ∆m is the mass change of the wet specimens in com-
parison with its dry state in [kg] and ρw is the density of 
liquid water in [kg m−3].

The relation between the relative permeability and satu-
ration can be thus determined, and empirical correlations 
are given for various carbon paper or cloth in the in-plane 
direction (see Table 8). Correlation models for the in-plane 
relative permeability of the porous carbon paper or cloth are 
developed based on experimental data, as shown in Table 8. 

(39)�l =
Δm

�w�Vb

Fig. 18   Schematic of the apparatus for measuring the relative permeability: a through-plane and b in-plane. Reprinted with permission from 
Ref. [183]. Copyright © 2010, Elsevier

Table 8   Relative permeability 
of porous media in PEM fuel 
cells

Model Fuel cell component Source Direction Eq. Ref.
{

Kr,g =
(
1 −�l

)3.0

Kr,l = �3.0
l

CL Not specified Not specified (40) [205]

{
Kr,g =

(
1 −�l

)4.5

Kr,l = �4.5
l

Toray 060 GDL with 10% PTFE Not specified Not specified (41) [205]

{
Kr,g =

(
1 −�2

l

)4

Kr,l = �4
l

Carbon paper Experimental In-plane (42) [183]

{
Kr,g =

(
1 −�l

)3

Kr,l = �4
l

Carbon cloth Experimental In-plane (43) [183]
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Unfortunately, the accuracy of through-plane relative per-
meability measurement is not sound, and it is suggested to 
further improve the measurement accuracy [183].

3.2.5 � Empirical Models for Relative Permeability

Due to the lack of experimental techniques, the relative perme-
ability of the gas and liquid phases is often calculated by using 
empirical models. The relative permeability is a function of 
liquid volume fraction in the porous media, and a summary of 
the commonly employed correlation in fuel cell modeling is 
presented in Table 8. It should be noted that the accuracy of 
these models should be carefully justified as the experimental 
data are very limited in literature, especially for the thin CLs.

3.3 � Capillary Pressure

3.3.1 � Young–Laplace Equation

The capillary pressure refers to the pressure drop across a static 
interface between two immiscible fluids [160, 182], as shown 
in Fig. 19. A modified Young–Laplace equation (or Washburn 
equation) can be used to describe the relation among the capil-
lary pressure, surface tension, pore radius, and contact angle.

where ∆p is the pressure difference in [Pa] across the liq-
uid–gas interface, r1 and r2 are the interfacial curvatures in 
[m], and rp is the radius (or half pore size) of the associated 
pores in [m].

(44)Δp = �

(
1

r1
+

1

r2

)

=
2�cos �

rp

3.3.2 � Experimental Methods for Capillary Pressure

The capillary pressure of the liquid water in the porous 
CL can be affected by various factors, including materi-
als, composition, pore structure, surface tension, and most 
importantly liquid saturation. For a given porous GDL or 
CL, the capillary pressure is mainly affected by the satura-
tion levels, which determines the mass transport resistance 
and overall performance of PEM fuel cells when operated 
at high current density regions. Therefore, many experi-
mental methods have been applied for the porous media in 
PEM fuel cells to determine the capillary pressure–satura-
tion relation.

Gostick et al. [206] experimentally studied the capillary 
pressure against saturation using the method of mercury 
intrusion and MSP. In the mercury intrusion method, the 
mercury’s saturation (nonwetting) in an initially dry speci-
men is measured in terms of capillary pressure [127], and 
the mercury’s capillary pressure is corrected by that meas-
ured by water via the following equation at different given 
saturation levels.

where req is the maximum radius of pores occupied by the 
liquid when mercury and water are under equivalent satura-
tion levels in [m]. It should be noted that the effect of contact 
angle in the individual pore with a particular size or a certain 
PTFE content is not taken into account, and constant contact 
angles are assumed for all surfaces [206].

The MSP can directly measure the relation between the 
capillary pressure and saturation without considering the 
contact angles in individual pores. Similar to the PSD meas-
urement by MSP, the capillary pressure can be measured 
based on the phenomena of capillary equilibrium by ana-
lyzing the mass change of the liquid in the test specimen 
and comparing it to the standard specimens having a known 
capillary–pressure–saturation relation. During the tests, the 
test and standard porous specimens are fully saturated in 
liquid, closely contacted, and slowly dehydrated at different 
saturation levels. The mass change is measured periodically, 
transferred to volume change, and related to saturation lev-
els. The capillary pressure at different saturation levels is 
determined from the standard capillary–pressure–saturation 
curve.

3.3.3 � Empirical Models for Capillary Pressure

The capillary pressure of the liquid water in the porous CLs 
is dependent on various parameters, including composition, 
pore structure, surface tension, liquid saturation, and even 
compression conditions. Many empirical models have been 

(45)req =
2�Hg−aircos �Hg−air

pc,Hg−air
=

2�water−aircos �water−air

pc,water−air

Fig. 19   Schematic of liquid in a cylindrical pore. Reprinted with per-
mission from Ref. [81]. Copyright © 2011, Elsevier
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developed for the porous media to correlate the capillary 
pressure with the saturation in PEM fuel cells, as summa-
rized in Table 9. The Leverett J-function [see Eq. (46) in 
Table 9] [81, 207, 208] is one of the most commonly used 
capillary pressure–saturation correlation models in porous 
media of PEM fuel cells, in which the capillary pressure is a 
function of intrinsic permeability, porosity, surface tension, 
water saturation, and contact angle. Kumbur et al. [209] fur-
ther introduced the compression and temperature effects into 
the calculation of capillary pressure in GDLs with varied 
PTFE contents [see Eq. (47) for example]. Ye and Nguyen 
[205] used two correlation models as a function of satura-
tion levels by curve fitting with experimental data for GDLs 
[Eq. (48)] and CLs [Eq. (49)], respectively. As can be seen, 
the correlation models of the capillary pressure–saturation 
relation for CLs are very rare in literature, and these models 
are not suitable for all CLs as the composition and materials 
applied are varied from case to case.

3.4 � Contact Angle

3.4.1 � Young’s Equation

The contact angle of liquid water on the surface of CLs is 
governed by Young’s equation [210].

where θapp is the apparent contact angle in [rad], σ denotes 
the surface tension between solid–gas (sg), solid–liquid (sl), 
and liquid–gas (lg) interfaces. The value of contact angle 
depends on the nature of materials, composition, surface 

(50)cos �app =
�sg − �sl

�lg

roughness factor, and pore structure, and the contact angle 
is important for the water management and structure change 
in CLs [211]. Based on the contact angle, the surfaces are 
often categorized into hydrophilic (< 90°) or hydrophobic 
(> 90°), as shown in Fig. 20a, b.

3.4.2 � Experimental Methods for Contact Angle

Various experimental methods have been established to 
study the static contact angle of water on the surface of 
porous media in fuel cells. The static contact angle is often 
measured by placing a sessile droplet on a flat surface and 
analyzing the geometry of the drop shape (see Fig. 20a, b for 
example). The size of the drop should be properly selected 
to minimize the gravity effect on the shape of drops and 
the value should be recorded prior to substantial evapora-
tion [213]. Generally, the contact angle can be directly read 
from the side view images, and some studies obtained the 
contact angle by measuring the maximum height of the drop. 
Giesche [107] indicated that the contact angle can be cal-
culated based on a sessile mercury drop on a flat surface in 
air as follows:

where hmax is the maximum height of the droplet in [m], and 
g is gravity acceleration in [m s−2].

The static contact angle is an important parameter to 
describe the wettability of liquid water on CLs; how-
ever, the contact angle should be carefully used for the 

(51)cos � = 1 −
�Hggh

2
max

2�Hg−air

Table 9   Correlations between capillary pressure and saturation of the porous media in PEM fuel cells

C is compression pressure in MPa; x is the weight ratio of PTFE in GDL

Model Porous media Eq. Ref.
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⎧
⎪
⎨
⎪
⎩
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�
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GDL (46) [81, 207, 
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Valid 20 °C < T < 80 °C and 0 < C < 1.4 MPa

SGL 24 
series GDL 
coated with 
MPL

(47) [209]

pca = −2.09[e44.9(�l−0.321) − e−22.2(�l−0.321)] + 35.6 Toray-060 
GDL with 
10% PTFE

(48) [205]

pca = −2 431
[
e92.36(�l−0.567)−e−0.008 8(�l−0.567)

]
− 2 395 CL (49) [205]
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calculation in an operating PEM fuel cell where liquid 
water is dynamic. The liquid water will be driven by a 
capillary pressure gradient or the interaction with gas flow 
[4]. During the transport of liquid water, the dynamic con-
tact angle in different scenarios can be measured by vari-
ous methods, including the sliding angle method and the 
Wihelmy method [212, 213]. In the sliding angle method, 
by measuring the contact angle before the drop slides on 
a gradually tilted surface or a flat surface with blowing 
gas, the advancing and receding angles can be determined 
(see Fig. 20c) [213]. In the Wihelmy method, Wood et al. 
[212] measured the contact angle of water on the singe 
fiber surface, using an apparatus as shown in Fig. 20d. 
Square-shaped samples or a single fiber extracted from 
GDL can be first submerged in liquid and then removed 
slowly. By analyzing the images from the side view, the 
dynamic contact angle can be derived. Table 10 summa-
rizes the measured contact angle of water on CLs with 
different materials and compositions. The contact angle of 
liquid water on CLs ranges from 110° to 149°, suggesting 
that the CLs are mostly hydrophobic.

Recently, techniques have been developed to visualize 
the transport of liquid water in porous media of PEM fuel 
cells in operating modes. These methods include nuclear 
magnetic resonance, neutron imaging, synchrotron X-ray, 
and micro-tomography, which can visualize the liquid 
water under the lands of the bipolar plate or in the porous 
components that are opaque to optical access [214]. These 
techniques can be potentially employed to investigate the 
dynamic contact angle of water transport in porous CLs.

3.4.3 � Empirical Models for Contact Angle

When a liquid drop is placed on the surface of porous media, 
the value of the apparent contact angle can be affected by 
many factors, including the nature and composition of solid 
materials, roughness, and pore structure of the surface. Many 
theories have been developed to investigate the effects of these 
factors on the contact angle.

The relation between the roughness and contact angle is 
first given by Wenzel [219] as follows:

Fig. 20   Schematic of contact angle on different types of surfaces. a Hydrophilic surface. b Hydrophobic surface. c Tilted surface. d Wihelmy 
method. Adapted with permission from Ref. [212]. Copyright © 2010, the Electrochemical Society. e Rough surface. f Porous surface
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where θapp is the apparent contact angle on a rough surface 
(see Fig. 20e), θs is the contact angle on a smooth surface, 
and rf is the roughness factor, which is the ratio of the actual 
surface area to the geometric area.

Cassie and Baxter [220] further explored the contact 
angle on a porous surface (see Fig. 20f):

where fi is the area fraction of water drop interacting with 
phase i, and θi is the reference contact angle on the smooth 
surface of each phase. For the liquid in the air, the contact 
angle is often assumed to be 180°.

