Skip to main content

Advertisement

Log in

Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High Electrochemical Performance

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Li–air batteries are a promising type of energy storage technology because of the ultra-high theoretical specific energy. Great advances are made in recent years, including the illustration of reaction mechanisms, development of effective catalyst materials, and design of battery structures accelerating species transport. However, the application still suffers from low rate capability, poor round-trip efficiency, and unsatisfactory cycling life. Herein, we mainly focus on the species transport issues of non-aqueous Li–air batteries, including Li+ across the solid surfaces and the electrolyte, O2 solubility and diffusivity, distribution of intermediates and products, and side reactions by other components from the air. Besides, considerable emphasis is paid to expound the approaches for enhancing species transport and accelerating reactions, among which the realization of well-designed electrode structures and flowing electrolytes is of great significance for the rapid migration of O2 and Li+ and mitigating the negative effects by solid insoluble Li2O2. Moreover, optimizing reaction interfaces and operating conditions is an attractive alternative to promote reaction rates. This work aims to identify the mechanism of transport issues and corresponding challenges and perspectives, guiding the structure design and material selection to achieve high-performance Li–air batteries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

AAO:

Anodic aluminum oxide

AN:

Acceptor number

CNT:

Carbon nanotube

DBBQ:

2,5-Di-tert-butyl-1,4-benzoquinone

DFT:

Density functional theory

DMA:

N,N-dimethylacetamide

DME:

1,2-Dimethoxyethane

DMSO:

Dimethyl sulfoxide

DN:

Donor number

EtV2+ :

Ethyl viologen

EIS:

Electrochemical impedance spectroscopy

FTIR:

Fourier transform infrared spectroscopy

G4:

Tetraglyme

IL:

Ionic liquid

LATP:

Lithium aluminum titanium phosphate

LIB:

Lithium-ion battery

LiFSI:

Lithium bis(fluorosulfonyl)imide

LiTf:

Lithium trifluoromethanesulfonate

LiTFSI:

Lithium bis-(trifluoromethanesulfonyl)imide

NMR:

Nuclear magnetic resonance

OER:

Oxygen evolution reaction

ORR:

Oxygen reduction reaction

OSM:

Oxygen-selective membrane

PFC:

Perfluorocarbon

PTFE:

Polytetrafluoroethylen

RM:

Redox mediator

SEI:

Solid-electrolyte interface

SEM:

Scanning electron microscopy

SERS:

Surface-enhanced Raman spectroscopy

TE4:

1,1,1,2,2,3,3,4,4-Nonafluoro-6-propoxyhexane

TEGDME:

Traethylene glycol dimethyl ether

TEM:

Transmission electron microscopy

TEMPO:

2,2,6,6-Tetramethylpiperidinyloxyl

TTF:

Tetrathiafulvalene

TTM:

Tris(2,4,6-trichlorophenyl)methyl

UV:

Ultraviolet

XRD:

X-ray diffraction

References

  1. Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012). https://doi.org/10.1039/c2ee21892e

    Article  CAS  Google Scholar 

  2. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Girishkumar, G., McCloskey, B., Luntz, A.C., et al.: Lithium–air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010). https://doi.org/10.1021/jz1005384

    Article  CAS  Google Scholar 

  4. Zhang, P., Zhao, Y., Zhang, X.: Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries. Chem. Soc. Rev. 47, 2921–3004 (2018). https://doi.org/10.1039/c8cs00009c

    Article  CAS  PubMed  Google Scholar 

  5. Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1 (1996). https://doi.org/10.1149/1.1836378

    Article  CAS  ADS  Google Scholar 

  6. Tan, P., Jiang, H.R., Zhu, X.B., et al.: Advances and challenges in lithium–air batteries. Appl. Energy 204, 780–806 (2017). https://doi.org/10.1016/j.apenergy.2017.07.054

    Article  ADS  Google Scholar 

  7. Johnson, L., Li, C., Liu, Z., et al.: The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014). https://doi.org/10.1038/nchem.2101

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Yu., Lai Nienchu, Lu., Yingrui, et al.: A solvent-controlled oxidation mechanism of Li2O2 in lithium–oxygen batteries. Joule 2, 2364–2380 (2018). https://doi.org/10.1016/j.joule.2018.07.021

    Article  CAS  Google Scholar 

  9. Ganapathy, S., Adams, B.D., Stenou, G., et al.: Nature of Li2O2 oxidation in a Li−O2 battery revealed by operando X-ray diffractio. J. Am. Chem. Soc. 136, 16335–16344 (2014). https://doi.org/10.1021/ja508794r

    Article  CAS  PubMed  Google Scholar 

  10. Tian, F., Radin, M.D., Siegel, D.J.: Enhanced charge transport in amorphous Li2O2. Chem. Mater. 26, 2952–2959 (2014). https://doi.org/10.1021/cm5007372

    Article  CAS  Google Scholar 

  11. Gerbig, O., Merkle, R., Maier, J.: Electron and ion transport in Li2O2. Adv. Mater. 25, 3129–3133 (2013). https://doi.org/10.1002/adma.201300264

    Article  CAS  PubMed  Google Scholar 

  12. Dutta, A., Ito, K., Kubo, Y.: Establishing the criteria and strategies to achieve high power during discharge of a Li–air battery. J. Mater. Chem. A 7, 23199–23207 (2019). https://doi.org/10.1039/c9ta07427a

    Article  CAS  Google Scholar 

  13. Bardenhagen, I., Fenske, M., Fenske, D., et al.: Distribution of discharge products inside of the lithium/oxygen battery cathode. J. Power Sources 299, 162–169 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.089

    Article  CAS  ADS  Google Scholar 

  14. Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Z., et al.: The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013). https://doi.org/10.1021/ja310258x

    Article  CAS  PubMed  Google Scholar 

  15. Højberg, J., McCloskey, B.D., Hjelm, J., et al.: An electrochemical impedance spectroscopy investigation of the overpotentials in Li–O2 batteries. ACS Appl. Mater. Interfaces 7, 4039–4047 (2015). https://doi.org/10.1021/am5083254

    Article  CAS  PubMed  Google Scholar 

  16. Wandt, J., Jakes, P., Granwehr, J., et al.: Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew. Chemie. 55, 6892–6895 (2016). https://doi.org/10.1002/anie.201602142

    Article  CAS  Google Scholar 

  17. Cheng, X.B., Hou, T.Z., Zhang, R., et al.: Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016). https://doi.org/10.1002/adma.201506124

    Article  CAS  PubMed  Google Scholar 

  18. Yang, X.H., Xia, Y.Y.: The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. J. Solid State Electrochem. 14, 109–114 (2010). https://doi.org/10.1007/s10008-009-0791-8

    Article  CAS  Google Scholar 

  19. Kwon, H.J., Lee, H.C., Ko, J., et al.: Effects of oxygen partial pressure on Li–air battery performance. J. Power Sources 364, 280–287 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.052

    Article  CAS  ADS  Google Scholar 

  20. Meini, S., Tsiouvaras, N., Schwenke, K.U., et al.: Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells. Phys. Chem. Chem. Phys. 15, 11478–11493 (2013). https://doi.org/10.1039/c3cp51112j

    Article  CAS  PubMed  Google Scholar 

  21. Shui, J.L., Okasinski, J.S., Kenesei, P., et al.: Reversibility of anodic lithium in rechargeable lithium–oxygen batteries. Nat. Commun. 4, 2255 (2013). https://doi.org/10.1038/ncomms3255

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Li, Y., Li, Y., Sun, Y., et al.: Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas environments. Nano Lett. 17, 5171–5178 (2017). https://doi.org/10.1021/acs.nanolett.7b02630

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Wu, M., Wen, Z., Liu, Y., et al.: Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources 196, 8091–8097 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.035

    Article  CAS  ADS  Google Scholar 

  24. Yilmaz, E., Yogi, C., Yamanaka, K., et al.: Promoting formation of noncrystalline Li2O2 in the Li–O2 battery with RuO2 nanoparticles. Nano Lett. 13, 4679–4684 (2013). https://doi.org/10.1021/nl4020952

