Skip to main content

Advertisement

Log in

Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Recently, heterogeneous single-atom catalysts (SACs) have attracted enormous attention in electrochemical applications owing to their advantages of high metal utilization, well-defined active sites, tunable selectivity, and excellent activity. To avoid the aggregation of atomically dispersed metal sites, an appropriate support has to be adopted to reduce the surface free energy of catalysts. Graphene with a high surface area, outstanding conductivity, and unique electronic properties has generally been utilized as the substrate for SACs. Moreover, the correlations between metal–support interactions and the electrocatalytic performance at the atomic scale can be studied on graphene-supported single-atom catalyst (G-SAC) nanoplatforms. In this review, we start from an overview of the synthetic methods for G-SACs. Subsequently, several advanced and effective characterization techniques are discussed. Then, we present a comprehensive summary of recent progress in G-SACs for a variety of electrochemical applications. Finally, we present challenges for and an outlook on the development of G-SACs with outstanding catalytic activity, stability, and selectivity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Copyright © 2016, Nature Publishing Group. b Trends in the oxygen reduction activity via the 2e and 4e pathways of different moieties plotted as a function of the OOH* adsorption energy. c ORR pathway for various moieties; d simulated 2e pathway selectivity as a function of the potential; e chronoamperometric measurement of Co1-NG(O) catalysts in alkali conditions [123]. Reprinted with permission from Ref. [123]. Copyright © 2020, Nature Publishing Group

Fig. 11
Fig. 12
Fig. 13

Copyright © 2018, Nature Publishing Group. c HAADF-STEM image of Ni-doped grapheme [77]. Reprinted with permission from Ref. [77]. Copyright © 2015, Wiley–VCH. d HER stability test of Mo1N1C2 and Pt/C; e free energy diagram for H* adsorption on Mo1N1C2, β-Mo2C, MoN, and N-doped graphene; f calculated DOS of Mo1N1C2 [140]. Reprinted with permission from Ref. [140]. Copyright © 2017, Wiley–VCH. g Linear sweep voltammetry curves of NG, Co–G, Co–NG, and Pt/C in 0.5 M H2SO4 for the HER, where the inset shows an enlarged view near the onset region; h HER stability test of Co–NG in alkali and neutral conditions; i chronoamperometric measurement of Co–NG [52]. Reprinted with permission from Ref. [52]. Copyright © 2015, Nature Publishing Group

Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  Google Scholar 

  2. Argyrou, M.C., Christodoulides, P., Kalogirou, S.A.: Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 94, 804–821 (2018). https://doi.org/10.1016/j.rser.2018.06.044

    Article  Google Scholar 

  3. Wang, X.X., Swihart, M.T., Wu, G.: Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019). https://doi.org/10.1038/s41929-019-0304-9

    Article  CAS  Google Scholar 

  4. Gao, D.F., Arán-Ais, R.M., Jeon, H.S., et al.: Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5

    Article  CAS  Google Scholar 

  5. Liu, T., Vivek, J.P., Zhao, E.W., et al.: Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 120, 6558–6625 (2020). https://doi.org/10.1021/acs.chemrev.9b00545

    Article  CAS  Google Scholar 

  6. Roger, I., Shipman, M.A., Symes, M.D.: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003

    Article  CAS  Google Scholar 

  7. Zhang, L., Doyle-Davis, K., Sun, X.L.: Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ. Sci. 12, 492–517 (2019). https://doi.org/10.1039/c8ee02939c

    Article  CAS  Google Scholar 

  8. Zhu, Y.Z., Sokolowski, J., Song, X.C., et al.: Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 10, 1902844 (2020). https://doi.org/10.1002/aenm.201902844

    Article  CAS  Google Scholar 

  9. Mistry, H., Varela, A.S., Kühl, S., et al.: Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016). https://doi.org/10.1038/natrevmats.2016.9

    Article  CAS  Google Scholar 

  10. Yang, X.F., Wang, A.Q., Qiao, B.T., et al.: Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). https://doi.org/10.1021/ar300361m

    Article  CAS  Google Scholar 

  11. Thirumalai, H., Kitchin, J.R.: Investigating the reactivity of single atom alloys using density functional theory. Top. Catal. 61, 462–474 (2018). https://doi.org/10.1007/s11244-018-0899-0

    Article  CAS  Google Scholar 

  12. Qiao, B., Wang, A., Yang, X., et al.: Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095

    Article  CAS  Google Scholar 

  13. Li, X.Y., Rong, H.P., Zhang, J.T., et al.: Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 13, 1842–1855 (2020). https://doi.org/10.1007/s12274-020-2755-3

    Article  CAS  Google Scholar 

  14. Liu, J., Jiao, M., Lu, L., et al.: High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 8, 15938 (2017). https://doi.org/10.1038/ncomms15938

    Article  CAS  Google Scholar 

  15. Liang, Z.B., Guo, W.H., Zhao, R., et al.: Engineering atomically dispersed metal sites for electrocatalytic energy conversion. Nano Energy 64, 103917 (2019). https://doi.org/10.1016/j.nanoen.2019.103917

    Article  CAS  Google Scholar 

  16. Mitchell, S., Vorobyeva, E., Pérez-Ramírez, J.: The multifaceted reactivity of single-atom heterogeneous catalysts. Angew. Chem. Int. Ed. 57, 15316–15329 (2018). https://doi.org/10.1002/anie.201806936