3.5 � Effective Thermal Conductivity

3.5.1 � Fourier’s Law

The heat transfer in solid fuel cell components is governed 
by Fourier’s law of conduction [160, 182]:

where q is the heat flux in [W m−2], kth
eff is the effective ther-

mal conductivity in [W m−1 K−1], and ∇T is the temperature 

(52)cos �app = rf cos �s

(53)cos �app =
∑

ficos �i

(54)q = −keff
th
∇T

gradient in [K m−1]. The effective thermal conductivity is 
determined by the materials, composition, and structure of 
the CLs and is often experimentally measured.

3.5.2 � Experimental Methods for Effective Thermal 
Conductivity

Many experimental methods have been established to meas-
ure the effective thermal conductivity of the porous media 
in PEM fuel cells. Most of them are designed for the GDLs, 
and only the methods applied for CLs are reviewed in this 
section.

Bock et al. [221] measured the effective thermal conduc-
tivity of CLs using a custom-built apparatus as shown in 
Fig. 21a. Two CLs with the thickness of 10 μm are pre-
pared by coating catalyst ink onto a copper foil via inkjet 
painting. The weight ratio of Nafion ionomer is 30% for 
both CLs, while the catalyst employed is different: one is 
graphitized-carbon-based Pt (46 wt% Pt/C Ketjen black) and 
the other one is non-graphitized-carbon-based Pt (40 wt% 
Pt/C Vulcan XC). Constant heat flux is imposed on the 
cylindrical steel by using the Peltier module based on ther-
moelectric theory. Six thermocouples are installed in the 
steel cylinders (1–3, 6–8) to monitor the heat flux passing 
through the cylinder and the sample, and two thermocou-
ples (4 and 5) are installed inside an aluminum cap on each 
side of the test specimen, which helps determine the tem-
perature gradient across the sample. The heat conductivity 

Table 10   Contact angle of water on CL surfaces from experimental results or modeling input parameters

ETFE denotes ethylene tetrafluoroethylene

CL composition Thickness/μm Substrate Measurement method Working fluid Contact angle/(°) Ref.

Ionomer-to-carbon ratio of 0.8, no Pt, hot 
pressed on ETFE

~8 Removable liner Capillary penetration Water 143 [215]

Ionomer-to-carbon ratio of 0.8, no Pt, hot 
pressed on ETFE, dried in a vacuum

~8 Removable liner Capillary penetration Water 149 [215]

Ionomer-to-carbon ratio of 0.7, Pt/C, con-
ventional CL

1.25 GDL Sessile drop Water 111.2 [216]

Ionomer-to-carbon ratio of 0.7, Pt/C, 
C-doped CL

2.25–8.51 GDL Sessile drop Water 110.9 [216]

Ionomer-to-carbon ratio of 0.7, Pt/C, C@
PTFE-doped CL

3.92 GDL Sessile drop Water 118.4 [216]

Ionomer-to-Pt black ratio of 0.11, no water 
additive in catalyst ink

– Membrane Sessile drop Water 110.7 [217]

Ionomer-to-Pt black ratio of 0.11, water 
additive in catalyst ink

– Membrane Sessile drop Water 128.8 [217]

Pt/C CL – – Sessile drop Water 134 [218]
Pt/C CL with commercial hydrophilic ZnO 

particle
– – Sessile drop Water 122 [218]

Pt/C CL with homemade hydrophilic ZnO 
calcined @ 300 °C

– – Sessile drop Water 116 [218]

Pt/C CL with homemade hydrophilic ZnO 
calcined @ 700 °C

– – Sessile drop Water 124 [218]
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is thus calculated via Eq. (54). The experimental results 
suggest that the thermal conductivity of graphitized CL is 
(0.12 ± 0.05) W m−1 K−1, which is twice higher than that 
of non-graphitized CL [(0.061 ± 0.006) W m−1 K−1] at the 
compaction pressure of 10 bar (1 bar = 100 kPa). More 
details can be found in Table 11.

Khandelwal and Mench [222] experimentally investigated 
the through-plane thermal conductivity of membrane, GDLs, 
and CLs under various temperature and pressure using an 
apparatus as shown in Fig. 21b. The tested samples are sand-
wiched by two aluminum bronze cylinders with known con-
ductivity. Two backing plates are placed outside of cylinders, 
acting as the heat source and sinks, respectively. Heat flux 
is thus generated during the measurements, which can be 
estimated by the temperature gradient measured from six 

thermocouples installed in the standard cylinders. It should 
be noticed that the temperature drop across the test samples 
is not directly measured but estimated by linearly extrapo-
lating the temperature in the standard materials to the edge 
of the test specimen. A commercial MEA (consisting of a 
membrane and two CLs) is tested, and the effective thermal 
conductivity taken contact resistance with GDL is measured 
to be 0.27 W m−1 K−1.

Ahadi et al. [223] measured the effective thermal con-
ductivity of CLs by two approaches: guarded heat flow 
(GHF) and modified transient plane source (TPS) methods, 
as shown in Fig. 21c. In the GHF method, the test speci-
men is sandwiched between two flux meters and compressed 
by two plates with different temperatures, while in the TPS 
method, a circular double nickel spiral, serving as a heating 

Fig. 21   Schematic of various experimental setups for effective ther-
mal conductivity of catalyst layers in different studies. a Bock et al. 
[221]. Reprinted with permission from Ref. [221]. Copyright © 
2020, Elsevier. b Khandelwal and Mench [222]. Reprinted with per-

mission from Ref. [222]. Copyright © 2006, Elsevier. c Ahadi et al. 
[223]. Reprinted with permission from Ref. [223]. Copyright © 2017, 
Elsevier. d Astrath et al. [225]. Reprinted with permission from Ref. 
[225]. Copyright © 2010, AIP Publishing
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device and a thermometer, is placed between two Kaption 
layers bounded by two test specimens. The effective ther-
mal conductivity of the test specimens can be calculated by 
the increasing rate of temperature. The experimental results 
suggested that the CL deposited on an aluminum plate with-
out hot pressing has the effective thermal conductivity of 
0.214 W m−1 K−1 measured by the GHF method, while the 
conductivity of the CL coated on the ethylene tetrafluoro-
ethylene (ETFE) substrate with hot pressing is found be 
0.218 W m−1 K−1 measured by the TPS method.

Burheim et al. [224] tested the effective thermal conduc-
tivity of the dry and wet CLs using an apparatus similar to 
that in Fig. 21a. Three types of CLs composed of Pt/C parti-
cles with varied carbon-ionomer ratios are investigated at dif-
ferent water contents and pressure. The experimental results 
suggest that within the compaction pressure of 4.6–16.1 bar, 
the effective thermal conductivities of the CLs under investi-
gation are in the range of 0.063–0.009 8 W m−1 K−1. For the 
wet CLs, the thermal conductivity is about twice higher than 
that of dry CLs at the given compaction pressure. It should 
be pointed out that the wet CLs are subject to high meas-
urement errors, which are higher than 100% in some cases.

Astrath et al. [225] measured the effective thermal con-
ductivity of CLs using a test rig combining an open pho-
toacoustic cell (OPC) with photothermal detection (PD), as 
shown in Fig. 21d. A laser is used to generate an excitation 
beam to produce a top-hat intensity profile on the surfaces 
of uncoated specimen for OPC measurement and coated CLs 
for PD measurement. For the OPC measurement, the signals 
are detected by a microphone and a lock-in amplifier. For 
the PD measurement, a probe laser intercepts the mirage 
region, and the PD signals are detected by a position sensor 
connected to a lock-in PD amplifier. The CLs are deposited 
with various thicknesses (13–53 μm) on an aluminum foil, 
and the measured effective diffusivity is found to be around 
0.75 W m−1 K−1 by analyzing the signal intensities with 
different modulation frequencies.

3.5.3 � Empirical Models for Effective Thermal Conductivity

The temperature distribution and heat transfer in PEM fuel 
cell components are determined by the thermal conductiv-
ity of materials, and in the CLs, the effective thermal con-
ductivity is often used to solve the energy balance equation 

Table 11   Experimental data on through-plane effective thermal conductivity of catalyst layers

a Effective thermal conductivity includes thermal contact resistance between CLs and diffusion media;
b Measurement error can be larger than 100%

Catalyst layer composition Thickness/µm Compaction 
pressure/bar

Effective thermal con-
ductivity/(W m−1 K−1)

Ref.

Graphitized CL (30 wt% Nafion, 46 wt% Pt/C Ketjen Black from TKK) 10 3 0.10 ± 0.03 [221]
Graphitized CL (30 wt% Nafion, 46 wt% Pt/C Ketjen Black from TKK) 10 5 0.11 ± 0.04 [221]
Graphitized CL (30 wt% Nafion, 46 wt% Pt/C Ketjen Black from TKK) 10 10 0.12 ± 0.05 [221]
Graphitized CL (30 wt% Nafion, 46 wt% Pt/C Ketjen Black from TKK) 10 15 0.14 ± 0.03 [221]
Graphitized CL (30 wt% Nafion, 46 wt% Pt/C Ketjen Black from TKK) 10 20 0.15 ± 0.05 [221]
Graphitized CL (30 wt% Nafion, 46 wt% Pt/C Ketjen Black from TKK) 10 23 0.19 ± 0.11 [221]
Non-graphitized CL (30 wt% Nafion, 40 wt% Pt/C Vulcan XC from Alfa Aesar) 10 3 0.038 ± 0.008 [221]
Non-graphitized CL (30 wt% Nafion, 40 wt% Pt/C Vulcan XC from Alfa Aesar) 10 5 0.048 ± 0.005 [221]
Non-graphitized CL (30 wt% Nafion, 40 wt% Pt/C Vulcan XC from Alfa Aesar) 10 10 0.061 ± 0.006 [221]
Non-graphitized CL (30 wt% Nafion, 40 wt% Pt/C Vulcan XC from Alfa Aesar) 10 15 0.070 ± 0.018 [221]
Non-graphitized CL (30 wt% Nafion, 40 wt% Pt/C Vulcan XC from Alfa Aesar) 10 20 0.10 ± 0.04 [221]
Non-graphitized CL (30 wt% Nafion, 40 wt% Pt/C Vulcan XC from Alfa Aesar) 10 23 0.114 ± 0.014 [221]
CL (0.5 mg cm−2 Pt/C) 25 ~20 0.27 ± 0.05a [222]
Non-hot-pressed CL by GHF method 8.74/23.86 4–14 0.214 ± 0.005 [223]
Hot-pressed CL by modified TPS method 14.98/28.72 2–14.4 0.218 ± 0.005 [223]
Dry CL (0 wt% Pt/C, carbon/Nafion = 1:1) 30/60 4.6–16.1 0.074–0.098 [224]
Dry CL (20 wt% Pt/C, carbon/Nafion = 1:1) 30/60 4.6–16.1 0.063–0.078 [224]
Dry CL (20 wt% Pt/C, carbon/Nafion = 1:2) 30/60 4.6–16.1 0.064–0.083 [224]
Wet CL (0 wt% Pt/C, carbon/Nafion = 1:1, water content = 70 ± 30) 30/60 4.6–16.1 0.10–0.15b [224]
Wet CL (20 wt% Pt/C, carbon/Nafion = 1:1, water content = 40 ± 40) 30/60 4.6–16.1 0.11–0.13 [224]
Wet CL (20 wt% Pt/C, carbon/Nafion = 1:2, water content = 70 ± 30) 30/60 4.6–16.1 0.2–0.5b [224]
Graphitized CL (30 wt% Nafion, 46 wt% Pt/C from TKK) 13–53 N/A 0.75 ± 0.07 [225]
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assuming the computational domain is a mixture of catalyst, 
carbon, membrane, liquid, and gas [182]. The effective ther-
mal conductivity is often calculated as an average property 
of different phases as follows:

where Φ is the volume fraction; k is the thermal conductivity 
in [W m−1 K−1]; and the subscripts “s”, “m”, “w”, and “g” 
denote the intrinsic properties of the membrane, solid (e.g., 
Pt/C particles), water, and gas, respectively.