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Yang, C., Wong, R.A., Hong, M., et al.: Unexpected Li2O2 film growth on carbon nanotube electrodes with CeO2 nanoparticles in Li–O2 batteries. Nano Lett. 16, 2969–2974 (2016). https://doi.org/10.1021/acs.nanolett.5b05006

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Ma, S., Liu, Q., Lei, D., et al.: A powerful Li–O2 battery based on an efficient hollow Cu2O cathode catalyst with tailored crystal plane. Electrochim. Acta 260, 31–39 (2018). https://doi.org/10.1016/j.electacta.2017.11.065

    Article  CAS  Google Scholar 

  27. Hirshberg, D., Kwak, W.J., Sharon, D., et al.: Li–O2 cells with LiBr as an electrolyte and redox mediator. Energy Environ. Sci. 9, 2334–2345 (2016). https://doi.org/10.1039/C6EE00700G

    Article  CAS  Google Scholar 

  28. Chen, Y., Freunberger, S.A., Peng, Z., et al.: Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–94 (2013). https://doi.org/10.1038/nchem.1646

    Article  CAS  PubMed  Google Scholar 

  29. Bergner, B.J., Schürmann, A., Peppler, K., et al.: TEMPO: a mobile catalyst for rechargeable Li–O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014). https://doi.org/10.1021/ja508400m

    Article  CAS  PubMed  Google Scholar 

  30. Mahne, N., Schafzahl, B., Leypold, C., et al.: Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017). https://doi.org/10.1038/nenergy.2017.36

    Article  CAS  ADS  Google Scholar 

  31. Gao, X., Jovanov, Z.P., Chen, Y., et al.: Phenol-catalyzed discharge in the aprotic lithium–oxygen battery. Angew. Chemie - Int. Ed. 56, 6539–6543 (2017). https://doi.org/10.1002/anie.201702432

    Article  CAS  Google Scholar 

  32. Wijaya, O., Hartmann, P., Younesi, R., et al.: A gamma fluorinated ether as an additive for enhanced oxygen activity in Li–O2 batteries. J. Mater. Chem. A 3, 19061–19067 (2015). https://doi.org/10.1039/c5ta03439f

    Article  CAS  Google Scholar 

  33. Qian, J., Henderson, W.A., Xu, W., et al.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). https://doi.org/10.1038/ncomms7362

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Uddin, J., Bryantsev, V.S., Giordani, V., et al.: Lithium nitrate as regenerable SEI stabilizing agent for rechargeable Li/O2 batteries. J. Phys. Chem. Lett. 4, 3760–3765 (2013). https://doi.org/10.1021/jz402025n

    Article  CAS  Google Scholar 

  35. Huang, Z., Ren, J., Zhang, W., et al.: Protecting the Li-metal anode in a Li–O2 battery by using boric acid as an SEI-forming additive. Adv. Mater. 30, 1803270 (2018). https://doi.org/10.1002/adma.201803270

    Article  CAS  Google Scholar 

  36. Lee, D.J., Lee, H., Kim, Y.J., et al.: Sustainable redox mediation for lithium–oxygen batteries by a composite protective layer on the lithium–metal anode. Adv. Mater. 28, 857–863 (2016). https://doi.org/10.1002/adma.201503169

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, J., Xu, W., Liu, W.: Oxygen-selective immobilized liquid membranes for operation of lithium–air batteries in ambient air. J. Power Sources 195, 7438–7444 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.028

    Article  CAS  ADS  Google Scholar 

  38. Amici, J., Alidoost, M., Francia, C., et al.: O2 selective membranes based on a dextrin-nanosponge (NS) in a PVDF-HFP polymer matrix for Li–air cells. Chem. Commun. 52, 13683–13686 (2016). https://doi.org/10.1039/c6cc06954a

    Article  CAS  Google Scholar 

  39. Lyu, Z., Zhou, Y., Dai, W., et al.: Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li–O2 batteries. Chem. Soc. Rev. 46, 6046–6072 (2017). https://doi.org/10.1039/c7cs00255f

    Article  CAS  PubMed  Google Scholar 

  40. Wang, H., Wang, X., Li, M., et al.: Porous materials applied in nonaqueous Li–O2 batteries: status and perspectives. Adv. Mater. 32, 2002559 (2020). https://doi.org/10.1002/adma.202002559

    Article  CAS  Google Scholar 

  41. Kwak, W.J., Rosy Sharon, D., et al.: Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020). https://doi.org/10.1021/acs.chemrev.9b00609

    Article  CAS  PubMed  Google Scholar 

  42. Lee, H.C., Park, J.O., Kim, M., et al.: High-energy-density Li–O2 battery at cell scale with folded cell structure. Joule 3, 542–556 (2019). https://doi.org/10.1016/j.joule.2018.11.016

    Article  CAS  Google Scholar 

  43. Park, J.O., Kim, M., Kim, J.H., et al.: A 1 000 Wh kg−1 Li–air battery: cell design and performance. J. Power Sources 419, 112–118 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.057

    Article  CAS  ADS  Google Scholar 

  44. Togasaki, N., Momma, T., Osaka, T.: Role of the solid electrolyte interphase on a Li metal anode in a dimethylsulfoxide-based electrolyte for a lithium–oxygen battery. J. Power Sources 294, 588–592 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.092

    Article  CAS  ADS  Google Scholar 

  45. Fang, C., Li, J., Zhang, M., et al.: Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Lang, J., Qi, L., Luo, Y., et al.: High performance lithium metal anode: progress and prospects. Energy Storage Mater. 7, 115–129 (2017). https://doi.org/10.1016/j.ensm.2017.01.006

    Article  Google Scholar 

  47. Lee, H., Lee, D.J., Lee, J.N., et al.: Chemical aspect of oxygen dissolved in a dimethyl sulfoxide-based electrolyte on lithium metal. Electrochim. Acta 123, 419–425 (2014). https://doi.org/10.1016/j.electacta.2014.01.042

    Article  CAS  Google Scholar 

  48. Liu, B., Xu, W., Yan, P., et al.: Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt-solvent coordination for Li–O2 batteries. Adv. Energy Mater. 7, 1602605 (2017). https://doi.org/10.1002/aenm.201602605

    Article  CAS  Google Scholar 

  49. Zhao, Q., Zhang, Y., Sun, G., et al.: Binary mixtures of highly concentrated tetraglyme and hydrofluoroether as a stable and nonflammable electrolyte for Li–O2 batteries. ACS Appl. Mater. Interfaces 10, 26312–26319 (2018). https://doi.org/10.1021/acsami.8b08346

    Article  CAS  PubMed  Google Scholar 

  50. Walker, W., Giordani, V., Uddin, J., et al.: A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013). https://doi.org/10.1021/ja311518s

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi, Y., Yamada, S., Ishikawa, T., et al.: Enhancement of bifunctional effect for LiNO3/glyme electrolyte by using dual solvent system for Li–O2 batteries. J. Electrochem. Soc. 167, 020542 (2020). https://doi.org/10.1149/1945-7111/ab6975

    Article  CAS  ADS  Google Scholar 

  52. Li, B., Liu, Y., Zhang, X., et al.: Hybrid polymer electrolyte for Li–O2 batteries. Green Energy Environ. 4, 3–19 (2019). https://doi.org/10.1016/j.gee.2018.08.002

    Article  Google Scholar 

  53. Chen, J., Chen, C., Huang, T., et al.: LiTFSI concentration optimization in TEGDME solvent for lithium–oxygen batteries. ACS Omega 4, 20708–20714 (2019). https://doi.org/10.1021/acsomega.9b02941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, Y., Suo, L., Lin, H., et al.: Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations. J. Mater. Chem. A 2, 9020–9024 (2014). https://doi.org/10.1039/c4ta00834k