    Article  CAS  Google Scholar 

  17. Wang, S.Y., Zhang, L.P., Xia, Z.H., et al.: BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 51, 4209–4212 (2012). https://doi.org/10.1002/anie.201109257

    Article  CAS  Google Scholar 

  18. Aihara, J.I.: Reduced HOMO–LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103, 7487–7495 (1999). https://doi.org/10.1021/jp990092i

    Article  CAS  Google Scholar 

  19. Wang, A.Q., Li, J., Zhang, T.: Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1

    Article  CAS  Google Scholar 

  20. Liu, L., Corma, A.: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  Google Scholar 

  21. Cui, X.J., Li, W., Ryabchuk, P., et al.: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018). https://doi.org/10.1038/s41929-018-0090-9

    Article  CAS  Google Scholar 

  22. Malta, G., Kondrat, S.A., Freakley, S.J., et al.: Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355, 1399–1403 (2017). https://doi.org/10.1126/science.aal3439

    Article  CAS  Google Scholar 

  23. Johansson, M.P., Sundholm, D., Vaara, J.: Au32: a 24-carat golden fullerene. Angewandte Chemie Int. Ed. 43, 2678–2681 (2004). https://doi.org/10.1002/anie.200453986

    Article  CAS  Google Scholar 

  24. Zuev, P.S., Sheridan, R.S., Albu, T.V., et al.: Carbon tunneling from a single quantum state. Science 299, 867–870 (2003). https://doi.org/10.1126/science.1079294

    Article  CAS  Google Scholar 

  25. Claus, P., Brückner, A., Mohr, C., et al.: Supported gold nanoparticles from quantum dot to mesoscopic size scale: effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc. 122, 11430–11439 (2000). https://doi.org/10.1021/ja0012974

    Article  CAS  Google Scholar 

  26. Kubo, R.: Electronic properties of metallic fine particles. I. J. Phys. Soc. Jpn. 17, 975–986 (1962). https://doi.org/10.1143/jpsj.17.975

    Article  CAS  Google Scholar 

  27. Zhang, L., Si, R., Liu, H., et al.: Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019). https://doi.org/10.1038/s41467-019-12887-y

    Article  CAS  Google Scholar 

  28. Cheng, N., Stambula, S., Wang, D., et al.: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638

    Article  CAS  Google Scholar 

  29. Nakada, K., Ishii, A.: DFT calculation for adatom adsorption on graphene. In: Gong, J.R. (Ed.) Graphene Simulation. InTech, London (2011). https://doi.org/10.5772/20477

  30. Hu, L.B., Hu, X.R., Wu, X.B., et al.: Density functional calculation of transition metal adatom adsorption on graphene. Phys. B Condens. Matter 405, 3337–3341 (2010). https://doi.org/10.1016/j.physb.2010.05.001

    Article  CAS  Google Scholar 

  31. Qin, R.X., Liu, P.X., Fu, G., et al.: Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1700286 (2018). https://doi.org/10.1002/smtd.201700286

    Article  CAS  Google Scholar 

  32. Xiong, Y., Sun, W.M., Han, Y.H., et al.: Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 14, 2418–2423 (2021). https://doi.org/10.1007/s12274-020-3244-4

    Article  CAS  Google Scholar 

  33. Xia, C., Qiu, Y., Xia, Y., et al.: General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021). https://doi.org/10.1038/s41557-021-00734-x

    Article  CAS  Google Scholar 

  34. Gong, X.F., Zhu, J.B., Li, J.Z., et al.: Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 31, 2008085 (2021). https://doi.org/10.1002/adfm.202008085

    Article  CAS  Google Scholar 

  35. Zhou, Q.Y., Cai, J.J., Zhang, Z., et al.: A gas-phase migration strategy to synthesize atomically dispersed Mn–N–C catalysts for Zn–air batteries. Small Methods 5, 2100024 (2021). https://doi.org/10.1002/smtd.202100024

    Article  CAS  Google Scholar 

  36. Ji, S., Chen, Y., Wang, X., et al.: Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020). https://doi.org/10.1021/acs.chemrev.9b00818

    Article  CAS  Google Scholar 

  37. Jang, H., Park, Y.J., Chen, X., et al.: Graphene-based flexible and stretchable electronics. Adv. Mater. 28, 4184–4202 (2016)

    Article  CAS  Google Scholar 

  38. Fu, W.Y., Jiang, L., van Geest, E.P., et al.: Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29, 1603610 (2017). https://doi.org/10.1002/adma.201603610

    Article  CAS  Google Scholar 

  39. Reina, G., González-Domínguez, J.M., Criado, A., et al.: Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 46, 4400–4416 (2017). https://doi.org/10.1039/c7cs00363c

    Article  CAS  Google Scholar 

  40. Srinivas, G., Burress, J., Yildirim, T.: Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Energy Environ. Sci. 5, 6453 (2012). https://doi.org/10.1039/c2ee21100a

    Article  CAS  Google Scholar 

  41. Ji, L.W., Meduri, P., Agubra, V., et al.: Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 6, 1502159 (2016). https://doi.org/10.1002/aenm.201502159