Rowe and Li [226] calculated the effective thermal 
conductivity of the CLs based on the membrane, solid 
catalyst, and liquid water phases by assuming that heat 
conduction occurs in parallel in each phase. The effec-
tive thermal conductivity of the CLs is estimated to be 
1.6 W m−1 K−1.

Wu et al. [227] further introduced the gas phase to calcu-
late the effective thermal conductivity in the CL region as 
follows.

Weber and Newman [228] introduced the Bruggeman 
correction to the parallel phases to calculate the effective 
thermal conductivity of a mixture:

where the subscript “i” denotes the ith phase.
Pant et al. [229] estimated the hydration effect on the 

thermal conductivity of the membrane phase by assum-
ing parallel heat transfer with Bruggeman corrections for 
membrane water and bulk membrane as follows:

where the subscript “mw” denotes dissolved water (or mem-
brane water) in the wet ionomers; and km,wet and km,dry denote 
the thermal conductivities of wet and dry membranes, 
respectively.

Although rarely used in the literature, the effective ther-
mal conductivity of CLs can be calculated as follows, with 
the assumption that all phases are in series.

However, the actual CL structure is more complex, and 
Gurau et al. [230] proposed a model based on fluid-filled 
spherical inclusions as follows:

(55)keff
th

= f (ks, km, kw, kg,�s,�m,�w,�g)

(56)keff
th

= �mkm +�sks +�wkw

(57)keff
th
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where ε is the porosity.
As can be seen, many models have been developed to 

estimate the effective thermal conductivity of the CLs in 
PEM fuel cells. However, it is worth further investigating the 
suitability of each model based on a sufficient large experi-
mental database for CLs.

3.6 � Summary of Structure‑Dependent 
Physicochemical Properties

Many advanced experimental methods are developed to 
investigate the physicochemical properties of CLs, includ-
ing the effective diffusion coefficient, permeability, capillary 
pressure, contact angle, and effective thermal conductivity. 
It should be noted that these physicochemical properties are 
the key parameters to study the transport phenomena and 
mechanical behavior of the CLs, and some other parame-
ters, more related to the single phase of ionomer or catalyst 
materials, are not included in this article, including the ten-
sile strength, thermal expansion and swelling coefficient, 
water hydraulic permeability, and diffusion coefficient of 
water in the ionomer. The connection between the effective 
physicochemical properties and structural parameters has 
also been investigated in this section. With the experimental 
data, many structure-based models have been developed and 
validated (or partially validated) to estimate these properties 
based on the porosity, PSD, surface area, or other structural 
parameters, which lay a foundation for the theory and model 
development of PEM fuel cells.

4 � Electrochemical Properties of Catalyst 
Layers

The PEM fuel cell performance can be determined by vari-
ous electrochemical properties of CLs, such as the exchange 
current density, ECSA, electrode roughness factor, charge 
transfer coefficient, effective electronic conductivity, and 
effective protonic conductivity. These electrochemical prop-
erties rely heavily on not only the nature of the used materi-
als (catalysts and ionomer) but also the structure of the CLs. 
In this section, the fundamentals and basic concepts of the 
key electrochemical properties are reviewed, and advanced 
experimental techniques for each parameter are comprehen-
sively examined. Besides, the effects of the CL structure on 
these parameters are also scrutinized based on both theoreti-
cal and experimental analyses in this section.

(61)keff
th
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�
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4.1 � Exchange Current Density

4.1.1 � Definition

At the small over-potential region, the electrochemical reac-
tion rate is governed by the activation energy barrier that 
should be overcome. The speed of electrochemical reac-
tions is reflected by how fast the electrons are liberated or 
consumed. This enables the direct measurement of electro-
chemical reaction rate from the current density according to 
the Faraday’s law [231]:

where j is current density in [A m−2], n is the number of 
electrons generated or consumed per molecule of reactants, 
F is Faraday’s constant in [C kmol−1], and Jn is the molar 
flux of reactants consumed by the reaction in [kmol m−2 s−1].

The exchange current density is defined as the reaction 
rate at equilibrium states, where the net current in a PEM 
fuel cell is zero as the reversible electrochemical reaction 
occurs in both forward and backward directions at identical 
rates [231, 232]. A higher exchange current density means 
a more electrochemically active catalyst surface with a 
lower activation energy barrier, leading to a larger current 
at a constant over-potential. Generally, at the anode of PEM 
fuel cells with hydrogen as fuels, the exchange current den-
sity is much larger than that on the cathode with oxygen as 
oxidants.

The most commonly employed electrode kinetics in fuel 
cell modeling is the so-called Butler–Volmer equation in a 
form as shown below:

where j0 is the exchange current density in [A m−2], α is 
the charge transfer coefficient, F is Faraday’s constant in 
[C kmol−1], and ηact is the activation over-potential in [V]. It 
should be noted that the definitions of the transfer coefficient 
significantly vary in different studies, e.g., the product of αn 
can be also used as transfer coefficients [233]. In addition, 
there exist various electrode kinetics models derived from 
the Butler–Volmer equation including Springer et al.’s [234] 
and Um et al.’s [235] models.

Despite the discrepancy in the different electrode kinetics 
models, the exchange current density is dependent on the 
reactant and product concentrations, temperature, catalyst 
loading, surface area, types of catalysts, and microstructure 
of the catalyst surface. In fuel cell modeling, a reference 
exchange current density at a specific temperature and pres-
sure is often given, and the effective exchange current den-
sity can be estimated by the following equation at different 
conditions [227]:

(62)j = nFJn

(63)j = j0

[

exp

(
�anF

RuT
�act

)

− exp

(

−
�cnF

RuT
�act

)]

where j0
ref is the reference exchange current density at the 

given temperature and pressure per unit catalyst surface area 
in [A cmPt

−2]; rf is the electrode roughness factor; cr and 
cref are the actual and reference reactant concentrations in 
[kmol m−3], respectively; γ is the pressure dependency coef-
ficient, or reaction order (ranging from 0.5 for HOR to 1.0 
for ORR); and Eact is the activation energy in [kJ mol−1] 
(Eact,a = 12 kJ mol−1 for HOR and Eact,c = 66 kJ mol−1 for 
ORR [205]). It should be noted that in some studies [231], 
the concentration ratio is substituted with a pressure ratio.

4.1.2 � Experimental Methods for Exchange Current Density

The availability of experimental data on the exchange cur-
rent density for PEM fuel cells is limited. In certain circum-
stances (large activation over-potentials), the Butler–Volmer 
equation can be simplified in a Tafel relation.

The Tafel equation is first observed from experimental 
data for the relation between the voltage drop and current 
density, and can be written as follows.

This expression can be re-written as follows:

where the coefficients a and b can be determined through 
experimental data by curve fitting as shown in Fig. 22. a 
can be read from the intercept of the Tafel plot, and b can be 
determined by the slope of the Tafel plot. The coefficients a 
and b can be expressed as follows.

Therefore, the exchange current density j0 and the charge 
transfer coefficient α can be found from Tafel plots.

Li and Pickup [236] experimentally determined the 
exchange current by a Tafel analysis of the overall cell 
polarization curve using the following equation:
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where R is an approximation of the ohmic resistance domi-
nating the linear voltage drop region, and the constant E0 is 

expressed as

where Eeq is the theoretical equilibrium potential [1.2 V in 
respect to the reference hydrogen electrode (RHE)]. The 
exchange current density of the cathode CLs under the dif-
ferent Nafion loadings of 0.3–1.5 mg cm−2 (Pt loadings of 
0.4 mg cm−2) is 0.74×10−3–2.7×10−3 A m−2 (see Table 12 
for more details). Haghayegh et al. [237] determined the 
exchange current density of two different MEAs by fitting 
a 3D model to published experimental data. However, the 
details about the procedure to determine the exchange cur-
rent density are not presented, making it difficult to justify 
its accuracy and suitability.

As only limited experimental data are available in the lit-
erature, the reference exchange current density used in vari-
ous modeling studies is summarized in Table 12. As can be 
seen that the cathodic and anodic exchange current density 

(71)E0 = Eeq + blogj0

Fig. 22   Tafel plot of cell potential loss against current density. 
Reprinted with permission from Ref. [231]. Copyright © 2005, Else-
vier

Table 12   Exchange current density of the catalyst layers in PEM fuel cells

a Denotes data corrected from [A m−3] to [A m−2] based on the thickness of catalyst layers

Author Reference exchange 
current density/(A 
m−2)

CL 
thick-
ness/
μm

Composition and condition Experimental or for modeling Ref.

Li and Pickup Cathode: 0.74 × 10−3 – 20% Pt/C, 0.4 mgPt cm−2, 0.3 mg cm−2 
Nafion

Experimental [236]

Li and Pickup Cathode: 1.9 × 10−3 – 20% Pt/C, 0.4 mgPt cm−2, 0.6 mg cm−2 
Nafion

Experimental [236]

Li and Pickup Cathode: 1.5 × 10−3 – 20% Pt/C, 0.4 mgPt cm−2, 0.9 mg cm−2 
Nafion

Experimental [236]

Li and Pickup Cathode: 1.1 × 10−3 – 20% Pt/C, 0.4 mgPt cm−2, 1.2 mg cm−2 
Nafion

Experimental [236]

Li and Pickup Cathode: 2.7 × 10−3 – 20% Pt/C, 0.4 mgPt cm−2, 1.5 mg cm−2 
Nafion

Experimental [236]

Haghayegh et al Anode: 9.2 × 102

Cathode: 9.2 × 10−8
50 17.23% Pt/multiwalled carbon nano-

tube, 0.4 mgPt cm−2, PTFE, ionomer, 
Tref = 333.15 K

Curve fitting from experimental data [237]

Haghayegh et al Anode: 1.5 × 103

Cathode: 1.5 × 10−7
50 17.23% Pt/multiwalled carbon nano-

tube, 0.4 mgPt cm−2, PTFE, ionomer, 
Tref = 353.15 K

Curve fitting from experimental data [237]

Haghayegh et al Anode: 6 × 102

Cathode: 5 × 10−8
50 8.27% Pt/multiwalled carbon nanotube, 

0.4 mgPt cm−2, PTFE, ionomer
For modeling [237]

Haghayegh et al Anode: 1.0 × 103

Cathode: 1.0 × 10−7
50 17.23% Pt/multiwalled carbon nano-

tube, 0.4 mgPt cm−2, PTFE, ionomer
For modeling [237]

Rowe and Li Anode: 4.0 × 104

Cathode: 1.3 × 10−2
10 – For modeling [226]a

Ye and Nguyen Anode: 3 × 103

Cathode: 1.5 × 10−1
15 Tref = 343 K For modeling [205]a

Goshtasbi Anode: 3.0 × 103

Cathode: 3.0 × 10−2
8 Tref = 303 K For modeling [238]

Jiang et al Anode: 3.0 × 103

Cathode: 1.2 × 10−2
10 – For modeling [239]

Li et al Anode: 1.0 × 104

Cathode: 1.0 × 101
15 – For modeling [195]
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used for modeling varies significantly from 102 to 104 A m−2 
for HOR and 10−8 to 101 A m−2 for ORR in various stud-
ies. The considerable discrepancy of the exchange current 
density in various studies necessitates further experimental 
measurements.