    Article  CAS  Google Scholar 

  55. Han, S.-M., Kim, J.-H., Kim, D.-W.: Cycling performances of lithium–air cells assembled with mixed electrolytes of ionic liquid and diethylene glycol diethyl ether. J. Electrochem. Soc. 162, A3103–A3109 (2015). https://doi.org/10.1149/2.0161502jes

    Article  CAS  Google Scholar 

  56. Wang, Y., Lai, N.C., Lu, Y.R., et al.: A solvent-controlled oxidation mechanism of Li2O2 in lithium–oxygen batteries. Joule 2, 2364–2380 (2018). https://doi.org/10.1016/j.joule.2018.07.021

    Article  CAS  Google Scholar 

  57. Liu, T., Vivek, J.P., Zhao, E.W., et al.: Current challenges and routes forward for nonaqueous lithium–air batteries. Chem. Rev. 120, 6558–6625 (2020). https://doi.org/10.1021/acs.chemrev.9b00545

    Article  CAS  PubMed  Google Scholar 

  58. Zhai, D., Wang, H.H., Yang, J., et al.: Disproportionation in Li–O2 batteries based on a large surface area carbon cathode. J. Am. Chem. Soc. 135, 15364–15372 (2013). https://doi.org/10.1021/ja403199d

    Article  CAS  PubMed  Google Scholar 

  59. Kushima, A., Koido, T., Fujiwara, Y., et al.: Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li–oxygen battery. Nano Lett. 15, 8260–8265 (2015). https://doi.org/10.1021/acs.nanolett.5b03812

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Peng, Q., Chen, J., Ji, H., et al.: Origin of the overpotential for the oxygen evolution reaction on a well-defined graphene electrode probed by in situ sum frequency generation vibrational spectroscopy. J. Am. Chem. Soc. 140, 15568–15571 (2018). https://doi.org/10.1021/jacs.8b08285

    Article  CAS  PubMed  Google Scholar 

  61. Zhong, L., Mitchell, R.R., Liu, Y., et al.: In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett. 13, 2209–2214 (2013). https://doi.org/10.1021/nl400731w

    Article  CAS  PubMed  ADS  Google Scholar 

  62. He, K., Bi, X., Yuan, Y., et al.: Operando liquid cell electron microscopy of discharge and charge kinetics in lithium–oxygen batteries. Nano Energy 49, 338–345 (2018). https://doi.org/10.1016/j.nanoen.2018.04.046

    Article  CAS  Google Scholar 

  63. Liu, P., Han, J., Guo, X., et al.: Operando characterization of cathodic reactions in a liquid-state lithium–oxygen micro-battery by scanning transmission electron microscopy. Sci. Rep. 8, 3134 (2018). https://doi.org/10.1038/s41598-018-21503-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Zou, X., Lu, Q., Liao, K., et al.: Towards practically accessible aprotic Li–air batteries: progress and challenges related to oxygen-permeable membranes and cathodes. Energy Storage Mater. 45, 869–902 (2022). https://doi.org/10.1016/j.ensm.2021.12.031

    Article  Google Scholar 

  65. Poncelet, D., Leung, R., Centomo, L., et al.: Microencapsulation of silicone oils within polyamide-polyethylenimine membranes as oxygen carriers for bioreactor oxygenation. J. Chem. Technol. Biotechnol. 57, 253–263 (1993). https://doi.org/10.1002/jctb.280570309

    Article  CAS  Google Scholar 

  66. Ruan, Y., Sun, J., Song, S., et al.: A perfluorocarbon–silicone oil oxygen-selective membrane for ambient operation of aprotic Li–air batteries. Electrochem. Commun. 96, 93–97 (2018). https://doi.org/10.1016/j.elecom.2018.10.013

    Article  CAS  Google Scholar 

  67. Zhu, X.B., Zhao, T.S., Wei, Z.H., et al.: A high-rate and long cycle life solid-state lithium–air battery. Energy Environ. Sci. 8, 3745–3754 (2015). https://doi.org/10.1039/c5ee02867a

    Article  CAS  Google Scholar 

  68. Cao, L., Lv, F., Liu, Y., et al.: A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li–air batteries. Chem. Commun. 51, 4364–4367 (2015). https://doi.org/10.1039/c4cc09281c

    Article  CAS  Google Scholar 

  69. Xie, M., Huang, Z., Lin, X., et al.: Oxygen selective membrane based on perfluoropolyether for Li–air battery with long cycle life. Energy Storage Mater. 20, 307–314 (2019). https://doi.org/10.1016/j.ensm.2018.11.023

    Article  Google Scholar 

  70. Read, J., Mutolo, K., Ervin, M., et al.: Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J. Electrochem. Soc. 150, A1351 (2003). https://doi.org/10.1149/1.1606454

    Article  CAS  Google Scholar 

  71. Gittleson, F.S., Jones, R.E., Ward, D.K., et al.: Oxygen solubility and transport in Li–air battery electrolytes: establishing criteria and strategies for electrolyte design. Energy Environ. Sci. 10, 1167–1179 (2017). https://doi.org/10.1039/c6ee02915a

    Article  CAS  Google Scholar 

  72. Hartmann, P., Grübl, D., Sommer, H., et al.: Pressure dynamics in metal–oxygen (metal–air) batteries: a case study on sodium superoxide cells. J. Phys. Chem. C 118, 1461–1471 (2014). https://doi.org/10.1021/jp4099478

    Article  CAS  Google Scholar 

  73. Quaranta, M., Murkovic, M., Klimant, I.: A new method to measure oxygen solubility in organic solvents through optical oxygen sensing. Analyst 138, 6243–6245 (2013). https://doi.org/10.1039/c3an36782g

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Lindberg, J., Endródi, B., Åvall, G., et al.: Li salt anion effect on O2 solubility in an Li–O2 battery. J. Phys. Chem. C 122, 1913–1920 (2018). https://doi.org/10.1021/acs.jpcc.7b09218

    Article  CAS  Google Scholar 

  75. Ma, J.L., Zhang, W.C., Wang, X.D., et al.: Revealing the mechanism of saturated ether electrolyte for improving the long-cycling stability of Na–O2 batteries. Nano Energy 84, 105927 (2021)

    Article  CAS  Google Scholar 

  76. Liu, K., Wang, Z., Shi, L., et al.: Ionic liquids for high performance lithium metal batteries. J. Energy Chem. 59, 320–333 (2021). https://doi.org/10.1016/j.jechem.2020.11.017

    Article  CAS  Google Scholar 

  77. Monaco, S., Arangio, A.M., Soavi, F., et al.: An electrochemical study of oxygen reduction in pyrrolidinium-based ionic liquids for lithium/oxygen batteries. Electrochim. Acta 83, 94–104 (2012). https://doi.org/10.1016/j.electacta.2012.08.001

    Article  CAS  Google Scholar 

  78. Deyab, M.A., Mohsen, Q.: Improved battery capacity and cycle life in iron–air batteries with ionic liquid. Renew. Sustain. Energy Rev. 139, 110729 (2021). https://doi.org/10.1016/j.rser.2021.110729

    Article  CAS  Google Scholar 

  79. Das, S., Højberg, J., Knudsen, K.B., et al.: Instability of ionic liquid-based electrolytes in Li–O2 batteries. J. Phys. Chem. C 119, 18084–18090 (2015). https://doi.org/10.1021/acs.jpcc.5b04950

    Article  CAS  Google Scholar 

  80. Gittleson, F.S., Ward, D.K., Jones, R.E., et al.: Correlating structure and transport behavior in Li+ and O2 containing pyrrolidinium ionic liquids. Phys. Chem. Chem. Phys. 21, 17176–17189 (2019). https://doi.org/10.1039/c9cp02355k

    Article  CAS  PubMed  Google Scholar 

  81. Vanhoutte, G., Hojniak, S.D., Bardé, F., et al.: Fluorine-functionalized ionic liquids with high oxygen solubility. RSC Adv. 8, 4525–4530 (2018). https://doi.org/10.1039/c7ra13403g