    Article  CAS  Google Scholar 

  42. Novoselov, K.S., Fal′ko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012). https://doi.org/10.1038/nature11458

    Article  CAS  Google Scholar 

  43. Tan, C., Cao, X., Wu, X.J., et al.: Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558

    Article  CAS  Google Scholar 

  44. Zheng, X.B., Li, P., Dou, S.X., et al.: Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 14, 2809–2858 (2021). https://doi.org/10.1039/d1ee00248a

    Article  CAS  Google Scholar 

  45. Guo, J., Yan, X.M., Liu, Q., et al.: The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 46, 347–355 (2018). https://doi.org/10.1016/j.nanoen.2018.02.026

    Article  CAS  Google Scholar 

  46. Wang, X., Sun, G., Routh, P., et al.: Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014). https://doi.org/10.1039/c4cs00141a

    Article  CAS  Google Scholar 

  47. Duan, J.J., Chen, S., Jaroniec, M., et al.: Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5, 5207–5234 (2015). https://doi.org/10.1021/acscatal.5b00991

    Article  CAS  Google Scholar 

  48. Lin, Z.Y., Waller, G.H., Liu, Y., et al.: 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2, 241–248 (2013). https://doi.org/10.1016/j.nanoen.2012.09.002

    Article  CAS  Google Scholar 

  49. Kim, G., Jhi, S.H., Lim, S., et al.: Effect of vacancy defects in graphene on metal anchoring and hydrogen adsorption. Appl. Phys. Lett. 94, 173102 (2009). https://doi.org/10.1063/1.3126450

    Article  CAS  Google Scholar 

  50. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., et al.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  51. He, H.Y., Klinowski, J., Forster, M., et al.: A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998). https://doi.org/10.1016/S0009-2614(98)00144-4

    Article  CAS  Google Scholar 

  52. Fei, H., Dong, J., Arellano-Jiménez, M.J., et al.: Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668

    Article  CAS  Google Scholar 

  53. Jiang, K., Siahrostami, S., Zheng, T.T., et al.: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018). https://doi.org/10.1039/c7ee03245e

    Article  CAS  Google Scholar 

  54. Fei, H.L., Dong, J.C., Feng, Y.X., et al.: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y

    Article  CAS  Google Scholar 

  55. Zhang, C., Sha, J., Fei, H., et al.: Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 11, 6930–6941 (2017). https://doi.org/10.1021/acsnano.7b02148

    Article  CAS  Google Scholar 

  56. Guan, J.Q., Duan, Z.Y., Zhang, F.X., et al.: Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 1, 870–877 (2018). https://doi.org/10.1038/s41929-018-0158-6

    Article  CAS  Google Scholar 

  57. Wen, X.D., Duan, Z.Y., Bai, L., et al.: Atomic scandium and nitrogen-codoped graphene for oxygen reduction reaction. J. Power Sources 431, 265–273 (2019). https://doi.org/10.1016/j.jpowsour.2019.126650

    Article  CAS  Google Scholar 

  58. Zhao, L., Zhang, Y., Huang, L.B., et al.: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10, 1278 (2019). https://doi.org/10.1038/s41467-019-09290-y

    Article  CAS  Google Scholar 

  59. Liu, D.B., Wu, C.Q., Chen, S.M., et al.: In situ trapped high-density single metal atoms within graphene: iron-containing hybrids as representatives for efficient oxygen reduction. Nano Res. 11, 2217–2228 (2018). https://doi.org/10.1007/s12274-017-1840-8

    Article  CAS  Google Scholar 

  60. Yang, H.B., Hung, S.F., Liu, S., et al.: Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8

    Article  CAS  Google Scholar 

  61. Hou, Y., Qiu, M., Kim, M.G., et al.: Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5

    Article  CAS  Google Scholar 

  62. Jiang, K., Siahrostami, S., Akey, A.J., et al.: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017). https://doi.org/10.1016/j.chempr.2017.09.014

    Article  CAS  Google Scholar 

  63. Yang, L., Cheng, D.J., Xu, H.X., et al.: Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 115, 6626–6631 (2018). https://doi.org/10.1073/pnas.1800771115

    Article  CAS  Google Scholar 

  64. Yang, L., Shi, L., Wang, D., et al.: Single-atom cobalt electrocatalysts for foldable solid-state Zn–air battery. Nano Energy 50, 691–698 (2018). https://doi.org/10.1016/j.nanoen.2018.06.023

    Article  CAS  Google Scholar 

  65. Deng, D.H., Chen, X.Q., Yu, L., et al.: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1, e1500462 (2015). https://doi.org/10.1126/sciadv.1500462

    Article  Google Scholar 

  66. Chen, X.Q., Yu, L., Wang, S.H., et al.: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 32, 353–358 (2017). https://doi.org/10.1016/j.nanoen.2016.12.056

    Article  CAS  Google Scholar 

  67. Cui, X.J., Xiao, J.P., Wu, Y.H., et al.: A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed. 55, 6708–6712 (2016). https://doi.org/10.1002/anie.201602097

    Article  CAS  Google Scholar 

  68. Lu, J.L., Elam, J.W., Stair, P.C.: Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 46, 1806–1815 (2013). https://doi.org/10.1021/ar300229c