4.2 � Charge Transfer Coefficient

4.2.1 � Definition

The charge transfer coefficient is an important parameter 
related to the kinetics of the electrochemical reactions, 
which is used in Butler–Volmer and other related equa-
tions [234, 235, 240]. The definition of charge transfer 
coefficients according to IUPAC in 1981 [240] is shown 
below.

For cathode:

For anode:

where ν is the stoichiometric number. �c
�
 and �a

�
 can be con-

sidered as the observable transfer coefficients for cathodic 
and anodic reactions, respectively.

A more recent recommendation from IUPAC in 2014 [233] 
modified the expression of the transfer coefficients as follows.

For cathode:

For anode:

However, various forms and values of transfer coefficients 
are reported in different fuel cell studies, and these values 
should be carefully investigated when different types of mod-
els are employed.

4.2.2 � Experimental Methods for Charge Transfer Coefficient

Similar to the reference exchange current density, only limited 
experimental methods are reported for the measurement of the 
transfer coefficient. Generally, the transfer coefficient can be 
measured by fitting the Tafel equation to the voltage–current 
relation [231], and the value of the transfer coefficient can be 
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calculated by Eq. (69). However, experimental measurements 
of the transfer coefficient for anodic and cathodic reactions 
in PEM fuel cells are very rare. It will be interesting to accu-
rately measure these electrochemical coefficients to further 
improve the development of the PEM fuel cell model and 
theory. Table 13 summarizes the charge transfer coefficients 
used for CL modeling, and the reported values are divergent. 
The effect of charge transfer coefficient on the modeling per-
formance remains unclear.

4.3 � Electrochemical Surface Area and Electrode 
Roughness Factor

4.3.1 � Definition

ECSA is a critical parameter that determines the performance 
of CLs in PEM fuel cells [243]. The values of ECSA are theo-
retically determined by the nanostructure and size of the cata-
lysts, microstructure of the catalyst–ionomer mixture, the pore 
structure, and the amount of the liquid water in CLs. For Pt 
catalysts, ECSA is defined as the active surface area accessible 
to reactants during the cell operation, which is often on a per 
unit mass basis [92]:

where a is the ECSA in [cm2 mgPt
−1], APt is the active sur-

face area of the Pt catalyst in PEM fuel cells in [cm2], and 
mPt is the mass of the Pt catalyst in [mg].

The electrode roughness factor is defined as the active 
catalyst surface area per electrode geometric area [231, 244]. 
According to the definition, the electrode roughness factor, 
rf in [mPt

2 mgeo
−2], can be calculated as follows,

(76)a =
APt

mPt

Table 13   Charge transfer coefficient used for modeling catalyst layers

Assuming na = 2 for anodic hydrogen oxidation reaction and nc = 4 for 
cathodic oxygen reduction reaction for a H2/O2 PEM fuel cell

Author αa αc αana αcnc Ref.

Springer et al. – – – 0.5 [234]
Kulikovsky et al. – – – 2 [241]
Rowe and Li – – 1 1 [226]
Ye and Nguyen – – 1 1 [205]
Le and Zhou – – 0.5 0.5 [242]
Ismail et al. – – 0.5 0.512 [187]
Haghayegh et al. 0.5 0.5 – – [237]
Goshtasbi et al. – – 2.0 0.5 [238]
Jiang et al. 0.5 0.5 – – [239]
Li et al. – – 1.0 1.0 [195]
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where rf is the dimensionless electrode roughness factor, 
Ageo is the geometric surface area which depends on the 
shape and geometrical dimension of the overall electrode in 
[cm2], and LPt is the Pt loading in [mgPt cm−2]. Therefore, 
the ECSA and electrode roughness factor theoretically share 
the same experimental methods according to the definitions, 
and for brevity, the major experimental methods only for 
ECSA are reviewed in this section.

The electrode roughness factors can also be affected by 
liquid water coverage on the electrode surface, and a correc-
tion factor is often applied to take the liquid water saturation 
in CLs into account [231]:

where �l is the volumetric ratio of liquid water in the CL 
pores to the pore volume, and m is the correction factor tak-
ing the liquid-occupied surface into account ( �l = 0 when 
no liquid water exists in CLs).

4.3.2 � Experimental Methods for Electrochemical Surface 
Area

Many experimental methods have been employed to measure 
the ECSA of the catalysts in PEM fuel cells, especially for Pt 
catalysts. These methods include cyclic voltammetry (CV), 
CO stripping voltammetry, linear sweep voltammetry (LSV), 
and electrochemical impendence.

Voltammetry is a common electrochemical technique to 
evaluate the catalyst performance in PEM fuel cells, which 
measures the resulted electric current when the electrode is 
subject to a sweeping voltage [86, 245, 246]. According to 
the shape of the sweeping voltage, the voltammetry can be 
classified into many categories, including CV, LSV, square-
wave voltammetry, staircase voltammetry, and other voltam-
metry techniques. The CV and LSV are the most commonly 
employed methods in fuel cell studies. In CV, the applied 
potential ramps linearly with time between upper and lower 
voltage limits (see Fig. 23a), while in LSV, the voltage is 
linearly swept with time (see Fig. 23b).

(77)rf =
APt

Ageo

= a
mPt

Ageo

= aLPt

(78)rf =
(
1 −�l

)m
aLPt

By analyzing the CV curve (voltage vs. current) obtained 
from an typical CV apparatus as shown in Fig. 24a, the oxi-
dation and reduction potentials, diffusion coefficients of 
species, and ECSA can be quantitatively estimated under 
proper assumptions [41, 86, 247]. The ECSA can be cal-
culated from the charge required for adsorbing/desorbing a 
monolayer of hydrogen in the hydrogen adsorption/desorp-
tion region of a CV or for oxidizing a monolayer of CO in 
a stripping curve [248]. For hydrogen-based CV commonly 
used for fuel cell studies, the ECSA (a) in [cm2

Pt gPt
−1] can 

be calculated using the following equation [245]:

where QH is the charge associated with a monolayer 
of hydrogen adsorption/desorption on a Pt surface in 
[μC cm−2], CH is the charge required for the adsorption/des-
orption of a monolayer of hydrogen on a Pt surface, which is 
often assumed to be 210 μC cmPt

−2, and LPt is the Pt loading 
in [gPt cm−2]. QH can be calculated by integrating the CV for 
hydrogen adsorption/desorption process after a double-layer 
correction at low potentials (in the underpotential deposi-
tion region), which gives the number of hydrogen atoms 
adsorbed [248],

where E is the potential in [V], I is the current in [A], and v 
is the sweep rate in [V s−1].

Park et al. [249] investigated the Pt/C catalyst degradation 
as a result of start-up/shutdown cycles. Their results sug-
gested that the frequent cyclic voltammetry performed [H2/
N2 gas pair at 80 °C at 100% of relative humidity (RH) con-
ditions] during start-up/shutdown cycling has a significant 
impact on the catalyst degradation, and the measured ECSA 
reduced from the initial 61.3 to 28.8 m2 gPt

−1, demonstrating 
a 53% reduction in ECSA. Koponen et al. [250] utilized the 
in situ voltammograms apparatus in Fig. 24a by flushing 
H2 to the reference electrode and N2 to the measuring elec-
trode by sweeping the potential between 0.05 and 0.6 V. The 
ECSA was measure to be 34 m2 gPt

−1, meaning about 30% 
of the Pt in the CLs were electroactive.

(79)a =
QH

CHLPt

(80)QH = ∫
t2

t1

Idt =
1

v ∫
E2

E1

IdE

Fig. 23   Different types of vol-
tammetry: a cyclic voltammetry 
and b linear sweep voltammetry
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When a monolayer of CO already adsorbed on the catalyst 
surface is electrochemically oxidized and removed from the 
surface (see apparatus in Fig. 24b), the CO stripping curve 
can be obtained, and the ECSA can be calculated using the 
following equation [68].

where a is the electrochemical surface area in [cmPt
2 gPt

−1], 
QCO is the charge of a monolayer of CO on the catalyst sur-
face in [μC cm−2], and CCO is the specific charge required to 
oxidize a monolayer of CO on the catalyst surface, which is 
often assumed to be 420 μC cmPt

−2.
Saha et al. [68] performed CO stripping measurements on 

several commercially available gas diffusion electrodes by 
purging CO and maintaining the potential at 0.05 V versus 
RHE for 1 h at 25 °C. The measured ECSA varies from 22.3 
to 39.7 m2 gPt

−1, which is consistent with the hydrogen CV 
results (18.0–36.3 m2 gPt

−1). Iden and Ohma [251] studied 

(81)a =
QCO

CCOLPt

the dependence of RH on the ECSA of a graphitized-Ketjen-
black-based CL by CO stripping, and found that the ECSA 
ranged from 33 to 40 m2 gPt

−1. Their results indicated that 
ECSA measured by CO stripping may be overestimated due 
to the complex microstructure of the samples and the RH 
conditions.

Reid et  al. [252] derived an expression for ECSA 
estimation by correlating Faradaic pseudo-capacitance 
determined by the method of electrochemical impend-
ence spectroscopy (EIS) with ECSA determined by CV. 
It is found that the decay profile for both ECSA and 
the Faradaic pseudo-capacitance is almost identical, 
which allows the derivation of an empirical correlation 
between the EIS and CV methods. Therefore, the ECSA 
can be estimated directly from the EIS results without 
performing a CV test. However, strict validation and 
careful calibration of EIS data on the ECSA values are 
required.

Fig. 24   Schematic of a cyclic voltammetry (CV) test apparatus (reprinted with permission from Ref. [250], copyright © 2003, Elsevier) and b 
CO stripping test apparatus (reprinted with permission from Ref. [251], copyright © 2013, Elsevier)
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4.4 � Effective Electronic Conductivity

4.4.1 � Ohm’s Law

The transport of electrons is governed by Ohm’s law in 
electron-conductive components in the PEM fuel cell, such 
as bipolar plates, GDLs, MPLs, and Pt/C network in CLs 
[160, 182, 253]. The Ohm’s law suggests that the current 
through a conductor between two points is proportional to 
the voltage difference between these two points:

where I is current in [A], U is the voltage in [V], R is resist-
ance in [Ω], kele is the electronic conductivity in [S m−1], A 
is the cross-sectional area [m2], and l is the distance between 
the two points in [m].

For the porous CLs, the Ohm’s law is modified as follows,

where kele
eff is the effective electronic conductivity of the 

porous media in [S m−1], which is affected by the CL com-
position and its microstructure. The values of effective 
electronic conductivity are often estimated by experimental 
approaches, and many correlation models have been devel-
oped based on experimental data.