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  82. Hu, Y.F., Liu, Z.C., Xu, C.M., et al.: The molecular characteristics dominating the solubility of gases in ionic liquids. Chem. Soc. Rev. 40, 3802–3823 (2011). https://doi.org/10.1039/c0cs00006j

    Article  CAS  PubMed  Google Scholar 

  83. Khan, A., Zhao, C.: Enhanced performance in mixture DMSO/ionic liquid electrolytes: toward rechargeable Li–O2 batteries. Electrochem. Commun. 49, 1–4 (2014). https://doi.org/10.1016/j.elecom.2014.09.014

    Article  CAS  Google Scholar 

  84. Lowe, K.C.: Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 13, 171–184 (1999). https://doi.org/10.1054/blre.1999.0113

    Article  CAS  PubMed  Google Scholar 

  85. Lowe, K.C.: Second-generation perfluorocarbon emulsion blood substitutes. Artif. Cells. Blood Substit. Immobil. Biotechnol. 28, 25–38 (2000). https://doi.org/10.3109/10731190009119783

    Article  CAS  PubMed  Google Scholar 

  86. Lowe, K.C.: Fluorinated blood substitutes and oxygen carriers. J. Fluor. Chem. 109, 59–65 (2001). https://doi.org/10.1016/S0022-1139(01)00374-8

    Article  CAS  Google Scholar 

  87. Kuritz, N., Murat, M., Balaish, M., et al.: PFC and triglyme for Li–air batteries: a molecular dynamics study. J. Phys. Chem. B 120, 3370–3377 (2016). https://doi.org/10.1021/acs.jpcb.5b12075

    Article  CAS  PubMed  Google Scholar 

  88. Schürmann, A., Haas, R., Murat, M., et al.: Diffusivity and solubility of oxygen in solvents for metal/oxygen batteries: a combined theoretical and experimental study. J. Electrochem. Soc. 165, A3095–A3099 (2018). https://doi.org/10.1149/2.0601813jes

    Article  CAS  Google Scholar 

  89. Balaish, M., Ein-Eli, Y.: Meso-pores carbon nano-tubes (CNTs) tissues-perfluorocarbons (PFCs) hybrid air-electrodes for Li–O2 battery. J. Power Sources 379, 219–227 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.049

    Article  CAS  ADS  Google Scholar 

  90. Thomas, M.L., Yamanaka, K., Ohta, T., et al.: A perfluorinated moiety-grafted carbon nanotube electrode for the non-aqueous lithium–oxygen battery. Chem. Commun. 51, 3977–3980 (2015). https://doi.org/10.1039/c4cc08815h

    Article  CAS  Google Scholar 

  91. Haas, R., Murat, M., Weiss, M., et al.: Understanding the transport of atmospheric gases in liquid electrolytes for lithium–air batteries. J. Electrochem. Soc. 168, 070504 (2021). https://doi.org/10.1149/1945-7111/abd64c

    Article  CAS  Google Scholar 

  92. Neale, A.R., Li, P., Jacquemin, J., et al.: Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium–air battery electrolytes. Phys. Chem. Chem. Phys. 18, 11251–11262 (2016). https://doi.org/10.1039/c5cp07160g

    Article  CAS  PubMed  Google Scholar 

  93. Dias, A.M.A., Freire, M., Coutinho, J.A.P., et al.: Solubility of oxygen in liquid perfluorocarbons. Fluid Phase Equilib. 222–223, 325–330 (2004). https://doi.org/10.1016/j.fluid.2004.06.037

    Article  CAS  Google Scholar 

  94. Anderson, P.M., Wilson, M.R.: Developing a force field for simulation of poly(ethylene oxide) based upon ab initio calculations of 1,2-dimethoxyethane. Mol. Phys. 103, 89–97 (2005). https://doi.org/10.1080/00268970412331293811

    Article  CAS  ADS  Google Scholar 

  95. Kim, B.G., Kim, J.S., Min, J., et al.: A moisture- and oxygen-impermeable separator for aprotic Li–O2 batteries. Adv. Funct. Mater. 26, 1747–1756 (2016). https://doi.org/10.1002/adfm.201504437

    Article  CAS  Google Scholar 

  96. Marinaro, M., Balasubramanian, P., Gucciardi, E., et al.: Importance of reaction kinetics and oxygen crossover in aprotic Li–O2 batteries based on a dimethyl sulfoxide electrolyte. ChemSusChem 8, 3139–3145 (2015). https://doi.org/10.1002/cssc.201500600

    Article  CAS  PubMed  Google Scholar 

  97. Younesi, R., Hahlin, M., Roberts, M., et al.: The SEI layer formed on lithium metal in the presence of oxygen: a seldom considered component in the development of the Li–O2 battery. J. Power Sources 225, 40–45 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.011

    Article  CAS  ADS  Google Scholar 

  98. Assary, R.S., Lu, J., Du, P., et al.: The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6, 51–55 (2013)

    Article  CAS  PubMed  Google Scholar 

  99. Esfahanian, V., Dalakeh, M.T., Aghamirzaie, N.: Mathematical modeling of oxygen crossover in a lithium–oxygen battery. Appl. Energy 250, 1356–1365 (2019). https://doi.org/10.1016/j.apenergy.2019.04.124

    Article  CAS  ADS  Google Scholar 

  100. Shen, Y., Sun, D., Yu, L., et al.: A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air. Carbon 62, 288–295 (2013). https://doi.org/10.1016/j.carbon.2013.05.066

    Article  CAS  Google Scholar 

  101. Wang, E., Dey, S., Liu, T., et al.: Effects of atmospheric gases on Li metal cyclability and solid-electrolyte interphase formation. ACS Energy Lett. 5, 1088–1094 (2020). https://doi.org/10.1021/acsenergylett.0c00257

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Qiu, F., Zhang, X., Qiao, Y., et al.: An ultra-stable and enhanced reversibility lithium metal anode with a sufficient O2 design for Li–O2 battery. Energy Storage Mater. 12, 176–182 (2018). https://doi.org/10.1016/j.ensm.2017.12.011

    Article  Google Scholar 

  103. Laoire, C.O., Mukerjee, S., Abraham, K.M., et al.: Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J. Phys. Chem. C 114, 9178–9186 (2010). https://doi.org/10.1021/jp102019y

    Article  CAS  Google Scholar 

  104. Burke, C.M., Pande, V., Khetan, A., et al.: Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proc. Natl. Acad. Sci. U. S. A. 112, 9293–9298 (2015). https://doi.org/10.1073/pnas.1505728112

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  105. Sharon, D., Hirsberg, D., Salama, M., et al.: Mechanistic role of Li+ dissociation level in aprotic Li–O2 battery. ACS Appl. Mater. Interfaces 8, 5300–5307 (2016). https://doi.org/10.1021/acsami.5b11483

    Article  CAS  PubMed  Google Scholar 

  106. Gunasekara, I., Mukerjee, S., Plichta, E.J., et al.: A study of the influence of lithium salt anions on oxygen reduction reactions in Li–air batteries. J. Electrochem. Soc. 162, A1055–A1066 (2015). https://doi.org/10.1149/2.0841506jes

    Article  CAS  Google Scholar 

  107. Aetukuri, N.B., McCloskey, B.D., García, J.M., et al.: Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7, 50–56 (2015). https://doi.org/10.1038/nchem.2132

    Article  CAS  PubMed  Google Scholar 

  108. Liu, B., Xu, W., Zheng, J., et al.: Temperature dependence of the oxygen reduction mechanism in nonaqueous Li–O2 batteries. ACS Energy Lett. 2, 2525–2530 (2017). https://doi.org/10.1021/acsenergylett.7b00845

    Article  CAS  Google Scholar 

  109. Wong, R.A., Dutta, A., Yang, C., et al.: Structurally tuning Li2O2 by controlling the surface properties of carbon electrodes: implications for Li–O2 batteries. Chem. Mater. 28, 8006–8015 (2016). https://doi.org/10.1021/acs.chemmater.6b03751