    Article  CAS  Google Scholar 

  69. Stambula, S., Gauquelin, N., Bugnet, M., et al.: Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J. Phys. Chem. C 118, 3890–3900 (2014). https://doi.org/10.1021/jp408979h

    Article  CAS  Google Scholar 

  70. Sun, S.H., Zhang, G.X., Gauquelin, N., et al.: Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3, 1775 (2013). https://doi.org/10.1038/srep01775

    Article  CAS  Google Scholar 

  71. Yan, H., Cheng, H., Yi, H., et al.: Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137, 10484–10487 (2015). https://doi.org/10.1021/jacs.5b06485

    Article  CAS  Google Scholar 

  72. Wang, H., Wang, Q., Cheng, Y., et al.: Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2012). https://doi.org/10.1021/nl2031629

    Article  CAS  Google Scholar 

  73. Åhlgren, E.H., Kotakoski, J., Krasheninnikov, A.V.: Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Phys. Rev. B 83, 115424 (2011). https://doi.org/10.1103/physrevb.83.115424

    Article  Google Scholar 

  74. Lehtinen, O., Kotakoski, J., Krasheninnikov, A.V., et al.: Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys. Rev. B 81, 153401 (2010). https://doi.org/10.1103/physrevb.81.153401

    Article  Google Scholar 

  75. Robertson, A.W., Montanari, B., He, K., et al.: Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13, 1468–1475 (2013). https://doi.org/10.1021/nl304495v

    Article  CAS  Google Scholar 

  76. Fei, H.L., Dong, J.C., Wan, C.Z., et al.: Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 30, 1802146 (2018). https://doi.org/10.1002/adma.201802146

    Article  CAS  Google Scholar 

  77. Qiu, H.J., Ito, Y., Cong, W.T., et al.: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015). https://doi.org/10.1002/anie.201507381

    Article  CAS  Google Scholar 

  78. Maschmeyer, T., Rey, F., Sankar, G., et al.: Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378, 159–162 (1995). https://doi.org/10.1038/378159a0

    Article  CAS  Google Scholar 

  79. Liu, J.Y.: Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: probing the catalytically active centers. Chin. J. Catal. 38, 1460–1472 (2017). https://doi.org/10.1016/S1872-2067(17)62900-0

    Article  CAS  Google Scholar 

  80. Ogino, I.: X-ray absorption spectroscopy for single-atom catalysts: critical importance and persistent challenges. Chin. J. Catal. 38, 1481–1488 (2017). https://doi.org/10.1016/S1872-2067(17)62880-8

    Article  Google Scholar 

  81. Haider, M., Rose, H., Uhlemann, S., et al.: A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53–60 (1998). https://doi.org/10.1016/S0304-3991(98)00048-5

    Article  CAS  Google Scholar 

  82. Haider, M., Uhlemann, S., Schwan, E., et al.: Electron microscopy image enhanced. Nature 392, 768–769 (1998). https://doi.org/10.1038/33823

    Article  CAS  Google Scholar 

  83. Krivanek, O.L., Dellby, N., Lupini, A.R.: Towards sub-Å electron beams. Ultramicroscopy 78, 1–11 (1999). https://doi.org/10.1016/S0304-3991(99)00013-3

    Article  CAS  Google Scholar 

  84. Lacroix, L.M., Arenal, R., Viau, G.: Dynamic HAADF-STEM observation of a single-atom chain as the transient state of gold ultrathin nanowire breakdown. J. Am. Chem. Soc. 136, 13075–13077 (2014). https://doi.org/10.1021/ja507728j

    Article  CAS  Google Scholar 

  85. Zheng, J.K., Luo, R.C., Zeng, X.Q., et al.: Nano-scale precipitation and phase growth in Mg-Gd binary alloy: an atomic-scale investigation using HAADF-STEM. Mater. Des. 137, 316–324 (2018). https://doi.org/10.1016/j.matdes.2017.10.042

    Article  CAS  Google Scholar 

  86. Jia, Q.Y., Liu, E.S., Jiao, L., et al.: X-ray absorption spectroscopy characterizations on PGM-free electrocatalysts: justification, advantages, and limitations. Adv. Mater. 31, 1805157 (2019). https://doi.org/10.1002/adma.201805157

    Article  CAS  Google Scholar 

  87. Rehr, J.J., Albers, R.C.: Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000). https://doi.org/10.1103/revmodphys.72.621

    Article  CAS  Google Scholar 

  88. Funke, H., Scheinost, A.C., Chukalina, M.: Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005). https://doi.org/10.1103/physrevb.71.094110

    Article  Google Scholar 

  89. Li, J.K., Ghoshal, S., Liang, W.T., et al.: Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ. Sci. 9, 2418–2432 (2016). https://doi.org/10.1039/c6ee01160h

    Article  CAS  Google Scholar 

  90. Zitolo, A., Ranjbar-Sahraie, N., Mineva, T., et al.: Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017). https://doi.org/10.1038/s41467-017-01100-7

    Article  CAS  Google Scholar 

  91. Zagal, J.H., Koper, M.T.M.: Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 55, 14510–14521 (2016). https://doi.org/10.1002/anie.201604311

    Article  CAS  Google Scholar 

  92. Cao, L.L., Luo, Q.Q., Liu, W., et al.: Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019). https://doi.org/10.1038/s41929-018-0203-5