4.4.2 � Experimental Methods for Effective Electronic 
Conductivity

Many experimental methods have been developed for the 
measurement of effective electronic conductivity of porous 

(82)I =
U

R
=

keleAU

l

(83)I =
keff
ele
AU

l

media in PEM fuel cells. Ismail et  al. [254] developed 
two experimental apparatuses to measure the in-plane and 
through-plane effective electronic conductivities of porous 
media in PEM fuel cells using the four-probe methods. For 
the in-plane effective electronic conductivity measurement, 
the test sample is prepared in squared shape and placed on 
an insulating polycarbonate plate, as shown in Fig. 25a. Cur-
rent is provided by two copper electrodes passing through 
the test specimen, and the voltage between two selected 
points located in the middle of the two copper electrodes 
is measured by two gold-plated probes. By Ohm’s law, the 
effective electronic conductivity between the two points can 
be determined as follows,

where C is the geometric correction factor, which is deter-
mined by the specimen dimension and the space between 
the probes, and should be carefully taken into account for 
uncertainty analysis; δ is the thickness of the test specimen 
in [m], and R is the electronic resistance in [Ω]. For the 
through-plane conductivity measurement, the sample is pre-
pared in a circular shape and placed between two stainless 
steel disks, which are compacted by two copper electrodes. 
The total resistance of the assembly is measured at differ-
ent compaction levels, and based on the resistance network 
theory, the effective electronic conductivity of the speci-
men can be obtained with contact resistance included. Only 
GDLs are tested by using these instruments, and it can be 
further modified to test the CLs with improved measurement 
uncertainty.

Tranter et al. [255] measured the in-plane effective elec-
tronic conductivity of different CLs prepared with an alterna-
tive four-point probe technique (a.k.a. van der Pauw technique 
[256]), where the four probes are placed at the periphery of the 

(84)keff
ele

=
1

C�R

Fig. 25   Schematic of the four-probe technique to measure the effective electrical conductivity for a in-plane and b through-plane directions. 
Reprinted with permission from Ref. [254]. Copyright © 2010, Elsevier
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test specimen. The CLs under investigation is prepared using 
ionomer and Pt/C with different composition, thickness, and 
milling time and temperature. The resulted effective electronic 
conductivity is found to be between 122 and 605 S m−1. They 
pointed out that the four-point probe method is not suitable for 
through-plane effective electronic conductivity measurement 
of the CL as it is too thin for the placement of the probes.

Sadeghifar [257] measured the in-plane conductivity of 
the CCM using a two-thickness method by testing two differ-
ent samples with different lengths. The experimental results 
indicate that the in-plane effective electronic conductivity of 
wet CCM is about 70 S m−1, which is about three times lower 
than that of the dry CCM. More details of the experimental 
data on effective electronic conductivity of CLs can be found 
in Table 14.

4.4.3 � Empirical Models for Effective Electronic Conductivity

The effective electronic conductivity of the CL is primarily 
determined by its composition and the corresponding micro-
structure. Many correlation models are established based on 
the porosity and the volumetric ratio of electronic conductive 
components.

Das et al. [180] derived a correlation model for the effective 
electronic conductivity of the CLs as follows:

where ks is the bulk electronic conductivity of the solid 
phase in CLs, x is the solid phase geometry factor, and Φs is 
the volume fraction of the solid phase in CLs.

Zhao and Li [4] applied a Bruggeman correction to the CLs 
taking the porosity and ionomer volume into account

(85)keff
ele

= ks

{

1 − x

[
3
(
1 −�s

)

3 −�s

]}

(86)keff
ele

= ks(1 − � −�m)
1.5

where ε is porosity, and Φm is the volume fraction of the 
ionomer in CLs.

Although these correlations have been broadly used in 
fuel cell modeling, their accuracy and suitability are worth 
further investigation based on a sufficiently large experimen-
tal dataset.

4.5 � Effective Protonic Conductivity

4.5.1 � Ohm’s Law

The transport of protons is governed by Ohm’s law in pro-
ton-conductive components, such as membrane and iono-
mers in CLs [160, 182]. In the membrane, the protonic con-
ductivity is determined by the materials, temperature, and 
water content. In CLs, the effective protonic conductivity 
is often used to evaluate the capability of the CLs to trans-
port protons through the ionomer networks, which can be 
affected by the volumetric fraction of ionomer, the amount 
of liquid water, porosity, and other structural parameters.

4.5.2 � Experimental Methods for Effective Protonic 
Conductivity

Many methods have been developed to investigate the 
protonic conductivity of membrane, including direct cur-
rent (DC) scanning or alternating current (AC) impedance 
[259–261], while the direct measurement of the effective 
protonic conductivity of the CLs is very scarce.

Lee et al. [262] measured the protonic conductivity of 
the membrane using an impedance measurement system 
based on two- or four-probe methods in water vapor or liq-
uid water, as shown in Fig. 26. The impedance of the Nafion 
membranes is measured by applying an AC amplitude of 
1 mA over the AC frequency from 0.1 Hz to 100 kHz at 
controllable humidity and temperature levels. From the 
Nyquist plot, the real (Z′) and imaginary components (Z′′) of 
impedance for the membrane are recorded, and the intercept 

Table 14   Effective electronic conductivity of catalyst layers from experimental results

Catalyst layer composition Direction Thickness/µm Effective electronic 
conductivity/(S 
m−1)

Ref.

Ionomer-carbon ratio = 1.1, 50% Pt/C, coated on PTFE, dry-milling time = 0 h @ 20 °C In-plane 7.77 ± 0.43 605 ± 23 [255]
Ionomer-carbon ratio = 1.1, 50% Pt/C, coated on PTFE, dry-milling time = 48 h @ 

20 °C
In-plane 4.41 ± 0.93 122 ± 23 [255]

Wet CL coated on membrane, 50% porosity In-plane 15 70 [257]
Dry CL coated on membrane, 50% porosity In-plane 15 210 [257]
Ionomer, Pt/C, CCM, hot pressing, volume fraction of Pt/C = 0.6 In-plane  ~10 30/110 [258]
Ionomer, Pt/C, CCM, hot pressing, volume fraction of Pt/C = 0.665 In-plane  ~10 10/105 [258]
Ionomer, Pt/C, CCM, hot pressing, volume fraction of Pt/C = 0.75 In-plane  ~10 12/13 [258]
Ionomer, Pt/C, CCM, hot pressing, volume fraction of Pt/C = 0.8 In-plane  ~10 12.1 [258]
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of the Z′-axis is approximately the ohmic resistance of the 
membrane. From the Bode plot, the change of impedance 
over a broad range of frequency yields the ohmic resistance 
of the test specimen. Finally, the protonic conductivity of 
membrane, kion, can be derived from the following equation

where l is the distance between the reference electrodes in 
[m], A is the cross-sectional area of the membrane in [m2], 
and R is the bulk resistance of the membrane obtained from 
the impedance analyzer in [Ω]. The experimental results sug-
gest that the protonic conductivity of the membrane meas-
ured by the four-probe method is always 2–5 times higher 
than those by two-probe methods at ambient conditions.

Li and Pickup [236] investigated the effective protonic 
conductivity of the CLs using EIS by feeding dry nitrogen to 
cathode immediately after the hydrogen–oxygen polarization 
measurement. The dynamic impedance responses indicate 
that the effective protonic conductivity of the cathode rises 
with ionomer content. The ionic conductivity of the CLs 
with various Nafion contents ranges from 0.17 to 1.1 S m−1. 
As many factors can affect the accuracy of the experiment, 
the measurement uncertainty should be assessed. It should 
be mentioned that the EIS has been a primary technique used 
for MEA structure optimization, ionic conductivity measure-
ment, and fuel cell diagnostics. It can also help determine 
other contributors to the impedance of the whole fuel cell 
stack, including interfacial charge transfer resistance, pro-
tonic resistance, contact resistance, mass transport resist-
ance, and double-layer capacitance. However, the accuracy 
of EIS measurement depends on many factors, including 
the accuracy and precision of the instruments, operating 

(87)kion =
l

AR

procedures, and EIS data interpretation [263, 264]. In this 
review, emphasis has been placed on the individual CL com-
ponent, and more details of the EIS methods can be found 
elsewhere [263–265].

Boyer et al. [266] experimentally investigated the effec-
tive protonic resistance of the ionomer networks by intro-
ducing an inert layer of ionomer and carbon particles in the 
MEA with varied carbon loadings. The ohmic resistance 
is estimated by fitting Eq. (70) to the low current density 
regions of the polarization curve (5–800  mA  cm−2). It 
should be noted that the resistance estimated from the polari-
zation curve includes the resistance resulting from the mem-
brane, electrode, electron-conductive components, contact 
interface, mass transfer, and most importantly the inactive 
layer. As the cell components and test apparatus are identical 
except for the inactive layer, it is assumed that the difference 
in ohmic resistance with varied thickness of inactive layers 
is solely due to the inactive layer. The resistance variation 
resulting from the inactive layers with various carbon load-
ings can be thus used to determine the effective protonic 
conductivity of the ionomer networks in the inactive layers. 
The experimental results demonstrate a protonic conduc-
tivity of 0.013 S cm−1 for the mixture of Nafion ionomer 
(33 wt%) and carbon black with a thickness of 20–25 µm 
and 0.018 S cm−1 with 60 wt% ionomer mixed with carbon 
black. However, it should be noted that the measurement 
uncertainty caused by the electronic resistance of the carbon 
networks in the active layers is not evaluated in the studies.

4.5.3 � Empirical Models for Effective Protonic Conductivity

The effective protonic conductivity of CLs is determined 
by its ionomer and water content and microstructure—the 

Fig. 26   Schematic of impedance measurement systems: a two-probe method and b four-probe method. Adapted with permission from Ref. 
[262]. Copyright © 2005, American Chemical Society
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ionomer and water content determines the intrinsic pro-
tonic conductivity of ionomer, while the microstructure 
affects the overall effective conductivity. Many correla-
tion models have been developed to estimate the intrinsic 
protonic conductivity of ionomers and effective protonic 
conductivity of CLs, as summarized in Table 15. Springer 
et al. [234] established an empirical correlation of pro-
tonic conductivity based on Nafion 117 membranes as a 
function of water content and temperature, which is widely 
used for fuel cell modeling even though different types 
of membranes are employed. Sone et al. [267] proposed 
another polynomial empirical equation about the protonic 
conductivity of Nafion 117 based on experimental studies 
at a different temperature between 293 and 343 K with rela-
tive humidity levels between 40% and 100%. Boyer et al. 
[266] built an empirical correlation based on experimental 
data obtained from polarization curves and found that the 
ohmic resistance of CLs shows a linear relation with the 
volumetric fraction of ionomers in the CLs. Boyer et al. 
[266] also suggested that the effective protonic conduc-
tivity of the CLs and the bulk protonic conductivity of 
the membranes are in exponential relation to the power of 
1.2–4.5. Das et al. [180] derived a model to calculate the 

effective protonic conductivity of the CLs based on the 
volumetric ratio of ionomer and void space based on the 
assumption that the CL is composed of multiple spherical 
catalyst particles covered by thin uniform ionomer lay-
ers. In this study, the derived model was compared with 
Bruggeman correlation (also proposed by Das et al. [180]) 
under different membrane-catalyst ratios, and the compari-
son demonstrated good agreements. It should be noted that 
limited experimental data on effective protonic conductiv-
ity of CLs are available in literature due to the difficulty 
in experimental measurements. Therefore, the validity of 
various empirical and analytical models should be further 
explored.