    Article  CAS  Google Scholar 

  110. Dutta, A., Wong, R.A., Park, W., et al.: Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium–oxygen batteries. Nat. Commun. 9, 680 (2018). https://doi.org/10.1038/s41467-017-02727-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Sahapatsombut, U., Cheng, H., Scott, K.: Modelling the micro-macro homogeneous cycling behaviour of a lithium–air battery. J. Power Sources 227, 243–253 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.053

    Article  CAS  Google Scholar 

  112. Jung, C.Y., Zhao, T., An, L.: Modeling of lithium–oxygen batteries with the discharge product treated as a discontinuous deposit layer. J. Power Sources 273, 440–447 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.103

    Article  CAS  ADS  Google Scholar 

  113. Gwak, G., Ju, H.: Three-dimensional transient modeling of a non-aqueous electrolyte lithium–air battery. Electrochim. Acta 201, 395–409 (2016). https://doi.org/10.1016/j.electacta.2016.03.040

    Article  CAS  Google Scholar 

  114. Aurbach, D., McCloskey, B.D., Nazar, L.F., et al.: Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016). https://doi.org/10.1038/nenergy.2016.128

    Article  CAS  ADS  Google Scholar 

  115. Zakharchenko, T.K., Avdeev, M.V., Sergeev, A.V., et al.: Small-angle neutron scattering studies of pore filling in carbon electrodes: mechanisms limiting lithium–air battery capacity. Nanoscale 11, 6838–6845 (2019). https://doi.org/10.1039/c9nr00190e

    Article  CAS  PubMed  Google Scholar 

  116. Khetan, A., Luntz, A., Viswanathan, V.: Trade-offs in capacity and rechargeability in nonaqueous Li–O2 batteries: solution-driven growth versus nucleophilic stability. J. Phys. Chem. Lett. 6, 1254–1259 (2015). https://doi.org/10.1021/acs.jpclett.5b00324

    Article  CAS  PubMed  Google Scholar 

  117. Henderson, W.A.: Glyme-lithium salt phase behavior. J. Phys. Chem. B 110, 13177–13183 (2006). https://doi.org/10.1021/jp061516t

    Article  CAS  PubMed  Google Scholar 

  118. Ganapathy, S., Adams, B.D., Stenou, G., et al.: Nature of Li2O2 oxidation in a Li−O2 battery revealed by operando. J. Am. Chem. Soc. 136, 16335–16344 (2014). https://doi.org/10.1021/ja508794r

    Article  CAS  PubMed  Google Scholar 

  119. Li, Z., Ganapathy, S., Xu, Y., et al.: Understanding the electrochemical formation and decomposition of Li2O2 and LiOH with operando X-ray diffraction. Chem. Mater. 29, 1577–1586 (2017). https://doi.org/10.1021/acs.chemmater.6b04370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wen, R., Hong, M., Byon, H.R.: In situ AFM imaging of Li–O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. J. Am. Chem. Soc. 135, 10870–10876 (2013). https://doi.org/10.1021/ja405188g

    Article  CAS  PubMed  Google Scholar 

  121. Balaish, M., Jung, J.W., Kim, I.D., et al.: A critical review on functionalization of air-cathodes for nonaqueous Li–O2 batteries. Adv. Funct. Mater. 30, 1808303 (2020). https://doi.org/10.1002/adfm.201808303

    Article  CAS  Google Scholar 

  122. Radin, M.D., Rodriguez, J.F., Tian, F., et al.: Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093–1103 (2012). https://doi.org/10.1021/ja208944x

    Article  CAS  PubMed  Google Scholar 

  123. Ryu, W.H., Gittleson, F.S., Li, J., et al.: A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning. Nano Lett. 16, 4799–4806 (2016). https://doi.org/10.1021/acs.nanolett.6b00856

    Article  CAS  PubMed  ADS  Google Scholar 

  124. Xiao, Y., Du, F., Hu, C., et al.: High-performance Li–CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS Energy Lett. 5, 916–921 (2020). https://doi.org/10.1021/acsenergylett.0c00181

    Article  CAS  Google Scholar 

  125. Dai, A., Li, Q., Liu, T., et al.: Fundamental understanding of water-induced mechanisms in Li–O2 batteries: recent developments and perspectives. Adv. Mater. 31, 1805602 (2019). https://doi.org/10.1002/adma.201805602

    Article  CAS  Google Scholar 

  126. Zhang, J.-G., Wang, D., Xu, W., et al.: Ambient operation of Li/air batteries. J. Power Sources 195, 4332–4337 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.022

    Article  CAS  ADS  Google Scholar 

  127. Meini, S., Piana, M., Tsiouvaras, N., et al.: The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries. Electrochem. Solid-State Lett. 15, A45 (2012). https://doi.org/10.1149/2.005204esl

    Article  CAS  Google Scholar 

  128. Li, F., Wu, S., Li, D., et al.: The water catalysis at oxygen cathodes of lithium–oxygen cells. Nat. Commun. 6, 7843 (2015). https://doi.org/10.1038/ncomms8843

    Article  CAS  PubMed  ADS  Google Scholar 

  129. Liu, T., Liu, Z., Kim, G., et al.: Understanding LiOH chemistry in a ruthenium-catalyzed Li–O2 battery. Angew. Chem. Int. Ed. 56, 16057–16062 (2017). https://doi.org/10.1002/anie.201709886

    Article  CAS  Google Scholar 

  130. Wang, X., Cai, S., Zhu, D., et al.: The investigation of water vapor on the Li–O2 battery using a solid-state air cathode. J. Solid State Electrochem. 19, 2421–2429 (2015). https://doi.org/10.1007/s10008-015-2887-7

    Article  CAS  Google Scholar 

  131. Wang, G., Huang, L., Liu, S., et al.: Understanding moisture and carbon dioxide involved interfacial reactions on electrochemical performance of lithium–air batteries catalyzed by gold/manganese-dioxide. ACS Appl. Mater. Interfaces 7, 23876–23884 (2015). https://doi.org/10.1021/acsami.5b05250

    Article  CAS  PubMed  Google Scholar 

  132. Tan, P., Shyy, W., Zhao, T.S., et al.: Effects of moist air on the cycling performance of non-aqueous lithium–air batteries. Appl. Energy 182, 569–575 (2016). https://doi.org/10.1016/j.apenergy.2016.08.113

    Article  CAS  ADS  Google Scholar 

  133. Lim, H.-K., Lim, H.-D., Park, K.-Y., et al.: Toward a lithium–“Air” battery: the effect of CO2 on the chemistry of a lithium–oxygen cell. J. Am. Chem. Soc. 135, 9733–9742 (2013). https://doi.org/10.1021/ja4016765

    Article  CAS  PubMed  Google Scholar 

  134. Wang, T., Pan, X., Chen, J., et al.: Critical CO2 concentration for practical lithium–air batteries. J. Phys. Chem. Lett. 12, 4799–4804 (2021). https://doi.org/10.1021/acs.jpclett.1c01054

    Article  CAS  PubMed  Google Scholar 

  135. Gowda, S.R., Brunet, A., Wallraff, G.M., et al.: Implications of CO2 contamination in rechargeable nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 276–279 (2013). https://doi.org/10.1021/jz301902h

    Article  CAS  PubMed  Google Scholar 

  136. Liu, Y., Wang, R., Lyu, Y., et al.: Rechargeable Li/CO2–O2 (2: 1) battery and Li/CO2 battery. Energy Environ. Sci. 7, 677–681 (2014). https://doi.org/10.1039/C3EE43318H

    Article  CAS  Google Scholar 

  137. Yin, W., Grimaud, A., Lepoivre, F., et al.: Chemical vs electrochemical formation of Li2CO3 as a discharge product in Li–O2/CO2 batteries by controlling the superoxide intermediate. J. Phys. Chem. Lett. 8, 214–222 (2017). https://doi.org/10.1021/acs.jpclett.6b02610