    Article  CAS  Google Scholar 

  93. Miller, M.K., Kelly, T.F., Rajan, K., et al.: The future of atom probe tomography. Mater. Today 15, 158–165 (2012). https://doi.org/10.1016/S1369-7021(12)70069-X

    Article  CAS  Google Scholar 

  94. Kelly, T.F., Miller, M.K.: Atom probe tomography. Rev. Sci. Instruments 78, 031101 (2007). https://doi.org/10.1063/1.2709758

    Article  CAS  Google Scholar 

  95. Miller, M.K., Kenik, E.A.: Atom probe tomography: a technique for nanoscale characterization. Microsc. Microanal. 10, 336–341 (2004). https://doi.org/10.1017/s1431927604040577

    Article  CAS  Google Scholar 

  96. Kramm, U.I., Ni, L.M., Wagner, S.: 57Fe Mössbauer spectroscopy characterization of electrocatalysts. Adv. Mater. 31, 1805623 (2019). https://doi.org/10.1002/adma.201805623

    Article  CAS  Google Scholar 

  97. Zboril, R., Mashlan, M., Petridis, D.: Iron(III) oxides from thermal processes–synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 14, 969–982 (2002). https://doi.org/10.1021/cm0111074

    Article  CAS  Google Scholar 

  98. Dumesic, J.A., Topsøe, H.: Mössbauer spectroscopy applications to heterogeneous catalysis. Adv. Catal. 26, 121–246 (1977). https://doi.org/10.1016/S0360-0564(08)60071-1

    Article  CAS  Google Scholar 

  99. Zitolo, A., Goellner, V., Armel, V., et al.: Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015). https://doi.org/10.1038/nmat4367

    Article  CAS  Google Scholar 

  100. Kramm, U.I., Herranz, J., Larouche, N., et al.: Structure of the catalytic sites in Fe/N/C-catalysts for O2 reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 14, 11673–11688 (2012). https://doi.org/10.1039/c2cp41957b

    Article  CAS  Google Scholar 

  101. Schulenburg, H., Stankov, S., Schünemann, V., et al.: Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J. Phys. Chem. B 107, 9034–9041 (2003). https://doi.org/10.1021/jp030349j

    Article  CAS  Google Scholar 

  102. Li, J.Z., Zhang, H.G., Samarakoon, W., et al.: Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58, 18971–18980 (2019). https://doi.org/10.1002/anie.201909312

    Article  CAS  Google Scholar 

  103. Zhang, N., Zhou, T.P., Chen, M.L., et al.: High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 13, 111–118 (2020). https://doi.org/10.1039/c9ee03027a

    Article  CAS  Google Scholar 

  104. Liu, D., Li, J.C., Ding, S.C., et al.: 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods 4, 1900827 (2020). https://doi.org/10.1002/smtd.201900827

    Article  CAS  Google Scholar 

  105. Byon, H.R., Suntivich, J., Shao-Horn, Y.: Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 23, 3421–3428 (2011). https://doi.org/10.1021/cm2000649

    Article  CAS  Google Scholar 

  106. Zhong, L.X., Li, S.Z.: Unconventional oxygen reduction reaction mechanism and scaling relation on single-atom catalysts. ACS Catal. 10, 4313–4318 (2020). https://doi.org/10.1021/acscatal.0c00815

    Article  CAS  Google Scholar 

  107. Kulkarni, A., Siahrostami, S., Patel, A., et al.: Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488

    Article  CAS  Google Scholar 

  108. Rossmeisl, J., Logadottir, A., Nørskov, J.K.: Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005). https://doi.org/10.1016/j.chemphys.2005.05.038

    Article  CAS  Google Scholar 

  109. Kang, S.F., Chang, H.M.: Coagulation of textile secondary effluents with Fenton’s reagent. Water Sci. Technol. 36, 215–222 (1997). https://doi.org/10.2166/wst.1997.0450

    Article  CAS  Google Scholar 

  110. Walling, C.: Fenton’s reagent revisited. Acc. Chem. Res. 8, 125–131 (1975). https://doi.org/10.1021/ar50088a003

    Article  CAS  Google Scholar 

  111. Jiang, H.L., He, Q., Wang, C.D., et al.: Definitive structural identification toward molecule-type sites within 1D and 2D carbon-based catalysts. Adv. Energy Mater. 8, 1800436 (2018). https://doi.org/10.1002/aenm.201800436

    Article  CAS  Google Scholar 

  112. Wang, X.X., Prabhakaran, V., He, Y.H., et al.: Iron-free cathode catalysts for proton-exchange-membrane fuel cells: cobalt catalysts and the peroxide mitigation approach. Adv. Mater. 31, 1805126 (2019). https://doi.org/10.1002/adma.201805126

    Article  CAS  Google Scholar 

  113. Wu, H.H., Li, H.B., Zhao, X.F., et al.: Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ. Sci. 9, 3736–3745 (2016). https://doi.org/10.1039/c6ee01867j

    Article  CAS  Google Scholar 

  114. Han, G.K., Zheng, Y., Zhang, X., et al.: High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy 66, 104088 (2019). https://doi.org/10.1016/j.nanoen.2019.104088