4.6 � Summary of Structure‑Dependent 
Electrochemical Properties

Many experimental methods and empirical models have 
been employed to investigate the electrochemical proper-
ties of CLs, including exchange current density, charge 
transfer coefficient, electrochemical surface area, elec-
trode roughness factor, effective electronic conductivity, 
and effective protonic conductivity. These electrochemical 

Table 15   Correlations for the protonic conductivity of the catalyst layers and membranes in PEM fuel cells

�m is the volume fraction of the Nafion in CLs; �m is correction factor; km is bulk membrane protonic conductivity in [S cm−1]; km
eff is effective 

protonic conductivity of catalyst layers in [S cm−1]; λ is water content; β is a correction factor for the geometrical structure of membrane phase 
in CLs; and x% is the relative humidity which ranges from 40% to 100%

Model Formula Remark Component Eq. Ref.

Springer et al. km = (0.005 139� − 0.003 26)exp
[
1 268

(
1

303
−

1

T

)]
λ > 1 Membrane (88) [234]

Sone et al. km = − 19.8 × 10−3 + 16.6 × 10−4x−

34.5 × 10−6x2 + 28.4 × 10−8x3

293 K Membrane (89) [267]

Sone et al. km = − 8.01 × 10−3 + 6.72 × 10−4x−

11.6 × 10−6x2 + 11.8 × 10−8x3

303 K Membrane (90) [267]

Sone et al. km = − 1.75 × 10−3 + 1.45 × 10−4x+

0.016 1 × 10−6x2 + 3.45 × 10−8x3

318 K Membrane (91) [267]

Sone et al. km = − 3.41 × 10−3 + 2.73 × 10−4x−

2.67 × 10−6x2 + 5.72 × 10−8x3

333 K Membrane (92) [267]

Sone et al. km = − 1.56 × 10−3 + 1.21 × 10−4x+

1.01 × 10−6x2 + 3.95 × 10−8x3

343 K Membrane (93) [267]

Boyer et al. keff
m

= 0.078�m + 0.004 Experimental correlation Catalyst layer (94) [266]
Boyer et al. keff

m

km
= �m

n n = 1.2–4.5 Catalyst layer (95) [266]

Das et al.
keff
m

km
=1 − �

⎧
⎪
⎨
⎪
⎩

3
�
1 −�m

�

3 −�m

+
3�
�
1 −

3(1−�m)
3−�m

�

2 + �

⎫
⎪
⎬
⎪
⎭

Spherical catalyst particles 
covered by ionomers

Catalyst layer (96) [180]

Das et al. keff
m

km
=
[
�m(1 − �)

]1.5 Bruggeman correlation Catalyst layer (97) [180]



	 Electrochemical Energy Reviews (2023) 6:13

1 3

13  Page 44 of 61

properties are vital to understanding the electrode kinetics, 
ohmic loss, transport phenomena, and cell performance. 
However, in comparison with physicochemical properties, 
experimental methods and apparatus for the measurement 
of electrochemical properties are usually complicated, and 
some particular properties have to be indirectly measured. 
Therefore, the accuracy and uncertainty analysis of the 
experimental methods should be carefully performed. Due 
to the lack of experimental data on these properties, the 
analytical or empirical models are very scarce for some of 
these parameters, including the exchange current density, 
charge transfer coefficient, and electrochemical surface 
area (or electrode roughness factor). Some correlation 
models are available for the effective electronic conductiv-
ity and protonic conductivity of CLs; however, the validity 
of most of these models should be further explored when 
more experimental data are available.

5 � Performance of Catalyst Layers

The overall performance of the PEM fuel cells is determined 
by all components including membrane, CLs, GDLs, and 
distribution plates, among which the CLs play a dominant 
role. The performance is often characterized by a polariza-
tion curve for PEM fuel cells, i.e., the voltage–current rela-
tion, as shown in Fig. 27. There exists a maximum voltage if 
all energy stored in hydrogen and oxygen can be converted 
to electric energy without any losses, and this maximum 
voltage is called thermo-neutral voltage. However, the 
thermo-neutral voltage is unachievable as heat generation 

is always accompanied by electricity production during cell 
operation. Theoretically, the maximum achievable voltage 
under the thermodynamically reversible condition is always 
lower than the thermo-neural voltage and is called reversible 
voltage. In a practical PEM fuel cell, the output voltage will 
be reduced with an increase in the current density owing to 
four categories of irreversible polarization or energy losses: 
(1) reactant (fuel or oxidant) crossover and internal current, 
(2) activation loss, (3) ohmic loss, and (4) concentration 
loss, among which the latter three are closely related to the 
microstructure of the CLs.

5.1 � Fuel Crossover and Internal Current

Fuel crossover is a waste of hydrogen molecules by pen-
etrating the electrolyte membrane without effective electro-
chemical reaction, and internal current is caused by unused 
electrons which are transported from anodic to cathodic 
electrodes directly through the membrane [5, 81]. Ideally, 
only protons and water can pass through the polymer elec-
trolyte membrane, while hydrogen fuel and electrons are 
rejected. However, a small quantity of fuels and electrons 
are always possible to diffuse into the membrane from the 
anode, and the diffusion has a considerable influence on the 
open-circuit voltage (OCV), which is always smaller than 
reversible voltage. Each hydrogen molecule that directly 
crosses the membrane and reacts with oxygen at the cath-
ode will result in two fewer electrons passing through the 
external circuit. In practical fuel cell operation, this type 
of energy loss is insignificant as the rate of fuel crossover 
and electron penetration is a few orders of magnitude lower 
than that of hydrogen consumption and electrical current in 
external circuits [231]. However, if the current density is 
very small, the voltage drop resulted from fuel crossover and 
internal current may not be negligible. Fuel crossover and 
internal current can be significantly affected by the nature 
of membrane material, the thickness of the membrane, and 
the sealing of the fuel cell stack [269].

5.2 � Activation Polarization

Activation polarization is caused by the sluggish kinetics of 
the electrochemical reactions in CLs, and a certain amount 
of energy has to be consumed to overcome the activation 
energy of the electrochemical reactions. The activation loss 
causes a sharp voltage drop when the operating current den-
sity is small, as shown in Fig. 27. The nature of catalyst 
materials and the nano- and microstructure of CLs determine 
the activation polarization. However, how the multi-scale 
structure of the CLs affects the activation loss has not been 
fully understood but a higher ECSA may help lower the acti-
vation over-potential. It should be noted that the activation 

Fig. 27   A typical polarization curve of a single PEMFC. Reprinted 
with permission from Ref. [268]. Copyright © 2014, the Electro-
chemical Society
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over-potential is important when the operating current den-
sity is small.

5.3 � Ohmic Polarization

Ohmic polarization is caused by the electrical resistance 
of the fuel cells, including the proton transport resistance 
in the CLs and membrane, the electron transport resist-
ance in the CLs, GDLs, and distribution plates, as well as  
the interfacial contact resistance between the adjacent cell 
components. The ohmic over-potential is reflected by the 
linear drop in voltage at a moderate current density region 
as shown in Fig. 27. The proton transport resistance in CLs 
caused by the transport of protons in the ionomer network 
can be decreased by optimizing the selection, amount, and 
dispersion of ionomer, as well as its corresponding solid and 
porous structure.

5.4 � Concentration Polarization

Concentration polarization is also known as mass transport 
polarization, which is caused by the lower reactant transport 
rate in comparison with the electrode reaction rate, leading 
to a low reactant concentration in the vicinity of the elec-
trode surface. Therefore, the low reactant concentration on 
the electrode surface will limit the cell performance, and the 
output voltage drops sharply as the current density increases. 
The reactant transport resistance is mainly from the limited 
pore space in GDLs and CLs or the over-accumulated liquid 
water in the pores or on the electrode surface. Therefore, the 
microstructure of the CL and its effective properties should 
be comprehensively optimized.

5.5 � Summary of Catalyst Layer Performance

The PEM fuel cell performance is governed by all components 
including membrane, CLs, GDLs, and distribution plates, 
among which the CL is one of the most significant compo-
nents. In a practical PEM fuel cell, the output voltage will be 
decreased as current density increases due to four categories 
of irreversible polarization or energy losses, including (1) fuel 
crossover and internal current, (2) activation loss, (3) ohmic 
loss, and (4) concentration loss. Then, the latter three are con-
trolled by the microstructure of the CLs, which necessitates the 
comprehensive understanding of CL structures.

The performance of the CLs for PEM fuel cells has been 
steadily improved since it was invented. As can be seen 
in Fig. 28, the first practical PEM fuel cell using hydro-
gen and oxygen as reactants invented by Mond and Langer 
[270] in 1889 demonstrates a low operating current of 
3.8 × 10−3 A mgPt

−1 at 0.6 V with a maximum power den-
sity of 3.3 × 10−3 W mgPt

−1. For the PEM fuel cell designed 
by Niedrach and Alford [29] in 1969, the performance has 

been improved by an order of magnitude with the current 
density of 1.8 × 10−3 A mgPt

−1 at 0.6 V and a maximum 
power density of 1.3 × 10−2 W mgPt

−1. When the Pt/C is 
introduced to replace Pt black by Ticianelli et al. [32] in 
1983, the current density has been significantly enhanced 
to be 0.77 A mgPt

−1 at 0.6 V with a peak power density of 
0.54 W mgPt

−1. When PTFE is replaced by ionomer as the 
binding materials by Wilson [39] in 1993, the specific cur-
rent density becomes 3.4 A mgPt

−1 at 0.6 V, while the peak 
power density is 2.2 W mgPt

−1. Recently, Chong et al. [271] 
and Zhao et al. [42] reported the high performance of PEM 
fuel cells with current densities of 5.2–6.7 A mgPt

−1 at 0.6 V 
and peak power densities of 3.7–4.9 W mgPt

−1.
Therefore, the power density of the fuel cells per mil-

ligram of Pt has been significantly improved, from around 
0.003 3 to 4.9 W mgPt

−1. In other words, the amount of 
required noble catalysts has been considerably reduced 
by three orders of magnitude without sacrificing the per-
formance, which means the cost has been dramatically 
decreased in comparison with that several decades ago. 
It should be pointed out that Chong et al.’s studies [271] 
suggest that the CL performance can be far beyond the 
10 W mgPt

−1 based on the analysis of cathode Pt load-
ing. The anode Pt loading employed in their studies is 
0.35  mgPt  cm−2 with commercial catalysts, while the 

Fig. 28   Evolution of Pt-based catalyst layer performance in PEM fuel 
cells: a voltage vs. specific power density and b specific power den-
sity vs. specific current density per milligram of Pt
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cathode Pt loading is as low as 0.035 mgPt cm−2 with cus-
tomized catalysts. For PEM fuel cell, the cathodic reaction 
is generally more sluggish, which conventionally requires 
more catalysts. This suggests a promising potential to 
reduce anode Pt loading without sacrificing too much per-
formance, where the microstructure of the CLs will play 
a significant role.