    Article  CAS  PubMed  Google Scholar 

  138. Qiao, Y., Yi, J., Guo, S., et al.: Li2CO3-free Li–O2/CO2 battery with peroxide discharge product. Energy Environ. Sci. 11, 1211–1217 (2018). https://doi.org/10.1039/c7ee03341a

    Article  CAS  Google Scholar 

  139. Chen, K., Huang, G., Ma, J.L., et al.: The stabilization effect of CO2 in lithium–oxygen/CO2 batteries. Angew. Chem. Int. Ed. 59, 16661–16667 (2020). https://doi.org/10.1002/anie.202006303

    Article  CAS  Google Scholar 

  140. Huang, S., Cui, Z., Zhao, N., et al.: Influence of ambient air on cell reactions of Li–air batteries. Electrochim. Acta 191, 473–478 (2016). https://doi.org/10.1016/j.electacta.2016.01.102

    Article  CAS  Google Scholar 

  141. Marques Mota, F., Kang, J.H., Jung, Y., et al.: Mechanistic study revealing the role of the Br3−/Br2 redox couple in CO2-assisted Li–O2 batteries. Adv. Energy Mater. 10, 1903486 (2020). https://doi.org/10.1002/aenm.201903486

    Article  CAS  Google Scholar 

  142. Asadi, M., Sayahpour, B., Abbasi, P., et al.: A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature 555, 502–506 (2018). https://doi.org/10.1038/nature25984

    Article  CAS  PubMed  ADS  Google Scholar 

  143. Qiu, F., Ren, S., Mu, X., et al.: Towards a stable Li–CO2 battery: the effects of CO2 to the Li metal anode. Energy Storage Mater. 26, 443–447 (2020). https://doi.org/10.1016/j.ensm.2019.11.017

    Article  Google Scholar 

  144. Qiao, Y., Yi, J., Wu, S., et al.: Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1, 359–370 (2017). https://doi.org/10.1016/j.joule.2017.07.001

    Article  CAS  Google Scholar 

  145. Tan, P., Wei, Z.H., Shyy, W., et al.: A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air. Energy Environ. Sci. 9, 1783–1793 (2016). https://doi.org/10.1039/c6ee00550k

    Article  CAS  Google Scholar 

  146. Qie, L., Lin, Y., Connell, J.W., et al.: Highly rechargeable lithium–CO2 batteries with a boron- and nitrogen-codoped holey-graphene cathode. Angew. Chem. Int. Ed. 56, 6970–6974 (2017). https://doi.org/10.1002/anie.201701826

    Article  CAS  Google Scholar 

  147. Mao, Y., Tang, C., Tang, Z., et al.: Long-life Li–CO2 cells with ultrafine IrO2-decorated few-layered δ-MnO2 enabling amorphous Li2CO3 growth. Energy Storage Mater. 18, 405–413 (2019). https://doi.org/10.1016/j.ensm.2018.08.011

    Article  Google Scholar 

  148. Xie, Z., Zhang, X., Zhang, Z., et al.: Metal–CO2 batteries on the road: CO2 from contamination gas to energy source. Adv. Mater. 29, 1605891 (2017). https://doi.org/10.1002/adma.201605891

    Article  CAS  Google Scholar 

  149. Ma, J.L., Bao, D., Shi, M.M., et al.: Reversible nitrogen fixation based on a rechargeable lithium–nitrogen battery for energy storage. Chem 2, 525–532 (2017). https://doi.org/10.1016/j.chempr.2017.03.016

    Article  CAS  Google Scholar 

  150. Wang, X., Zhang, Q., Zhang, X., et al.: Promoting nitrogen electroreduction on Mo2C nanoparticles highly dispersed on N-doped carbon nanosheets toward rechargeable Li–N2 batteries. Small Meth. 3, 1800334 (2019). https://doi.org/10.1002/smtd.201800334

    Article  CAS  Google Scholar 

  151. Liang, J., Zhang, C., Liu, D., et al.: Room-temperature reduction of NO2 in a Li–NO2 battery: a proof of concept. Sci. Bull. 65, 55–61 (2020). https://doi.org/10.1016/j.scib.2019.10.017

    Article  CAS  Google Scholar 

  152. Zhang, Z., Wu, S., Yang, C., et al.: Li–N2 batteries: a reversible energy storage system? Angew. Chem. Int. Ed. 58, 17782–17787 (2019). https://doi.org/10.1002/anie.201911338

    Article  CAS  Google Scholar 

  153. Gao, X., Chen, Y., Johnson, L., et al.: Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882–888 (2016). https://doi.org/10.1038/nmat4629

    Article  CAS  PubMed  ADS  Google Scholar 

  154. Gao, X., Chen, Y., Johnson, L.R., et al.: A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nano Energy 2, 17118 (2017). https://doi.org/10.1038/nenergy.2017.118

    Article  CAS  ADS  Google Scholar 

  155. Zhang, T., Liao, K., He, P., et al.: A self-defense redox mediator for efficient lithium–O2 batteries. Energy Environ. Sci. 9, 1024–1030 (2016). https://doi.org/10.1039/C5EE02803E

    Article  CAS  Google Scholar 

  156. Yang, L., Frith, J.T., Garcia-Araez, N., et al.: A new method to prevent degradation of lithium–oxygen batteries: reduction of superoxide by viologen. Chem. Commun. 51, 1705–1708 (2015). https://doi.org/10.1039/c4cc09208b

    Article  CAS  Google Scholar 

  157. Tesio, A.Y., Blasi, D., Olivares-Marín, M., et al.: Organic radicals for the enhancement of oxygen reduction reaction in Li–O2 batteries. Chem. Commun. 51, 17623–17626 (2015). https://doi.org/10.1039/c5cc07242e

    Article  CAS  Google Scholar 

  158. Lim, H.D., Lee, B., Zheng, Y., et al.: Rational design of redox mediators for advanced Li–O2 batteries. Nat. Energy 1, 16066 (2016). https://doi.org/10.1038/nenergy.2016.66

    Article  CAS  ADS  Google Scholar 

  159. Lim, H.D., Song, H., Kim, J., et al.: Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926–3931 (2014). https://doi.org/10.1002/anie.201400711

    Article  CAS  Google Scholar 

  160. Liu, T., Leskes, M., Yu, W., et al.: Cycling Li–O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015). https://doi.org/10.1126/science.aac7730

    Article  CAS  PubMed  ADS  Google Scholar 

  161. Wu, C., Liao, C., Li, T., et al.: A polymer lithium–oxygen battery based on semi-polymeric conducting ionomers as the polymer electrolyte. J. Mater. Chem. A 4, 15189–15196 (2016). https://doi.org/10.1039/C6TA06082J

    Article  CAS  Google Scholar 

  162. Ko, Y., Kim, H.I., Cho, S.J., et al.: Liquid-based janus electrolyte for sustainable redox mediation in lithium–oxygen batteries. Adv. Energy Mater. 11, 2102096 (2021). https://doi.org/10.1002/aenm.202102096

    Article  CAS  Google Scholar 

  163. Ko, Y., Park, H., Kim, B., et al.: Redox mediators: a solution for advanced lithium–oxygen batteries. Trends Chem. 1, 349–360 (2019). https://doi.org/10.1016/j.trechm.2019.03.016

    Article  CAS  Google Scholar 

  164. Kundu, D., Black, R., Adams, B., et al.: A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015). https://doi.org/10.1021/acscentsci.5b00267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Burke, C.M., Black, R., Kochetkov, I.R., et al.: Implications of 4 e oxygen reduction via iodide redox mediation in Li–O2 batteries. ACS Energy Lett. 1, 747–756 (2016). https://doi.org/10.1021/acsenergylett.6b00328

    Article  CAS  Google Scholar 

  166. Shen, Y., Zhang, W., Chou, S.-L., et al.: Comment on “cycling Li–O2 batteries via LiOH formation and decomposition.” Science 352, 667 (2016). https://doi.org/10.1126/science.aaf1399