    Article  CAS  Google Scholar 

  115. Wang, J., Wang, K., Wang, F.B., et al.: Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nat. Commun. 5, 5285 (2014). https://doi.org/10.1038/ncomms6285

    Article  CAS  Google Scholar 

  116. Ye, R.Q., Dong, J.C., Wang, L.Q., et al.: Manganese deception on graphene and implications in catalysis. Carbon 132, 623–631 (2018). https://doi.org/10.1016/j.carbon.2018.02.082

    Article  CAS  Google Scholar 

  117. Li, J.Z., Chen, M.J., Cullen, D.A., et al.: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8

    Article  CAS  Google Scholar 

  118. Siahrostami, S., Verdaguer-Casadevall, A., Karamad, M., et al.: Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). https://doi.org/10.1038/nmat3795

    Article  CAS  Google Scholar 

  119. Xia, C., Xia, Y., Zhu, P., et al.: Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019). https://doi.org/10.1126/science.aay1844

    Article  CAS  Google Scholar 

  120. Choi, C.H., Kwon, H.C., Yook, S., et al.: Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014). https://doi.org/10.1021/jp5113894

    Article  CAS  Google Scholar 

  121. Zheng, Y., Jiao, Y., Ge, L., et al.: Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 52, 3110–3116 (2013). https://doi.org/10.1002/anie.201209548

    Article  CAS  Google Scholar 

  122. Choi, C.H., Kim, M., Kwon, H.C., et al.: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922

    Article  CAS  Google Scholar 

  123. Jung, E., Shin, H., Lee, B.H., et al.: Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020). https://doi.org/10.1038/s41563-019-0571-5

    Article  CAS  Google Scholar 

  124. Jiao, Y., Zheng, Y., Jaroniec, M., et al.: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/c4cs00470a

    Article  CAS  Google Scholar 

  125. Suen, N.T., Hung, S.F., Quan, Q., et al.: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/c6cs00328a

    Article  CAS  Google Scholar 

  126. Gao, G.P., Jiao, Y., Waclawik, E.R., et al.: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138, 6292–6297 (2016). https://doi.org/10.1021/jacs.6b02692

    Article  CAS  Google Scholar 

  127. Zhang, L.Z., Jia, Y., Gao, G.P., et al.: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285–297 (2018). https://doi.org/10.1016/j.chempr.2017.12.005

    Article  CAS  Google Scholar 

  128. Tavakkoli, M., Flahaut, E., Peljo, P., et al.: Mesoporous single-atom-doped graphene–carbon nanotube hybrid: synthesis and tunable electrocatalytic activity for oxygen evolution and reduction reactions. ACS Catal. 10, 4647–4658 (2020). https://doi.org/10.1021/acscatal.0c00352

    Article  CAS  Google Scholar 

  129. Wu, J.B., Zhou, H., Li, Q., et al.: Densely populated isolated single Co–N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9, 1900149 (2019). https://doi.org/10.1002/aenm.201900149

    Article  CAS  Google Scholar 

  130. Bai, L., Duan, Z.Y., Wen, X.D., et al.: Highly dispersed ruthenium-based multifunctional electrocatalyst. ACS Catal. 9, 9897–9904 (2019). https://doi.org/10.1021/acscatal.9b03514

    Article  CAS  Google Scholar 

  131. Fernando, A., Aikens, C.M.: Theoretical investigation of water oxidation catalysis by a model manganese cubane complex. J. Phys. Chem. C 120, 21148–21161 (2016). https://doi.org/10.1021/acs.jpcc.6b03029

    Article  CAS  Google Scholar 

  132. Britt, R.D., Suess, D.L.M., Stich, T.A.: An Mn(V)–oxo role in splitting water? Proc. Natl. Acad. Sci. USA 112, 5265–5266 (2015). https://doi.org/10.1073/pnas.1505223112

    Article  CAS  Google Scholar 

  133. Busch, M., Ahlberg, E., Panas, I.: Electrocatalytic oxygen evolution from water on a Mn(III–V) dimer model catalyst: a DFT perspective. Phys. Chem. Chem. Phys. 13, 15069 (2011). https://doi.org/10.1039/c0cp02132f

    Article  CAS  Google Scholar 

  134. Shaffer, D.W., Xie, Y., Concepcion, J.J.: O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling. Chem. Soc. Rev. 46, 6170–6193 (2017). https://doi.org/10.1039/c7cs00542c

    Article  CAS  Google Scholar 

  135. Li, X.C., Li, J., Siegbahn, P.E.M.: A theoretical study of the recently suggested MnVII mechanism for O–O bond formation in photosystem II. J. Phys. Chem. A 124, 8011–8018 (2020). https://doi.org/10.1021/acs.jpca.0c05135

    Article  CAS  Google Scholar 

  136. Zhang, Q.Q., Duan, Z.Y., Li, M., et al.: Atomic cobalt catalysts for the oxygen evolution reaction. Chem. Commun. 56, 794–797 (2020). https://doi.org/10.1039/c9cc09007j

    Article  CAS  Google Scholar 

  137. Ye, S.H., Luo, F.Y., Zhang, Q.L., et al.: Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 12, 1000–1007 (2019). https://doi.org/10.1039/c8ee02888e