6 � Durability of Catalyst Layers

For the long-term operation of PEM fuel cells, the per-
formance will be deteriorated irreversibly due to gradual 
component degradation [272]. As the CLs determine the 
electrochemical reaction rates, electrical resistance, and 
mass transport limitation, the degradation of CLs is of great 
significance for the long-term performance and durability of 
the whole PEM fuel cell. A good CL structure should pro-
vide sufficient reaction sites, channels for reactant and water 
transport, pathways for electron and proton conduction, and 
mediums for heat transfer. Therefore, the most commonly 
available CLs are composed of carbon-supported catalysts, 
ionomer, and void space. In this section, the degradation 
of catalyst, carbon support, ionomer, and the CL structure, 
which are all vital to the fuel cell durability, is comprehen-
sively reviewed.

6.1 � Degradation of Catalyst

The most common catalyst degradation modes in PEM 
fuel cells include sintering [273, 274], dissolution [275, 
276], and detachment [144] of catalyst nanoparticles. 
The sintering (coarsening or agglomeration) of catalyst 

nanoparticles can lead to the growth of catalyst nanopar-
ticles and thus dramatically reduce ECSA, which is an 
important degradation mechanism of the long-term perfor-
mance [277]. Ostwald ripening (OR) and particle migra-
tion and coalescence (PMC) are the two primary pathways 
of the catalyst sintering [273], as shown in Fig. 29a, b. For 
the OR mechanism, the small catalyst nanoparticles are 
broken into atoms or dissolved as charged species, and 
the atoms or charged species will subsequently redeposit 
onto the surface of the large catalyst nanoparticles [278]. 
For the PMC mechanism, due to the weak interaction 
between the catalyst nanoparticles and carbon support, 
catalyst nanoparticles move in a Brownian-like pattern 
on the support surface and consequently coalesce with 
each other, leading to particle growth. The microstructure 
change of catalyst nanoparticles on carbon supports has a 
strong impact on the catalyst sintering and hence the long-
term performance [211, 279]. The catalyst dissolution 
results from the oxidation of Pt, subsequent formation of 
Pt ions, and final dissolution in water. This can lead to the 
loss of catalytic sites, reduction in electrode surface, and 
hence deterioration in cell performance [275], as shown in 
Fig. 29c. The dissolved Pt ions may be drained out of PEM 
fuel cell with liquid water or migrate into membranes, 
where the ions will be reduced by hydrogen crossover to 
form a band-like deposition of Pt in membranes. Macauley 
et al. [280] reported both positive and negative impacts 
of Pt dissolution and redeposition in membrane on the 
durability and stability [280]. A Pt band deposited in 
membranes can considerably increase the proton conduc-
tion resistance of the membrane, leading to a long-term 
degradation [40]. The detachment of catalyst nanoparticles 
from carbon support is another physical degradation of 
the catalysts, probably resulting in a permanent catalyst 
loss or the particle growth [144]. This can lower the active 
reaction sites and the catalytic performance (see Fig. 29d). 
As can be seen, the catalyst degradation can significantly 
affect the nano- and microstructure of the CLs and hence 
influence its short- and long-term performance.

6.2 � Degradation of Carbon Supports

In the actually operating environment of PEM fuel cells, 
carbon supports are thermodynamically unstable and sub-
ject to corrosion through the following chemical reaction 
at the cathodic electrodes [281], which can lead to the 
deterioration of the connectivity between carbon particles 
and the detachment of catalyst nanoparticles [3, 276], as 
shown in Fig. 30.

C + 2H2O = CO2 + 4H+ + 4e−Fig. 29   Degradation mechanisms of Pt catalyst: a electrochemical 
Ostwald ripening, b particle migration and coalescence, c Pt disso-
lution, and d Pt detachment. Reprinted with permission from Ref. 
[278]. Copyright © 2020, Elsevier
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The rate of carbon corrosion is insignificant under 
normal operating conditions due to the slow kinetics; 
however, when the fuel cells are operated with frequent 
start-up/shutdown and load changes, the carbon corrosion 
rate can be significantly accelerated due to the high cell 
potential (1.2–1.5 V) in local CL regions where fuel rich 
or fuel starvation is possible [3]. The loss of carbon sup-
ports caused by corrosion can reduce the ECSA of the 
CLs, leading to gradual and unavoidable performance loss 
as catalyst nanoparticles without carbon supports can be 
either washed/blown away or merged to other catalyst par-
ticles to form large particles. Besides, the corrosion of 
carbon supports can worsen the connectivity of the elec-
tron-conducting network, increase the electron transport 
resistance of CLs, and even disconnect the catalyst sites 
from the electric network, which will inactivate and waste 
the catalyst [3].

6.3 � Degradation of Ionomer

Ionomers in CLs can be decomposed due to either radi-
cal attack [269, 278, 283, 284] or thermal degradation 
[2]. On the electrode surface, radical species, including 
peroxy and hydroperoxy, can be generated as the Pt is oxi-
dized by oxygen and water. The generated radical species 
will attack ionomer molecules and destroy the ionomer 
network. The ionomer can also degrade under high local 
temperatures, losing the connectivity of proton-conduct-
ing pathways. This will irreversibly increase the proton 
transport resistance in CLs. Ionomers also act as binding 
materials in CLs to stabilize Pt/C particles, meaning that 

without ionomers, the catalyst particles can easily move 
around and collide with each other to form larger agglom-
erates, reducing ECSA. Due to the wet and dry cycling 
arising from the on- and off-operation of the fuel cell 
[285], ionomer film can expand and shrink accordingly 
with the change in its hydration levels, and this may lead 
to the delamination at the three-phase boundary, deacti-
vating the active sites. For a well-designed CL, the iono-
mer degradation is insignificant as the number of free 
radicals is small and can be removed by the catalyst at 
the TPBs.

6.4 � Degradation of Catalyst Layer Structure

The CL structure is important to ensure the high perfor-
mance of PEM fuel cells by providing sufficient reaction 
sites, passages for reactant and product transport, media 
for electron and proton conduction, and pathways for heat 
transfer. However, the CL structure can be deteriorated with 
a long operation of fuel cells as a result of material degrada-
tion and interior stress cycling.

Typical CL structure degradation includes pinholes, 
cracks, agglomeration growth, and delamination. Zhao 
et al. [86] experimentally investigated the effect of water 
flooding or partial flooding on the microstructure changes 
of CLs. A water intrusion-evaporation cycling test is 
applied to a CL supported on GDLs, and after 15 cycles 
(equivalent to 30 h) of water treatment, Pt/C and ionomer 
agglomeration, pinholes, and cracks are found on the CL 
surface through SEM imaging (see Fig. 31a). In contrast, 
the water flow-through-dehydration cycling suggested that 
flowing water has minimal effect on particle growth as 

Fig. 30   Schematic of the degradation of carbon-supported Pt based on high surface area carbon (HSAC) and reinforced-graphite (RG). 
Reprinted with permission from Ref. [282]. Copyright © 2015, American Chemical Society
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water pass through large pores more easily with the lowest 
transport resistance. Kim et al. [21] and Kim and Mench 
[286] investigated the effect of freeze–thaw cycling on the 
structure change of MEAs. The SEM images demonstrate 
delamination between CLs and membrane (see Fig. 31b) 
and cracks on CL surfaces (see Fig. 31c). Singh et al. [105] 
performed an accelerated stress test on MEA with cyclic 
relative humidity for inlet reactants by holding 150% rela-
tive humidity (dew-point temperature of 90 °C and opera-
tional temperature of 80 °C) for 2 min and then 0% for 
another 2 min. The images obtained from X-ray CT identi-
fied a large crack in the membrane, and the cracked mem-
brane leads to corresponding cracks in adjacent CLs on 
both sides after 2 000 cycles (see Fig. 31d). Pinholes and 

cracks on the CL surfaces may cause isolation of catalyst 
particles, losing the connection to the electric networks, 
while their impact on the reactant and water transport is 
still under debate. Agglomeration of the catalyst particles 
can lead to a drop in ECSA due to catalyst sintering, and 
the CL-membrane interfacial delamination can signifi-
cantly increase the proton transport resistance through the 
CL-membrane interface, which is detrimental to the overall 
cell performance. It should be noted that even though lim-
ited data are available in literature, the long-term changes 
in PSD and wettability of the CL surface are also expected 
as the materials degrade and the pore structure is changed 
during the stress cycling.

Fig. 31   Typical structure degradation modes of catalyst layers in 
various studies. a Pinhole, crack, and agglomeration by Zhao et  al. 
Reprinted with permission from Ref. [86]. Copyright © 2018, the 
Electrochemical Society. b Delamination due to freeze–thaw cycling 
by Kim et  al. Reprinted with permission from Ref. [21]. Copyright 

© 2008, Elsevier. c Cracks of CLs resulted from freeze–thaw cycling 
by Kim and Mench. Reprinted with permission from Ref. [286]. 
Copyright © 2007, Elsevier. d Cracks resulted from relative humidity 
cycling by Singh et  al. Reprinted with permission from Ref. [105]. 
Copyright © 2019, Elsevier
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6.5 � Summary of Catalyst Layer Degradation Modes

The long-term performance of the PEM fuel cell is gradu-
ally deteriorated under different operating conditions. For 
instance, under steady-state operation, the performance 
deterioration rate can be as low as 1–2 μV h−1, while under 
accelerated stress testing conditions, the performance drop 

rate can be as high as 100 μV h−1 due to complicated cycling 
of voltage, current, temperature, humidity, hydration-dehy-
dration, freeze–thaw, stress, and vibration conditions [284].

Many factors, including pore structure, ionomer disper-
sion, and particle size distribution, determine the effective 
physicochemical and electrochemical properties of the CLs 
[40, 279]. As shown in Fig. 32, the initially heterogeneous 

Fig. 32   Relation between degradation modes and microstructure of catalyst layers
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microstructure of the CLs, formed during the CL fabrication 
process with different techniques, consists of the essentially 
non-uniform solid and pore structure, including uneven 
material dispersion, void regions, and surface profile [49, 
287, 288]. Uneven material dispersion and pore distribu-
tion can cause an inhomogeneous distribution of reactive 
surface, leading to significant variation in local current den-
sity, water, heat, and radical species. Excessive water may 
occupy reactive surface, reduce effective porosity, inhibit the 
transport of reactants, and even cause long-term structural 
changes [81, 289]. However, if too much water is exhausted 
owing to the local overheat or extensive reactant flow, the 
reactions cannot effectively proceed [5]. If the generated 
heat is not promptly removed, “hot spots” will be generated, 
which may lead to pinholes, micro-cracks, and interfacial 
delamination between CLs and membrane, increasing the 
proton transport resistance [290, 291]. Uneven distribution 
of current density and high-concentration radical species can 
worsen the non-uniform temperature and water distribution 
in CLs and cause carbon corrosion, Pt sintering and dissolu-
tion, and ionomer decomposition [148, 273, 279, 285, 292]. 
Material loss can lead to pinholes and micro-cracks, which 
can further propagate and cause the delamination between 
the membrane and CLs as a result of the mechanical, ther-
mal, and swelling stress cycling. It should be pointed out that 
the material degradation and structural changes can deterio-
rate the physicochemical and electrochemical properties in 
a long-term manner, causing irreversible performance drop. 
However, with a deteriorated structure of CLs, the practical 
operating performance, material and structure, and effective 
properties will continue to be degraded. When the long-term 
performance is much smaller than the original performance 
or a mechanical failure occurs, the life of CLs and PEM fuel 
cells is ended.