    Article  CAS  PubMed  ADS  Google Scholar 

  167. Leverick, G., Tułodziecki, M., Tatara, R., et al.: Solvent-dependent oxidizing power of LiI redox couples for Li–O2 batteries. Joule 3, 1106–1126 (2019). https://doi.org/10.1016/j.joule.2018.12.014

    Article  CAS  Google Scholar 

  168. Temprano, I., Liu, T., Petrucco, E., et al.: Toward reversible and moisture-tolerant aprotic lithium–air batteries. Joule 4, 2501–2520 (2020). https://doi.org/10.1016/j.joule.2020.09.021

    Article  CAS  Google Scholar 

  169. Gao, J., Cai, X., Wang, J., et al.: Recent progress in hierarchically structured O2-cathodes for Li–O2 batteries. Chem. Eng. J. 352, 972–995 (2018). https://doi.org/10.1016/j.cej.2018.06.014

    Article  CAS  Google Scholar 

  170. Ding, N., Chien, S.W., Hor, T.S.A., et al.: Influence of carbon pore size on the discharge capacity of Li–O2 batteries. J. Mater. Chem. A 2, 12433–12441 (2014). https://doi.org/10.1039/c4ta01745e

    Article  CAS  Google Scholar 

  171. Liu, B., Yang, J., Duan, H., et al.: Cathode local curvature affects lithium peroxide growth in Li–O2 batteries. ACS Appl. Mater. Interfaces 11, 35264–35269 (2019). https://doi.org/10.1021/acsami.9b12849

    Article  CAS  PubMed  Google Scholar 

  172. Li, X.: A modeling study of the pore size evolution in lithium–oxygen battery electrodes. J. Electrochem. Soc. 162, A1636–A1645 (2015). https://doi.org/10.1149/2.0921508jes

    Article  CAS  Google Scholar 

  173. Xue, K.-H., Nguyen, T.-K., Franco, A.A.: Impact of the cathode microstructure on the discharge performance of lithium air batteries: a multiscale model. J. Electrochem. Soc. 161, E3028–E3035 (2014). https://doi.org/10.1149/2.002408jes

    Article  CAS  Google Scholar 

  174. Tan, P., Kong, W., Shao, Z., et al.: Advances in modeling and simulation of Li–air batteries. Prog. Energy Combust. Sci. 62, 155–189 (2017). https://doi.org/10.1016/j.pecs.2017.06.001

    Article  Google Scholar 

  175. Gaya, C., Yin, Y., Torayev, A., et al.: Investigation of bi-porous electrodes for lithium oxygen batteries. Electrochim. Acta 279, 118–127 (2018). https://doi.org/10.1016/j.electacta.2018.05.056

    Article  CAS  Google Scholar 

  176. Wang, F., Xu, Y.H., Luo, Z.K., et al.: A dual pore carbon aerogel based air cathode for a highly rechargeable lithium–air battery. J. Power Sources 272, 1061–1071 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.126

    Article  CAS  ADS  Google Scholar 

  177. Lin, X., Zhou, L., Huang, T., et al.: Hierarchically porous honeycomb-like carbon as a lithium–oxygen electrode. J. Mater. Chem. A 1, 1239–1245 (2013). https://doi.org/10.1039/C2TA00236A

    Article  CAS  Google Scholar 

  178. Guo, Z., Zhou, D., Dong, X., et al.: Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li–O2 batteries. Adv. Mater. 25, 5668–5672 (2013). https://doi.org/10.1002/adma.201302459

    Article  CAS  PubMed  Google Scholar 

  179. Yu, C., Zhao, C., Liu, S., et al.: Polystyrene sphere-mediated ultrathin graphene sheet-assembled frameworks for high-power density Li–O2 batteries. Chem. Commun. 51, 13233–13236 (2015). https://doi.org/10.1039/C5CC03806E

    Article  CAS  Google Scholar 

  180. Song, H., Xu, S., Li, Y., et al.: Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium–oxygen batteries. Adv. Energy Mater. 8, 1701203 (2018). https://doi.org/10.1002/aenm.201701203

    Article  CAS  ADS  Google Scholar 

  181. Shen, C., Liu, T., Zhang, M., et al.: Macroporous carbon nanotube (CNT) foams as Li–air battery cathodes. ECS Trans. 77, 239–248 (2017). https://doi.org/10.1149/07711.0239ecst

    Article  CAS  Google Scholar 

  182. Shen, C., Xie, J., Liu, T., et al.: Influence of pore size on discharge capacity in Li–air batteries with hierarchically macroporous carbon nanotube foams as cathodes. J. Electrochem. Soc. 165, A2833–A2839 (2018). https://doi.org/10.1149/2.1141811jes

    Article  CAS  Google Scholar 

  183. Chervin, C.N., Wattendorf, M.J., Long, J.W., et al.: Carbon nanofoam-based cathodes for Li–O2 batteries: correlation of pore-solid architecture and electrochemical performance. J. Electrochem. Soc. 160, A1510–A1516 (2013). https://doi.org/10.1149/2.070309jes

    Article  CAS  Google Scholar 

  184. Li, X., Faghri, A.: Optimization of the cathode structure of lithium–air batteries based on a two-dimensional, transient, non-isothermal model. J. Electrochem. Soc. 159, A1747 (2012)

    Article  CAS  Google Scholar 

  185. Tan, P., Shyy, W., An, L., et al.: A gradient porous cathode for non-aqueous lithium–air batteries leading to a high capacity. Electrochem. Commun. 46, 111–114 (2014). https://doi.org/10.1016/j.elecom.2014.06.026

    Article  CAS  Google Scholar 

  186. Li, J., Su, Z., Zhang, T., et al.: Highly efficient Li–air battery using ultra-thin air electrode. J. Electrochem. Soc. 166, A3606–A3614 (2019). https://doi.org/10.1149/2.0351915jes

    Article  CAS  Google Scholar 

  187. Adams, B.D., Radtke, C., Black, R., et al.: Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772–1778 (2013). https://doi.org/10.1039/c3ee40697k

    Article  CAS  Google Scholar 

  188. Tan, P., Chen, B., Xu, H., et al.: Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy Environ. Sci. 10, 2056–2080 (2017). https://doi.org/10.1039/c7ee01913k

    Article  CAS  Google Scholar 

  189. Wang, Z.-L., Xu, D., Xu, J.-J., et al.: Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43, 7746–7786 (2014). https://doi.org/10.1039/C3CS60248F

    Article  CAS  PubMed  Google Scholar 

  190. Shang, W., Yu, W., Ma, Y., et al.: Constructing the triple-phase boundaries of integrated air electrodes for high-performance Zn–air batteries. Adv. Mater. Interfaces 8, 2101256 (2021). https://doi.org/10.1002/admi.202101256

    Article  CAS  Google Scholar 

  191. Yu, J., Ran, R., Zhong, Y., et al.: Advances in porous perovskites: synthesis and electrocatalytic performance in fuel cells and metal-air batteries. Energy Environ. Mater. 3, 121–145 (2020). https://doi.org/10.1002/eem2.12064

    Article  CAS  Google Scholar 

  192. Zhong, Y., Xu, X., Wang, W., et al.: Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc–air batteries. Batter. Supercaps 2, 272–289 (2019). https://doi.org/10.1002/batt.201800093

    Article  CAS  Google Scholar 

  193. Zhong, Y., Xu, X., Liu, P., et al.: A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy Mater. 10, 2002992 (2020). https://doi.org/10.1002/aenm.202002992

    Article  CAS  Google Scholar 

  194. Padbury, R., Zhang, X.: Lithium–oxygen batteries: limiting factors that affect performance. J. Power Sources 196, 4436–4444 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.032