    Article  CAS  Google Scholar 

  138. Zhang, Z., Chen, Y., Zhou, L., et al.: The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 10, 1657 (2019). https://doi.org/10.1038/s41467-019-09596-x

    Article  CAS  Google Scholar 

  139. Liu, D.B., Li, X.Y., Chen, S.M., et al.: Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6

    Article  CAS  Google Scholar 

  140. Chen, W.X., Pei, J.J., He, C.T., et al.: Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem. Int. Ed. 56, 16086–16090 (2017). https://doi.org/10.1002/anie.201710599

    Article  CAS  Google Scholar 

  141. Kortlever, R., Shen, J., Schouten, K.J.P., et al.: Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559

    Article  CAS  Google Scholar 

  142. Peterson, A.A., Nørskov, J.K.: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012). https://doi.org/10.1021/jz201461p

    Article  CAS  Google Scholar 

  143. Wang, Z.X., Zhao, J.X., Cai, Q.H.: CO2 electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: a computational study. Phys. Chem. Chem. Phys. 19, 23113–23121 (2017). https://doi.org/10.1039/c7cp04299j

    Article  CAS  Google Scholar 

  144. Back, S., Lim, J., Kim, N.Y., et al.: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017). https://doi.org/10.1039/c6sc03911a

    Article  CAS  Google Scholar 

  145. Peng, B.S., Liu, H.T., Liu, Z.Y., et al.: Toward rational design of single-atom catalysts. J. Phys. Chem. Lett. 12, 2837–2847 (2021). https://doi.org/10.1021/acs.jpclett.1c00049

    Article  CAS  Google Scholar 

  146. Raciti, D., Wang, C.: Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 3, 1545–1556 (2018). https://doi.org/10.1021/acsenergylett.8b00553

    Article  CAS  Google Scholar 

  147. Vorobyeva, E., Gerken, V.C., Mitchell, S., et al.: Activation of copper species on carbon nitride for enhanced activity in the arylation of amines. ACS Catal. 10, 11069–11080 (2020). https://doi.org/10.1021/acscatal.0c03164

    Article  CAS  Google Scholar 

  148. Xu, C.C., Zhi, X., Vasileff, A., et al.: Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts. Small Struct. 2, 2000058 (2021). https://doi.org/10.1002/sstr.202000058

    Article  CAS  Google Scholar 

  149. Yang, H.P., Wu, Y., Li, G.D., et al.: Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141, 12717–12723 (2019). https://doi.org/10.1021/jacs.9b04907

    Article  CAS  Google Scholar 

  150. Karapinar, D., Huan, N.T., Ranjbar Sahraie, N., et al.: Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019). https://doi.org/10.1002/anie.201907994

    Article  CAS  Google Scholar 

  151. Zheng, Y., Vasileff, A., Zhou, X.L., et al.: Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124

    Article  CAS  Google Scholar 

  152. Bi, W.T., Li, X.G., You, R., et al.: Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 30, 1706617 (2018). https://doi.org/10.1002/adma.201706617

    Article  CAS  Google Scholar 

  153. Zhang, C.H., Yang, S.Z., Wu, J.J., et al.: Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8, 1703487 (2018). https://doi.org/10.1002/aenm.201703487

    Article  CAS  Google Scholar 

  154. He, H.Y., Jagvaral, Y.: Electrochemical reduction of CO2 on graphene supported transition metals: towards single atom catalysts. Phys. Chem. Chem. Phys. 19, 11436–11446 (2017). https://doi.org/10.1039/c7cp00915a

    Article  CAS  Google Scholar 

  155. Su, P.P., Iwase, K., Nakanishi, S., et al.: Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide. Small 12, 6083–6089 (2016). https://doi.org/10.1002/smll.201602158

    Article  CAS  Google Scholar 

  156. Varela, A.S., Ranjbar Sahraie, N., Steinberg, J., et al.: Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015). https://doi.org/10.1002/anie.201502099

    Article  CAS  Google Scholar 

  157. Foster, S.L., Bakovic, S.I.P., Duda, R.D., et al.: Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018). https://doi.org/10.1038/s41929-018-0092-7

    Article  Google Scholar 

  158. van der Ham, C.J., Koper, M.T., Hetterscheid, D.G.: Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014). https://doi.org/10.1039/c4cs00085d

    Article  CAS  Google Scholar 

  159. Klerke, A., Christensen, C.H., Nørskov, J.K., et al.: Ammonia for hydrogen storage: challenges and opportunities. J. Mater. Chem. 18, 2304 (2008). https://doi.org/10.1039/b720020j

    Article  CAS  Google Scholar 

  160. Deng, J., Iñiguez, J.A., Liu, C.: Electrocatalytic nitrogen reduction at low temperature. Joule 2, 846–856 (2018). https://doi.org/10.1016/j.joule.2018.04.014

    Article  CAS  Google Scholar 

  161. Tang, S., Dang, Q., Liu, T., et al.: Realizing a not-strong-not-weak polarization electric field in single-atom catalysts sandwiched by boron nitride and graphene sheets for efficient nitrogen fixation. J. Am. Chem. Soc. 142, 19308–19315 (2020)

    Article  CAS  Google Scholar 

  162. Huang, Y., Yang, T.T., Yang, L., et al.: Graphene–boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A 7, 15173–15180 (2019). https://doi.org/10.1039/c9ta02947h