7 � Challenges and Future Prospects

7.1 � Existing Challenges

The major challenges of the studies on CL structure in 
PEM fuel cells are categorized into four aspects. The first 
is to precisely control the CL structure formation at multi-
scale levels. When the CL structure is formed, advanced 
experimental techniques to accurately measure the effec-
tive physicochemical and electrochemical properties 
require further exploration with strict uncertainty evalua-
tion. The accurately determined structure-dependent prop-
erties should be incorporated into fuel cell modeling to 
understand the transport, electrochemical, and degradation 
phenomena in CLs. Moreover, the CL structure changes 
should be further explored to understand fuel cell degrada-
tion mechanisms.

(1)	 Controllable multi-scale structure formation
	 The structure of CL involves Pt nanoparticles (e.g., 

2–5 nm), carbon supports (e.g., ~20 nm), agglomer-
ates (e.g., 0.5–10 μm), and pores (e.g., 0.3 nm–10 μm). 
These elements with different length scales are mixed 
and non-uniformly distributed in the CLs. Therefore, it 
is challenging to precisely control the CL structure at 
multi-scale levels. Based on this review, the structure 
of CLs can be affected by many fabrication factors, 
including materials, composition, apparatus, methods, 
procedures, and conditions. As the fuel cell perfor-
mance is sensitive to the CL structure, how to precisely 
control the structure formation will be very important.

(2)	 Experimental development and uncertainty analysis
	 The effective physicochemical and electrochemical 

properties of CLs are vital to understanding the elec-
trode kinetics, transport and electrochemical phenom-
ena, and mechanical and degradation behaviors. These 
properties are highly dependent on the experimental 
studies; however, the experimental data on these prop-
erties are not sufficiently reported in the literature, and 
many experimental techniques are generally designed 
for GDLs, which is usually several orders of magni-
tude thicker and stronger than CLs. The CLs, typically 
with a thickness of 1–30 μm for ionomer-bounded CLs, 
are often of non-uniform thickness. For the effective 
properties that require accurate average thickness, such 
as the effective diffusion coefficient, permeability, as 
well as effective thermal, electronic, and protonic con-
ductivities, how the non-uniform thickness affects the 
experimental results remains unclear. Moreover, the 
CL is mechanically weak and has to be supported by a 
mechanically strong substrate before it can be ex situ 
measured. The substrate can be porous or non-porous, 
which should be carefully selected based on the specific 
problems to minimize measurement errors.

(3)	 Empirical coefficients for model accuracy
	 The structure-sensitive physicochemical and elec-

trochemical properties of CLs are important to theo-
retically and numerically understand the fundamen-
tal phenomena that are difficult to be experimentally 
observed in PEM fuel cells. However, due to limited 
experimental data available for these properties, the 
further development of fuel cell models is challenging. 
For example, the exchange current density and charge 
transfer coefficient employed in fuel cell modeling vary 
significantly from case to case. Unfortunately, how 
these values affect the modeling results is still unclear. 
The modeling accuracy is also dependent on many 
other properties summarized in this review; however, 
it is challenging to have all these parameters measured 
at once and used in the same model and to validate 



Electrochemical Energy Reviews (2023) 6:13	

1 3

Page 51 of 61  13

the modeling results against the in situ experimental 
results.

(4)	 Multi-scale structure changes
	 The CL structure will be steadily changed as the PEM 

fuel cell operates, resulting in irreversible long-term 
performance degradation. It is challenging to quantify 
the effect of structural changes on the effective phys-
icochemical and electrochemical properties of CLs 
and hence the performance and durability. Difficulties 
remain in the measurement of interior structure changes 
in a real-time manner and also the corresponding effec-
tive properties.

7.2 � Future Prospects

(1)	 Fundamentals of multi-scale structure formation
	 To precisely control the formation of the CL structure, 

it is essential to understand how the CL structure is 
formed during the fabrication process. This involves 
a multi-objective optimization of CL fabrication pro-
cesses. Critical factors, including material, composi-
tion, fabrication techniques, procedures, and condi-
tions, should be comprehensively studied to quantify 
their effects on the resultant CL structure, which should 
be both qualitatively and quantitatively characterized 
by advanced experimental techniques.

(2)	 Experimental studies
	 To accurately measure the structure-dependent phys-

icochemical and electrochemical properties, experi-
mental techniques should be specifically designed for 
thin, delicate, and mechanically weak CLs with various 
materials, composition, and structure. Optimization is 
needed for existing techniques to minimize experimen-
tal uncertainties.

(3)	 Multi-scale model development
	 Multi-scale modeling requires a comprehensive under-

standing of the CL structure at different scale levels. 
For large-scale modeling, the modeling development 
will be beneficial from the accurately measured effec-
tive physicochemical and electrochemical properties. 
For microscopic modeling, the actual structure of CLs 
at pore scales will bring unique insights into the theo-
retical and fundamental development.

(4)	 Observation of real-time multi-scale structure changes
	 Based on the reviews of existing studies and analysis 

of the technical challenges, advanced 4D microscopy 
technologies can be further employed to investigate the 
interior structure changes of CLs at multi-scale levels 
in a real-time manner. Benefits will be achieved for 
a fundamental understanding of various degradation 
modes resulted from CL, including catalyst sintering 
and detachment, material decomposition, changes in 
porosity and pore size, changes in wettability of the CL 

surface, formation of pinholes and cracks, and interfa-
cial delamination.

7.3 � Some Fundamental Challenges

(1)	 “Best” or “Optimal” CL structure
	 The CL structure consists of supported catalyst, iono-

mer film and pore for the combined effect of reactant 
transport to the reaction sites, reaction product removal 
from the reaction sites, electron and proton transport, 
and the catalyzed electrochemical surface reaction for 
electricity generation. The transport phenomena to and 
from the three-phase boundary, and the electrochemi-
cal reaction at the three-phase boundary need to be 
balanced for optimal performance. Hence, both trans-
port phenomena and kinetics occurring in the CL are 
determined by the CL structure; and it is essential to 
develop the “best” or “optimal” CL structure for which 
the “best” or “optimal” performance could be achieved 
for a CL made of a known set of materials, and against 
which a particular CL structure could be compared to 
determine its level or degree of the “optimalness”.

(2)	 Effective description of CL structure
	 The practical CL structure spans over many orders of 

magnitude in terms of the length scales, with various 
sizes of the agglomerates, ionomer films, and pores of 
different sizes and shapes. It is essential to find a simple 
and effective description for the CL structure that can 
determine the CL structure uniquely, and that can be 
used for the structural modeling and description of the 
CL.

8 � Summary and Concluding Remarks

PEM fuel cell is a promising alternative power source for 
vehicular, portable, and stationary applications owing to its 
clean and efficient energy conversion. However, its perfor-
mance, durability, and cost are determined by the core com-
ponent—the CL. The CL provides electrochemical reaction 
sites, pathways for reactant and water transport, channels for 
electron and proton conduction, and media for heat transfer. 
Therefore, the structure of the CLs plays a significant role, 
and a thorough understanding of the CL structure is needed.

The CL structure is formed during the fabrication process, 
which is governed by the material, composition, fabrication 
methods, procedures, and conditions. The PTFE-bonded 
CLs are durable as a high loading of Pt black is employed, 
thus leading to a very high fabrication cost. The ultra-thin 
CLs fabricated by the plasma sputtering, ion-beam-assisted 
deposition, or atomic layer deposition can minimize the use 
of noble catalysts; however, technical challenges such as 
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complicated fabrication instruments and unverified dura-
bility should be further explored for mass production. The 
ionomer-bounded method (a.k.a. thin-film method) exhibits 
balanced performance, durability, and cost, which can be 
further optimized through improving the CL structure. The 
structure of CLs can be visualized by different microscopy 
techniques, including 2D techniques for surface structure 
(e.g., optical microscopy, SEM, TEM, and AFM), 3D tech-
niques for interior CL structure (e.g., FIB/SEM and 3DX-
ray CT), and 4D techniques for additional information such 
as chemical composition, temperature, and time in addition 
to 3D spatial structure. For the pore structure, the MSP, 
MMP, BET, and Archimedes principle have been widely 
used for quantitative characterization, while for the solid 
structure, various techniques, including XRD, ED, Raman 
spectroscopy, TGA, XPS, and EDS, have been broadly used 
for the elemental, chemical, morphology, and nanostructure 
analysis.

The CL structure significantly affects the physicochemi-
cal properties, which determines the transport and mechani-
cal behaviors of the CLs. Many advanced experimental 
methods have been developed to investigating the physico-
chemical properties of CLs, including the effective diffusion 
coefficient, permeability, capillary pressure, contact angle, 
effective thermal conductivity, and Young’s modulus. The 
relation between the effective physicochemical properties 
and structural parameters has also been reviewed in this 
study. Many structure-based models have been established 
to predict these properties based on the porosity, PSD, sur-
face area, or other structural parameters, which is important 
for the fundamental analysis of PEM fuel cells.

The CL structure also determines the electrochemical 
properties, such as the exchange current density, charge 
transfer coefficient, electrochemical surface area, elec-
trode roughness factor, effective electronic conductivity, 
and effective protonic conductivity. The electrochemical 
properties are significant for electrode kinetics, ohmic 
loss, transport limitation, and overall performance. The 
experimental methods of electrochemical properties are 
usually indirectly measured due to the complex experi-
mental apparatus. The uncertainty analysis for the experi-
ments should be carefully explored to avoid misleading 
results. As no many organized experimental data are 
available, prediction models for some of these parameters, 
such as the exchange current density and charge transfer 
coefficient, and electrochemical surface area (or electrode 
roughness factor) are very rare. Some structure-related 
models are available for the effective electronic and pro-
tonic conductivity of CLs; however, these models should 
be further validated against a large experimental dataset.

The CL structure determines the performance and dura-
bility of PEM fuel cells. The performance of the CLs is 
governed by fuel crossover and internal current, activation 

loss, ohmic loss, and concentration loss. The fuel crossover 
and internal current are determined by membrane material, 
thickness, and sealing performance, while the activation, 
ohmic, and concentration losses are directly related to the 
CL material, composition, and multi-scale structure. The 
durability of PEM fuel cells can be affected by compli-
cated operating conditions, including the cycling of volt-
age, current, temperature, humidity, hydration-dehydration, 
freeze–thaw, stress, and vibration conditions. Typical CL 
degradation modes include the degradation of catalyst, car-
bon support, ionomer, and the CL structure, which are all 
vital to the fuel cell durability.

Therefore, it is vital to comprehensively understand the 
microstructure of CLs. To accomplish this goal, the follow-
ing challenges should be addressed: (1) understanding the 
effect of the fabrication process on the CL microstructure 
formation, (2) understanding the impacts of the CL micro-
structure on the effective physicochemical and electrochemi-
cal properties, and (3) understanding the influence of CL 
effective properties on the overall performance and degra-
dation modes.
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