    Article  CAS  ADS  Google Scholar 

  195. Tan, P., Shyy, W., Zhao, T.: What is the ideal distribution of electrolyte inside cathode pores of non-aqueous lithium–air batteries? Sci. Bull. 60, 975–976 (2015). https://doi.org/10.1007/s11434-015-0783-2

    Article  CAS  Google Scholar 

  196. Andrei, P., Zheng, J.P., Hendrickson, M., et al.: Some possible approaches for improving the energy density of Li–air batteries. J. Electrochem. Soc. 157, A1287 (2010). https://doi.org/10.1149/1.3486114

    Article  CAS  Google Scholar 

  197. Xia, C., Bender, C.L., Bergner, B., et al.: An electrolyte partially-wetted cathode improving oxygen diffusion in cathodes of non-aqueous Li–air batteries. Electrochem. commun. 26, 93–96 (2013). https://doi.org/10.1016/j.elecom.2012.10.020

    Article  CAS  Google Scholar 

  198. Kim, D.S., Park, Y.J.: A simple method for surface modification of carbon by polydopamine coating for enhanced Li–air batteries. Electrochim. Acta 132, 297–306 (2014). https://doi.org/10.1016/j.electacta.2014.03.175

    Article  CAS  Google Scholar 

  199. Xu, L., Ma, J., Li, B., et al.: A novel air electrode design: a key to high rate capability and long life span. J. Power Sources 255, 187–196 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.124

    Article  CAS  ADS  Google Scholar 

  200. Balaish, M., Kraytsberg, A., Ein-Eli, Y.: Realization of an artificial three-phase reaction zone in a Li–air battery. ChemElectroChem 1, 90–94 (2014). https://doi.org/10.1002/celc.201300055

    Article  CAS  Google Scholar 

  201. Balaish, M., Ein-Eli, Y.: The role of air-electrode structure on the incorporation of immiscible PFCs in nonaqueous Li–O2 battery. ACS Appl. Mater. Interfaces 9, 9726–9737 (2017). https://doi.org/10.1021/acsami.7b00076

    Article  CAS  PubMed  Google Scholar 

  202. Das, S.K., Xu, S., Emwas, A.-H., et al.: High energy lithium–oxygen batteries: transport barriers and thermodynamics. Energy Environ. Sci. 5, 8927 (2012). https://doi.org/10.1039/c2ee22470d

    Article  CAS  Google Scholar 

  203. An, L., Shyy, W., Wei, Z.H., et al.: Discharge product morphology versus operating temperature in non-aqueous lithium–air batteries. J. Power Sources 278, 133–140 (2014). https://doi.org/10.1016/j.jpowsour.2014.12.049

    Article  CAS  Google Scholar 

  204. Lindberg, J., Wickman, B., Behm, M., et al.: The effect of O2 concentration on the reaction mechanism in Li–O2 batteries. J. Electroanal. Chem. 797, 1–7 (2017). https://doi.org/10.1016/j.jelechem.2017.05.005

    Article  CAS  Google Scholar 

  205. Tan, P., Shi, L., Shyy, W., et al.: Morphology of the discharge product in non-aqueous lithium–oxygen batteries: furrowed toroid particles correspond to a lower charge voltage. Energy Technol. 4, 393–400 (2016). https://doi.org/10.1002/ente.201500271

    Article  CAS  Google Scholar 

  206. Yu, W., Shang, W., Tan, P., et al.: Toward a new generation of low cost, efficient, and durable metal–air flow batteries. J. Mater. Chem. A 7, 26744–26768 (2019). https://doi.org/10.1039/c9ta10658h

    Article  CAS  Google Scholar 

  207. Huang, J., Faghri, A.: Capacity enhancement of a lithium oxygen flow battery. Electrochim. Acta 174, 908–918 (2015). https://doi.org/10.1016/j.electacta.2015.06.071

    Article  CAS  Google Scholar 

  208. Li, X., Huang, J., Faghri, A.: Modeling study of a Li–O2 battery with an active cathode. Energy 81, 489–500 (2015). https://doi.org/10.1016/j.energy.2014.12.062

    Article  CAS  Google Scholar 

  209. Ruggeri, I., Arbizzani, C., Soavi, F.: A novel concept of semi-solid, Li redox flow air (O2) battery: a breakthrough towards high energy and power batteries. Electrochim. Acta 206, 291–300 (2016). https://doi.org/10.1016/j.electacta.2016.04.139

    Article  CAS  Google Scholar 

  210. Kim, B., Takechi, K., Ma, S., et al.: Non-aqueous primary Li–air flow battery and optimization of its cathode through experiment and modeling. ChemSusChem 10, 4198–4206 (2017). https://doi.org/10.1002/cssc.201701255

    Article  CAS  PubMed  Google Scholar 

  211. Monaco, S., Soavi, F., Mastragostino, M.: Role of oxygen mass transport in rechargeable Li/O2 batteries operating with ionic liquids. J. Phys. Chem. Lett. 4, 1379–1382 (2013). https://doi.org/10.1021/jz4006256

    Article  CAS  PubMed  Google Scholar 

  212. Wang, Y., He, P., Zhou, H.: Li-redox flow batteries based on hybrid electrolytes: at the cross road between Li-ion and redox flow batteries. Adv. Energy Mater. 2, 770–779 (2012). https://doi.org/10.1002/aenm.201200100

    Article  CAS  Google Scholar 

  213. Zhu, Y.G., Jia, C., Yang, J., et al.: Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li–O2 battery. Chem. Commun. 51, 9451–9454 (2015). https://doi.org/10.1039/c5cc01616a

    Article  CAS  Google Scholar 

  214. Zhu, Y.G., Wang, X., Jia, C., et al.: Redox-mediated ORR and OER reactions: redox flow lithium oxygen batteries enabled with a pair of soluble redox catalysts. ACS Catal. 6, 6191–6197 (2016). https://doi.org/10.1021/acscatal.6b01478

    Article  CAS  Google Scholar 

  215. Zhu, Y.G., Goh, F.W.T., Yan, R., et al.: Synergistic oxygen reduction of dual redox catalysts boosting the power of lithium–air battery. Phys. Chem. 20, 27930–27936 (2018). https://doi.org/10.1039/c8cp04744h

    Article  CAS  Google Scholar 

  216. Soavi, F., Ruggeri, I., Arbizzani, C.: Design study of a novel, semi-solid Li/O2 redox flow battery. ECS Trans. 72, 1 (2016). https://doi.org/10.1149/07209.0001ecst

    Article  CAS  ADS  Google Scholar 

  217. Ruggeri, I., Arbizzani, C., Soavi, F.: Carbonaceous catholyte for high energy density semi-solid Li/O2 flow battery. Carbon 130, 749–757 (2018). https://doi.org/10.1016/j.carbon.2018.01.056

    Article  CAS  Google Scholar 

  218. Wang, Y., Hao, L., Bai, M.: A modeling study of the cycling behavior of non-aqueous Li–O2/CO2 batteries. J. Electrochem. Soc. 168, 020524 (2021). https://doi.org/10.1149/1945-7111/abe16e

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

P. Tan thanks the funding support from National Natural Science Foundation of China (52006208), CAS Pioneer Hundred Talents Program (KJ2090130001), USTC Startup Program (KY2090000044), and USTC Tang Scholar (KY2090000065). X.B. Zhu thanks the financial support of Natural Science Foundation of China (21673063) and Natural Science Foundation of Heilongjiang Province (B2017005).

Author information

Authors and Affiliations

Authors

Contributions

Zhuojun Zhang contributed to conceptualization, investigation, methodology, and writing—original draft. Xu Xiao contributed to investigation, and methodology. Xingbao Zhu contributed to writing—review & editing, and supervision. Peng Tan contributed to conceptualization, writing—review & editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Peng Tan.

Ethics declarations

Conflicts of Interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xiao, X., Zhu, X. et al. Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High Electrochemical Performance. Electrochem. Energy Rev. 6, 18 (2023). https://doi.org/10.1007/s41918-022-00157-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00157-3

Keywords

Navigation