    Article  CAS  Google Scholar 

  163. Tian, X.L., Wang, L.J., Deng, P.L., et al.: Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. J. Energy Chem. 26, 1067–1076 (2017). https://doi.org/10.1016/j.jechem.2017.10.009

    Article  Google Scholar 

  164. Liu, M.M., Zhang, R.Z., Chen, W.: Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem. Rev. 114, 5117–5160 (2014). https://doi.org/10.1021/cr400523y

    Article  CAS  Google Scholar 

  165. Kakati, N., Maiti, J., Lee, S.H., et al.: Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru? Chem. Rev. 114, 12397–12429 (2014). https://doi.org/10.1021/cr400389f

    Article  CAS  Google Scholar 

  166. Li, M.F., Duanmu, K.N., Wan, C.Z., et al.: Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019). https://doi.org/10.1038/s41929-019-0279-6

    Article  CAS  Google Scholar 

  167. Jin, L.J., Xu, H., Chen, C.Y., et al.: Three-dimensional PdCuM (M = Ru, Rh, Ir) trimetallic alloy nanosheets for enhancing methanol oxidation electrocatalysis. ACS Appl. Mater. Interfaces 11, 42123–42130 (2019). https://doi.org/10.1021/acsami.9b13557

    Article  CAS  Google Scholar 

  168. Huang, L., Zhang, X.P., Wang, Q.Q., et al.: Shape-control of Pt–Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 140, 1142–1147 (2018). https://doi.org/10.1021/jacs.7b12353

    Article  CAS  Google Scholar 

  169. Duchesne, P.N., Li, Z.Y., Deming, C.P., et al.: Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17, 1033–1039 (2018). https://doi.org/10.1038/s41563-018-0167-5

    Article  CAS  Google Scholar 

  170. Yang, S., Kim, J., Tak, Y.J., Soon, A., Lee, H.: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 128, 2098–2102 (2016). https://doi.org/10.1002/anie.201509241

    Article  Google Scholar 

  171. Yang, S., Lee, H.: Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal. 3, 437–443 (2013). https://doi.org/10.1021/cs300809j

    Article  CAS  Google Scholar 

  172. Chen, Q.S., Zhou, Z.Y., Vidal-Iglesias, F.J., et al.: Significantly enhancing catalytic activity of tetrahexahedral Pt nanocrystals by Bi adatom decoration. J. Am. Chem. Soc. 133, 12930–12933 (2011). https://doi.org/10.1021/ja2042029

    Article  CAS  Google Scholar 

  173. Neurock, M., Janik, M., Wieckowski, A.: A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss. 140, 363–378 (2008). https://doi.org/10.1039/B804591G

    Article  CAS  Google Scholar 

  174. Xiong, Y., Dong, J.C., Huang, Z.Q., et al.: Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020). https://doi.org/10.1038/s41565-020-0665-x

    Article  CAS  Google Scholar 

  175. Zheng, T.T., Jiang, K., Ta, N., et al.: Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019). https://doi.org/10.1016/j.joule.2018.10.015

    Article  CAS  Google Scholar 

  176. He, X.H., Deng, Y.C., Zhang, Y., et al.: Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci. 1, 100004 (2020). https://doi.org/10.1016/j.xcrp.2019.100004

    Article  Google Scholar 

  177. Weng, L.C., Bell, A.T., Weber, A.Z.: Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018). https://doi.org/10.1039/c8cp01319e

    Article  CAS  Google Scholar 

  178. Ji, M.B., Wei, Z.D.: A review of water management in polymer electrolyte membrane fuel cells. Energies 2, 1057–1106 (2009). https://doi.org/10.3390/en20401057

    Article  CAS  Google Scholar 

  179. Bai, L., Duan, Z.Y., Wen, X.D., et al.: Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Appl. Catal. B Environ. 257, 117930 (2019). https://doi.org/10.1016/j.apcatb.2019.117930

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21673064, 51802059, 21905070 and 21503059), State Grid Heilongjiang Electric Power Co., Ltd., Technology Project Funding (52243719004s), China Postdoctoral Science Foundation (Grant Nos. 2018M631938, 2018T110307 and 2017M621284), Heilongjiang Postdoctoral Fund (LBH-Z17074 and LBH-Z18066), and Fundamental Research Funds for the Central Universities (Grant Nos. HIT. NSRIF. 2019040 and 2019041).

Author information

Authors and Affiliations

Authors

Contributions

The idea for the article was contributed by Yunkun Dai and Lei Zhao. The literature search and data analysis were performed by Fanrong Kong, Xuehan Tai, Yunlong Zhang, Bing Liu, Jiajun Cai, Xiaofei Gong, Yunfei Xia, Hongda Zhang, and Lin Li. The revision of the manuscript was completed by Yunkun Dai, Pan Guo, Bo Liu, and Lei Zhao. The first draft of the manuscript was written by Yunkun Dai. Lei Zhao,Xulei Sui, and Zhenbo Wang critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lei Zhao, Xulei Sui or Zhenbo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Kong, F., Tai, X. et al. Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion. Electrochem. Energy Rev. 5 (Suppl 2), 22 (2022). https://doi.org/10.1007/s41918-022-00142-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00142-w

Keywords

Navigation